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Representation of weak solutions of convex

Hamilton-Jacobi-Bellman equations on infinite horizon

Vincenzo Basco

Abstract In the present paper it is provided a representation result for the

weak solutions of a class of evolutionary Hamilton-Jacobi-Bellman equations

on infinite horizon, with Hamiltonians measurable in time and fiber convex.

Such Hamiltonians are associated to a − faithful − representation namely in-

volving two functions measurable in time and locally Lipschitz in the state and

control. Our results concern to recover a representation of convex Hamiltonians

under a relaxed assumption on the Fenchel transform of the Hamiltonian with

respect the fiber. We apply them to investigate uniqueness of weak solutions

vanishing at infinity of a class of time dependent Hamilton-Jacobi-Bellman

equations, regarded as an appropriate value function of an infinite horizon
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control problem under state constraints, assuming a viability condition on the

domain of the aforementioned Fenchel transform.
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1 Introduction

In this paper we address the Hamilton-Jacobi-Bellman (HJB) equation on

infinite horizon

−Vt +H(t, x,−DxV ) = 0 on (0,+∞)× O, (1)

where H : R+ ×R
n ×R

n → R is the Hamiltonian, O ⊂ R
n is an open subset,

and Dx stands for the gradient with respect to the space variable. The notion

of weak − or viscosity − solution to a first-order partial differential equation to

study stationary and evolutionary HJB equations is due to Crandall, Evans,

and Lions [7,16]. Using superdifferentials and subdifferentials of continuous

functions, they obtained existence and uniqueness results in the class of con-

tinuous functions for Cauchy problems associated to HJB equations, when the

Hamiltonian is continuous, by means of concept of sub/super-solution. Barles

and Souganidis [3,22] extended the existence results to a large class of con-

tinuous Hamiltonians. As matter of fact, such notion of solution turns out to

be quite unsatisfactory for HJB equations arising in control theory and the
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calculus of variations − cfr. [23] for further discussions. In fact, the value func-

tion, that is a viscosity solution of HJB equation, loses the differentiability

property − even in the absence of state constraints − whenever multiple op-

timal solutions are present at the same initial datum or when additional state

constraints arise. Further, the definition of solution can be stated equivalently

in terms of ‘normals’ to the epigraph and the hypograph of the solution. But,

when the dynamics is only measurable in time such equivalence may fail to be

true.

Nevertheless, the study of uniqueness of weak solutions can be carried out

by using the definition of solution from [9]. In order to deal with Hamiltonians

which are measurable in time, Ishii [11] proposed a new notion of weak solution

in the class of continuous functions, proving the existence and uniqueness in

the stationary case, and, for the evolutionary case, on (0,+∞) × R
n. The

continuously differentiable test functions needed to define such solutions are

more complex, involving in addition some integrable mappings. This yields

an existence result for weak solutions. Since uniqueness results for viscosity

solutions of the Bellman equation

−Vt + sup
u∈Rm

{〈 f(t, x, u),−DxV 〉 − ℓ(t, x, u)} = 0 on (0,+∞)× O,

assert that the weak solutions are represented as the value function of the

control problem associated to the couple (f, ℓ) where f is the dynamics and

ℓ the Lagrangian, one may ask the possibility for the viscosity solution of the

HJB in (1) to be represented as the value function of an appropriate optimal

control control problem under state constraints. In the compact time case,
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this viewpoint was investigated by Ishii in [12] for the convex case, providing

Hölder continuous representation, and in [13] for Hamiltonian non necessar-

ily convex. In this latter work, the lagrangian ℓ is merely continuous and the

space of control is infinite dimensional. On the other hand, in [18] the author

construct a faithful representation, Lipschitz continuous in the state and con-

trol. Frankowska and Sadrakyan [10] investigated faithful representations of

Hamiltonians that are measurable in time, giving sharp results on the Lip-

schitz constants of faithful representations, and the stability of the faithful

representation, key property to show convergences results of value functions.

However, in [17] the author, under some weaker assumptions and assuming the

boundedness from above of the Fenchel transform H∗(t, x, .) on its domain,

constructed a faithful representation (f, ℓ) showing, for the finite horizon set-

ting, the equivalence between the calculus of variation problem and the optimal

control problem associated to the representation (f, ℓ) for the free-constrained

setting O = R
n.

Unfortunately, when addressing state constrained problems, i.e. O 6= R
n,

the usual assumptions on the Hamiltonian may be insufficient to derive ex-

istence and uniqueness results for the HJB equations, even for finite horizon

problem. In the framework of control problems, Soner [21] proposed a control-

lability assumption − called inward pointing condition − to investigate the

continuity of the value function and the uniqueness of viscosity solutions of an

autonomous control problem. However, such a property cannot be used for sets

with nonsmooth boundaries and boundedness assumptions on O may be quite
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restrictive for many applied models. To allow for nonsmooth boundaries, Ishii

and Koike [15] generalized Soner’s condition in the setting of infinite horizon

problems and continuous solutions − cfr. also [5]. To deal with discontinuous

solutions, Ishii [14] introduced the concept of lower and upper semicontinuous

envelopes of a function, proving that the upper semicontinuous envelope of the

value function of an optimal control problem is the largest upper semicontin-

uous subsolution and its lower semicontinuous envelope is the smallest lower

semi-continuous supersolution. This approach, however, does not ensure the

uniqueness of − weak − solutions of the HJB equation. On the other hand, the

upper semicontinuous envelope does not have any meaning in optimal control

theory while dealing with minimization problems − the lower semicontinu-

ous envelope determines the value function of the relaxed problem. Barron,

Frankowska, and Jensen [4,8] developed a different concept of solutions for the

HJB equation associated to constraint-free Mayer optimal control problems,

with a discontinuous cost. In this approach only subdifferentials are involved.

While investigating infinite horizon problems, in the early work [6], the merely

measurable case, it became clear that, in order to get uniqueness, it is conve-

nient to replace subdifferentials by normals to the epigraph of solutions. Such

‘geometric’ definition of solution avoids using test functions and allows to have

a unified approach to both the continuous and measurable case.

The contribution of the present paper is to give a representation and an

uniqueness theorem for weak solutions − in the sense of definition given in

Section 5 − of non-autonomous HJB equations (1), with Hamiltonians time
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measurable and convex in the fiber. We prove, assuming the relaxed assump-

tion of local boundedness from above of H∗(t, x, .) on its domain, a faithful

representation result − cfr. Section 3 − of convex Hamiltonians in order to

recover, under a backward viability assumption on the domain of the Fenchel

transform H∗(t, x, .), the uniqueness of weak solutions in the class of vanishing

functions at infinity

lim
t→+∞

sup
x∈domV (t,.)

|V (t, x)| = 0. (2)

The outline of this paper is as follows. In Section 2 we recall some basic

concept and result in non-smooth analysis. The Sections 3 and 4 are devoted

to the parametrization of set-valued maps and the representation of convex

Hamiltonians, respectively. In Section 5 we state the main result of this paper,

showing an uniqueness theorem for weak solution of HJB on infinite horizon

with vanishing condition at infinity (2) and a representation result of such

− weak − solutions as the value function of an appropriate infinite horizon

optimal control problem under state constraints.

NOTATIONS: R
+, | . |, and 〈 ., .〉 stands for the set of all non-negative real

numbers, the Euclidean norm, and the scalar product, respectively. Let E ⊂ R
k

be a subset and x ∈ R
k. The Euclidean distance between x and E and the

closed ball in R
k of radius r > 0 and centered at x are denoted, respectively, by

d(x,E) and B(x, r) (B := B(0, 1)). cl E, int E, bdr E, Ec, and co E stands,

respectively, for the closure, the interior, the boundary, the complement, and

the convex hull of E (coE := cl co E). We put ‖E‖ := supk∈E |k| ∈ R
+ ∪

{+∞}. C m stands for the family of all non-empty closed convex subsets in
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R
m and we write J ∈ Cm

b if J is bounded and J ∈ Cm. µ denotes the Lebesgue

measure.

2 Preliminaries on non-smooth analysis

The negative polar cone of a non-empty subset C ⊂ R
k is the set defined by

C− :=
{

p ∈ R
k | 〈 p, c〉 ≤ 0 for all c ∈ C

}

.

The positive polar cone of C is the set defined by C+ := −C−. Let D ⊂ R
n

be non-empty and x ∈ cl D. The contingent cone to D at x is the set defined

by

TD(x) := {v ∈ R
n | lim infh→0+

dD(x+ hv)

h
= 0}.

The limiting normal cone to D at x, written ND(x), is the closed set of all

p ∈ R
n such that lim infy→Dx dTD(y)−(p) = 0 and it is known that ND(x)− ⊂

TD(x), provided D is closed. If D is convex, then ND(x) is also called normal

cone and holds (cfr. [23])

p ∈ ND(x) ⇐⇒ 〈 p, y − x〉 ≤ 0 ∀y ∈ D. (3)

We denote for any r > 0

N r
D(x) := {p ∈ R

n | p ∈ coND(y), y ∈ (bdr D) ∩B(x, r), |p| = 1}.

Now, assume that D is closed. A vector p ∈ R
n is called a proximal normal to

D at x if there exists λ > 0 such that dD(x+ λp) = λ|p|, i.e.,

int B(x + λp, λ|p|) ⊂ Dc. (4)

We note that, since D is closed, for any x ∈ D the set of all proximal normals

is non-empty and it reduces to the singleton {0} at any interior point of D.
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Let ϕ : Rk → R ∪ {±∞} be an extended real function. We write dom ϕ,

epi ϕ, hypo ϕ, and graph ϕ for the domain, the epigraph, the hypograph, and

the graph of ϕ, respectively. We recall that ϕ is said to be measurable if

ϕ−1({+∞}), ϕ−1({−∞}), and ϕ−1(I) are measurable for any Borel subset

I ⊂ R. The function ϕ is said to be proper if dom ϕ 6= ∅ and ϕ never attain

−∞ values. We reacall that the contingent epiderivative/hypoderivative, in

direction u ∈ R
k, of ϕ at x ∈ domϕ are, respectively, defined by

D↑ϕ(x)(u) := lim infh→0+, u′→u

ϕ(x + hu′)− ϕ(x)

h
,

D↓ϕ(x)(u) := lim suph→0+, u′→u

ϕ(x + hu′)− ϕ(x)

h
.

The Fréchet subdifferential/superdifferential of ϕ at x ∈ domϕ are, respec-

tively, defined by

∂−ϕ(x) := {p ∈ R
k | lim infy→x

ϕ(y)− ϕ(x)− 〈 p, y − x〉

|y − x|
≥ 0},

∂+ϕ(x) := {p ∈ R
k | lim supy→x

ϕ(y)− ϕ(x)− 〈 p, y − x〉

|y − x|
≤ 0}.

The following result is well known (cfr. [19, Theo. 1] and [20, Prop. 8.12]).

Lemma 2.1 ([19,20]) Assume that ϕ is lower semicontinuous and convex.

Then, for any x ∈ dom ϕ:

(i) ∂+ϕ(x) = ∂ϕ(x) := {p ∈ R
k |ϕ(y) ≥ ϕ(x) + 〈p, y − x〉 for all y ∈ R

k}

and it is called subdifferential (in the sense of convex analysis) of ϕ at

x;

(ii) for any (p, 0) ∈ Nepi ϕ(x, ϕ(x)) there exist two sequences xi ∈ dom ϕ

and (pi, qi) ∈ Nepi ϕ (xi, ϕ (xi)) such that qi < 0 for all i ∈ N and

(xi, ϕ (xi)) → (x, ϕ(x)), (pi, qi) → (p, 0).
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The Fenchel transform (or conjugate) of ϕ, written ϕ∗, is the extended real

function ϕ∗ : Rk → R ∪ {±∞} defined by ϕ∗(v) := supp∈Rk{〈 v, p〉 − ϕ(p)}.

The following results are known (cfr. [20, Theo. 11.1, 11.3]).

Lemma 2.2 ([20]) Assume that ϕ is proper, lower semicontinuous, and con-

vex.

Then ϕ∗ is a proper lower semicontinuous convex function, (ϕ∗)∗ = ϕ,

dom ϕ∗ is convex, and for all p, v ∈ R
k it holds that p ∈ ∂ϕ∗(v) ⇐⇒ v ∈

∂ϕ(p) ⇐⇒ ϕ(p) + ϕ∗(v) = 〈v, p〉.

3 Parametrization of set-valued maps

We recall that the extended Hausdorff distance between J, K ∈ C
m is defined

by

dl(J,K) := max {supx∈K d(x, J), supx∈J d(x,K)} ∈ R ∪ {+∞} .

Notice that dl(J,K) < +∞ for any J,K ∈ Cm
b . Next we state a result on

Lipschitz parametrization of convex sets (cfr. [1, Chapter 9]).

Lemma 3.1 ([1]) Let P : Rm × C m
 Cm be the projection map defined by

P (u, J) := J ∩B(u, 2d(u, J)).

Then dl(P (u, J), P (v,K)) ≤ 5(dl(J,K)+ |u− v|) for all J,K ∈ Cm and all

u, v ∈ R
m.

In the following, we consider the map Sm : Cm
b → R

m defined by

Sm(J) :=
1

µ(B)

∫

B
pr(∂σJ (p))µ(dp),
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where: for any K ∈ C m, pr(K) stands for the projection of 0 ∈ R
m onto

K ∈ C m, i.e., the element in K with minimal norm; for any J ∈ C m
b , σJ (.)

denotes the support function of J , that is σJ (p) := maxq∈J〈 p, q〉. The function

Sm(.) is called Steiner map (or Steiner selection) and the following result is

well known (cfr. [1, Theorem 9.4.1]).

Lemma 3.2 ([1]) The function Sm(.) is m-Lipschitz continuous on Cm
b with

respect the Hausdorff distance and satisfies

Sm(J) ∈ J ∀J ∈ C
m
b . (5)

Remark 3.1 We notice that (5) follows immediately from the properties of

Fenchel transform and the definition of subdifferential. Indeed, fix J ∈ Cm
b

and let p ∈ B. Define ψ(.) = ψp(.) := σJ (. + p). The function ψ is proper

convex. From Lemma 2.1-(i), it follows that

∂σJ (p) = ∂ψ(0) = argminψ∗. (6)

So, ψ∗(q) = supy∈Rm{〈 y, q〉−σJ(y+p)} = −〈 p, q〉, if q ∈ J , and +∞ otherwise.

From (6), we have ∂σJ(p) = argmaxq∈J 〈 p, q〉, and, by arbitrariness of p, we

conclude pr(∂σJ (p)) ∈ J for all p ∈ B. Since
1

µ(B)

∫

B
Jµ(dp) = J , we get (5).

Next, we state the main result of this section on parametrization of convex

sets following the main ideas of those discussed in [1, Chapter 9] (cfr. also the

literature therein) and providing sharper conditions.

Theorem 3.1 Let I be a closed interval of R
+ and Q : I × R

k
 R

m be

a set-valued map such that Q(t, x) ∈ C m for all (t, x) ∈ I × R
k, Q(., x) is

measurable for all x ∈ R
k, and:
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(a) for all t ∈ I and any r > 0 there exists cr(t) > 0 satisfying Q(t, x) ⊂

Q(t, y) + cr(t)|x − y|B for all x, y ∈ B(0, r).

Then, for any set-valued map δ : I × R
k
 R

m, with non-empty closed

values and δ(., x) measurable for all x ∈ R
k, there exist two functions φ :

I × R
k × R

m → R
m and η : I × R

k → (0,+∞) satisfying

η(t, x) =



















‖δ(t, x)‖ if ‖δ(t, x)‖ > 0

1 otherwise,

(7)

and:

(i) φ(., x, u) and η(., x) are measurable for all x ∈ R
k, u ∈ R

m;

(ii) for any t ∈ I and any r > 0

|φ(t, x, u)− φ(t, y, v)| ≤ 5m(cr(t)|x − y|+ |η(t, x)u − η(t, y)v|)

∀x, y ∈ B(0, r), ∀u, v ∈ R
m;

(iii) φ(t, x,B) ⊂ Q(t, x) for all (t, x) ∈ I × R
k;

(iv) if δ(t, x) 6= {0} and it is bounded, then Q(t, x) ∩ δ(t, x) ⊂ φ(t, x,B).

In particular, if δ(., .) ≡ R
m, then

Q(t, x) = φ(t, x,Rm) ∀(t, x) ∈ I × R
k. (8)

Proof Assume first that δ : I × R
k
 R

m is the constant set-valued map

δ(., .) ≡ R
m. Next, we prove (i)-(iii). Notice that, from our assumptions, [1,

Theorem 8.2.3], and since the intersection of measurable set-valued maps is

measurable, we have that

∀(x, u) ∈ R
k × R

m, t P (u,Q(t, x)) is measurable, (9)
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where P (., .) is the projection map defined in Lemma 3.1. Fix r > 0. From

assumption (a) and applying Lemma 3.1, for all t ∈ I and all x, y ∈ B(0, r)

dl(P (u,Q(t, x)), P (v,Q(t, y))) ≤ 5(dl(Q(t, x), Q(t, y)) + |u− v|)

≤ 5(cr(t)|x− y|+ |u − v|).

(10)

Now, consider the function φ : I × R
k × R

m → R
m defined by

φ(t, x, u) := Sm ◦ P (u,Q(t, x)).

Let t ∈ I, x ∈ R
k, and u ∈ R

m. By (5) immediately follows that φ(t, x, u) ∈

Q(t, x). In particular, (iii) holds. Moreover, let w ∈ Q(t, x). Since Q(t, x) ∩

B(w, 2d(w,Q(t, x))) = {w}, then φ(t, x, w) = Sm ◦ P (w,Q(t, x)) = w. So, (8)

is proved. From the m-Lipschitz continuity of Sm(.) and (10), it follows that

for all t ∈ I,

|φ(t, x, u) − φ(t, y, v)| ≤ mdl(P (u,Q(t, x)), P (v,Q(t, y)))

≤ 5m(cr(t)|x− y|+ |u− v|)

(11)

for all x, y ∈ B(0, r) and all u, v ∈ R
m. Hence, recalling (9), (11), and the

continuity of Sk(.), (i) and (ii) follows.

Now, consider a set-valued map δ : I × R
k
 R

m with non-empty closed

values and δ(., x) measurable for all x ∈ R
k. From [1, Theorem 8.2.11] and since

δ(., x) is measurable for any x ∈ R
k, we have that the map t → ‖δ(t, x)‖ ∈

R∪{±∞} is measurable for any x ∈ R
k. Define, for any x ∈ R

k, the measurable

set Λ(x) := {t ∈ I | ‖δ(t, x)‖ ∈ {0,+∞}} and denote for all (t, x) ∈ I × R
k

η(t, x) := χΛ(x)(t) + χΛ(x)c(t) · ‖δ(t, x)‖ ,
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where χV is the function that takes values 1 on the set V and 0 elsewhere.

Then, (7) holds and, from our assumptions, the map t 7→ η(t, x) is measurable

for all x ∈ R
k. Consider the map φ : I × R

k × R
m → R

m defined by

φ(t, x, u) := Sm ◦ P (η(t, x)u,Q(t, x)).

Arguing in the same way as above, the statements (i), (ii), and (iii) holds. Next

we show (iv). Assume that δ(t, x) is bounded and δ(t, x) 6= {0}. From the defi-

nition of η(t, x), we have that η(t, x) = ‖δ(t, x)‖ > 0. Now, if Q(t, x)∩δ(t, x) =

∅, then (iv) holds. Otherwise, let w ∈ Q(t, x) ∩ δ(t, x). Then, there exists

δ̂ ∈ [0, ‖δ(t, x)‖] and |ŵ| = 1 satisfying w = ŵδ̂. We have w = (ŵ δ̂
η(t,x) )η(t, x).

Since
∣

∣

∣
ŵ δ̂

η(t,x)

∣

∣

∣
≤ 1, it follows φ(t, x, ŵ δ̂

η(t,x)) = w. Thus, (iv) holds. ⊓⊔

Remark 3.2 Let (t, x) ∈ I×R
n. From the proof of Theorem 3.1, it follows that

dl(Q(t, x) ∩ δ(t, x), φ(t, x,B)) ≤ 10m ‖δ(t, x)‖. Indeed, for any γ ∈ Q(t, x) ∩

δ(t, x) and any θ ∈ φ(t, x,B), we have

|γ − θ| = |γ − Sm ◦ P (‖δ(t, x)‖ u,Q(t, x))|

= |Sm ◦ P (γ,Q(t, x))− Sm ◦ P (‖δ(t, x)‖ u,Q(t, x))|

≤ 5m|γ − ‖δ(t, x)‖ u| ≤ 10m ‖δ(t, x)‖ .

From Theorem 3.1 we get the following corollary:

Corollary 3.1 Assume the assumptions of Theorem 3.1 and that for all x ∈

R
k there exists r(., x) : I → (0,+∞) measurable such that Q(t, x) ⊂ r(t, x)B

for all (t, x) ∈ I × R
k.

Then there exists a function φ : I × R
k × R

m → R
m such that

Q(t, x) = φ(t, x,B) ∀(t, x) ∈ I × R
k,
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and:

(i) φ(., x, u) is measurable for all x ∈ R
k, u ∈ R

m;

(ii) for any t ∈ I and any r > 0

|φ(t, x, u) − φ(t, y, v)| ≤ 5m(cr(t)|x− y|+ |r(t, x)u − r(t, y)v|)

∀x, y ∈ B(0, r), ∀u, v ∈ R
m.

Proof All the conclusions follows from Theorem 3.1 by choosing δ(., .) =

r(., .)B. ⊓⊔

4 Representation of convex Hamiltonians

Let I be a closed interval of R+ and H : I ×R
n ×R

n → R be a function such

that t 7→ H(t, x, p) is measurable for any x, p ∈ R
n. We consider the following

conditions on H :

H.1.1. p 7→ H(t, x, p) is convex for all t ∈ I and x ∈ R
n;

H.1.2. for all r > 0 there exists Cr : I → R
+ measurable such that

|H(t, x, p)−H(t, y, p)| ≤ Cr(t)(1 + |p|)|x− y|

for all t ∈ I, x, y ∈ B(0, r), and p ∈ R
n;

H.1.3. there exists c̃ : I → R
+ measurable such that

|H(t, x, p)−H(t, x, q)| ≤ c̃(t)(1 + |x|)|p− q|

for all t ∈ I and x, p, q ∈ R
n.

In the following, for any (t, x) ∈ I × R
n, we denote by H∗(t, x, .) : R

n →

R ∪ {±∞} the Fenchel transform of the function H(t, x, .), we define the set-
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valued maps D : I ×R
n
 R

n, Ep : I ×R
n
 R

n+1, and Gr : I ×R
n
 R

n+1

respectively by

D(t, x) := dom H∗(t, x, .),

Ep(t, x) := epi H∗(t, x, .),

Gr(t, x) := graph H∗(t, x, .),

and we put γ(t, x) := max { 0 , supq∈D(t,x) H
∗(t, x, q)} ∈ R

+ ∪ {+∞}.

We also consider the following condition on the Hamiltonian:

H.1.4. ∀(t, x) ∈ I × R
n, ∀q̄ ∈ cl D(t, x), ∃ε > 0 :

supq∈D(t,x)∩B(q̄,ε) H
∗(t, x, q) <∞.

Theorem 4.1 (Representation) Assume H.1.1-2 and H.1.4.

Then there exists a function φ : I × R
n × R

n+1 → R
n+1,

φ(t, x, u) =: (f(t, x, u), ℓ(t, x, u)) ∈ R
n × R,

satisfying:

(i) f(., x, u) and ℓ(., x, u) are measurable for all x ∈ R
n and u ∈ R

n+1;

(ii) for all t ∈ I and x, p ∈ R
n,

H(t, x, p) = sup
u∈Rn+1

{〈 p, f(t, x, u)〉 − ℓ(t, x, u)};

(iii) for all t ∈ I and r > 0,

|f(t, x, u)− f(t, y, v)| ≤ 5(n+ 1)(Cr(t)|x− y|+ |u− v|),

|ℓ(t, x, u)− ℓ(t, y, v)| ≤ 5(n+ 1)(Cr(t)|x− y|+ |u− v|)

∀x, y ∈ B(0, r), ∀u, v ∈ R
n+1.
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If, in addition, condition H.1.3 holds, then the statements (ii)-(iii) are re-

placed by the following:

(ii)′ for all t ∈ I and x, p ∈ R
n,

H(t, x, p) = sup
u∈B

{〈 p, f(t, x, u)〉 − ℓ(t, x, u)};

(iii)′ for all t ∈ I and r > 0,

|f(t, x, u)− f(t, y, v)| ≤ 5(n+ 1)(Cr(t)|x− y|+ |η(t, x)u − η(t, y)v|),

|ℓ(t, x, u)− ℓ(t, y, v)| ≤ 5(n+ 1)(Cr(t)|x− y|+ |η(t, x)u − η(t, y)v|)

∀x, y ∈ B(0, r), ∀u, v ∈ R
n+1,

where η(t, .) := c̃(t)(1 + |.|) + γ(t, .) + |H(t, ., 0)|;

and moreover:

(iv)′ D(t, x) = f(t, x,B) for all t ∈ I and x ∈ R
n;

(v)′ Gr(t, x) ⊂ φ(t, x,B) for all t ∈ I and x ∈ R
n.

Before to give a proof of Theorem 4.1, we show some intermediate results.

Lemma 4.1 Assume H.1.1-2 and let (t, x) ∈ I × R
n.

Then:

(i) D(t, x) is non-empty and convex.

Moreover, if, in addition, the condition H.1.3 holds, then:

(ii) D(t, x) ⊂ c̃(t)(1 + |x|)B.

Proof The first claim follows immediately from Lemma 2.2. The proof of state-

ment (ii) follows in the same way as in [10]. ⊓⊔
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Lemma 4.2 Assume H.1.1-2 and H.1.4.

Then:

(i) D(t, x) ∈ C
n;

(ii) for all t ∈ I and r > 0,

D(t, x) ⊂ D(t, y) + Cr(t)|x− y|B ∀x, y ∈ B(0, r).

Proof Let (t, x) ∈ I × R
n. Next we show that D(t, x) is closed. Consider

a sequence qi ∈ D(t, x) converging to q̃ ∈ R
n. Since q̃ ∈ cl D(t, x), from

assumption H.1.4, there exist ε > 0 and M > 0 such that |H∗(t, x, qi)| ≤ M

for all qi ∈ B(q̃, ε). Hence, since the Fenchel transform q 7→ H∗(t, x, q) is lower

semicontinuous (cfr. Lemma 2.2), M ≥ lim inf i→+∞H∗(t, x, qi) ≥ H∗(t, x, q̃).

So, q̃ ∈ D(t, x), and recalling Lemma 4.1, the assertion (i) is proved.

Now, to show (ii), suppose by contradiction that there exist t ∈ I, r > 0,

x, y ∈ B(0, r), w ∈ D(t, x), and η > Cr(t) such that

D(t, y) ∩B(w, η|x − y|) = ∅.

We divide the proof into three steps.

Step 1: Applying Lemma 4.1 and (i), the set D(t, x) is closed and convex.

Let q̄ ∈ D(t, y) be the projection of w ontoD(t, y) and put z := (w−q̄)/|w−q|.

We have that z is a proximal normal toD(t, y) at q̄, i.e., there exists λ̄ > η|x−y|

such that dD(t,y)(q̄ + λ̄z) = λ̄. Consider the hyperplane {ξ ∈ R
n | 〈 z, ξ〉 =

〈 z, q̄〉}. Since D(t, y) is convex and z is a proximal normal, we have that

D(t, y) ⊂ {ξ ∈ R
n | 〈 z, ξ〉 ≤ 〈 z, q̄〉}. Moreover, from (4), B(w, η|x − y|) ⊂

int B(q̄ + λ̄z, λ̄) ⊂ D(t, y)c, and we get

〈 z, q〉 ≤ 〈 z, q̄〉 < 〈 z, w + η|x − y|h〉 ∀q ∈ D(t, y), ∀h ∈ B. (12)
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Notice that, applying [23, Proposition 4.2.9], z ∈ ND(t,y)(q̄). Hence, using (3),

we have (z, 0) ∈ Nepi H∗(t,y,.)(q̄, H
∗(t, y, q̄)).

Step 2: From Step 1 and applying Lemma 2.1-(ii), consider two sequences

wi ∈ dom H∗(t, y, .) and (pi, qi) ∈ Nepi H∗(t,y,.)(wi, H
∗(t, y, wi)), with qi < 0,

satisfying

(pi, qi) → (z, 0), (wi, H
∗(t, y, wi)) → (q̄, H∗(t, y, q̄)). (13)

So, (pi/|qi|,−1) ∈ Nepi H∗(t,y,.)(wi, H
∗(t, y, wi)) for all i ∈ N. We conclude

that pi/|qi| ∈ ∂H∗(t, y, .)(wi) for all i ∈ N. Thus, from Lemma 2.2,

H(t, y, pi/|qi|) +H∗(t, y, wi) = 〈wi, pi/|qi|〉 ∀i ∈ N. (14)

Step 3: Using (13) and (12) with h = −z/|z|, we can assume that 〈wi, pi〉 <

〈w, pi〉−η|x−y| for all large i ∈ N. Hence, from assumption H.1.2 and recalling

that w ∈ D(t, x), we get for all large i ∈ N

〈wi, pi〉 − |qi|H(t, y, pi/|qi|)

< 〈w, pi〉 − η|x− y| − |qi|H(t, x, pi/|qi|) + (|qi|+ |pi|)CR(t)|x − y|

= |qi|(〈w, pi/|qi|〉 −H(t, x, pi/|qi|)) + ((|qi|+ |pi|)Cr(t)− η)|x − y|

≤ |qi|H∗(t, x, w) + ((|qi|+ |pi|)Cr(t)− η)|x− y|.

So, by (14), for all large i ∈ N

|qi|H
∗(t, y, wi) < |qi|H

∗(t, x, w) + ((|qi|+ |pi|)Cr(t)− η)|x− y|. (15)

From assumption H.1.4, the lower semicontinuity of H∗(t, y, .), and since wi →

q̄, the sequence {H∗(t, y, wi)}i∈N is bounded. Then, using again (13), and

passing to the lower limit as i → +∞ in (15) we get 0 ≤ (|z|Cr − η)|x − y|.

Since |z| = 1, 0 ≤ Cr(t)− η, and a contradiction follows. ⊓⊔
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Lemma 4.3 Assume H.1.1-2 and H.1.4.

Then:

(i) t Ep(t, x) is measurable for all x ∈ R
n;

(ii) Ep(t, x) ∈ C n+1 for all t ∈ I and x ∈ R
n;

(iii) for all t ∈ I and r > 0,

Ep(t, x) ⊂ Ep(t, y) + Cr(t)|x − y|(B× [−1, 1]) ∀x, y ∈ B(0, r).

Proof We notice that, from H.1.1-2, the lower semicontinuity and the convexity

of Fenchel transform (cfr. Lemma 2.2), it follows immediately that, for any

t ∈ I and x ∈ R
n, the set-valued map s Ep(s, x) is measurable and Ep(t, x)

is non-empty, closed, and convex. So, (i) and (ii) holds.

Now, we show (iii). Fix x, y ∈ R
n, t ∈ I, and consider (q, λ) ∈ Ep(t, x).

Without loss of generality we may assume that Cr(t)|x− y| 6= 0. We claim the

following: there exists w ∈ D(t, y) satisfying (w, q + Cr(t)|x − y|) ∈ Ep(t, y).

Indeed, from assumption H.1.2, we have that H(t, x, p) ≤ H(t, y, p)+Cr(t)(1+

|p|)|x− y| for all p ∈ R
n, and, from the definition of Fenchel transform,

(H(t, y, .) + Cr(t)(1 + |.|)|x − y|)∗ (q̃) ≤ H∗(t, x, q̃) ∀q̃ ∈ R
n. (16)

Now, define h(.) := −Cr(t)|x − y| on B(0, Cr(t)|x − y|) and +∞ elsewhere.

Notice that h(.) is a proper lower semicontinuous convex function and h∗(.) =

Cr(t)(1+|.|)|x−y|. Notice that, since dom H(t, y, .) = R
n and from assumption

H.1.1, applying Lemma 2.2 we get (H∗(t, y, .))∗ = H(t, y, .). So, for all z ∈ R
n

(

infq1∈Rk H∗(t, y, q1) + h(.− q1)
)∗

(z)

:= supq2∈Rk

{

〈 q2, z〉 − infq1∈Rk {H∗(t, y, q1) + h(q2 − q1)}
}
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= supq2∈Rk

{

〈 q2, z〉+ supq1∈Rk {−H∗(t, y, q1)− h(q2 − q1)}
}

= supq2, q1∈Rk{〈 q2, z〉 −H∗(t, y, q1)− h(q2 − q1)}

= supq1∈Rk

{

〈 q1, z〉 −H∗(t, y, q1) + supq2∈Rk {〈 q2 − q1, z〉 − h(q2 − q1)}
}

= H(t, y, z) + Cr(t)(1 + |z|)|x− y|.

Since dom h = B(0, Cr(t)|x− y|) and the function

z 7→
(

infq1∈Rk H∗(t, y, q1) + h(z − q1)
)

is proper lower semicontinuous and convex, passing to the Fenchel transform

and using Lemma 2.2 we deduce

infq1∈Rk H∗(t, y, q1) + h(q − q1)

= infq1∈B(q,Cr(t)|x−y|) H
∗(t, y, q1)− Cr(t)|x − y|

= (H(t, y, .) + Cr(t)(1 + |.|)|x− y|)∗(q).

Thus, from (16), there exists w ∈ B(q, Cr(t)|x − y|) satisfying

H∗(t, y, w) − Cr(t)|x− y| ≤ H∗(t, x, q).

Hence, the claim follows. Now, applying Lemma 4.2-(ii), |q−w| ≤ Cr(t)|x−y|

because q ∈ D(t, x) and w ∈ D(t, y). Finally, since

(q, λ) = (w, λ + Cr(t)|x − y|) + Cr(t)|x − y|
(

q−w
Cr(t)|x−y| ,−1

)

,

the statement (iii) follows by the arbitrariness of (q, λ) ∈ Ep(t, x). ⊓⊔

Proposition 4.1 Assume H.1.1-2 and H.1.4.

Then there exists a function φ : I × R
n × R

n+1 → R
n+1,

φ(t, x, u) =: (f(t, x, u), ℓ(t, x, u)) ∈ R
n × R,

satisfying

Ep(t, x) = φ(t, x,Rn+1) ∀(t, x) ∈ I × R
n, (17)
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and:

(i) φ(., x, u) is measurable for all x ∈ R
n and u ∈ R

n+1;

(ii) for all t ∈ I and r > 0

|φ(t, x, u) − φ(t, y, v)| ≤ 5(n+ 1)(Cr(t)|x − y|+ |u− v|)

∀x, y ∈ B(0, r), ∀u, v ∈ R
n+1.

If, in addition, H.1.3 holds, then

Gr(t, x) ⊂ φ(t, x,B) ∀(t, x) ∈ I × R
n,

the statement (ii) is replaced by the following:

(ii)′ for all t ∈ I and r > 0

|φ(t, x, u)− φ(t, y, v)| ≤ 5(n+ 1)(Cr(t)|x − y|+ |η(t, x)u − η(t, y)v|)

∀x, y ∈ B(0, r), ∀u, v ∈ R
n+1,

where η(t, .) := (c̃(t) + Cr(t))(1 + |.|) + |H(t, 0, 0)|+ γ(t, .);

and moreover:

(iii)′ D(t, x) = f(t, x,B) for all t ∈ I and x ∈ R
n.

Proof Let t ∈ I and r > 0. Notice that, if H.1.3 holds, then γ(t, x) < +∞ for

any x ∈ B(0, r). Furthermore, for all x ∈ B(0, r) and v ∈ D(t, x)

−H(t, x, 0) ≤ H∗(t, x, v) ≤ γ(t, x).

We get |(v,H∗(t, x, v))| ≤ c̃(t)(1 + |x|) + γ(t, x) + |H(t, x, 0)| ≤ c̃(t)(1 + |x|) +

Cr(t)(1 + |x|) + |H(t, 0, 0)|+ γ(t, x) for all x ∈ B(0, r). So

‖Gr(t, x)‖ ≤ (c̃(t) + Cr(t))(1 + |x|) + |H(t, 0, 0)|+ γ(t, x) (18)

for all x ∈ B(0, r). Hence, the conclusions follows immediately from Theorem

3.1 and Lemma 4.3, with Q(t, x) = Ep(t, x) and δ(t, x) = Gr(t, x). ⊓⊔
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Next, we give a proof of Theorem 4.1.

Proof of Theorem 4.1 Consider the function φ = (f, ℓ) of Proposition 4.1. The

statements (i) and (iii) follows from Proposition 4.1. Next we show (ii).

Fix t ∈ I, x ∈ R
n, and p ∈ R

n. Recalling that (H∗(t, x, .))∗ = H(t, x, .),

from (17) it follows that for any u ∈ R
n+1 the pair (f(t, x, u), ℓ(t, x, u)) lays

in Ep(t, x), i.e.,

H∗(t, x, f(t, x, u)) ≤ ℓ(t, x, u). (19)

So, for any u ∈ R
n+1

〈 p, f(t, x, u)〉 − ℓ(t, x, u)

≤ 〈 p, f(t, x, u)〉 −H∗(t, x, f(t, x, u))

≤ supv∈Rn+1{〈 p, v〉 −H∗(t, x, v)} = H(t, x, p).

Then, by arbitrariness of u ∈ R
n+1, we get

sup
u∈Rn+1

{〈 p, f(t, x, u)〉 − ℓ(t, x, u)} ≤ H(t, x, p).

On the other hand, let v ∈ D(t, x). Since (v,H∗(t, x, v)) ∈ Ep(t, x), from (17),

there exists w ∈ R
n+1 such that (v,H∗(t, x, v)) = (f(t, x, w), ℓ(t, x, w)). So,

〈 p, v〉 − H∗(t, x, v) = 〈 p, f(t, x, w)〉 − l(t, x, w) ≤ supu∈Rn+1{〈 p, f(t, x, u)〉 −

ℓ(t, x, u)}. Hence,

H(t, x, p) = sup
v∈D(t,x)

{〈 p, v〉 −H∗(t, x, v)}

≤ sup
u∈Rn+1

{〈 p, f(t, x, u)〉 − ℓ(t, x, u)}.

The last statements, assuming that H.1.3 holds, can be obtained with the same

arguments as above using Proposition 4.1. ⊓⊔
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Remark 4.1 Let t ∈ I and x ∈ R
n.

(a) Assumption H.1.4 is weaker than (H4) in [10, p. 33] and [18, p. 869].

(b) The condition in H.1.4 is equivalent to require that H∗(t, x, .) is locally

bounded on its domain. If H(t, x, .) is globally Lipschitz, then one can

show that H.1.4 is equivalent to assume that H∗(t, x, .) is bounded on its

domain.

(c) We would like to underline that, if H(t, x, .) is convex, then, from Lemma

4.1, the domain D(t, x) of the Fenchel transform H∗(t, x, .) turn out to be

bounded under the global Lipschitz assumption H.1.3. In particular, we no-

tice that the Lipschitz condition imply the sublinear growth ofH(t, x, .). On

the other hand, when H(t, x, .) is merely locally Lipschitz continuous, then

D(t, x) = R
n if and only if H(t, x, .) is coercive, i.e., lim|p|→+∞

H(t,x,p)
|p| =

+∞ (cfr. [20, Theorem 11.8]).

(d) Let r > 0 such that x ∈ B(0, r). From Remark 3.2, (18), and (19) we get

for all u ∈ B

ℓ(t, x, u) −H∗(t, x, f(t, x, u)) ≤ 10m(c̃(t) + Cr(t))(1 + |x|) + |H(t, 0, 0)| +

γ(t, x).

(e) It is necessary to point out that, although not in the main interest of this

paper, by using the same arguments that those proposed in [10] (cfr. [18]),

the representation of Theorem 4.1 is faithful.
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5 Hamilton-Jacobi-Bellman equations on infinite horizon

For any a ∈ R, b ∈ R ∪ {+∞}, with a < b, and A ⊂ R
k we take the following

notation:

• L 1(a, b;A) denotes the normed space of all A-valued Lebesgue inte-

grable functions on [a, b) (we write w ∈ L 1
loc(a, b;A) if w ∈ L 1(c, d;A)

for any [c, d] ⊂ [a, b))1;

• W
1,1
loc (a, b;A) is the normed space of all A-valued locally absolutely con-

tinuous functions on cl [a, b);

• Lloc is the set of all f ∈ L 1
loc(0,+∞;R+) such that limσ→0 sup{

∫

J
f(τ) dτ |

J ⊂ R
+, µ(J) ≤ σ} = 0.

In this section we consider a closed non-empty subset Ω ⊂ R
n.

5.1 Weak solutions

We denote by H.2.1,3,4 the assumptions in H.1.1,3,4, and by H.2.2 the as-

sumption H.1.2 with Cr(.) ≤ C(.) for any r > 0 and a suitable C ∈ Lloc. We

consider the further two conditions on the Hamiltonian:

H.2.5. there exist ϕ̃ ∈ L 1
loc(0,+∞;R+) and ϕ ∈ L 1(0,+∞;R) such that

for a.e. t ≥ 0, for all x ∈ R
n, and all q ∈ D(t, x)

ϕ(t) ≤ H∗(t, x, q) ≤ ϕ̃(t)(1 + |x|);

1 If w ∈ L 1

loc
(a,+∞;R), we denote

∫
∞

a
w(s) ds := limb→∞

∫
b

a
w(s) ds, provided this limit

exists.
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H.2.6. there exists ψ ∈ Lloc such that for a.e. t ≥ 0, for all x ∈ bdr Ω, and

all q ∈ D(t, x)

|q|+ |H∗(t, x, q)| ≤ ψ(t).

Definition 5.1 A lower semicontinuous function V : R+ ×Ω → R∪{±∞} is

called a weak − or viscosity − solution of the HJB equation (1) if there exists

a set C ⊂ (0,+∞), with µ((0,+∞\C)) = 0, such that

− pt +H(t, x,−px) ≥ 0

∀ (pt, px) ∈ ∂−V (t, x), ∀(t, x) ∈ domV ∩ (C × bdr Ω),

and

− pt +H(t, x,−px) = 0

∀ (pt, px) ∈ ∂−V (t, x), ∀(t, x) ∈ domV ∩ (C × intΩ).

For all t ∈ R
+, x ∈ R

n, and u ∈ R
n+1 we denote by (f(t, x, u), ℓ(t, x, u)) :=

φ(t, x, u) the representation of the Hamiltonian given by Theorem 4.1, and

by UΩ(t, x) the (possibly empty) set of all trajectory-control pairs (ξ, u) :

[t,+∞) → R
n × R

n+1 such that u(.) is measurable and







































ξ′(s) = f(s, ξ(s), u(s)) s ∈ [t,+∞) a.e.

ξ(t) = x

u(.) ⊂ B, ξ(.) ⊂ Ω.

(20)

The value function v : R+ ×R
n → R∪ {±∞} associated to the representation

(f, ℓ) is defined by

v(t, x) := inf
{

∫ +∞

t
ℓ(s, ξ(s), u(s)) ds | (ξ(.), u(.)) ∈ UΩ(t, x)

}

,
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where v(t, x) = +∞ if UΩ(t, x) = ∅, by convention. In the following we con-

sider the outward pointing condition (briefly O.P.C.):

O.P.C. there exist η, r, M > 0 such that

for a.e. t > 0, ∀y ∈ ∂Ω+ηB, ∀q ∈ D(t, y), satisfying infn∈N
η

Ω(y)〈n, q〉 ≤

0,

there exists w ∈ D(t, y)∩B(q,M) such that infn∈N
η

Ω
(y){〈n,w〉, 〈n,w−

q〉} ≥ r.

Theorem 5.1 Assume H.2.1-6 and O.P.C.

Let V : R+ × Ω → R be a locally Lipschitz continuous function satisfying the

vanishing condition at infinity (2).

Then the following statements are equivalent:

(i) V = v;

(ii) V is weak solution of the HJB equation (1).

The proof of Theorem 5.1 is given in Section 5.3.

Remark 5.1

(a) We would like to underline that condition O.P.C. is helpful to construct

feasible trajectories for infinite horizon control problems. More precisely, it

provides uniform neighboring feasible trajectories results (cfr. [5]), on any

compact interval [0, T ] ⊂ R
+, for the dynamics F (s, x) = −f(T − s, x,B).

Such results basically says that any absolutely continuous trajectory ξ(.)

starting from a point in Ω and solving the differential inclusion ξ(.) ∈

F (., ξ(.)) can be approximated by a sequence of trajectories which remain

in the interior of the state constraints Ω.
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(b) For existence results of the HJB in (1) in the free-constraints case we re-

fer to [2] and the literature therein. However, for infinite horizon optimal

control problems under state constraints, O.P.C. does not ensure the exis-

tence of feasible trajectories. Existence results under state constraints are

investigate in [6] in the case of Lagrangian with discount factor e−λt and

a suitable inward pointing condition.

(c) Assumption H.2.6 can be skipped for finite horizon settings in order to

recover neighbouring feasible trajectory results (cfr. Remark 5.1-(b) above).

However, for infinity horizon control problem, such condition is sufficient

to ensure uniform neighbouring feasible trajectory theorems (cfr. [5]).

5.2 Locally absolutely continuity of epigraph

For all t ∈ R
+, x ∈ R

n, and u ∈ R
n+1 we put L(t, x, u) := H∗(t, x, f(t, x, u)).

Lemma 5.1 Assume H.2.1-5.

Then:

(i) for all x ∈ R
n the mappings f(., x, .) and ℓ(., x, .) are Lebesgue-Borel

measurable and there exists φ ∈ L 1(0,+∞;R) such that ℓ(t, x, u) ≥

φ(t) for a.e. t ≥ 0 and all x ∈ R
n and u ∈ R

n+1;

(ii) there exists c ∈ L 1
loc(0,+∞;R+) such that |f(t, x, u)| + |ℓ(t, x, u)| ≤

c(t)(1 + |x|) for a.e. t ≥ 0 and for all x ∈ R
n, u ∈ B;

(iii) for a.e. t ≥ 0 and all x ∈ R
n, the set-valued map R

n ∋ y  {(f(t, y, u),

ℓ(t, y, u)) |u ∈ B} is continuous with closed images;
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(iv) there exists k ∈ Lloc such that |f(t, x, u)−f(t, y, u)|+|ℓ(t, x, u)− ℓ(t, y, u)| ≤

k(t)|x− y| for a.e. t ≥ 0 and for all x, y ∈ R
n, u ∈ B.

Proof All the conclusions follows from our assumptions and Theorem 4.1. ⊓⊔

Next, we recall the definition of locally absolutely continuity for set-valued

maps.

Definition 5.2 A set-valued map S : R+
 R

k is called locally absolutely

continuous (briefly l.a.c.) if it takes non-empty closed images and every ε > 0,

any [t, T ] ⊂ R
+, and any compact subset K ⊂ R

k, there exists δ > 0 such that

for any finite partition t ≤ t1 < τ1 ≤ t2 < τ2 ≤ ... ≤ tm < τm ≤ T of [t, T ]

satisfying
∑m

i=1(τi − ti) < δ holds

∑m
i=1 max {e(S(ti), S(τi) ∩K) , e(S(τi), S(ti) ∩K)} < ε,

where e(E,E′) := inf {r > 0 : E′ ⊂ E + rB} for all E,E′ ⊂ R
k (inf ∅ :=

+∞, by convention).

Proposition 5.1 Assume H.2.1-6 and O.P.C. Denote by W : R+ × R
n →

R∪ {+∞} the value function of the following infinite horizon control problem

under state constraints: minimize
∫ +∞

t
L(s, ξ(s), u(s)) ds over all (ξ(.), u(.)) ∈

UΩ(t, x) such that ξ(t) = x, where (t, x) ∈ R
+ × R

n is the initial datum.

Then:

(i) W (t, x) = inf {
∫ +∞

t
H∗(s, ξ(s), ξ′(s)) ds | ξ ∈ W

1,1
loc (t,+∞;Rn), ξ(t) =

x, ξ(.) ⊂ Ω}, for any (t, x) ∈ R
+ × R

n such that UΩ(t, x) 6= ∅;

(ii) W and v are lower semicontinuous and t epi W (t, .) is l.a.c.;
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(iii) there exists a set C′ ⊂ (0,+∞), with µ((0,+∞)\C′)) = 0, such that for

any (t, x) ∈ dom v ∩ (C′ × intΩ)

∀u ∈ B, D↑v(t, x)(−1,−f(t, x, u)) ≤ ℓ(t, x, u);

(iv) there exists a set C′′ ⊂ (0,+∞), with µ((0,+∞)\C′′)) = 0, such that

for any (t, x) ∈ dom v ∩ (C′′ × intΩ)

∀u ∈ B, −ℓ(t, x, u) ≤ D↓v(t, x)(1, f(t, x, u)).

Proof The statement (i) is a known fact (cfr. [2]), and for the lower semiconti-

nuity of W and v and the locally absolutely continuity of the epigraph of the

value function W , under the viability condition O.P.C., we refer to [5,6]. So,

(ii) holds.

Let us define for all t ∈ R
+ and all x ∈ R

n

G(t, x) := {(f(t, x, u),−ℓ(t, x, u)− r) |u ∈ B,

r ∈ [0, c(t)(1 + |x|)− ℓ(t, x, u)]}.

(21)

Next, we prove (iii). Let j ∈ N
+. Recalling Lemma 5.1, we apply [9, Theorem

2.9] to the set-valued map [1/j, j]×R
n×R ∋ (s, ξ, β) −G(j−s, ξ) ∈ R

n×R

and the measurable selection theorem: there exists a subset C′
j ⊂ [1/j, j], with

µ(C′
j) = 0, such that for any (t0, x0) ∈ ((1/j, j]\C′

j)× intΩ and any u0 ∈ B we
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can find t1 ∈ [1/j, t0) and a trajectory-control pair ((ξ, β), (u, r))(.) satisfying


























































(ξ, β)′(t) = (f(t, ξ(t), u(t)),−ℓ(t, ξ(t), u(t))− r(t)) t ∈ [t1, t0] a.e.

(u, r)(t) ∈ B× [0, c(t)(1 + |ξ(t)|)− ℓ(t, ξ(t), u(t))] t ∈ [t1, t0] a.e.

(ξ, β)(t0) = (x0, 0)

(ξ, β)′(t0) = (f(t0, x0, u0),−ℓ(t0, x0, u0)),

and ξ([t1, t0]) ⊂ Ω. Hence, if (t0, x0) ∈ dom v, by the dynamic programming

principle it follows that
v(s, ξ(s)) − v(t0, x0)

t0 − s
≤

1

t0 − s
(β(s) − β(t0)) for all

s ∈ [t1, t0]. Passing to the lower limit as s → t0− and using the lower semi-

continuity of v, we conclude D↑v(t0, x0)(−1,−f(t0, x0, u0)) ≤ ℓ(t0, x0, u0).

Since u0 ∈ B is arbitrary, the statement (iii) follows with C′ = (0,+∞)\ ∪j∈N

C′
j . The statement (iv) holds as well arguing in a similar way. ⊓⊔

Remark 5.2 Notice that, from [6, Proposition 4.4] and Proposition 5.1, under

the assumptions H.2.1-6 and O.P.C., the set-valued map t epi v(t, .) is l.a.c.

even though v may be discontinuous.

5.2. Viability of hypograph. Next lemma provides a viability result of the

hypograph of weak solutions.

Lemma 5.2 Assume H.2.1-5. Let V : R+ ×Ω → R ∪ {+∞} be such that

t {(x, λ) ∈ Ω × R |λ ≤ V (t, x) < +∞} is l.a.c.

If there exists a set E′ ⊂ (0,+∞), with µ((0,+∞)\E′) = 0, such that

− pt + sup
u∈B

{〈 f(t, x, u),−px〉+ qℓ(t, x, u)} ≤ 0

∀ (pt, px, q) ∈ ThypoV (t, x, V (t, x))
+
, ∀(t, x) ∈ domV ∩ (E′ × intΩ),

(22)
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then for all 0 < τ0 < τ1 and any feasible trajectory-control pair (ξ(.), u(.)) on

I = [τ0, τ1], with ξ([τ0, τ1]) ⊂ intΩ and (τ0, ξ(τ0)) ∈ domV , we have

(ξ(t), V (τ0, ξ(τ0))−

∫ t

τ0

ℓ(s, ξ(s), u(s))ds) ∈ hypoV (t, .) ∀t ∈ [τ0, τ1].

Proof Notice that, by the separation theorem, (22) is equivalent to {1} ×

G(t, x) ⊂ co ThypoV (t, x, β) for all β ≤ V (t, x) and all (t, x) ∈ (E′ × intΩ) ∩

domV , where we defined

Let 0 < τ0 < τ1 and put Q(s) := hypoV (s, .) for any s ∈ [τ0, τ1]. We have

(1, f(s, x, u),−ℓ(s, x, u)) ∈ coTgraphQ(s, x, β) (23)

for a.e. s ∈ [τ0, τ1], any (x, β) ∈ Q(s)∩ (intΩ×R), and any u ∈ B. Consider a

trajectory-control pair (ξ(.), u(.)) solving (20) on I = [τ0, τ1], with ξ([τ0, τ1]) ⊂

intΩ and (τ0, ξ(τ0)) ∈ domV . We claim that dQ(s)((ξ(s), u(s))) = 0 for all

s ∈ I, where w(.) is the unique solutions of

w′(t) = −ℓ(t, ξ(t), u(t)) for a.e. t ∈ [τ0, τ1], w(τ0) = V (τ0, ξ(τ0)).

Putting g(s) = dQ(s)((ξ(s), w(s))), applying [9, Lemma 4.8] and Lemma 5.1 to

the single-valued map s  {(f(s, ξ(s), u(s)),−ℓ(s, ξ(s), u(s)))}, we have that

g(.) is absolutely continuous. Let for any s ∈ I the pair (p(s), r(s)) ∈ Q(s) be

such that

g(s) = |(ξ(s), w(s)) − (p(s), r(s))|.

We claim that g(s) = 0 for all s ∈ (τ0, τ1]. Suppose, by contradiction, that we

can find T ∈ (τ0, τ1] with g(T ) > 0. Denoting t∗ = sup {t ∈ [τ0, T ] : g(t) = 0},

let ε > 0 be such that p(s) ∈ intΩ and g(s) > 0 for any s ∈ (t∗, t∗ +

ε]. Consider s ∈ (t∗, t∗ + ε) where g(.), ξ(.), and w(.) are differentiable,
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with ξ′(s) = f(s, ξ(s), u(s)) and w′(s) = ℓ(s, ξ(s), u(s)). Consider (θ, λ) ∈

TgraphQ(s, p(s), r(s)) and θi → θ, λi → λ, hi → 0+ satisfy (p(s), r(s))+hiλi ∈

Q(s+ hiθi) for all i ∈ N. Then, setting q = (ξ(s), w(s)) and q̄ = (p(s), r(s)),

we get

g(s+ hiθi)− g(s) ≤ |(ξ(s+ hiθi), w(s+ hiθi))− q̄ − hiλi| − |q − q̄| .

Dividing this inequality by hi, passing to the limit as i → +∞, and putting

ζ :=
q − q̄

|q − q̄|
, we have

g′(s)θ ≤ 〈 ζ, (f(s, ξ(s), u(s)),−ℓ(s, ξ(s), u(s))) θ − λ〉. (24)

Since (24) holds for any (θ, λ) ∈ TgraphQ(s, p(s), r(s)), taking convex combi-

nations of elements in TgraphQ(s, p(s), r(s)) we conclude that (24) holds for

all (θ, λ) ∈ coTgraphQ(s, p(s), r(s)). By (23), the inequality (24) holds true

for θ = 1 and λ = (f(s, p(s), u(s)),−ℓ(s, p(s), u(s))) . Therefore, from Lemma

5.1-(iv),

g′(s) ≤ k(s) |ξ(s)− p(s)| ≤ k(s)g(s).

From the Gronwall lemma we conclude that g(.) = 0 on [t∗, t∗ + ε], and a

contradiction follows. ⊓⊔

5.3. Proof of Theorem 5.1. In this section we provide a proof of Theorem

5.1.

Proposition 5.2 Assume H.2.1-6 and O.P.C. Let V : R+×Ω → R∪{+∞} be

a lower semicontinuous function, satisfying the vanishing condition at infinity

(2), such that dom v(t, .) ⊂ domV (t, .) 6= ∅ for all large t > 0 and

t {(x, λ) ∈ Ω × R |λ ≤ V (t, x) < +∞} is l.a.c. (25)
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Then the following statements are equivalent:

(i) V = v;

(ii) t epiV (t, .) is l.a.c. and there exists E ⊂ (0,+∞), with µ((0,+∞)\E) =

0, such that:

(ii.a) −pt + supu∈B {〈 f(t, x, u),−px〉+ qℓ(t, x, u)} ≥ 0

∀ (pt, px, q) ∈ TepiV (t, x, V (t, x))
−
, ∀(t, x) ∈ domV ∩ (E ×Ω),

(ii.b) −pt + supu∈B {〈 f(t, x, u),−px〉+ qℓ(t, x, u)} ≤ 0

∀ (pt, px, q) ∈ ThypoV (t, x, V (t, x))+, ∀(t, x) ∈ domV ∩ (E × intΩ).

Proof Notice that, by the definition of locally absolutely continuous set-valued

map, the hypograph of V (t, .) restricted to domV (t, .) is closed. To show the

equivalence between statements (i) and (ii), we use the following claim: for any

(t, x) ∈ R
+ × R

n with UΩ(t, x) 6= ∅, v(t, x) is equal to the following infimum

(CV)



















inf
∫ +∞

t
H∗(s, ξ(s), ξ′(s)) ds over all ξ ∈ W

1,1
loc (t,+∞;Rn)

such that ξ(t) = x and ξ(.) ⊂ Ω.

Indeed, let (t, x) ∈ R
+ × R

n such that UΩ(t, x) 6= ∅ and denote by α(t, x) ∈

R ∪ {±∞} the infimum in (CV) above. From assumption H.2.5 we have that

α(t, x) 6= −∞. If α(t, x) = +∞ then α(t, x) ≥ v(t, x). Assume α(t, x) ∈ R.

Fix ε > 0 and consider ξ ∈ W
1,1
loc (t,+∞;Rn) with ξ(t) = x and ξ(.) ⊂ Ω

satisfying
∫ +∞

t
H∗(s, ξ(s), ξ′(s)) ds < α(t, x)+ ε. We have that (ξ′(s), u′(s)) ∈

graph H∗(s, ξ(s), .) for a.e. s ≥ t, where we put u(s) :=
∫ s

t
H∗(τ, ξ(τ), ξ′(τ)) dτ

for all s ≥ t. Applying now the representation Theorem 4.1-(v)′ and the mea-

surable selection theorem, we have that there exists a measurable function

w : [t,+∞) → B such that (ξ′(s), u′(s)) = (f(s, ξ(s), w(s)), ℓ(s, ξ(s), w(s))) for
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a.e. s ≥ t. We get

∫ +∞

t

H∗(s, ξ(s), ξ′(s)) ds =

∫ +∞

t

u′(s) ds =

∫ +∞

t

ℓ(s, ξ(s), w(s)) ds ≥ v(t, x).

So, α(t, x) + ε > v(t, x). Since ε is arbitrary, we deduce that α(t, x) ≥ v(t, x).

Arguing in analogous way as above and using (19), we get α(t, x) ≤ v(t, x).

Next, we show (i)⇐⇒(ii). Assume (i). Applying Lemma 5.1 and the claim,

we have that t  epi v(t, .) is l.a.c. for any x ∈ Ω. Now, from Proposition

5.1-(iv) and the claim, we can find a subset C ⊂ (0,+∞), with µ(C) =

0, such that for any (t, x) ∈ ((0,+∞)\C) × intΩ we have −ℓ(t, x, u) ≤

D↓v(t, x)(1, f(t, x, u)) for all u ∈ B. Hence, from [1, Proposition 6.1.4], we

get

(1, f(t, x, u),−ℓ(t, x, u)) ∈ Thypov(t, x, v(t, x))

for any u ∈ B. Then we get

−pt + supu∈B 〈 f(t, x, u),−px〉+ qℓ(t, x, u) ≤ 0

∀(pt, px, q) ∈ Thypov(t, x, v(t, x))
+
.

Hence, statement (ii.b) holds. Using a similar argument and applying Lemma

5.1 and [6, Theorem 3.3], we get (ii.a). Thus, (ii) follows.

Now, assume (ii). From condition (2) and [6, Theorem 3.3] and its proof,

it is just sufficient to show the following: there exists C ⊂ (0,+∞), with

µ((0,+∞)\C) = 0, such that

∀(t, x) ∈ domV ∩ (C × int Ω), ∀u ∈ B,

D↑V (t, x)(−1,−f(t, x, u)) ≤ ℓ(t, x, u).

(26)

Recalling the definition of G(., .) given in (21), applying Lemma 5.1 and [9,

Theorem 2.9] to the set-valued maps [0, j]×R
n×R ∋ (s, ξ, β) −G(j−s, ξ) ∈
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R
n ×R where j ∈ N, and from the measurable selection theorem, we can find

a family of subsets C′
j ⊂ (0, j), with µ(C′

j) = 0 for all j ∈ N, such that for any

(t0, x0) ∈ ((0,+∞)\ ∪j∈N C
′
j)× intΩ and any u0 ∈ B, there exists t1 ∈ (0, t0)

and a trajectory-control pair ((ξ, β), (u, r))(.) satisfying







































(ξ, β)′(t) = (f(t, ξ(t), u(t)),−ℓ(t, ξ(t), u(t))− r(t)) t ∈ [t1, t0] a.e.

(u, r)(t) ∈ B× [0, c(t)(1 + |ξ(t)|)− ℓ(t, ξ(t), u(t))] t ∈ [t1, t0] a.e.

ξ([t1, t0]) ⊂ intΩ,

with initial condition and final velocity

(ξ, β)(t0) = (x0, 0), (ξ, β)′(t0) = (f(t0, x0, u0),−ℓ(t0, x0, u0)).

Hence, applying Lemma 5.2 and taking a sequence si ∈ (t1, t0) with si → t0−,

we get V (si, ξ(si))−
∫ t0

si
ℓ(s, ξ(s), u(s)) ds ≤ V (t0, x(t0)) for all i ∈ N. So,

V (si, ξ(si))− V (t0, x0) ≤

∫ t0

si

ℓ(s, ξ(s), u(s)) ds ≤ β(si) ∀i ∈ N.

Dividing by t0 − si and passing to the lower limit as i→ ∞, we get (26) with

C = (0,+∞)\ ∪j∈N C
′
j , and the proof is complete. ⊓⊔

Proof of Theorem 5.1 Let V : R+ × Ω → R be a locally Lipschitz continuous

function and (t, x) ∈ R
+ × Ω. Notice that, from the locally Lipschitz conti-

nuity of V , the following set-valued maps t  epiV (t, .) and t hypoV (t, .)

are locally absolutely continuous and, since ∂−V (t, x), ∂+V (t, x) are non-

empty closed sets, it is straightforward to see that ∪λ≥0 λ(∂−V (t, x),−1),

∪λ≥0 λ(∂+V (t, x),−1) are closed too. Now, we claim that:

∪λ≥0 λ(∂−V (t, x),−1) = TepiV (t, x, V (t, x))−. (27)
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Indeed, from the following well known relation (cfr. [1, Chapter 6.4])

ζ ∈ ∂−V (t, x) ⇐⇒ (ζ,−1) ∈ TepiV (t, x, V (t, x))−, (28)

it follows that ∪λ≥0 λ(∂−V (t, x),−1) ⊂ TepiV (t, x, V (t, x))−. On the other

hand, let (ζ, q) ∈ TepiV (t, x, V (t, x))−. Since (0, δ) ∈ TepiV (t, x, V (t, x))− for

all δ ≥ 0, we have q ≤ 0. If q < 0, (ζ/|q|,−1) ∈ TepiV (t, x, V (t, x))− and,

applying (28), ζ
|q| ∈ ∂−V (t, x). So, (ζ, q) ∈ ∪λ≥0 λ(∂−V (t, x),−1)). If q = 0,

consider ζ̄ ∈ ∂−V (t, x). Then (ζ̄ ,−1) ∈ TepiV (t, x, V (t, x))−, and, from the

convexity of the polar cone, (rζ̄ + (1 − r)ζ,−r) ∈ TepiV (t, x, V (t, x))− for

all 0 < r < 1. Arguing as above, we conclude that (rζ̄ + (1 − r)ζ,−r) ∈

∪λ≥0 λ(∂+V (t, x),−1), and the claim (27) follows. Using the same argument

as above, we have also

∪λ≥0 λ(∂+V (t, x),−1) = ThypoV (t, x, V (t, x))+. (29)

Finally, from (27), (29), Proposition 5.2, and the representation Theorem

4.1, the conclusion follows. ⊓⊔
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	1 Introduction
	2 Preliminaries on non-smooth analysis
	3 Parametrization of set-valued maps
	4 Representation of convex Hamiltonians
	5 Hamilton-Jacobi-Bellman equations on infinite horizon

