Skip to main content
Log in

Lower Bounds for Cubic Optimization over the Sphere

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the problem of minimizing a polynomial function of degree three over the boundary of the sphere. If the objective is quadratic instead of cubic, this is the well-studied trust region subproblem, which is known to be tractable. In the cubic case, the problem turns out to be NP-hard. In this paper, we derive and evaluate different approaches for computing lower bounds for the cubic problem. Alternatively to semidefinite programming relaxations proposed in the literature, our approaches do not lift the problem to higher dimensions. The strongest bounds are obtained by Lagrangian decomposition, resulting in a number of parameterized quadratic problems for which the above-mentioned results can be exploited, in particular the existence of a tractable dual problem. In an experimental evaluation, we consider the cubic one-spherical optimization problem, with homogeneous objective function, and compare the bounds generated with the different approaches proposed, for small examples from the literature and for randomly generated instances of varied dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Anjos, M.F., Lasserre, J.B.: Handbook of Semidefinite. Conic and Polynomial Optimization. Springer, New York (2011)

    MATH  Google Scholar 

  2. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994)

    Article  Google Scholar 

  3. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective seldiffusion tensor from the NMR spin echo. J. Mag. Reson. B 103, 247–254 (1994)

    Article  Google Scholar 

  4. Basser, P.J., Jones, D.K.: Diffusion-tensor MRI: theory, experimental design and data analysis-a technical review. NMR Biomed. 15, 456–467 (2002)

    Article  Google Scholar 

  5. Buchheim, C., De Santis, M., Palagi, L., Piacentini, M.: An exact algorithm for nonconvex quadratic integer minimization using ellipsoidal relaxations. SIAM J. Optim. 23(3), 1867–1889 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chen, B., He, S., Li, Z., Zhang, S.: Maximum block improvement and polynomial optimization. SIAM J. Optim. 22(1), 87–107 (2012)

    Article  MathSciNet  Google Scholar 

  7. Fiacco, A.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Mathematics in Science and Engineering, vol. 165. Academic Press Inc, Orlando (1983)

    MATH  Google Scholar 

  8. He, S., Li, Z., Zhang, S.: Approximation algorithms for homogeneous polynomial optimization with quadratic constraints. Math. Program. 125(2), 353–383 (2010)

    Article  MathSciNet  Google Scholar 

  9. Henrion, D., Lasserre, J.-B., Loefberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009)

    Article  MathSciNet  Google Scholar 

  10. Laserre, J.-B.: A Semidefinite programming approach to the generalized problem of moments. Math. Program. 112, 65–92 (2008)

    Article  MathSciNet  Google Scholar 

  11. Laserre, J.-B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  12. Liu, C., Bammer, R., Acar, B., Moseley, M.: Characterizing non-gaussian diffusion by using generalized diffusion tensors. Magn. Reson. Med. 51, 924–937 (2004)

    Article  Google Scholar 

  13. Lucidi, S., Palagi, L.: Solution of the trust region problem via a smooth unconstrained reformulation. In: Topics in Semidefinite and Interior-Point Methods, vol. 18. Fields Institute Communications, pp. 237–250. AMS, Providence (1998)

  14. Mai, N.H.A., Lasserre, J.-B., Magron, V., Wang, J.: Exploiting constant trace property in large-scale polynomial optimization. (Forthcoming) (2020)

  15. Nesterov, Y.E. Random walk in a simplex and quadratic optimization over convex polytopes. CORE Discussion Paper 2003/71, CORE-UCL (2003)

  16. Nie, J.: Sum of squares methods for minimizing polynomial forms over spheres and hypersurfaces. Front. Math. China 7(2), 321–346 (2012)

    Article  MathSciNet  Google Scholar 

  17. Nie, J., Wang, L.: Semidefinte relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)

    Article  MathSciNet  Google Scholar 

  18. Polyak, B.: Introduction to Optimization. Optimization Software, New York (1987)

    MATH  Google Scholar 

  19. So, A.M.: Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems. Math. Program. B 129, 357–382 (2011)

    Article  MathSciNet  Google Scholar 

  20. Stern, R.J., Wolkowicz, H.: Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Optim. 5, 286–313 (1995)

    Article  MathSciNet  Google Scholar 

  21. Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109, 475–494 (2001)

    Article  MathSciNet  Google Scholar 

  22. Zhang, T., Golub, G.H.: Rank-1 approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 23, 534–550 (2001)

    Article  MathSciNet  Google Scholar 

  23. Zhang, X., Qi, L., Ye, Y.: The cubic spherical optimization problems. Math. Comput. 81(279), 1513–1525 (2012)

    Article  MathSciNet  Google Scholar 

  24. Zhang, X., Ling, C., Qi, L., Wu, E.X.: The measure of diffusion skewness and kurtosis in magnetic resonance imaging. Pacific J. Optim. 6, 391–404 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

C. Buchheim has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 764759. M. Fampa was supported in part by CNPq-Brazil grants 303898/2016-0 and 434683/2018-3 and O. Sarmiento was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. He did part of the research for this paper at TU Dortmund, first supported by CAPES, and then as an invited visitor researcher. The authors are very grateful to N. H. A. Mai, J.-B. Lasserre, and J. Wang, for personal correspondence with helpful insights into the experiment with their recent code ctpPOP2. The authors are also grateful to the two anonymous referees for their suggestions, which significantly improved the presentation of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Fampa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Alexander Mitsos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

We consider each problem on the right-hand side of (2) independently and show that all appearing minima can be obtained in closed form. First, note that

$$\begin{aligned}&\text{ for }\;x_{i}\in (-1,0):\; \displaystyle \min _{\Vert x_{{\hat{\imath }}}\Vert =\sqrt{1-x_{i}^{2}}} x_{i}\displaystyle \sum _{\begin{array}{c} j,k=1\\ j,k \ne i \end{array}}^{n}a_{ijk}x_{j}x_{k} = x_{i}(1-x_{i}^{2})\lambda _{\max }({\tilde{A}}_{i})\; , \\&\text{ for }\;x_{i}\in (0,1):\; \displaystyle \min _{\Vert x_{{\hat{\imath }}}\Vert =\sqrt{1-x_{i}^{2}}} x_{i}\displaystyle \sum _{\begin{array}{c} j,k=1\\ j,k \ne i \end{array}}^{n}a_{ijk}x_{j}x_{k} = x_{i}(1-x_{i}^{2})\lambda _{\min }({\tilde{A}}_{i})\; , \end{aligned}$$

using the notation of Sect. 2. For \(x_i\in \{-1,0,1\}\), this expression is zero. In summary, taking the minimum over \(x_i\in [-1,1]\), we obtain

$$\begin{aligned}&\displaystyle \min _{x_{i}\in [-1,1]} \Big (\displaystyle \min _{\Vert x_{{\hat{\imath }}}\Vert =\sqrt{1-x_{i}^{2}}}x_{i}\displaystyle \sum _{\begin{array}{c} j,k=1\\ j,k \ne i \end{array}}^{n}a_{ijk}x_{j}x_{k}\Big ) \nonumber \\&\quad =\displaystyle \min \Big \{-\frac{2}{9}\sqrt{3}\lambda _{\max }({\tilde{A}}_{i}),\frac{2}{9}\sqrt{3}\lambda _{\min }({\tilde{A}}_{i})\Big \}\; , \end{aligned}$$
(23)

since this expression is always non-positive. Moreover,

$$\begin{aligned} \min _{\Vert x_{{\hat{\imath }}}\Vert =\sqrt{1-x_{i}^{2}}}2x_{i}^{2}\displaystyle \sum _{\begin{array}{c} j=1\\ j\ne i \end{array}}^{n}a_{iij}x_{j} = (-2)\sqrt{\sum _{\begin{array}{c} j=1\\ j\ne i \end{array}}^{n}a_{iij}^{2}} \ x_{i}^{2} \sqrt{1-x_{i}^{2}} \end{aligned}$$

and hence

$$\begin{aligned} \displaystyle \min _{x_{i}\in [-1,1]} \Big (\displaystyle \min _{\Vert x_{{\hat{\imath }}}\Vert =\sqrt{1-x_{i}^{2}}}2x_{i}^{2}\displaystyle \sum _{\begin{array}{c} j=1\\ j\ne i \end{array}}^{n}a_{iij}x_{j}\Big ) = -\frac{4}{9}\sqrt{3} \sqrt{\sum _{\begin{array}{c} j=1\\ j\ne i \end{array}}^{n}a_{iij}^{2}}\;. \end{aligned}$$
(24)

Also,

$$\begin{aligned} \min _{\Vert x_{{\hat{\imath }}}\Vert =\sqrt{1-x_{i}^{2}}}x_{i}\displaystyle \sum _{\begin{array}{c} j=1\\ j\ne i \end{array}}^{n}a_{ij}x_{j} = -\sqrt{\sum _{\begin{array}{c} j=1\\ j\ne i \end{array}}^{n}a_{ij}^{2}} \ x_{i} \sqrt{1-x_{i}^{2}} \end{aligned}$$

and hence

$$\begin{aligned} \displaystyle \min _{x_{i}\in [-1,1]} \Big (\displaystyle \min _{\Vert x_{{\hat{\imath }}}\Vert =\sqrt{1-x_{i}^{2}}}x_{i}\displaystyle \sum _{\begin{array}{c} j=1\\ j\ne i \end{array}}^{n}a_{ij}x_{j}\Big ) = -\frac{1}{2} \sqrt{\sum _{\begin{array}{c} j=1\\ j\ne i \end{array}}^{n}a_{ij}^{2}}\;. \end{aligned}$$
(25)

Next, to compute \(\min _{x_{i}\in [-1,1]}a_{iii}x_{i}^{3} + a_{ii}x_i^2+a_ix_i\), we must consider the different cases described in the following.

If \(a_{iii}\ne 0\), let

$$\begin{aligned} {\hat{x}}_i^-:=\frac{-a_{ii}-\sqrt{a_{ii}^2-3a_{iii}a_i}}{3a_{iii}}, \;\; {\hat{x}}_i^+:=\frac{-a_{ii}+\sqrt{a_{ii}^2-3a_{iii}a_i}}{3a_{iii}}. \end{aligned}$$

If \({\hat{x}}_i^- \in [-1,1]\) and \({\hat{x}}_i^+ \in [-1,1]\), then we define

$$\begin{aligned} \begin{array}{ll} \kappa _i:=&{}\displaystyle \min _{x_{i}\in [-1,1]}a_{iii}x_{i}^{3} + a_{ii}x_i^2+a_ix_i = \min \{a_{ii}-|a_{iii}+a_i|,\\ &{}a_{iii}({\hat{x}}_{i}^-)^{3} + a_{ii}({\hat{x}}_i^-)^2+a_i{\hat{x}}_i^-, a_{iii}({\hat{x}}_{i}^+)^{3} + a_{ii}({\hat{x}}_i^+)^2+a_i{\hat{x}}_i^+\}. \end{array} \end{aligned}$$
(26)

If \({\hat{x}}_i^- \notin [-1,1]\), we should disregard the cubic polynomial in \({\hat{x}}_i^-\) when computing the minimum in (26). Analogously, if \({\hat{x}}_i^+ \notin [-1,1]\), we should disregard the cubic polynomial in \({\hat{x}}_i^+\) when computing the minimum in (26).

If \(a_{iii} = 0\), then if \(a_{ii}\ne 0\) and \(-\frac{a_i}{2a_{ii}}\notin [-1,1]\), we define

$$\begin{aligned} \kappa _i:=\displaystyle \min _{x_{i}\in [-1,1]}a_{iii}x_{i}^{3} + a_{ii}x_i^2+a_ix_i = a_{ii}-|a_i|. \end{aligned}$$
(27)

If \(a_{iii} = 0\), then if \(a_{ii}\ne 0\) and \(-\frac{a_i}{2a_{ii}}\in [-1,1]\), we define

$$\begin{aligned} \kappa _i:=\displaystyle \min _{x_{i}\in [-1,1]}a_{iii}x_{i}^{3} + a_{ii}x_i^2+a_ix_i = \min \{a_{ii}-|a_i|,-\frac{a_i^2}{4a_{ii}}\}. \end{aligned}$$
(28)

Finally, if \(a_{iii} = a_{ii}= 0\), we define

$$\begin{aligned} \kappa _i:=\displaystyle \min _{x_{i}\in [-1,1]}a_{iii}x_{i}^{3} + a_{ii}x_i^2+a_ix_i = -|a_i|. \end{aligned}$$
(29)

Adding up (23)–(25) with either (26), (27), (28), or (29), we obtain

$$\begin{aligned}&\displaystyle \min _{\Vert x\Vert =1}\displaystyle \sum _{i,j,k=1}^{n}a_{ijk}x_{i}x_{j}x_{k}+\sum _{i,j=1}^{n}a_{ij}x_{i}x_{j}+\sum _{i=1}^{n}a_{i}x_{i} \\&\quad \ge \displaystyle \sum _{i=1}^{n}\Big (\min \Big \{-\frac{2}{9}\sqrt{3}\lambda _{\max }({\tilde{A}}_{i}),\frac{2}{9}\sqrt{3}\lambda _{\min }({\tilde{A}}_{i})\Big \} -\frac{4}{9}\sqrt{3} \sqrt{\sum _{\begin{array}{c} j=1\\ j\ne i \end{array}}^{n}a_{iij}^{2}} \\&\qquad -\,\frac{1}{2} \sqrt{\sum _{\begin{array}{c} j=1\\ j\ne i \end{array}}^{n}a_{ij}^{2}} + \kappa _i\Big ). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchheim, C., Fampa, M. & Sarmiento, O. Lower Bounds for Cubic Optimization over the Sphere. J Optim Theory Appl 188, 823–846 (2021). https://doi.org/10.1007/s10957-021-01809-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01809-y

Keywords

Navigation