Journal of Optimization Theory and Applications (2021) 188:863-881
https://doi.org/10.1007/s10957-021-01813-2

®

Check for
updates

Global Solution of Semi-infinite Programs with Existence
Constraints

Hatim Djelassi' - Alexander Mitsos’

Received: 2 August 2019 / Accepted: 6 January 2021/ Published online: 8 February 2021
© The Author(s) 2021

Abstract

We consider what we term existence-constrained semi-infinite programs. They con-
tain a finite number of (upper-level) variables, a regular objective, and semi-infinite
existence constraints. These constraints assert that for all (medial-level) variable val-
ues from a set of infinite cardinality, there must exist (lower-level) variable values from
a second set that satisfy an inequality. Existence-constrained semi-infinite programs
are a generalization of regular semi-infinite programs, possess three rather than two
levels, and are found in a number of applications. Building on our previous work on
the global solution of semi-infinite programs (Djelassi and Mitsos in J Glob Optim
68(2):227-253,2017), we propose (for the first time) an algorithm for the global solu-
tion of existence-constrained semi-infinite programs absent any convexity or concavity
assumptions. The algorithm is guaranteed to terminate with a globally optimal solu-
tion with guaranteed feasibility under assumptions that are similar to the ones made
in the regular semi-infinite case. In particular, it is assumed that host sets are com-
pact, defining functions are continuous, an appropriate global nonlinear programming
subsolver is used, and that there exists a Slater point with respect to the semi-infinite
existence constraints. A proof of finite termination is provided. Numerical results are
provided for the solution of an adjustable robust design problem from the chemical
engineering literature.
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1 Introduction

Semi-infinite programs (SIPs) are mathematical programs that have finitely many vari-
ables and infinitely many constraints. These infinitely many constraints are commonly
denoted as a parameterized inequality that must be satisfied for all parameter values
from a set of infinite cardinality. In the present article, we consider a generalization
of SIPs, which we term existence-constrained semi-infinite programs (ESIPs). Rather
than being subject to infinitely many inequalities, ESIPs are subject to infinitely many
existence constraints that in turn assert that an inequality can be satisfied by at least
one solution from a set of infinite cardinality. This kind of constraint gives ESIPs a
hierarchical structure with three levels rather than the two levels present in regular
SIPs.

Many important applications can be cast as ESIPs. Grossmann and coworkers [1-3]
consider the problem of designing flexible chemical plants based on an ESIP formu-
lation. Grossmann et al. [2] furthermore propose a flexibility index to provide a scalar
measure of the flexibility of a design considering the same problem structure. The semi-
infinite existence constraints in the flexibility problems originate from a consideration
of uncertainty thatis analogous to the adjustable robust approach proposed two decades
later by Ben-Tal et al. [4] as an extension of robust optimization. Similar to two-stage
stochastic programs, adjustable robust programs comprise first-stage decisions that
are fixed before realization of the uncertainty and second-stage (recourse) decisions
that are fixed afterward. In contrast to two-stage stochastic programs, adjustable robust
programs consider the worst case with respect to uncertainty rather than a statistical
measure based on probability distributions. The consideration of a worst case together
with the presence of recourse variables gives rise to semi-infinite existence constraints.
More recent proposals of adjustable robust optimization models include investment
problems [5], network expansion problems [6], and operational planning problems for
transmission grids [7].

Published solution approaches to ESIPs stemming from the robust optimization
literature usually rely on relatively strong assumptions. For example, in [1-3], a con-
vexity assumption is made on the constraint function. Furthermore, it is assumed that
the uncertainty set is polyhedral and that the recourse variables are unconstrained.
Under these conditions, it can be shown that the resulting ESIP can be written equiv-
alently as a finite program [3].

Another special case of ESIPs that has received attention in the literature is min-
max-min programs. Polak and Royset [8] consider min-max-min programs absent
convexity assumptions, where the inner min operator is applied over a finite set. They
distinguish between finite min-max-min programs, where also the max operator is
applied over a finite set and semi-infinite min-max-min programs, where the max oper-
ator is applied over a set of infinite cardinality. They employ a smoothing technique
to replace the inner min operator by a smoothed approximation, essentially reducing
the min-max-min program to a min-max approximation. This approximation is used
and improved successively to solve finite min-max-min programs to local optimal-
ity. Similarly, semi-infinite min-max-min programs are solved through an additional
discretization of the max operator. Tsoukalas et al. [9] extend this approach by also
applying the smoothing technique to the max operator in finite min-max-min pro-

@ Springer



Journal of Optimization Theory and Applications (2021) 188:863-881 865

grams. While applying such a smoothing approach to ESIPs may seem promising, it
is not directly applicable since all host sets in ESIPs may have infinite cardinality. Fur-
thermore, it is not obvious if the smoothing technique can be extended to be applicable
to sets of infinite cardinality.

To our best knowledge, there exist no published methods for solving ESIPs deter-
ministically absent any convexity assumptions. We propose such a method based on
a family of discretization-based methods that have proved particularly useful for the
solution of (generalized) SIPs ((G)SIPs) absent convexity assumptions. Therefore, we
provide the following review of methods for the solution of SIPs and GSIPs absent con-
vexity assumptions. For a broader review of (G)SIP theory, applications, and methods,
the reader is referred to [10-15].

The particular difficulty in solving (G)SIPs absent convexity assumptions is the fact
that their lower-level programs may be nonconvex. As a consequence, the problem
cannot be reduced to a finite problem by utilizing reformulations based on optimal-
ity conditions of the lower-level program. Indeed, methods capable of solving such
(G)SIPs have in common that they solve, either explicitly or implicitly, the lower-level
program to global optimality.

One approach of implicitly solving the lower-level program is to employ convergent
overestimators of the semi-infinite constraint. Lo Bianco and Piazzi [16] propose to
use interval bounds of the constraint function to construct a genetic algorithm for the
solution of SIPs. Similarly, Bhattacharjee et al. [17] propose to use interval bounds on
the constraint function in a deterministic setting to provide a sequence of feasible points
converging to a solution of the SIP. As an alternative to interval extensions, approaches
employing convex and concave relaxations to overestimate the semi-infinite constraint
in (G)SIPs are proposed by Floudas and Stein [18], Mitsos et al. [19], and Stein and
Steuermann [20].

In the context of this article, the most relevant methods for solving (G)SIPs with a
nonconvex lower-level program are discretization methods, i.e., methods that construct
a finite approximation of the SIP by a finite discretization of the lower-level variables.
Particularly algorithms building on an adaptive discretization strategy first proposed
by Blankenship and Falk [21] have shown promise in solving practical problems. As
such, the algorithm proposed by Bhattacharjee et al. [22] combines the previously
mentioned method of generating feasible points in [17] with the algorithm in [21] as
a lower bounding procedure to solve SIPs globally. The same approach is extended
to the GSIP case by Lemonidis [23]. Other contributions building on [21] propose to
generate feasible points by employing additional discretization-based subproblems.
Mitsos [24] proposes a discretization-based upper bounding procedure used in concert
with the algorithm in [21] as a lower bounding procedure. The algorithm is guaranteed
to finitely solve SIPs globally with guaranteed feasibility under the assumption that
there exists an g-optimal SIP-Slater point. A GSIP algorithm following the same basic
approach is proposed by Mitsos and Tsoukalas [25]. Also following a discretization
approach, Tsoukalas and Rustem [26] propose a discretized oracle problem that eval-
uates whether or not a given target objective value can be attained by an SIP. They
construct an algorithm based on a binary search of the objective space that is guaran-
teed to solve SIPs globally with guaranteed feasibility finitely under slightly stronger
assumptions than the algorithm in [24]. Employing and adapting subproblems from
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the algorithms in [24,26], we [27] propose a hybrid algorithm that inherits the stronger
convergence guarantees of the algorithm in [24] while outperforming its predecessors
on a standard SIP test set.

Here, we extend the concept of discretization methods in general and the algorithm
from [27] in particular in order to solve ESIPs to global e-optimality with guaranteed
feasibility. The proposed discretization scheme prescribes to discretize what we term
the medial-level variables while associating with each discretization point a vector
of lower-level variables. Following this scheme, we derive the subproblems of the
algorithm in [27] for the ESIP case in order to restate the algorithm for the solution
of ESIPs. Convergence and finite termination of the algorithm is guaranteed under
similar assumptions as in the SIP case with substantial differences arising exclusively
from the fact that the revised assumptions need to take the presence of a third level
into account.

The remainder of this article is organized as follows: In Sect. 2, definitions and
assumptions are collected. In Sect. 3, the proposed algorithm is presented and a proof
of finite termination is provided. In Sect. 4, numerical results are presented for the
adjustable robust design of a reactor-cooler system proposed by Halemane and Gross-
mann [3]. Finally, Sect. 5 briefly concludes and gives an outlook for future work.

2 Preliminaries

This section comprises definitions and assumptions used throughout this article, as
well as results that follow immediately from the assumptions made.

2.1 Definitions
Definition 2.1 (Notation) Throughout this article, scalars and scalar-valued functions
are set in light face (e.g., ¢), vectors and vector-valued functions are set in bold

face (e.g., u), and sets and set-valued functions are set in calligraphic font (e.g., U).
Furthermore, the following definitions hold.

(1) 0 and 1 denote vectors of contextually appropriate length, containing only zeros
and ones, respectively.
(ii) Given a point u, Bs(u) denotes an open neighborhood of # with radius $, i.e.,
Bs(u) ={u: ||lu—ul| < 38}.
Definition 2.2 (ESIP formulation) We consider an ESIP of the form

f*= mi)r; f(x) st VyeY[Ize Z(y) :g(x.y,2) <0] (ESIP)

without any convexity or concavity assumptions and with
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X ={xeX'CR":h'x) <0}
Y={ye)d’ CRY:h"(y) <0}
Z(y) ={z € Z2° CR™ : hl(y,z) <0}.

In line with Definition 2.2, we define the notion of ESIP feasibility as follows.

Definition 2.3 (ESIP feasibility) A point X € X is called ESIP feasible if and only if
it is feasible in (ESIP), i.e.,

VyeY[Iz e Z(y) : g(x.y,2) <0].

Multiple generalizations can be made to (ESIP) such that the concepts discussed in the
present article remain applicable. First, while (ESIP) possesses only a single scalar-
valued semi-infinite existence constraint, handling multiple vector-valued constraints
is straightforward with the proposed method. Similarly, the restriction to continuous
variables is only made for notational convenience. Finally, while the sets )V, and Z(y)
are independent of x, similar problems with dependencies on x can be handled by the
proposed method under mild assumptions. All these generalizations of (ESIP) and the
conditions for their solution with the proposed method are discussed in [28, Section
5.2.4].

The proposed algorithm relies on the global solution of several nonlinear programs
(NLPs) to global optimality. To this end, we define the approximate solution of an
NLP as follows.

Definition 2.4 (Approximate solution of NLPs) The approximate global solution of a
feasible NLP

min @ (u
ueuw( )

with an optimality tolerance eV > 0 yields a feasible point i, a lower bound ¢,

and an upper bound ¢ on the (unknown) globally optimal objective value ¢* with

¢- <9t <o) =9 <g +e"LP

In compact notation, we write
“Lo@)| 3 ¢* =minp@).
[0 0o@)] 3¢ min ¢ (u)
Maximization programs are denoted analogously with the difference that it holds that
- =@ <¢ <ot <p +MT

Similarly, the proposed algorithm relies on solving a min-max program (MMP), the
approximate solution of which we define as follows.
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Definition 2.5 (Approximate solution of MMPs) The approximate global solution of
a feasible MMP

inf max ¢(u, v)
ueld veV

with an optimality tolerance e¥™* > 0 yields a feasible point i, a lower bound ¢,

and an upper bound ¢ on the globally optimal objective value ¢* with

¢~ <" < ma\}co(ﬁ,v) <ot <@ +eMMP
ve

In compact notation, we write

— + * .
, E) = inf max ¢(u, v
ANl EY inf max g (u, v)

Max-min programs sup min ¢ (u, v) are denoted analogously with the difference that

) uecld V€
it holds that

¢~ < ming(,v) <g* <ot <@ 4 MMP
ve

2.2 Assumptions

We make the assumptions of compact host sets and continuous objective and constraint
functions as is standard in deterministic global optimization.

Assumption 1 (Host sets) The host sets X0 C R*, o C R, z0 C R™ are
compact.

Assumption 2 (Defining functions) The functions f : X0 — R, h* : X0 — R,
g: X%V x 20 5 R A" )0 — R and b : )0 x 20 — R” are continuous
on their respective domains.

Proposition 2.1 Given Assumptions 1 and 2, the sets X and ) are compact. Further-
more, Z(y) is compact for any y € Y.

Proof By Assumption 1, X° and ) are compact. Furthermore, by Assumption 2, k"
and h™ are continuous on X and )°, respectively. Accordingly, the O-sublevel sets of
h* and B are compact. Then, X and ) are compact by virtue of being intersections
of compact sets.

Now, consider any fixed y € Y. Z(y) is either empty and therefore compact
or compactness of Z(y) follows as above from compactness of Z° together with
continuity of K. O

Furthermore, for the guaranteed provision of feasible points, the proposed algorithm
relies on the existence of a point that is strictly feasible with respect to the semi-infinite
existence constraints. Accordingly, we assume the existence of such an ESIP-Slater
point for feasible instances of (ESIP).
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Assumption 3 (¢ -optimal ESIP-Slater point) (ESIP) is infeasible or for some &/ >
0, there exists an &/ -optimal ESIP-Slater point in (ESIP), i.e., for some 8/,e5 >0
there exists a point x5 € X that satisfies f(x5) < f* + &/ and

Vy e y[Elz €eZ(y) :gx%, y,2) < —ss].

Finally, we assume that NLPs and MMPs can be solved as outlined in Definitions 2.4
and 2.5, which is usually the case given Assumptions 1 and 2.

Assumption 4 (Approximate solution) For any given e V1P ¢MMP ~ (0 NLPs and
MMPs can be found to be infeasible or solved according to Definitions 2.4 and 2.5,
respectively.

3 Solution Algorithm

In this section, we propose an algorithm for the global solution of (ESIP), which is
based on our discretization-based SIP algorithm [27]. The algorithm in [27] in turn is
a hybridization of the SIP algorithms proposed in [24,26] and employs, either directly
or in an adapted form, subproblems from both preceding algorithms to generate con-
vergent lower and upper bounds on the globally optimal objective value of the SIP in
question. In [27], the hybrid algorithm is shown to inherit the slightly superior con-
vergence guarantees of [24] while providing better performance than both preceding
algorithms on a standard test set.

Global solution of (ESIP) can be achieved by leaving the algorithmic structure of
the hybrid SIP algorithm largely unchanged and adapting the subproblems to take
the presence of a third level in (ESIP) into account. In the following, all adapted
subproblems are stated and their relevant properties in relation to (ESIP) are elucidated.
Finally, the algorithm is stated and a proof of finite termination is provided.

3.1 Subproblems

Before stating the subproblems that are specific to the proposed algorithm, we derive
the natural subproblems of (ESIP). In SIPs, a distinction is made between the upper-
level variables (variables of the SIP) and the lower-level variables (parameters of the
semi-infinite constraints). Accordingly, given fixed upper-level variable values, the
maximization of the semi-infinite constraint over the domain of lower-level variables is
termed the lower-level program. Here, we distinguish between three levels according
to their variable domains. Accordingly, we term x the upper-level variables, y the
medial-level variables, and z the lower-level variables.

Given this naming convention, we denote for given (x, y) € X x ) the lower-level
program of (ESIP)

g°(x,y) = min g(¥,y,2). (LLP)
z€Z(y)
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If (LLP) is feasible, the existence of the minimum asserted therein follows from
Assumptions 1 and 2. Otherwise, it holds that g°®(x, ¥) = oo by convention.

Lemma 3.1 Under Assumptions 1 and 2, for any (x,y) € X x Y, (LLP) is either
infeasible or attains its minimum.

Proof Forany (x,y) € X x ), g(x,y, -) is continuous on Z(y) and Z(y) is compact
(Proposition 2.1). As a consequence and by Weierstrass’ theorem, for any (x, y) €
X x ), (LLP) is either infeasible or attains its minimum. O

Given Lemma 3.1 and the convention on infeasible problems, we can further write the
medial-level program of (ESIP) for given x € X as

— /= + /= Kooy . -
[ @), 87 ®] 2" ® = ysggzglzl?y)g(x,y,z)- (MLP)

(MLP) is used in the proposed algorithm in order to assess feasibility in (ESIP) of
iterates produced by subproblems operating on the upper-level variables. In this sense,
the relation between (ESIP) and (MLP) is analogous to the relation between an SIP
and its lower-level program. Indeed, a point x € X is ESIP feasible if and only if
(MLP) is infeasible or its globally optimal objective is non-positive.

Lemma 3.2 Under Assumptions 1 and 2, a point x € X is ESIP feasible if and only if
(MLP) is infeasible or it holds that g*(x) < 0.

The proof of Lemma 3.2 is omitted as it follows immediately by construction of (MLP)
and Lemma 3.1.

All remaining subproblems are based on a discretization of the medial-level feasible
set. Indeed, given a discretization index set X C N and discretized medial-level
variable values yk € Y, k € K, adiscretized version and relaxation of (ESIP) is given
by

mi)t}f(x) st. Vkek [Elz e ZOM 1 gx, y*. 2) < O].
xe

Introducing instances of the lower-level variables e Z( yk), k € K tothe discretized
program yields the lower bounding program

[FEE07 f@EED) ] 5 fEEPE = min  f (o) (B0

xeX,zkeZ0

gx,yk. 25 <0
1V .
St ke’c[hl(yk,z’f) 50]

For any valid discretization, the projection of (LBP) onto X’ is a relaxation of (ESIP)

and thereby, the solution of (LBP) provides a lower bound on the globally optimal
objective value of (ESIP).

Lemma 3.3 Let K C Nand forall k € K, y* € Y. Then, it holds that

fLBP,* < f*
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The proof of Lemma 3.3 is omitted as it is straightforward.

An upper bounding program is obtained by again discretizing the medial-level
variables as in (LBP) and then restricting the discretized constraints by a restriction
parameter. Given a discretization index set L C N, discretized medial-level variable
values yk € Y, k € K, instances of the lower-level variables z8 € Z ( yk), k € K, and
a restriction parameter €& > 0, the upper bounding program is given by

[fqu,—, f(xUBP)] > fUPP* = min _ f(x) (UBE)
xeX,zkeZ0
g(x, yk, Zk) < —&f
s.t. Vk e K |:hl(yk’zk) <0 } ’

Analogously to the SIP case discussed in [24,27], the projection of (UBP) onto X’ is
generally neither a relaxation nor a restriction of (ESIP). However, under Assumption 3
and through proper manipulation of the restriction parameter ¢4 and the discretization,
(UBP) can be shown to provide an ESIP feasible point and thereby an upper bound
on the globally optimal objective value of (ESIP) in finitely many iterations.

Finally, the restriction program aims to maximize the restriction of the discretized
constraints while attaining a target objective value. Given a discretization index set
K € N, discretized medial-level variable values yk € Y,k € K, instances of the
lower-level variables z¥ € Z(y*),k € K, and a target objective value fRES the
restriction program is given by

I:nRES,f’ nRES,+:| S = max 0 (RES)
neR,xeX zke 20

st f(x) < fRES

glx, ¥k, 25 < —p
vkek [h%yk,zk) <0 |

The observations made in [27] about the relation of the restriction program to the lower
and upper bounding programs also hold here. Indeed, for n = 0, exactly those points
are feasible in (RES) that are members of the level set with objective function value
fRES of (LBP). As a consequence, if for some &5, it holds that n* < 0, then said
level set is empty, fRES is a lower bound on fLBP* and by extension a lower bound
on f*. If on the other hand it holds that n* > 0, the associated solution xRES may be
ESIP feasible. In case this is verified via a solution of (MLP), f(x®S) is an upper
bound on f* and furthermore, n* is the largest possible restriction parameter value for
which the current best solution remains feasible in (UBP) for the given discretization.
As argued in [27], this property motivates the use of such solutions of (RES) as updates
for the restriction parameter € for subsequent solutions of (UBP).

The increased difficulty of (ESIP) when compared to an SIP is reflected in all sub-
problems of the proposed algorithms. Indeed, (MLP) is a max-min program, whereas
its analogue in an SIP is a single-level program. As a consequence, although under
Assumptions 1 and 2, (MLP) can in turn be solved according to Definition 2.5 using
discretization methods such as the one proposed by Falk and Hoffman [29], the solu-
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tion of a max-min program is generally more costly than the solution of a single-level
program of similar size and structure. Similarly, the remaining discretization-based
subproblems exhibit not only the typical increase in the number of constraints with
the number of discretization points, but also an increase in the number of variables.
However, the variables that are associated with discretization points appear in a block
structure, which could potentially be exploited by employing a decomposition method
for an efficient solution of the discretization-based subproblems. Indeed, the block
structure observed here is similar to the structure observed in the subproblems of
a two-stage stochastic programming algorithm, which are commonly solved using
decomposition methods.

3.2 Algorithm Statement

Given the subproblems (LBP), (UBP), (RES), and (MLP), the proposed algorithm can
be stated as in Algorithm 1.

Note that in contrast to the original algorithm in [27], in the case of an infeasible
instance of (UBP), (LBP) is solved instead of (UBP) with a reduced restriction param-
eter. This change is required since Assumption 3 in contrast to its equivalent in [27]
allows for (ESIP) to be infeasible. This change guarantees that an infeasible instance
of (ESIP) is detected by (LBP) becoming infeasible after finitely many iterations.

3.3 Proof of Convergence

For the following discussion, note that Algorithm 1 is separated into three main blocks
of instructions associated with the three subproblems (LBP), (UBP), and (RES). We
term these blocks the lower bounding procedure (Lines 3—12), the upper bounding
procedure (Lines 13-23), and the restriction procedure (Lines 26—40). In order to
prove finite termination of Algorithm 1, we first establish properties of the three main
procedures.

Lower bounding procedure The lower bounding procedure is required to produce a con-
vergent sequence of lower bounds for Algorithm 1 to terminate finitely. This is achieved
by successively tightening (LBP) with solution points of (MLP). As observed in [27]
for the SIP case, particular attention must be paid to the optimality tolerance e™F In
[27], a successive refinement of the optimality tolerance is performed to ensure that a
sufficiently small tolerance is reached finitely. In the following lemma, we opt instead
to show that a sufficiently small tolerance exists that ensures convergence of the lower
bounding procedure. Practical implementations of Algorithm 1 may still employ the
successive refinement strategy proposed in [27]. Indeed, in the proof of the following
lemma, we let e¥MP approach zero in the limit of an iteration sequence. Harwood et
al. [30] show for the SIP algorithm in [24] that such a tolerance refinement is generally
required to ensure convergence of the discretization-based lower bounding procedure.

Lemma 3.4 Consider a sequence of successive iterations of the lower bounding proce-
dure and let eMMPF for each solution of (MLP) be positive but sufficiently small. Then,
under Assumptions 1, 2 and 4, if (ESIP) is infeasible, (LBP) becomes infeasible after
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Algorithm 1: ESIP algorithm. Subproblems are solved globally according to Definitions 2.4 and
2.5, respectively. Inputs are parameters ef, sNLP, sMMP, £80 - 0, and 8 > 1, and an initial
discretization with IC C N and ey kek.

set LBD < —o0, UBD <« 00, £8 « ¢80,
setk < max{m +1:m € K U{0}};

solve (LBP) to obtain fLBP*_ and xLBP;
if (LBP) is infeasible then
| terminate ((ESIP) is infeasible);
end
set LBD « fLBP.—.
solve (MLP) for x = #LBP 4 obtain g+(J?LBP) and szLP;
if (MLP) is infeasible or gt (¥L8P) < 0 then
‘ set UBD < f(J'cLBP),x* <« ¥LBP and terminate;
end
set yk « yMLP k& KUk}, k < k+ 1;

solve (UBP) to obtain )?UBP;
if (UBP) is infeasible then

| seted < e8/r8 and go to Line 3;
end

solve (MLP) for ¥ = U BP to obtain g7 (xVBP) and yMLP;

0 N AN W N

o

p—
—

p—
[$)

ot
QU AW

J—y
2

18 if (MLP) is infeasible or g7 (%UBP) < 0 then

19 if f(xUBP) <UBD thenset UBD « f(xUBP) x* — zUBP
20 set &8 <« &8/r8,

21 else

22 | setyk <« yMLP K « KU {k), k < k+ 1 and go to Line 13;
23 end

24 if LBD > UBD — &/ then terminate

25 set fRES « L(LBD + UBD), m < 0;

26 setm < m + 1;

27 solve (RES) to obtain nRES:— pRES.+ and xRES,

28 if nRES:+ < 0 then

29 | set LBD < fRES and go to Line 24;

30 elseif nRES:— < 0 then

31 | gotoLine3;

32 end

33 solve (MLP) for x = #RES 4 obtain g+(J'cRES) and j:MLP;

(73]
=

if (MLP) is infeasible or gT (¥RES) < 0 then
if pRES:+ /18 < 8 then set ¢8 « pRES-+ /8
set UBD « f()_cRES), x* « ¥RES apd go to Line 13;
else if m < m"™% then
| setyk « MLP K < KU {k}, k < k + 1 and go to Line 26;
end
go to Line 3;

W W W
N N

B W W
[(=R=R-

finitely many iterations of the lower bounding procedure. Otherwise, the sequence of
lower bounds produced converges to an NP -underestimate of f* finitely or in the
limit.

Proof If (ESIP) is infeasible, each point x € A furnished by (LBP) is ESIP infeasible.

By compactness of X, there exists ¢ > 0 independent of ¥ such that g*(x) > 2e¢.
Therefore, by Assumption 4, eMMP can be chosen such that 0 < eMMP ~ ¢ It
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follows that the point y € ) yielded by the solution of (MLP) satisfies

min g(¥, y,z) > g*(¥) — eMMF > ¢,
zeZ(y)

By continuity of g on X0 x Y° x 20 and compactness of X° x J? x 29, g is uniformly
continuous. As a consequence, there exists § > 0 independent of X and y such that

Vx € X N Bs(X)Vz € Z(y) [g(x, y.2) > 0].

That is, the point added to the discretization renders an open neighborhood of x with
radius § infeasible in (LBP). By compactness of &', it follows that (LBP) is rendered
infeasible in finitely many iterations of the lower bounding procedure.

If (ESIP) is feasible and (LBP) furnishes an ESIP feasible solution ¥ € X finitely,
it follows f(x) > f*. Furthermore, with (LBP) being a relaxation of (ESIP) ((Lemma
3.3) and by Assumption 4, it holds that

FG) —eVEP < fLBR < < £ (R,

fLBP,f N

proving that is an eV P _underestimate of f*.

If (ESIP) is feasible and (LBP) does not furnish an ESIP feasible solution, let
{ik }ke=1 € X denote the sequence of solutions furnished by (LBP) and {j’k}kzl the
sequence of associated solutions furnished by (MLP). By construction of (LBP), it
holds that

Vk,m:m>k>13z ¢ Z(j;k) : [g()?’",j’k,z) 50].

By continuity of g(-, j}k, z)on X forall z Z(yk), there exists § > 0 forany ¢ > 0
such that

Vk,m:m>k>1Vx € XN Bs(E") Iz € Z(7) : [g(x,yk,z) < s]. (1

By compactness of X, it holds that X* Lind:a X € X, yielding that there exists K for
any 6 > 0 such that

Vk,m:m>sz[ickeBg(i”’)]. )
Combining (1) and (2) yields that for any ¢ > 0, there exists K such that
Vk> K 3z € 2(3%) : [g()_ck, ¥k, 2) < g] .
Furthermore, it follows from Assumption 4 that for all k£ > 1

@) < min g@&*, 35, z) + MMP.

2€Z(35)

@ Springer



Journal of Optimization Theory and Applications (2021) 188:863-881 875

Then, letting eMMP — 0 for k — oo, yields that the accumulation point % is
ESIP feasible and it holds f(x) > f*. Furthermore, by continuity of f, it follows

f (J?k) ]H—OO> f(x). Together with Assumption 4 and (LBP) being a relaxation of
(ESIP) (Lemma 3.3), it follows that the sequence of lower bounds produced by the
lower bounding procedure converges to a value in the interval

[f(fc) _ gNLP, f*] c [f* _ gNLP, f*] ’

proving that the sequence of lower bounds converges to an &"F-underestimate of

f*. O

Upper bounding procedure As mentioned previously, (UBP) is not generally a restric-
tion of (ESIP) and therefore does not necessarily yield upper bounds for (ESIP).
However, as will be shown here, the upper bounding procedure as a whole does pro-
vide upper bounds reliably. To this end, it is first established that the upper bounding
procedure cannot enter an infinite loop. This is of particular importance if (ESIP) is
infeasible since only the lower bounding procedure can prove infeasibility of (ESIP).

Lemma 3.5 Consider a sequence of iterations of the upper bounding procedure. Let
that sequence be contiguous, i.e., let the sequence be produced by Algorithm 1 looping
on Lines 13-22. Let furthermore 0 < eMMP < &8 for each solution of (MLP). Then,
under Assumptions 1, 2 and 4, the considered sequence of iterations of the upper
bounding procedure is finite.

Proof According to Algorithm 1, a contiguous sequence of iterations of the upper
bounding procedure is terminated if in one execution, (UBP) either becomes infeasible
or yields a point X € X that is found to be ESIP feasible. Furthermore, within a
contiguous sequence of iterations of the upper bounding procedure, the restriction
parameter €% remains unchanged.

Let x € X be furnished by a feasible instance of (UBP) and let x not be found
ESIP feasible. It follows that the solution of (MLP) yields g (%) > 0. Furthermore,
by Assumption 4, the point y € ) yielded by the solution of (MLP) satisfies

MP MMP

min g(x,y,z) > g+(i) — M > —¢
z€Z(y)

By continuity of g on X0 % Y0 x 29 and compactness of X0 x Y0 x 20, g is
uniformly continuous. As a consequence and due to e8¢ — eMMP ~ 0, there exists
8 > 0 independent of x and y such that

Vx € XN Bs(*)Vz € Z(y) [g(x, y.2) > —&¥].
That is, the point added to the discretization renders an open neighborhood of x with
radius ¢ infeasible in (UBP). By compactness of X, it follows that (UBP) is either

rendered infeasible or yields an ESIP feasible point ¥ € X that is confirmed as such
in finitely many iterations of the upper bounding procedure. O
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Given Lemma 3.5 and Assumption 3, the upper bounding property of the upper bound-
ing procedure can be proven as follows.

Lemma 3.6 Consider a sequence of successive iterations of the upper bounding pro-
cedure and let MM P < 8 for each solution of (MLP). Then, under Assumptions 1-4,
if (ESIP) is feasible, the upper bounding procedure furnishes an (87 +eNLP)-optimal
point after finitely many iterations.

Proof By Lemma 3.5 and e¥MP < g& it follows that for any given &2, the upper

bounding procedure is executed only a finite number of times before either (UBP)
becomes infeasible or some point is found to be ESIP feasible. In both cases, the
restriction parameter €8 is reduced according to €8 < &8 /r8 and similarly the restric-
tion procedure only ever reduces &4. It follows that for any &5 > 0 and after finitely
many iterations of the upper bounding procedure, it holds ¢4 < ¢5. Furthermore, by
Assumption 3 and feasibility of (ESIP), there exists a point x5 € X’ that satisfies
f&xS) < f*+&/ and

Vy € y[Elz €eZ(y): g3, y,2) < —es].

for some &/,e5 > 0. As a consequence, after finitely many iterations of the
upper bounding procedure, x° is feasible in (UBP) irrespective of the discretization
employed. At this point, (UBP) can no longer become infeasible and by Lemma 3.5,
apoint x € X is found to be ESIP feasible finitely. Due to Assumption 4, this point
satisfies

F@) < fxS)+eNEP < g8/ 4 gNLP

and ¥ is (8/ + ¢VLP)-optimal in (ESIP). o

Restriction procedure With the properties of the lower and upper bounding procedure
established, the essential properties required for solving (ESIP) are already in place.
Indeed, as discussed in [27] for the SIP case, the restriction procedure is not required for
finite termination of Algorithm 1 but is only added to improve practical performance.
Accordingly, the following lemma establishes that the restriction procedure does not
impede the guarantee for finite termination by entering an infinite loop.

Lemma 3.7 Let the optimality gap UBD-LBD be finite and consider a sequence of
iterations of the restriction procedure. After finitely many iterations, the restriction
procedure provides a bound update, at least halving the optimality gap, or defers to
the lower bounding procedure.

Proof If the solution of (RES) yields n®£5:+ < 0, the lower bound is updated with
FRES and the optimality gap is halved due to

LBD « fRES = L(LBD + UBD).

If on the other hand, the solution of (RES) yields nRES:— < 0 < nRES:+ the restriction
procedure immediately defers to the lower bounding procedure in order to obtain an
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update to the lower bound. Otherwise, letting X denote the solution of (RES), if x is
found to be ESIP feasible, it provides an update to the upper bound. By construction
of (RES) and fRES = L(LBD + UBD), the bound update satisfies

UBD <« f(¥) < 3(LBD + UBD),

meaning the optimality gap is at least halved. Finally, if none of the above conditions
are met, the restriction procedure is only executed finitely many times before deferring
to the lower bounding procedure. O

Finite termination Given Lemmas 3.4, 3.6 and 3.7 and a proper choice of tolerances,
finite termination of Algorithm 1 can be proven as follows.

Theorem 3.1 Let the tolerances in Algorithm 1 be chosen such that e/ > 8 42eNLP,

Let furthermore in each iteration of the lower bounding procedure eMMP > 0 be
sufficiently small in the sense of Lemma 3.4 and in each iteration of the upper bounding
procedure 0 < eMMP < ¢8 Then, under Assumptions 1—4, Algorithm 1 terminates
finitely either proving infeasibility of (ESIP) or yielding an &/ -optimal point x*.

Proof If (ESIP) is infeasible, no solutions furnished by (UBP) can be ESIP feasible.
Together with Lemma 3.5 and e¥M? < ¢¢ for the solution of (MLP) in the upper
bounding procedure, it follows that the upper bounding procedure defers back to
the lower bounding procedure finitely. With Lemma 3.4 and ¢ ” being chosen
sufficiently small in the sense of Lemma 3.4 for the solution of (MLP) in the lower
bounding procedure, it further follows that (LBP) is rendered infeasible finitely. As a
consequence, Algorithm 1 terminates finitely having proven infeasibility of (ESIP).

If (ESIP) is feasible, it follows from Lemma 3.4 that the lower bounds produced by
the lower bounding procedure converge to an ¢V ¥ -underestimate of f*. Accordingly,
letting { fLBP =k}~ denote this sequence of lower bounds, there exists KB? for
any € > 0 such that

Vk > KLBP [fLBP,—,k S pr_gNLP 8] . 3)

Furthermore, it follows from Lemma 3.6 that after a finite number K V2% of itera-
tions, the upper bounding procedure furnishes an (8 + ¢¥£")-optimal point. Letting
{xUBPky, | denote the sequence of points furnished by the upper bounding proce-
dure, it holds that

Vk > KUBP [f(iUBP,k) <48l _I_SNLP] . (4)
Combining (3) and (4) yields that for any & > 0, there exists K “5? such that
Vk > KLBP y] > KUBP I:f(iUBP,l) _ fLBP—k _af 4 9gNLP 4 8] _
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Due to e/ > &/ 4 2¢NEP it follows that after finitely many iterations of the lower
bounding procedure and finitely many iterations of the upper bounding procedure,
Algorithm 1 terminates with an &/ -optimal point.

By construction of Algorithm 1, the restriction procedure is only executed once
the optimality gap Af = UBD — LBD is finite. It follows by Lemma 3.7 that the
restriction procedure is only executed finitely many times before providing a bound
update at least halving the optimality gap or deferring to the lower bounding procedure.
After at most

KRES — log, (Af/ef)

bound updates by the restriction procedure, the optimality tolerance ¢ is reached. As a
consequence, the restriction procedure either provides K ®ES bound updates or defers
sufficiently many times to the lower bounding procedure. Either way, the optimality
tolerance &/ is reached and Algorithm 1 terminates finitely. O

4 Numerical Experiments

In this section, we provide numerical results for the solution of an ESIP example
problem. To this end, we employ a C++ implementation of Algorithm 1, allowing the
presence of coupling equality constraints on the medial and lower level in the sense
of [31]. A detailed description of this and other generalizations is provided in [28,
Section 5.2.4]. Min-max subproblems are solved using a C++ implementation of the
algorithm in [29] that is similarly extended in the sense of [31] to allow coupling
equality constraints on the lower level. NLP subproblems of Algorithm 1 and the
min-max algorithm are solved to global optimality using MAiNGO v0.1.24 [32].

The numerical experiments are conducted on a single thread of a laptop computer
with a 64-bit Intel Core 17-8550U @ 1.80 GHz (4.00 GHz boost clock speed) and
16 GB of memory, running Linux 5.1.15-arch1-1-ARCH. The CPU times presented
in the following are derived from MAiINGO solution reports and represent the CPU
times required for solving all NLP subproblems of Algorithm 1 and the min-max
algorithm. The ESIP is solved to an absolute and relative optimality tolerance of
1073, subproblems (LBP), (UBP), and (RES) are solved to an absolute and relative
optimality tolerance of 10~#, and (MLP) is solved to an absolute optimality tolerance
of 1072 and a relative optimality tolerance of 10~

We consider the adjustable robust design of a reactor-cooler system proposed by
Halemane and Grossmann [3]. The objective of the design problem is to choose the
reactor volume V and the heat exchanger area A such that the total annualized cost
(TAC) of operation is minimized subject to a semi-infinite existence constraint derived
from parametric uncertainties in the model parameters and operational constraints.
That is, a design is considered feasible, if for all possible uncertainty realizations,
there exist operational decisions that ensure satisfaction of the operational constraints.
Halemane and Grossmann [3] consider both the nominal objective function (corre-
sponding to the nominal uncertainty realization) and the expected value of the objective
function approximated by a weighted sum formulation. Here, we consider the nominal
case and note that the weighted sum formulation does not pose an additional challenge
apart from adding variables and constraints to the upper level of the resulting ESIP.
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Table 1 Numerical results for Algorithm 1 solving [3, Example 2] with nominal objective function, com-
pared to results reported in [3]

V/m? A/m? TAC™/($/a) TAC/($/a)
Algorithm 1 6.51 7.45 10,107 10,113
[3, Algorithm II] 6.5 8.11 - 10,160

The optimal solution is given in terms of the design variables V and A
TAC™ and TAC™ denote the final lower and upper bound on the total annualized cost
(TAC) of operation, respectively

The complete description of the problem instance and the ESIP formulation employed
in the following are collected in [28, Section 5.3.2].

For the solution of the adjustable robust design problem, Halemane and Grossmann
[3] rely on the ESIP formulation being reducible to a finite problem by considering only
the vertices of the (polyhedral) medial-level feasible set. They propose an algorithm
that solves a sequence of subproblems that are tightened successively through the
addition of constraints associated with vertices of the medial-level feasible set. This
approach is proven to be valid under the assumptions of a jointly convex constraint
function g and an unconstrained lower-level feasible set [3, Theorem 2]. Both these
assumptions are violated for the problem in question. Halemane and Grossmann [3]
argue that although not guaranteed, the approach may still succeed in the presence of
nonconvex constraint functions.

For the solution of the problem using Algorithm 1, its algorithmic parameters are
setto £80 = 1072 and r& = 2. As is apparent from Table 1, Algorithm 1 yields results
that are consistent with the results reported in [3]. We find a slightly better solution
than [3], which is likely due to a difference in the termination criteria employed. Note
also that one parameter of the problem is changed from the value reported in [3] since
the reported parameter value does not yield consistent results [28, Section 5.3.2]. The
results confirm that the results reported in [3] are correct despite the fact that the
problem violates the assumptions made therein. Indeed, the only discretization point
added by Algorithm 1 is a vertex of the medial-level feasible set, which indicates that
the problem can be reduced to a finite problem by considering that vertex.

Termination of Algorithm 1 is achieved after 1 iteration of the lower bounding
procedure, 1 iteration of the upper bounding procedure, 7 iterations of the restriction
procedure, and overall 6.15 CPU seconds.

5 Conclusions

We propose a discretization-based algorithm for the solution of existence-constrained
semi-infinite programs (ESIPs) based on our previous work on the solution of semi-
infinite programs (SIPs) [27]. While SIPs possess two levels, the lower of which is
discretized in discretization algorithms, the presence of semi-infinite existence con-
straints adds a third level. The proposed algorithm performs a discretization of the
medial-level variables while introducing for each discretization point a vector of lower-
level variables. By this approach, the subproblems constructed by the algorithm obtain
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the same bounding properties as their counterparts in the SIP algorithm [27]. Finite
termination with an ESIP feasible and ¢-optimal solution is proven under assumptions
that are similar to the ones made for the SIP case.

The proposed algorithm is implemented, and an adjustable robust design problem
from the chemical engineering literature is solved as an example problem. While
the problem has been solved previously using a method that requires a convexity
assumption to reduce the problem to a finite counterpart, the proposed algorithm does
not require such a property. The obtained results are consistent with the ones reported
in the literature.

The proposed approach of generating subproblems yields a vector of lower-level
variables for each discretization point in the discretization-based subproblems. As a
consequence, these subproblems grow in terms of the number of constraints and vari-
ables as the number of discretization points increases. It is therefore expected that
for problem instances that require many iterations of the ESIP algorithm, standard
general-purpose solvers will encounter tractability issues in solving these subprob-
lems. However, the affected subproblems also exhibit a block structure that may,
depending on the particular problem structure, enable the use of decomposition meth-
ods with a favorable scaling behavior. Indeed, the the block structure mirrors a similar
structure in two-stage stochastic programs, the solution of which is often achieved
using appropriate decomposition methods. Nevertheless, care should be taken to min-
imize the number of required iterations, e.g., through tuning algorithmic parameters
and improving the algorithm.
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