
ar
X

iv
:1

60
3.

01
21

2v
3 

 [
m

at
h.

A
P]

  5
 N

ov
 2

01
8

Exact Bounded Boundary Controllability to Rest for the

Two-Dimensional Wave Equation
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Abstract

The problem of the exact bounded control of oscillations of the two-dimensional membrane is

considered. Control force is applied to the boundary of the membrane, which is located in a domain

on a plane. The goal of the control is to drive the system to rest in a finite time.
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1 Introduction

The problem of exact boundary controllability of oscillations of a plane membrane is considered.

Control force has a restriction on its absolute value. We will prove that the plane membrane can be

driven to rest in a finite time. Exact mathematical definitions will be provided. It should be noted that

the given method for the proof in this article can be used in the case of any other dimension, but here

the two-dimensional case is provided for clear and simple presentation.

The problem of full stabilization in a finite time in case of the distributed control is described in the

monograph [1]. This reference also contains the upper estimate for an optimal control time.

Previously the question of the control of oscillations of a plane membrane by means of boundary forces

is considered by many authors (i. g. overviews of D. L. Russell [2] and J. Lions [3], as well as the literature

provided there). The monograph [4] describes the task of stabilizing the oscillations of a restricted string

by means of the boundary control, and proves that vibrations of the string can be driven to rest in a

finite time under the condition of restriction imposed on an absolute value of the control function, and an

estimate is provided for the time that is necessary for full rest. In monograph [5] problems of the optimal

control of systems with distributed parameters are studied and optimal conditions are stated, which are

similar to conditions for systems with a finite number of freedom’s degrees. Although this method does

not provide a constructive technique for finding an optimal control in many cases. In synoptic article

[3] the problem of exact zero-controllability of a membrane is considered, the existence of the boundary

control is proven and the time estimate is given which is required for driving to rest. Here authors, while

studying the problem in various formulations, often reject the requirement of optimality of the control and

solve only the problem of controllability, which is much easier. What is more, problems with restrictions
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of the force’s absolute value are not considered, explicit forms for control functions are not found, and

only theorems of existence are proven.

The statement of the problem in the article essentially differs from the one in [2] and [3], because the

value of control force on the boundary has to satisfy the condition: |u(t, x)| 6 ε. Note, here the aim is to

find not an optimal control, but the admissible (satisfying initial restrictions) control.

2 The statement of the problem

Let us consider the initial-boundary value problem for the two-dimensional wave equation:

wtt(t, x) −∆w(t, x) = 0, (t, x) ∈ QT = (0, T )× Ω, (1)

w|t=0 = ϕ(x), wt|t=0 = ψ(x), x ∈ Ω, (2)

∂w

∂ν
= u(t, x), (t, x) ∈ Σ, (3)

where Ω ⊂ R2 is a bounded, star-shaped relatively some ball domain with an infinitely smooth boundary,

ν — the outer normal to the boundary of the domain Ω, Σ is a lateral surface of a cylinder QT . Initial

data ϕ(x) and ψ(x) are given and will be chosen in suitable Hilbert spaces, u(t, x) is a control function

defined on the boundary Γ = ∂Ω.

Let ε > 0 be an given arbitrary number. Let us impose the constraint on the control function:

|u(t, x)| 6 ε, (4)

The problem is to construct a control u(t, x) satisfying inequality (4) such that the corresponding

solution w(t, x) to the initial-boundary value problem (1)—(3) and its derivative with respect to t become

(C, 0) at some time T , i.e.

w(T, x) = C, wt(T, x) = 0, (5)

for all x ∈ Ω. In this case C is some constant. If we obtained a control u(t, x) such that conditions (5)

are achieved then the system (1)—(3) is called controllable to rest.

The following theorem is the main result of this article.

Theorem 1. Let ϕ(x) ∈ H6(Ω) and ψ(x) ∈ H5(Ω) such that

∂ϕ(x)

∂ν
= ∆ϕ(x) =

∂∆ϕ(x)

∂ν
= ∆2ϕ(x) =

∂∆2ϕ(x)

∂ν
= 0, x ∈ Γ,

ψ(x) =
∂ψ(x)

∂ν
= ∆ψ(x) =

∂∆ψ(x)

∂ν
= ∆2ψ(x) = 0, x ∈ Γ. (6)

Then the system (1)—(3) is controllable to rest.

The proof of Theorem 1 consists of two steps. The first step stabilizes the considered solution and its

first derivative with respect to t in a small vicinity of equilibrium (C, 0) in the norm of C4(Ω) × C3(Ω),

and the second step allows to drive to rest the system in this small vicinity.
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3 The first step of the control

Here we state the task to stabilize a pair (w(t, x), wt(t, x)) in an arbitrarily small vicinity of (C, 0)

in the norm of the space C4,3(Ω) = C4(Ω) × C3(Ω) where w(t, x) is the solution to the system (1)—(3)

and wt(t, x) is its first derivative with respect to t. What is more the control function should satisfy the

restriction (4).

At the first step we state the problem to stabilize solution of (1)—(3) and its first derivative by t to

the small enough vicinity of (C, 0) by the norm of H6(Ω) = H6(Ω) × H5(Ω). In this case we have the

restriction (4) for the control function.

For this purpose we use [6] and [7]. In these articles authors consider a friction on Γ which is defined

by wt(t, x). More exactly they consider the initial-boundary value problem (1)—(2) with a new boundary

condition:
∂w(t, x)

∂ν
= −k

∂w(t, x)

∂t
, x ∈ Γ, (7)

where k > 0 is a friction coefficient. Let us illuminate shortly the questions of solvability of this problem.

Let us denote

H = L2(Ω), V = H1(Ω),

Let us define in the space V ×H an unbounded operator

A =

(

0 I

∆ 0

)

with the domain

D(A) = {(w1, w2) ∈ H2(Ω)×H1(Ω) :
∂w1

∂ν
= −kw2, x ∈ Γ}.

It is a well known fact that the norm in the space D(A) can be represent in the following form:

‖(w1, w2)‖D(A) = ‖(w1, w2)‖V ×H + ‖A(w1, w2)‖V×H . (8)

Let us consider the following system of differential equations:

w̄t = Aw̄, (9)

where w̄ = (w1, w2).

It is known (see [6], [7]) that an operator A is a generator of strongly continuous semigroup of linear

bounded operators.

It is a well known fact that if initial data (ϕ, ψ) is an element of D(Ak), k = 0, 1, 2, ..., then we have:

(w1(t), w2(t)) ∈ C
(

[0, T ];D(Ak)
)

.

We note that in our case we have (ϕ, ψ) as an element of D(A5).

Let (ϕ, ψ) ∈ V ×H . It is proved (see [6], [7]) that for the energy of the system we have:

E(t) → 0, t→ +∞. (10)

where

E(t) =

∫

Ω

{

w2
1,x1

(t, x) + w2
1,x2

(t, x) + w2
2(t, x)

}

dx

3



is an energy of the system.

We introduce:

C =
1

|Γ|

∫

Γ

ϕ(x)dΓ +
1

k|Γ|

∫

Ω

ψ(x)dx,

where |Γ| is a length of Γ. Let w(t, x) = v(t, x) + C and consider a new initial-boundary value problem

for v(t, x) (analogous to (1), (2), (7)):

v̄t = Av̄, (11)

(v1, v2)|t=0 = (ϕ(x) − C,ψ(x)), x ∈ Ω, (12)

where v̄ = (v1, v2). Obviously in this case v1 = v and v2 = vt.

Using Friedrichs’ (Poincare) inequality (see [8]) we have

∫

Ω

v2(t, x)dx 6 C3











∫

Ω

(

(

∂v

∂x1

)2

+

(

∂v

∂x2

)2
)

dx+





∫

Γ

v(t, x)dΓ
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.

∫

Γ

v(t, x)dΓ = −
1

k

t
∫

0

∫

Γ

∂v

∂ν
dΓdt+

∫

Γ

ϕ(x)dΓ − |Γ|C =

= −
1

k

t
∫

0

∫

Ω

∆v(t, x)dxdt +

∫

Γ

ϕ(x)dΓ − |Γ|C =

= −
1

k

t
∫

0

∫

Ω

vtt(t, x)dxdt +

∫

Γ

ϕ(x)dΓ− |Γ|C =

= −
1

k

∫

Ω

vt(t, x)dx +
1

k

∫

Ω

ψ(x)dx +

∫

Γ

ϕ(x)dΓ − |Γ|C = −
1

k

∫

Ω

vt(t, x)dx.

From the last estimations we obtain

‖w(t, ·)− C‖L2(Ω) → 0, t→ +∞. (13)

Let (ϕ − C,ψ) be an element of D(A) and (v1(t), v2(t)) is a corresponding (to these initial data)

solution. We consider now the following Cauchy problem:

d

dt
Av̄(t) = A

2v̄(t), Av̄(0) = A(ϕ− C,ψ).

We note that

A(v1(t), v2(t)) = (v2(t),∆v1(t)). (14)

Then from (10) and (14) we obtain

∫

Ω

{

v22,x1
(t) + v22,x2

(t) + (∆v1(t))
2
}

dx→ 0, t→ +∞. (15)

Combining (8), (10), (13) and (15), we have:

‖(v1(t), v2(t))‖D(A) → 0, t→ +∞. (16)
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Let initial condition is an element of D(A) then for the corresponding solution we can obtain (using

the theory of elliptic boundary value problems (see, for example, [9] or [10])) the following estimate:

‖v1(t)‖H2(Ω) 6 N1

(

‖∆v1(t)‖L2(Ω) + k‖v2(t)‖
H

1

2 (Γ1)
+ ‖v1(t)‖L2(Ω)

)

, (17)

where N1 does not depend on (v1, v2). Using (10), (15) and the last estimate one can easily prove that

v1(t) tends to zero when t→ +∞ in the norm of H2(Ω).

Consider the space D(A2). Using the theory of elliptic boundary value problems we can describe this

space effectively:

D(A2) = {(v1, v2) ∈ H3(Ω)×H2(Ω) :
∂v1

∂ν
= −kw2,

∂v2

∂ν
= −k∆v1, x ∈ Γ}.

Let (v1(t), v2(t)) be the solution to (1), (2), (7) then (v1(t), v2(t)) is an element of C
(

[0, T ];D(A2)
)

.

We have

A
2(v1, v2) = (∆v1,∆v2). (18)

It follows from (18) that

∫

Ω

{

(∆v1,x1
(t))2 + (∆v1,x2

(t))2 + (∆v2(t))
2
}

dx→ 0, t→ +∞. (19)

Using (16) and (24) we obtain:

‖(v1(t), v2(t))‖D(A2) → 0, t→ +∞. (20)

The theory of elliptic boundary value problems gives us the following estimates:

‖v1(t)‖H3(Ω) 6 N2

(

‖∆v1(t)‖H1(Ω) + k‖v2(t)‖
H

3

2 (Γ1)
+ ‖v1(t)‖L2(Ω)

)

. (21)

‖v2(t)‖H2(Ω) 6 N3

(

‖∆v2(t)‖L2(Ω) + k‖∆v1(t)‖
H

1

2 (Γ1)
+ ‖v2(t)‖L2(Ω)

)

. (22)

Using the last estimates one can easily prove that v1(t) tends to zero when t → +∞ in the norm of

H3(Ω).

Let us have a look at one more step in detail. Consider the space D(A3). We have: A3(v1, v2) =

(∆v2,∆
2v1). Hence we obtain two equations: ∆v2 = f1, ∆

2v1 = f2, where (f1, f2) ∈ H1 ×L2, and three

boundary conditions at Γ:

a)
∂v1

∂ν
= −kv2, b)

∂v2

∂ν
= −k∆v1, c)

∂∆v1
∂ν

= −k∆v2. (23)

Let us make a substitution ∆v1 = h, then the equation ∆2v1 = f2 with the boundary condition (c) has

the form ∆h = f2,
∂h
∂ν

= −k∆v2. Hence the following estimation takes place

‖h‖H2(Ω) 6 N4

(

‖∆h‖L2(Ω) + k‖∆v2‖
H

1

2 (Γ)
+ ‖h‖L2(Ω)

)

.

Then ∆v1 ∈ H
3

2 (Γ) at the boundary of a domain. So from the equation ∆v2 = f1 and the boundary

condition (b) the following estimation is derived:

‖v2‖H3(Ω) 6 N5

(

‖∆v2‖H1(Ω) + k‖∆v1‖
H

3

2 (Γ)
+ ‖v2‖L2(Ω)

)

. (24)
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Then we get the equation ∆v1 = f3 ∈ H2(Ω) with the boundary condition (a). Using the previous

estimation, we obtain:

‖v1‖H4(Ω) 6 N6

(

‖∆2v1‖L2(Ω) + k‖v2‖
H

5

2 (Γ)
+ k‖∆v2‖

H
3

2 (Γ)
+ ‖v1‖L2(Ω)

)

. (25)

Continuing in the analogous way we can prove that ‖v1(t)‖H6(Ω) and ‖v2(t)‖H5(Ω) tend to zero when

t→ +∞. It means that

‖w(t)− C‖H6(Ω), ‖wt(t)‖H5(Ω) → 0 t→ +∞.

We solve the problem (1), (2), (7) with the given initial conditions, then this solution is substituted to

the only right part of the equality (7), and we obtain the boundary condition (3) for the initial-boundary

value problem (1)—(3). In other words, we make the control function of the problem (1)—(3) be equal

to

u(1)(t, x) = −k
∂w0(t, x)

∂t
,

where w0 is a solution to the problem (1), (2), (7).

Therefore it is proved (here we use Sobolev embedding theorem) that controlling for a long time, we

can make the values

‖w(T1, ·)‖C4(Ω), ‖wt(T1, ·)‖C3(Ω)

arbitrarily close to (C, 0) at some time t = T1.

Now let us show that the boundary control function u(t, x) can be sufficiently small, i.e. we may

satisfy the restriction (4). It is known that

max
t∈[0,+∞)

E(t) = E(0) =

∫

Ω

(

ϕ2
x1
(x) + ϕ2

x2
(x) + ψ2(x)

)

dx.

Then using S. L. Sobolev theorems of injections and (22) we have:

‖w2(t)‖C(Ω) 6 C1‖w2(t)‖H2(Ω) 6 C2‖∆w2(t)‖L2(Ω) + kC2‖∆w1(t)‖
H

1

2 (Γ1)
+ C2‖w2(t)‖L2(Ω)

6 C2‖∆w2(t)‖L2(Ω) + kC3‖∆w1(t)‖H1(Ω) + C2‖w2(t)‖L2(Ω)

6 C2

√

√

√

√

∫

Ω

{(∆w1,x1
(t))2 + (∆w1,x2

(t))2 + (∆w2(t))2} dx+

kC3

√

√

√

√

∫

Ω

{

w2
2,x1

(t) + w2
2,x2

(t) + (∆w1(t))2
}

dx+

kC3

√

√

√

√

∫

Ω

{(∆w1,x1
(t))2 + (∆w1,x2

(t))2 + (∆w2(t))2} dx+

C2

√

√

√

√

∫

Ω

{

w2
1,x1

(t) + w2
1,x2

(t) + w2
2(t)

}

dx

6



6 C2

√

√

√

√

∫

Ω

{(∆ϕx1
)2 + (∆ϕx2

)2 + (∆ψ)2} dx+ kC3

√

√

√

√

∫

Ω

{

ψ2
x1

+ ψ2
x2

+ (∆ϕ)2
}

dx+

kC3

√

√

√

√

∫

Ω

{(∆ϕx1
)2 + (∆ϕx2

)2 + (∆ψ)2} dx+ C2

√

√

√

√

∫

Ω

{

ϕ2
x1

+ ϕ2
x2

+ ψ2
}

dx.

Thus ‖w2(t)‖C(Ω) is uniformly bounded for any t because k is near zero.

By virtue of (7) initial conditions (ϕ, ψ) will be the element of D(A2) for any k. If the coefficient k is

small enough, we achieve condition (4).

4 The second step of the control

Now we have a task to drive the system to rest. A pair of functions

(w|t=0 = w(T1, x), wt|t=0 = wt(T1, x))

is considered to be new initial data for the problem (1)—(3). Bearing in mind that according to the fact

proven above these initial conditions are sufficiently close to (C, 0) in the norm of the space C4,3(Ω). We

shift now the solution w (first step of the control) on the value C, i.e. we change w on w+C and consider

the pair (w|t=0 = w(T1, x), wt|t=0 = wt(T1, x)) that is sufficiently close to (0, 0).

Let us consider the domain Ωδ, which is δ-vicinity of the domain Ω. Also let take an arbitrary pair

(w0(x), w1(x)) from the space C4,3(Ω). Consider an extension operator E. It is a linear continuous

operator from the space C4,3(Ω) to C4,3(Ωδ) such that the support of the extended pair (we
0(x), w

e
1(x))

and its derivatives of 4th and 3th orders (respectively) inclusive belongs to Ωδ. Moreover

(we
0(x), w

e
1(x)) = (w0(x), w1(x)), if x ∈ Ω.

Note that, outside Ωδ, the functions can be extended by zero to the whole plane. In a more general case,

E was constructed in [10].

Extended in this way functions are denoted (as above) as we
0(x) and w

e
1(x), according to D. L. Russell.

Let us consider the Cauchy problem for the equation of membrane’s oscillations on a plane R2:

wtt(t, x) −∆w(t, x) = 0, (t, x) ∈ Q = (0,+∞)×R2, (26)

w|t=0 = we
0(x), wt|t=0 = we

1(x), x ∈ R2. (27)

It is known that the solution to the problem (26), (27) has the form (Poisson’s formula):

w(t, x) =
∂

∂t







1

2π

∫

|y−x|<t

we
0(y)dy

√

t2 − |y − x|2






+

1

2π

∫

|y−x|<t

we
1(y)dy

√

t2 − |y − x|2
. (28)

We use the formula (28) for estimating the absolute value of the solution w(t, x) uniformly by the

initial data. The absolute value of w(t, x) is estimated in case x ∈ Ωδ. We compute the first derivative

with respect to t in the right part of (28):

w(t, x) =
1

2πt

∫

|y−x|<t

we
0(y) + (y − x) · ∇we

0(y)
√

t2 − |y − x|2
dy +

1

2π

∫

|y−x|<t

we
1(y)dy

√

t2 − |y − x|2
. (29)

7



As initial data (we
0(x), w

e
1(x)) have a compact support then there is large enough time t∗ > 0 such that

for any t > t∗ and for any x ∈ Ωδ we obtain

w(t, x) =
1

2πt

∫

Ωδ

we
0(y) + (y − x) · ∇we

0(y)
√

t2 − |y − x|2
dy +

1

2π

∫

Ωδ

we
1(y)dy

√

t2 − |y − x|2
. (30)

Note that we choose t such as t2 − |y − x|2 > α > 0 for any x, y ∈ Ωδ.

The following rough evaluation follows from the explicit form of (30):

‖w(t, ·)‖C4(Ωδ)
6
C1

t
‖we

0‖C4(R2) +
C2

t
‖we

1‖C3(R2). (31)

Differentiating w(t, x) with respect to t, we obtain the rough estimate in the space of the pair of

functions C4,3(Ωδ) = C4(Ωδ)× C3(Ωδ)

‖(w(t, ·), wt(t, ·))‖C4,3(Ωδ)
6
M

t
‖(we

0, w
e
1)‖C4,3(R2), t > t∗, (32)

where a number M does not depend on initial data.

Further we use the method described in [2] and applied to problems of the boundary controllability

for a wave equation.

Let us consider some initial conditions w0(x) and w1(x), x ∈ Ω. We extend them to R2 by means of

a linear bounded operator E. Then we obtain (we
0, w

e
1) = E(w0, w1). And the Cauchy problem (26), (27)

arises. Let ws(t, x) be the solution to this Cauchy problem. Now consider any large enough time t = T2.

We get (ws(T2, x), w
s
t (T2, x)) ∈ C4,3(Ω). The restriction of the function ws(T2, x) and its derivative on

the domain Ω should be considered. It is obvious that in virtue of (32) the following estimate is correct

for t = T2

‖(ws(T2, ·), w
s
t (T2, ·))‖C4,3(Ω) 6

M

T2
‖(we

0, w
e
1)‖C4,3(R2). (33)

Let by definition (ws,e
0 (T2, x), w

s,e
1 (T2, x)) = E (ws(T2, x)|Ω, w

s
t (T2, x)|Ω). Now let us have a look at the

inverse Cauchy problem with initial conditions

w(t, x)|t=T2
= −ws,e

0 (T2, x) wt(t, x)|t=T2
= −ws,e

1 (T2, x). (34)

Let wi(t, x) be the solution to the inverse Cauchy problem with conditions (34). In virtue of invertibility

of the equation (1) with respect to t the following estimate takes place:

‖(wi(0, ·), wi
t(0, ·))‖C4,3(Ω) 6

M

T2
‖(ws,e

0 (T2, x), w
s,e
1 (T2, x))‖C4,3(R2). (35)

Obviously the solution of the Cauchy problem with initial conditions such as

w|t=0 = we
0(x) + wi(0, x), wt|t=0 = we

1(x) + wi
t(0, x), x ∈ R2, (36)

identically equals zero in Ω as well as its first derivative with respect to t at the time t = T2. Now let us

consider the restriction of the right parts of (36) in the domain Ω. We regard the initial conditions (the

restriction of right parts of (36) in the domain Ω) in the problem of boundary controllability:

w|t=0 = w0(x) + wi,r(0, x), wt|t=0 = w1(x) + w
i,r
t (0, x), x ∈ Ω. (37)

8



Note that it is the value of the corresponding solution to the Cauchy problem in R2 with the initial

conditions (36) to determine the required control function on the boundary of Ω.

A pair (wi,r(0, x), wi,r
t (0, x)) is derived from pair (w0(x), w1(x)) by means of applying a linear con-

tinuous operator, let us denote it as L, with the norm less than 1 (consequence from estimates (33) and

(35)). Obviously the sums in right parts (37) generate all elements of the space C4,3(Ω). Indeed, (37) can

be written as:

(I + L)(w0(x), w1(x)) = (w|t=0, wt|t=0), (38)

where I is the identical operator. Hence, as ‖L‖ < 1, so the operator I + L, which acts from C4,3(Ω) to

itself, is invertible.

Now let us represent the control function (second step) in the following form:

u(2)(t, x) =
∂

∂ν
PKt

+

[

(

I + (−KT2

− )ERKT2

+

)

E
(

I +R(−KT2

− )ERKT2

+ E
)−1

(w|t=0, wt|t=0)

]

, x ∈ ∂Ω,

where R is a restriction from R2 to Ω and KT2

+ , KT2

− are resolving operators of the Cauchy problem and

P is a projection: (a, b) 7→ a. We write minus before KT2

− because of (34).

Thus we have proven that the system with smooth initial conditions can be driven to rest by means

of extending them on the full plane. It is the method to extend which determines a program of the

boundary control. Let us show now that if the initial conditions have small enough absolute values, we

can drive the system to rest by means of a boundary control which has a small absolute value.

We regard that in the problem (1)—(3) the value of the solution w(t, x) and the value of its derivative

wt(t, x) at t = T1 are small enough in norms of spaces C4(Ω) and C3(Ω) respectively.

Let (w|t=0, wt|t=0) be rewritten according to the formula (37). As continuous operator I+L invertible,

so according to Banach’s theorem an invertible operator is continuous too. Hence choosing (w|t=0, wt|t=0)

sufficiently small, we can make (w0(x), w1(x)) be sufficiently small as well. Now let consider the sums

(37), which determine data (w|t=0, wt|t=0). Extending these sums on the whole plane by the method

above, we obtain initial data (36).

Bearing in mind that supports of functions we
0(x) and w

e
1(x) are in Ωδ, and supports of their derivatives

with respect to all variables (including the third and the second orders respectively) are located in Ωδ

too. The solution ws(t, x) has a compact support which is located in some bounded domain Gt in R2

at each moment t because of the finite speed of the wave propagation. Let us take a sufficiently large

circle D such as Gt ⊂ D, t ∈ [0, T2]. In this case function ws(t, x) is thought as a solution of initial

boundary value problem at the domain D with the homogeneous Dirichlet condition for t ∈ [0, T2]. In

virtue of the corresponding smoothness of initial conditions we obtain: ws(t, x) ∈ C([0, T2];H
4(D)) and

ws
t (t, x) ∈ C([0, T2];H

3(D)). Then the energy conservation law takes place:
∫

D

{

(

ws
x1
(t, x)

)2
+
(

ws
x2
(t, x)

)2
+ (ws

t (t, x))
2
}

dx =

∫

D

{

(

∂we
0(x)

∂x1

)2

+

(

∂we
0(x)

∂x2

)2

+ (we
1(x))

2

}

dx, t ∈ [0, T2]. (39)

Now differentiating the equation (26) and initial conditions (27) with respect to variables x1, x2, we

obtain the estimate

‖ws(t, ·)‖′H3(D) 6 ‖we
0‖H3(Ωδ) + ‖we

1‖H2(Ωδ),

9



where ‖ · ‖′
H3(D) is a seminorm (term

∫

D

(ws(t, x))2dx

is absent). The last statement is true because derivatives (of the second order in this case) of function

ws(t, x) are identically zero at domainD\Gt and hence they are solutions of differentiated initial boundary

value problem with the homogeneous Dirichlet condition at the boundary of the domain D.

Then the seminorm ‖ · ‖′
H3(D) is a norm. Therefore we obtain

‖ws(t, ·)‖H3(D) 6 CF ‖w
e
0‖H3(Ωδ) + CF ‖w

e
1‖H2(Ωδ).

Taking into account the last estimate and the Sobolev embedding theorem we get

‖ws(t, ·)‖C1(Ω) 6 CS‖w
e
0‖H3(Ωδ) + CS‖w

e
1‖H2(Ωδ). (40)

Summing up, it is proven that the solution ws(t, x) can be made sufficiently small in the norm C1(Ω)

for any t ∈ [0, T2]. The same argument may be applied to the solution of the inverse Cauchy problem with

initial conditions −ws,e
0 (T2, x) and −ws,e

1 (T2, x). In this case it is important that functions ws,e
0 (T2, x)

and w
s,e
1 (T2, x) in virtue of inequality (32) are ”small” in C4,3, if we

0(x) and we
1(x) are ”small”. Hence

the restriction of the normal derivative of the solution to the Cauchy problem (26), (27) on the boundary

of Ω (Neumann condition of the problem of controllability) is less than given ε with respect to absolute

value. The latter means that the required restriction (4) on the control function u(t, x) is satisfied.
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