Skip to main content

Advertisement

Log in

Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We introduce an inexact oracle model for variational inequalities with monotone operators, propose a numerical method that solves such variational inequalities, and analyze its convergence rate. As a particular case, we consider variational inequalities with Hölder-continuous operator and show that our algorithm is universal. This means that, without knowing the Hölder exponent and Hölder constant, the algorithm has the least possible in the worst-case sense complexity for this class of variational inequalities. We also consider the case of variational inequalities with a strongly monotone operator and generalize the algorithm for variational inequalities with inexact oracle and our universal method for this class of problems. Finally, we show how our method can be applied to convex–concave saddle point problems with Hölder-continuous partial subgradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alkousa, M.S., Gasnikov, A.V., Dvinskikh, D.M., Kovalev, D.A., Stonyakin, F.S.: Accelerated methods for saddle-point problem. Comput. Math. Math. Phys. 60, 1787–1809 (2020)

    Article  MathSciNet  Google Scholar 

  2. Antonakopoulos, K., Belmega, V., Mertikopoulos, P.: Adaptive extra-gradient methods for min-max optimization and games. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=R0a0kFI3dJx

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv:1701.07875 (2017)

  4. Auslender, A., Teboulle, M.: Interior projection-like methods for monotone variational inequalities. Math. Program. 104(1), 39–68 (2005)

    Article  MathSciNet  Google Scholar 

  5. Aybat, N.S., Fallah, A., Gurbuzbalaban, M., Ozdaglar, A.: Robust accelerated gradient methods for smooth strongly convex functions. SIAM J. Optim. 30(1), 717–751 (2020)

    Article  MathSciNet  Google Scholar 

  6. Bach, F., Levy, K.Y.: A universal algorithm for variational inequalities adaptive to smoothness and noise. In: Beygelzimer, A., Hsu, D. (eds.) Proceedings of the 32nd Conference on Learning Theory, Proceedings of Machine Learning Research, vol. 99, pp. 164–194. PMLR, Phoenix (2019). http://proceedings.mlr.press/v99/bach19a.html. ArXiv:1902.01637

  7. Baimurzina, D.R., Gasnikov, A.V., Gasnikova, E.V., Dvurechensky, P.E., Ershov, E.I., Kubentaeva, M.B., Lagunovskaya, A.A.: Universal method of searching for equilibria and stochastic equilibria in transportation networks. Comput. Math. Math. Phys. 59(1), 19–33 (2019)

    Article  MathSciNet  Google Scholar 

  8. Bayandina, A., Dvurechensky, P., Gasnikov, A., Stonyakin, F., Titov, A.: Mirror descent and convex optimization problems with non-smooth inequality constraints. In: Giselsson, P., Rantzer, A. (eds.) Large-Scale and Distributed Optimization, Chap. 8, pp. 181–215. Springer (2018)

  9. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization (Lecture Notes). Personal web-page of A. Nemirovski (2015). https://www2.isye.gatech.edu/~nemirovs/LMCO_LN.pdf

  10. Beznosikov, A., Dvurechensky, P., Koloskova, A., Samokhin, V., Stich, S.U., Gasnikov, A.: Decentralized local stochastic extra-gradient for variational inequalities. arXiv:2106.08315 (2021)

  11. Bogolubsky, L., Dvurechensky, P., Gasnikov, A., Gusev, G., Nesterov, Y., Raigorodskii, A.M., Tikhonov, A., Zhukovskii, M.: Learning supervised pagerank with gradient-based and gradient-free optimization methods. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 4914–4922. Curran Associates, Inc. (2016). ArXiv:1603.00717

  12. Bullins, B., Lai, K.A.: Higher-order methods for convex-concave min-max optimization and monotone variational inequalities. arXiv:2007.04528 (2020)

  13. Cohen, M., Diakonikolas, J., Orecchia, L.: On acceleration with noise-corrupted gradients. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 80, pp. 1019–1028. PMLR, Stockholmsmässan, Stockholm (2018). ArXiv:1805.12591

  14. Dang, C.D., Lan, G.: On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators. Comput. Optim. Appl. 60(2), 277–310 (2015)

    Article  MathSciNet  Google Scholar 

  15. d’Aspremont, A.: Smooth optimization with approximate gradient. SIAM J. Optim. 19(3), 1171–1183 (2008)

    Article  MathSciNet  Google Scholar 

  16. Devolder, O., Glineur, F., Nesterov, Y.: First-order methods of smooth convex optimization with inexact oracle. Math. Program. 146(1), 37–75 (2014)

    Article  MathSciNet  Google Scholar 

  17. Dvinskikh, D., Gasnikov, A.: Decentralized and parallel primal and dual accelerated methods for stochastic convex programming problems. J. Inverse Ill-posed Probl. 29(3), 385–405 (2021). https://doi.org/10.1515/jiip-2020-0068

    Article  MathSciNet  MATH  Google Scholar 

  18. Dvinskikh, D., Ogaltsov, A., Gasnikov, A., Dvurechensky, P., Spokoiny, V.: On the line-search gradient methods for stochastic optimization. IFAC-PapersOnLine 53(2), 1715–1720 (2020). https://doi.org/10.1016/j.ifacol.2020.12.2284. 21th IFAC World Congress arXiv:1911.08380

  19. Dvurechensky, P.: Gradient method with inexact oracle for composite non-convex optimization. Comput. Res. Model. 14(2), 321–334 (2022). https://doi.org/10.20537/2076-7633-2022-14-2-321-334

  20. Dvurechensky, P., Gasnikov, A.: Stochastic intermediate gradient method for convex problems with stochastic inexact oracle. J. Optim. Theory Appl. 171(1), 121–145 (2016)

    Article  MathSciNet  Google Scholar 

  21. Dvurechensky, P., Gorbunov, E., Gasnikov, A.: An accelerated directional derivative method for smooth stochastic convex optimization. Eur. J. Oper. Res. 290(2), 601–621 (2021) https://doi.org/10.1016/j.ejor.2020.08.027

  22. Dvurechensky, P., Nesterov, Y., Spokoiny, V.: Primal-dual methods for solving infinite-dimensional games. J. Optim. Theory Appl. 166(1), 23–51 (2015)

    Article  MathSciNet  Google Scholar 

  23. Dvurechensky, P.E., Ivanov, G.E.: Algorithms for computing Minkowski operators and their application in differential games. Comput. Math. Math. Phys. 54(2), 235–264 (2014)

    Article  MathSciNet  Google Scholar 

  24. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer (2007)

  25. Gasnikov, A., Dvurechensky, P., Gorbunov, E., Vorontsova, E., Selikhanovych, D., Uribe, C.A., Jiang, B., Wang, H., Zhang, S., Bubeck, S., Jiang, Q., Lee, Y.T., Li, Y., Sidford, A.: Near optimal methods for minimizing convex functions with lipschitz \(p\)-th derivatives. In: Beygelzimer, A., Hsu, D. (eds.) Proceedings of the 32nd Conference on Learning Theory, Proceedings of Machine Learning Research, vol. 99, pp. 1392–1393. PMLR, Phoenix (2019)

  26. Gasnikov, A.V., Dvinskikh, D.M., Dvurechensky, P.E., Kamzolov, D.I., Matyukhin, V.V., Pasechnyuk, D.A., Tupitsa, N.K., Chernov, A.V.: Accelerated meta-algorithm for convex optimization problems. Comput. Math. Math. Phys. 61(1), 17–28 (2021). https://doi.org/10.1134/S096554252101005X

    Article  MathSciNet  MATH  Google Scholar 

  27. Gasnikov, A.V., Dvurechensky, P.E.: Stochastic intermediate gradient method for convex optimization problems. Dokl. Math. 93(2), 148–151 (2016)

    Article  MathSciNet  Google Scholar 

  28. Gasnikov, A.V., Dvurechensky, P.E., Stonyakin, F.S., Titov, A.A.: An adaptive proximal method for variational inequalities. Comput. Math. Math. Phys. 59(5), 836–841 (2019)

    Article  MathSciNet  Google Scholar 

  29. Gasnikov, A.V., Nesterov, Y.E.: Universal method for stochastic composite optimization problems. Comput. Math. Math. Phys. 58(1), 48–64 (2018)

    Article  MathSciNet  Google Scholar 

  30. Ghadimi, S., Lan, G., Zhang, H.: Generalized uniformly optimal methods for nonlinear programming. J. Sci. Comput. 79(3), 1854–1881 (2019)

    Article  MathSciNet  Google Scholar 

  31. Giannessi, F.: On Minty variational principle. New Trends in Mathematical Programming. Appl. Optim. 13, 93–99 (1997)

    Article  Google Scholar 

  32. Gladin, E., Sadiev, A., Gasnikov, A., Dvurechensky, P., Beznosikov, A., Alkousa, M.: Solving smooth min-min and min-max problems by mixed oracle algorithms. In: Strekalovsky, A., Kochetov, Y., Gruzdeva, T., Orlov A. (eds.) Mathematical Optimization Theory and Operations Research: Recent Trends, pp. 19–40. Springer, Cham (2021). ArXiv:2103.00434

  33. Gorbunov, E., Danilova, M., Shibaev, I., Dvurechensky, P., Gasnikov, A.: Near-optimal high probability complexity bounds for non-smooth stochastic optimization with heavy-tailed noise. arXiv:2106.05958 (2021)

  34. Gorbunov, E., Dvurechensky, P., Gasnikov, A.: An accelerated method for derivative-free smooth stochastic convex optimization. SIAM J. Optim. 32(2), 1210–1238 (2022). https://doi.org/10.1137/19M1259225

  35. Guminov, S., Gasnikov, A., Anikin, A., Gornov, A.: A universal modification of the linear coupling method. Optim. Methods Softw. 34(3), 560–577 (2019)

    Article  MathSciNet  Google Scholar 

  36. Guminov, S.V., Nesterov, Y.E., Dvurechensky, P.E., Gasnikov, A.V.: Accelerated primal-dual gradient descent with linesearch for convex, nonconvex, and nonsmooth optimization problems. Dokl. Math. 99(2), 125–128 (2019)

    Article  MathSciNet  Google Scholar 

  37. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48(1–3), 161–220 (1990)

    Article  MathSciNet  Google Scholar 

  38. Juditsky, A., Nemirovski, A.: First order methods for nonsmooth convex large scale optimization, I: general purpose methods. Optim. Mach. Learn. 30(9), 121–148 (2011)

    Google Scholar 

  39. Kamzolov, D., Dvurechensky, P., Gasnikov, A.: Universal intermediate gradient method for convex problems with inexact oracle. Optim. Methods Softw. 36(6), 1289–1316 (2021). https://doi.org/10.1080/10556788.2019.1711079

  40. Khanh, P.D., Vuong, P.T.: Modified projection method for strongly pseudomonotone variational inequalities. J. Glob. Optim. 58(2), 341–350 (2014)

    Article  MathSciNet  Google Scholar 

  41. Kniaz, V.V., Knyaz, V.A., Mizginov, V., Papazyan, A., Fomin, N., Grodzitsky, L.: Adversarial dataset augmentation using reinforcement learning and 3d modeling. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V., Tiumentsev, Y. (eds.) Advances in Neural Computation, Machine Learning, and Cognitive Research IV, pp. 316–329. Springer, Cham (2021)

  42. Korpelevich, G.: The extragradient method for finding saddle points and other problems. Eknom. i Matemat. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  43. Koshal, J., Nedić, A., Shanbhag, U.: Multiuser optimization: Distributed algorithms and error analysis. SIAM J. Optim. 21(3), 1046–1081 (2011)

    Article  MathSciNet  Google Scholar 

  44. Monteiro, R.D., Svaiter, B.F.: On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean. SIAM J. Optim. 20(6), 2755–2787 (2010)

    Article  MathSciNet  Google Scholar 

  45. Nemirovski, A.: Prox-method with rate of convergence \(o(1/t)\) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15(1), 229–251 (2004)

    Article  MathSciNet  Google Scholar 

  46. Nemirovsky, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley, New York (1983)

    Google Scholar 

  47. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(o(1/k^2)\). Sov. Math. Dokl. 27(2), 372–376 (1983)

    MATH  Google Scholar 

  48. Nesterov, Y.: Dual extrapolation and its applications to solving variational inequalities and related problems. Math. Program. 109(2–3), 319–344 (2007). First appeared in 2003 as CORE discussion paper 2003/68

  49. Nesterov, Y.: Universal gradient methods for convex optimization problems. Math. Program. 152(1), 381–404 (2015)

    Article  MathSciNet  Google Scholar 

  50. Nesterov, Y.: Implementable tensor methods in unconstrained convex optimization. Math. Program. 186(1), 157–183 (2021). https://doi.org/10.1007/s10107-019-01449-1

  51. Nesterov, Y., Gasnikov, A., Guminov, S., Dvurechensky, P.: Primal-dual accelerated gradient methods with small-dimensional relaxation oracle. Optim. Methods Softw. 36(4), 1–28 (2020)

    Article  MathSciNet  Google Scholar 

  52. Nesterov, Y., Scrimali, L.: Solving strongly monotone variational and quasi-variational inequalities. Discrete Contin. Dyn. Syst.—A 31(4), 1383–1396 (2011)

    Article  MathSciNet  Google Scholar 

  53. Ostroukhov, P., Kamalov, R., Dvurechensky, P., Gasnikov, A.: Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities. arXiv:2012.15595 (2020)

  54. Ouyang, Y., Xu, Y.: Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems. Math. Program. 185(1), 1–35 (2021). https://doi.org/10.1007/s10107-019-01420-0

    Article  MathSciNet  MATH  Google Scholar 

  55. Polyak, B.: A general method of solving extremum problems. Sov. Math. Dokl. 8(3), 593–597 (1967)

    MATH  Google Scholar 

  56. Rogozin, A., Beznosikov, A., Dvinskikh, D., Kovalev, D., Dvurechensky, P., Gasnikov, A.: Decentralized distributed optimization for saddle point problems. arXiv:2102.07758 (2021)

  57. Sadiev, A., Beznosikov, A., Dvurechensky, P., Gasnikov, A.: Zeroth-order algorithms for smooth saddle-point problems. In: Strekalovsky, A., Kochetov, Y., Gruzdeva, T., Orlov, A. (eds.) Mathematical Optimization Theory and Operations Research: Recent Trends, pp. 71–85. Springer, Cham (2021). ArXiv:2009.09908

  58. Shibaev, I., Dvurechensky, P., Gasnikov, A.: Zeroth-order methods for noisy Hölder-gradient functions. Optim. Lett. (2021). https://doi.org/10.1007/s11590-021-01742-z

  59. Solodov, M., Svaiter, B.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7(4), 323–345 (1999)

    Article  MathSciNet  Google Scholar 

  60. Stonyakin, F., Tyurin, A., Gasnikov, A., Dvurechensky, P., Agafonov, A., Dvinskikh, D., Alkousa, M., Pasechnyuk, D., Artamonov, S., Piskunova, V.: Inexact model: a framework for optimization and variational inequalities. Optim. Methods Softw. 36(6), 1155–1201 (2021). https://doi.org/10.1080/10556788.2021.1924714

  61. Stonyakin, F.S., Dvinskikh, D., Dvurechensky, P., Kroshnin, A., Kuznetsova, O., Agafonov, A., Gasnikov, A., Tyurin, A., Uribe, C.A., Pasechnyuk, D., Artamonov, S.: Gradient methods for problems with inexact model of the objective. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) Mathematical Optimization Theory and Operations Research, pp. 97–114. Springer, Cham (2019). ArXiv:1902.09001

  62. Tiapkin, D., Gasnikov, A., Dvurechensky, P.: Stochastic saddle-point optimization for the Wasserstein barycenter problem. Optim. Lett. (2022). https://doi.org/10.1007/s11590-021-01834-w

  63. Titov, A., Stonyakin, F., Alkousa, M., Gasnikov, A.: Algorithms for solving variational inequalities and saddle point problems with some generalizations of Lipschitz property for operators. In: Strekalovsky, A., Kochetov, Y., Gruzdeva, T., Orlov, A. (eds.) Mathematical Optimization Theory and Operations Research, pp. 86–101. Springer, Cham (2021)

  64. Tominin, V., Tominin, Y., Borodich, E., Kovalev, D., Gasnikov, A., Dvurechensky, P.: On accelerated methods for saddle-point problems with composite structure. arXiv:2103.09344 (2021)

  65. Zhang, J., Hong, M., Zhang, S.: On lower iteration complexity bounds for the saddle point problems. Math. Program. 194, 901–935 (2022). https://doi.org/10.1007/s10107-021-01660-z

Download references

Acknowledgements

The authors are grateful to Yurii Nesterov for fruitful discussions. The research by A. Gasnikov in Section 3 was supported by the Ministry of Science and Higher Education of the Russian Federation (Goszadaniye) No. 075-00337-20-03, project No. 0714-2020-0005. The research in Sect. 6 and Appendix B was supported by Russian Science Foundation (project 18-71-00048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedor Stonyakin.

Additional information

Communicated by Nguyen Dong Yen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Lemma 3.1

Proof

Let us fix some \(\nu \in [0,1]\). Then, for any \(x \in [0,1 ]\), we have that \(x^{2\nu }\le 1\). On the other hand, for any \(x \ge 1\), we have that \(\ x^{2\nu }\le x^{2}\). Thus, for any \(x \ge 0\), we have that \(x^{2\nu }\le x^2+ 1\). Hence, for any \(\alpha , \beta \ge 0\),

$$\begin{aligned} \alpha ^{\nu }\beta \le \frac{\alpha ^{2\nu }}{2}+\frac{\beta ^{2}}{2}\le \frac{\alpha ^{2}}{2}+\frac{\beta ^{2}}{2}+\frac{1}{2}. \end{aligned}$$

Substituting \(\alpha =\frac{ba^{\frac{1}{1+\nu }}}{\delta ^{\frac{1}{1+\nu }}}\) and \(\beta =\frac{ca^{\frac{1}{1+\nu }}}{\delta ^{\frac{1}{1+\nu }}}\), we obtain

$$\begin{aligned} \frac{b^{\nu }a^{\frac{\nu }{1+\nu }}}{\delta ^{\frac{\nu }{1+\nu }}}\frac{ca^{\frac{1}{1+\nu }}}{\delta ^{\frac{1}{1+\nu }}}\le \frac{b^{2}a^{\frac{2}{1+\nu }}}{2\delta ^{\frac{2}{1+\nu }}}+\frac{c^{2}a^{\frac{2}{1+\nu }}}{2\delta ^{\frac{2}{1+\nu }}}+\frac{1}{2} \end{aligned}$$

and

$$\begin{aligned} ab^{\nu }c \le \left( \frac{1}{\delta }\right) ^{\frac{1-\nu }{1+\nu }} \frac{a^{\frac{2}{1+\nu }}}{2} \left( b^2+c^2\right) + \frac{\delta }{2}. \square \end{aligned}$$

Appendix B

To show the practical performance of the proposed Algorithm 1, we performed a series of numerical experiments for the Lagrange saddle point problem induced by the Fermat-Torricelli-Steiner problem.

All experiments were made using Python 3.4, on a computer with Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical Processor(s), and 8 GB RAM.

We consider an example of a variational inequality with a non-smooth, i.e., with \(\nu = 0\), and non-strongly monotone operator. For this VI, the proposed universal method, due to its adaptivity to the smoothness level of the problem, works in practice with iteration complexity much smaller than the one predicted by the theory. This example is inspired by the well-known Fermat–Torricelli–Steiner problem, to which we add some non-smooth functional constraints. This problem can be solved by a switching subgradient scheme [8, 55] with the complexity \(O(1/\varepsilon ^2)\). But, as we will see, our method allows us to obtain much faster convergence in practice than the one given by this bound.

More precisely, for a given set of N points \(A_k \in \mathbb {R}^n, k=1,\ldots , N\), consider the optimization problem

$$\begin{aligned} \min _{x \in Q} \left\{ f(x):= \sum \limits _{k=1}^N \Vert x - A_k\Vert _2 \left| \; \varphi _p(x):= \sum _{i=1}^n \alpha _{pi}|x_i| - 1 \le 0 \right. , \; p=1, \ldots , m \right\} , \end{aligned}$$

where Q is a convex and compact set, \(\alpha _{pi}\) are drawn from the standard normal distribution and then truncated to be positive. The corresponding Lagrange saddle point problem is defined as

$$\begin{aligned} \min _{x \in Q} \max _{\lambda = (\lambda _1,\lambda _2,\ldots ,\lambda _m)^T \in \mathbb {R}^m_+} L(x,\lambda ):=f(x)+\sum \limits _{p=1}^m\lambda _p\varphi _p(x). \end{aligned}$$

As it was described in Sect. 6, this problem is equivalent to the variational inequality with the following monotone non-smooth operator:

$$\begin{aligned} G(x,\lambda )= \begin{pmatrix} \nabla f(x)+\sum \limits _{p=1}^m\lambda _p\nabla \varphi _p(x), \\ (-\varphi _1(x),-\varphi _2(x),\ldots ,-\varphi _m(x))^T \end{pmatrix}. \end{aligned}$$

For simplicity, we assume that there exists (potentially very large) bound on the norm of the optimal Lagrange multiplier \(\lambda ^*\), which allows us to compactify the feasible set for the pair \((x,\lambda )\) to be a Euclidean ball of some radius. We also believe that the approach of [14, 44] for dealing with unbounded feasible sets can be extended to our setting and we leave this for future work.

Fig. 1
figure 1

Results of Algorithm 1 for Fermat–Torricelli–Steiner problem with different values of m and n

We run Algorithm 1 with different values of nm, and N using the standard Euclidean prox-setup and the starting point \((x^0, \lambda ^0) = \frac{1}{\sqrt{m+n}} {\textbf {1}} \in \mathbb {R}^{n+m}\), where \({\textbf {1}} \) is the vector of all ones. The points \(A_k\), \(k=1,\ldots , N\) are drawn randomly from the standard normal distribution. For each value of the parameters, the random data was drawn 10 times and the results were averaged. The results of the work of Algorithm 1 are represented in Fig. 1. For different values of the accuracy \(\varepsilon \in \{ 1/2^i, i=1,2,3,4,5,6\}\), we report the number of iterations and the running time in seconds required by Algorithm 1 to reach an \(\varepsilon \)-solution of the considered problem.

As it is known [46], for a VI with a non-smooth operator, the theoretical iteration complexity estimate \(O\left( \frac{1}{\varepsilon ^2}\right) \) is optimal. However, experimentally we see from the slope of the lines in Fig. 1 that, due to the adaptivity, the proposed Algorithm 1 has iteration complexity \(O\left( \frac{1}{\root 4 \of {\varepsilon }}\right) \).

Fig. 2
figure 2

Results of Algorithm 2 and Modified Projection Method with \(n = 10^7\)

Appendix C

In this appendix, in order to demonstrate the performance of the Generalized Mirror Prox with restarts (Algorithm 2), we consider the variational inequality with Lipschitz-continuous and strongly monotone operator (see Example 5.2 in [40]):

$$\begin{aligned} g: Q \subset \mathbb {R}^n \rightarrow \mathbb {R}^n, \quad g(x) = x. \end{aligned}$$
(35)

We compare the work of the proposed Algorithm 2 with Modified Projection Method, which was proposed in [40]. We run Algorithm 2 with different values of the accuracy \(\varepsilon \in \{10^{-i}, i = 3,4,\ldots , 10 \}\) and for the dimension \( n = 10^7\). We take \(Q = \{x \in \mathbb {R}^n, \Vert x\Vert _2 \le 2\}\). The results of the comparison are presented in Fig. 2, which shows the norm \(\Vert x_{\text {out}} - x_*\Vert _2\) as a function of iteration number, where \(x_{\text {out}}\) is the output of each algorithm, and \(x_*\) is the solution of the problem (1) with the operator g given in (35). Note that \(x_* = {\textbf {0}} \in \mathbb {R}^n\). In the conducted experiments, we first run Algorithm 2 and calculate \(\Vert x_{\text {out}} - x_*\Vert _2\) for the different previously mentioned values of \(\varepsilon \) and the corresponding number of iterations required by the algorithm. For the calculated numbers of iterations of Algorithm 2, we rum Modified Projection Method and calculate the corresponding values \(\Vert x_{\text {out}} - x_*\Vert _2\). From Fig. 2, we can see the higher efficiency of the proposed Algorithm 2 and the significant difference between the performance of the compared algorithms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stonyakin, F., Gasnikov, A., Dvurechensky, P. et al. Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle. J Optim Theory Appl 194, 988–1013 (2022). https://doi.org/10.1007/s10957-022-02062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02062-7

Keywords

Mathematics Subject Classification

Navigation