Skip to main content
Log in

A Semismooth Newton-based Augmented Lagrangian Algorithm for Density Matrix Least Squares Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The density matrix least squares problem arises from the quantum state tomography problem in experimental physics and has many applications in signal processing and machine learning, mainly including the phase recovery problem and the matrix completion problem. In this paper, we first reformulate the density matrix least squares problem as an equivalent convex optimization problem and then design an efficient semismooth Newton-based augmented Lagrangian (Ssnal) algorithm to solve the dual of its equivalent form, in which an inexact semismooth Newton (Ssn) algorithm with superlinear or even quadratic convergence is applied to solve the inner subproblems. Theoretically, the global convergence and locally asymptotically superlinear convergence of the Ssnal algorithm are established under very mild conditions. Computationally, the costs of the Ssn algorithm for solving the subproblem are significantly reduced by making full use of low-rank or high-rank property of optimal solutions of the density matrix least squares problem. In order to verify the performance of our algorithm, numerical experiments conducted on randomly generated quantum state tomography problems and density matrix least squares problems with real data demonstrate that the Ssnal algorithm is more effective and robust than the Qsdpnal solver and several state-of-the-art first-order algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. http://euler.nmt.edu/~brian/sdplib/sdplib

References

  1. Aravkin, A.Y., Burke, J., Drusvyatskiy, D., Friedlander, M.P., Roy, S.: Level-set methods for convex optimization. Math. Program. 174, 359–390 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beck, A.: First-Order Methods in Optimization. SIAM, Philadephia (2017)

    Book  MATH  Google Scholar 

  4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bhatia, R.: Matrix Analysis. Springer-Verlag, New York (2013)

    MATH  Google Scholar 

  6. Bot, R.I., Nguyen, D.K.: The proximal alternating direction method of multipliers in the nonconvex setting: convergence analysis and rates. Math. Oper. Res. 45, 682–712 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  7. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Candès, E.J., Strohmer, T., Voroninski, V.: PhaseLift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66, 1241–1274 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, C.H., He, B.S., Yuan, X.M.: Matrix completion via alternating direction methods. IMA J. Numer. Anal. 32, 227–245 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadephia (1990)

    Book  MATH  Google Scholar 

  11. Cui, Y., Ding, C., Li, X.D., Zhao, X.Y.: Augmented Lagrangian methods for convex matrix optimization problems. J. Oper. Res. Soc. China 10, 305–342 (2022)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cui, Y., Sun, D.F., Toh, K.-C.: On the asymptotic superlinear convergence of the augmented Lagrangian method for semidefinite programming with multiple solutions. arXiv preprint arXiv: 1610.00875, (2016)

  13. Cui, Y., Sun, D.F., Toh, K.-C.: On the R-superlinear convergence of the KKT residuals generated by the augmented Lagrangian method for convex composite conic programming. Math. Program. 178, 381–415 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ding, C.: An introduction to a class of matrix optimization problems. Ph.D. thesis, National University of Singapore (2012)

  15. Ding, C., Sun, D.F., Toh, K.-C.: Spectral operators of matrices. Math. Program. 168, 509–531 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ding, C., Sun, D.F., Sun, J., Toh, K.-C.: Spectral operators of matrices: semismoothness and characterizations of the generalized Jacobian. SIAM J. Optim. 30, 630–659 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer, New York (2009)

    Book  MATH  Google Scholar 

  18. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Facchinei, F., Pang, J.-S.: Finite-dimensional Variational Inequalities and Complementarity Problems. Springer-Verlag, New York (2003)

    MATH  Google Scholar 

  20. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford University (2002)

  21. Fazel, M., Hindi, H., Boyd, S.: A rank minimization heuristic with application to minimum order system approximation. In: Proceedings of the American Control Conference (2001)

  22. Friedlander, M.P., Macêdo, I.: Low-rank spectral optimization via gauge duality. SIAM J. Sci. Comput. 38, A1616–A1638 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  23. Friedlander, M.P., Macêdo, I., Pong, T.K.: Gauge optimization and duality. SIAM J. Optim. 24, 1999–2022 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  25. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problémes de Dirichlet non linéaires. J. Equine Vet. Sci. 2, 41–76 (1975)

    MATH  Google Scholar 

  26. Guo, H.: The metric subregularity of KKT solution mappings of composite conic programming. Ph.D. thesis, National University of Singapore (2017)

  27. Hazan, E.: Sparse approximate solutions to semidefinite programs. In: Latin American Symposium on Theoretical Informatics 4957, 306–316 (2008)

  28. Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization. Math. Program. 6, 62–88 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hiriart-Urruty, J.B., Strodiot, J.J., Nguyen, V.H.: Generalized Hessian matrix and second-order optimality conditions for problems with \(C^{1,1}\) data. Appl. Math. Optim. 11, 43–56 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jiang, K.F., Sun, D.F., Toh, K.-C.: Solving nuclear norm regularized and semidefinite matrix least squares problems with linear equality constraints. Discrete Geom. Optim. 69, 133–162 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Korpas, G., Marecek, J.: Quantum state tomography as a bilevel problem, utilizing I-Q plane data. arxiv preprint arxiv:2108.03448, (2021)

  32. Kyrillidis, A., Kalev, A., Park, D., Bhojanapalli, S.: Provable compressed sensing quantum state tomography via non-convex methods. npj Quantum Inform. 4, 1–7 (2018)

    Article  Google Scholar 

  33. Lemaréchal, C., Sagastizábal, C.: Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries. SIAM J. Optim. 7, 367–385 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lewis, A.S.: Derivatives of spectral functions. Math. Oper. Res. 21, 576–588 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Li, X.D.: A two-phase augmented Lagrangian method for convex composite quadratic programming. Ph.D. thesis, National University of Singapore (2015)

  36. Li, X.D., Sun, D.F., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving lasso problems. SIAM J. Optim. 28, 433–458 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  37. Li, X.D., Sun, D.F., Toh, K.-C.: On efficiently solving the subproblems of a level-set method for fused lasso problems. SIAM J. Optim. 28, 1842–1866 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  38. Li, X.D., Sun, D.F., Toh, K.-C.: QSDPNAL: a two-phase augmented Lagrangian method for convex quadratic semidefinite programming. Math. Program. Comput. 10, 703–743 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  39. Li, X.D., Sun, D.F., Toh, K.-C.: On the efficient computation of a generalized Jacobian of the projector over the Birkhoff polytope. Math. Program. 179, 419–446 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  40. Lin, L.Y., Liu, Y.-J.: An efficient Hessian based algorithm for singly linearly and box constrained least squares regression. J. Sci. Comput. 88, 1–21 (2021)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lin, M.X., Liu, Y.-J., Sun, D.F., Toh, K.-C.: Efficient sparse semismooth Newton methods for the clustered lasso problem. SIAM J. Optim. 29, 2026–2052 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  42. Löwner, K.: Über monotone matrixfunktionen. Math. Z. 38, 177–216 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  43. Mangasarian, O.L.: A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7, 21–26 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  44. Meng, F.W., Sun, D.F., Zhao, G.Y.: Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization. Math. Program. 104, 561–581 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 957–972 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  46. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. B. Soc. Math. Fr. 93, 273–299 (1965)

    Article  MATH  Google Scholar 

  47. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. The University Press, Cambridge (2002)

    MATH  Google Scholar 

  48. Oustry, F.: A second-order bundle method to minimize the maximum eigenvalue function. Math. Program. 89, 1–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  49. Ouyang, Y., Chen, Y., Lan, G., Pasiliao, J.E.: An accelerated linearized alternating direction method of multipliers. SIAM J. Imaging Sci. 8, 644–681 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  50. Overton, M.L.: Large-scale optimization of eigenvalues. SIAM J. Optim. 2, 88–120 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  51. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 3, 471–501 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  52. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Program. Stud. 14, 206–214 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  53. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  54. Qi, L.Q., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  55. Toh, K.-C., Yun, S.W.: An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pac. J. Optim. 6, 615–640 (2010)

    MATH  MathSciNet  Google Scholar 

  56. Waldspurger, I., d’Aspremont, A., Mallat, S.: Phase recovery, MaxCut and complex semidefinite programming. Math. Program. 149, 47–81 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  57. Yang, L.Q., Sun, D.F., Toh, K.-C.: SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints. Math. Program. Comput. 7, 331–366 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  58. Yang, J.F., Zhang, Y.: Alternating direction algorithms for \(l_1\)-problems in compressive sensing. SIAM J. Sci. Comput. 33, 250–278 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  59. Zhang, Y.J., Zhang, N., Sun, D.F., Toh, K.-C.: An efficient Hessian based algorithm for solving large-scale sparse group lasso problems. Math. Program. 179, 223–263 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  60. Zhao, X.Y., Sun, D.F., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20, 1737–1765 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Yong-Jin Liu was in part supported by the National Natural Science Foundation of China (Grants No. 11871153 and 12271097) and the Natural Science Foundation of Fujian Province of China (Grant No. 2019J01644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jin Liu.

Additional information

Communicated by Russell Luke.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YJ., Yu, J. A Semismooth Newton-based Augmented Lagrangian Algorithm for Density Matrix Least Squares Problems. J Optim Theory Appl 195, 749–779 (2022). https://doi.org/10.1007/s10957-022-02120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02120-0

Keywords

Mathematics Subject Classification

Navigation