
HAL Id: hal-00310121
https://hal.science/hal-00310121

Submitted on 8 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compilation of extended recursion in call-by-value
functional languages

Tom Hirschowitz, Xavier Leroy, J. B. Wells

To cite this version:
Tom Hirschowitz, Xavier Leroy, J. B. Wells. Compilation of extended recursion in call-by-value
functional languages. PPDP ’03, 2003, Uppsala, Sweden. pp.160–171, �10.1145/888251.888267�. �hal-
00310121�

https://hal.science/hal-00310121
https://hal.archives-ouvertes.fr

Compilation of Extended Recursion
in Call-by-Value Functional Languages ∗

Tom Hirschowitz
INRIA Rocquencourt
Tom.Hirschowitz@inria.fr

Xavier Leroy
INRIA Rocquencourt
Xavier.Leroy@inria.fr

J. B. Wells
Heriot-Watt University

jbw@macs.hw.ac.uk

ABSTRACT
This paper formalizes and proves correct a compilation
scheme for mutually-recursive definitions in call-by-value
functional languages. This scheme supports a wider
range of recursive definitions than standard call-by-value
recursive definitions. We formalize our technique as a
translation scheme to a lambda-calculus featuring in-place
update of memory blocks, and prove the translation to be
faithful.

Categories and Subject Descriptors
F.3.3 [Logics and meanings of programs]: Studies
of program constructs—program and recursion schemes;
F.3.2 [Logics and meanings of programs]: Semantics
of programming languages—operational semantics;
D.3.1 [Programming languages]: Formal definitions
and theory—Syntax,semantics; D.3.3 [Programming
languages]: Language constructs and features—Recursion;
D.3.3 [Programming languages]: Processors—Compilers

General Terms
Design, languages, reliability, theory

Keywords
compilation, recursion, semantics, functional languages

1. INTRODUCTION
Functional languages usually feature mutually recursive

definition of values. In ML, this is supported by the let rec

construct. Languages differ, however, in the kind of expres-
sions they allow as right-hand sides of mutually recursive
definitions. For instance, Haskell [7] allows arbitrary ex-
pressions as right-hand sides of recursive definitions, while
Standard ML [13] only allows syntactic λ-abstractions, and

∗Partially supported by EPSRC grant GR/R 41545/01

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’03, August 27–29, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-705-2/03/0008 ...$5.00.

OCaml [12, 11] allows both λ-abstractions and limited forms
of constructor applications.

Several criteria come into play when determining the
range of allowed right-hand sides. First, languages have to
give a status to ill-founded definitions such as x = x + 1.
In a lazy language, this definition can be represented by a
recursive block of code. When its evaluation is requested,
this code is executed, but it begins by requesting its
own evaluation. So, depending on the compiler, it will
either loop indefinitely or result in a run-time error. For
call-by-value languages, ill-founded definitions are more
problematic: during the evaluation of x = x + 1, the
right-hand side x + 1 must be evaluated while the value of
x is still unknown. There is no strict call-by-value strategy
that allows this. Thus, such ill-founded definitions must be
rejected. Moreover, the burden recursive definitions impose
to the rest of the compiler must be taken into account.
For example, one could systematically implement recursive
definitions through reference cells or thunks, but this
would force the compiler to maintain information about
whether values are recursive or not. Finally, the efficiency
of the generated code is important. All these criteria
interact tightly, yielding a tension between expressiveness,
efficiency, and simplicity.

Recent work by Boudol [4] introduces a call-by-value
let rec construct that is more expressive than that of ML
or OCaml. In Boudol’s work, right-hand sides of recursive
definitions are not syntactically restricted, but ill-founded
definitions are ruled out by a type system. This approach
is further refined by Hirschowitz and Leroy [8]. Boudol
and Zimmer [5] propose an implementation technique
for this extended let rec, where recursive definitions of
syntactic functions are implemented in a standard way,
while reference cells are introduced to deal with more
complex recursive definitions. The implementation of the
Scheme letrec construct proposed by Waddell et al. [15]
follows the same approach.

The present paper develops and proves correct a com-
pilation scheme and call-by-value evaluation strategy for
an extended let rec construct. This let rec construct sup-
ports both λ-abstractions and record constructions as right-
hand sides of recursive definitions. Moreover, it allows non-
recursive definitions to be interleaved with recursive defini-
tions within a single let rec binding. The compilation scheme
we propose for this flavor of let rec is a generalization of the
“in-place update trick” described by Cousineau et al. [6].
It is less expressive than that of Boudol [5], as discussed in
section 7, but it is simpler and more efficient, since it does

not require the introduction of reference cells.
Our main motivation in studying this extended let rec con-

struct is that it plays an important role in the language of
call-by-value mixin modules currently investigated by the
authors [10]. Moreover, the OCaml compiler uses a subset
of the compilation scheme described here to compile non-
functional recursive definitions; this paper is the first formal
proof of the correctness of this compilation scheme.

The remainder of this paper is organized as follows. In
section 2, we first review informally the “in-place update
trick” [6], and show that it extends to combinations of re-
cursive and non-recursive bindings within the same let rec.
In section 3, we formalize the corresponding source language
λ◦. Section 4 defines a target language λalloc , featuring in-
place update of memory blocks. We define the compilation
scheme from λ◦ to λalloc in section 5, and prove its correct-
ness in section 6. Related work and conclusions are discussed
in sections 7 and 8. Proofs are omitted in this paper, but
can be found in a companion technical report [9].

2. THE IN-PLACE UPDATE TRICK
The original scheme The “in-place update trick” out-

lined by Cousineau et al. [6] and refined in the OCaml com-
piler [11], implements let rec definitions that satisfy the fol-
lowing two conditions. For any mutually recursive definition
x1 = e1 . . . xn = en, first, the value of each definition should
be represented at run-time by a heap allocated block of stat-
ically predictable size; second, for each i, the computation of
ei should not need the value of any of the definitions ej , but
only their names xj . As an example of the second condition,
the recursive definition f = λx.(... f ...) is accepted,
since the computation of the right-hand side does not need
the value of f. We say that it safely depends on f. In con-
trast, the recursive definition f = (f 0) is rejected. We say
that the right-hand side strictly depends on f.

Evaluation of a let rec definition with in-place update
consists of three steps. First, for each definition, allocate
an uninitialized block of the expected size, and bind it to
the recursively-defined identifier. Those blocks are called
dummy blocks. Second, compute the right-hand sides of
the definitions. Recursively-defined identifiers thus refer to
the corresponding dummy blocks. Owing to the second
condition, no attempt is made to access the contents of
the dummy blocks. This step leads, for each definition, to
a block of the expected size. Third, the contents of the
obtained blocks are copied to the dummy blocks, updating
them in place.

For example, consider a mutually recursive definition x1 =
e1, x2 = e2, where it is statically predictable that the values
of the expressions e1 and e2 will be represented at runtime by
heap allocated blocks of sizes 2 and 1, respectively. Here is
what the compiled code does, as depicted in figure 1. First,
it allocates two uninitialized heap blocks, at addresses `1

and `2, of respective sizes 2 and 1. This is called the pre-
allocation step. As a second step, it computes e1, where
x1 and x2 are bound to `1 and `2, respectively. The result
is a heap block of size 2, with possible references to the
two uninitialized blocks. The same process is carried on for
e2, resulting in a heap block of size 1. The third and final
step copies the contents of the two obtained blocks to the
two uninitialized blocks. The result is that the two initially
dummy blocks now contain the proper cyclic data structures.

1. Pre-allocation:

• •• x2x1

2. Computation:

v1 v2

• • •x1 x2

3. In-place update:

x1 x2

Figure 1: The in-place update trick

The extended scheme The scheme described above
computes all definitions in sequence, and only then updates
the dummy blocks in place. From the example above, it
seems quite clear that in-place update for a definition could
be done as soon as its value is available.

As long as definitions safely depend on each other, as
happens with functions for instance, both schemes behave
identically. Nevertheless, in the case where e2 strictly de-
pends on x1, for example if e2 = fst(x1) + 1, the original
scheme can go wrong. Indeed, the contents of the dummy
block pre-allocated for x1 are still undefined when e2 is com-
puted. Instead, with immediate in-place update, the value
v1 is already available when computing e2. This trivial mod-
ification to the scheme thus increases the expressive power
of let rec. It allows definitions to de-structure the values
of previous definitions. Furthermore, it allows to introduce
definitions with unknown sizes in let rec, as shown by the
following example.

An example of execution is presented in figure 2. The
definition is x1 = e1, x2 = e2, x3 = e3, where e1 and e3

are expected to evaluate to blocks of sizes 2 and 1, respec-
tively, but where the representation for the value of e2 is
not statically predictable. The pre-allocation step only al-
locates dummy blocks for x1 and x3. The value v1 of e1 is
then computed. It can reference x1 and x3, which corre-
spond to pointers to the dummy blocks, but not x2, which
would not make any sense here. This value is copied to
the corresponding dummy block. Then, the value v2 of e2

is computed. The computation can refer to both dummy
blocks, but it can also strictly depend on x1. Finally, the
value v3 of e3 is computed and copied to the corresponding
dummy block.

This modified scheme implements more mutually recur-
sive definitions than the initial one. The next section for-
malizes its semantics.

1. Pre-allocation:

• • •x1 x3

2. Computing e1:

v1

• • •x1 x3

3. Updating x1 with v1:

•x1 x3

4. Computing e2 and binding its value to x2:

•x1 x3

x2

5. Computing e3:

•x1 x3

x2

v3

6. Updating x3 with v3:

x1 x3

x2

Figure 2: The refined in-place update trick

Variables x ∈ Vars

Names X ∈ Names

Expressions e ∈ expr ::= x | λx.e | e1 e2

| {s} | e.X
| let rec b in e

Records s ::= X1 = e1 . . . Xn = en

Bindings b ::= x1 = e1 . . . xn = en

Expressions of predictable shape
e↓ ∈ Predictable ::= λx.e | {s}

| let rec b in e↓

Figure 3: Syntax of λ◦

3. THE SOURCE LANGUAGE

3.1 Syntax
The syntax of λ◦ is defined in figure 3. The

meta-variables X and x range over names and variables,
respectively. Names are used for accessing record fields.
The language includes λ-calculus: variables x, abstraction
λx.e, and application e1 e2. The language also features
records {X1 = e1 . . . Xn = en}, record selection e.X and a
let rec construct. A mutually recursive definition has the
shape let rec x1 = e1 . . . xn = en in e.

Syntactic correctness Records s = (X1 =
e1 . . . Xn = en) and bindings b = (x1 = e1 . . . xn = en) are
required to be finite maps: a record is a finite map from
names to expressions, and a binding is a finite map from
variables to expressions. Requiring them to be finite maps
means that they should not bind the same variable or name
twice.

In the sequel, we refer collectively to records and bindings
as sequences, and use the usual notions on finite maps f ,
such as the domain dom(f), the codomain cod(f), the re-
striction f| P to a set P , or the co-restriction f\P outside of
a set P , which is the restriction to the set dom(f) \ P .

Syntactic correctness of let rec bindings includes an addi-
tional requirement on dependencies between definitions. In
a let rec binding b = (x1 = e1 . . . xn = en), we say that
there is a backward dependency of xi on xj if 1 ≤ i ≤ j ≤ n
and xj ∈ FV(ei). This let rec binding is syntactically cor-
rect only if, for any backward dependency of xi on xj , the
expression ej is of predictable shape. An expression of pre-
dictable shape, written e↓, is either a function abstraction, a
record, or a binding followed by an expression of predictable
shape. (See figure 3.)

Structural equivalence We consider expressions
equivalent up to alpha-conversion of variables bound in λ
or let rec expressions. The set of terms of λ◦ is defined as
the set of structural equivalence classes of syntactically
correct expressions.

3.2 Semantics
The semantics of λ◦ is quite standard, except for the treat-

ment of let rec bindings.
As shown in figure 5, values include function abstractions

λx.e and records of values {sv}, where sv denotes an eval-
uated record X1 = v1 . . . Xn = vn. Notice that variables
are also values. This is required to allow the reduction of
recursive definitions of the form let rec x = (λy.e) x.

The semantics of record selection and of function appli-
cation are defined in figure 4, by computational contraction

Computational contraction rules

{X1 = v1 . . . Xn = vn}.Xi
�

c vi (Project)
x /∈ FV(v)

(λx.e) v �
c let rec x = v in e

(Beta)

dom(b) ∩ FV(
�

) = ∅
�

[let rec b in e] � c let rec b in
�

[e]
(Lift)

Computational reduction rules

e �
c e′

�
[e] ����� c

�
[e′]

(Context)
dom(b1) ∩ ({x} ∪ dom(bv, b2) ∪ FV(bv, b2) ∪ FV(f)) = ∅

(bv, x = (let rec b1 in e), b2 ` f) ����� c (bv, b1, x = e, b2 ` f)
(IM)

dom(b) ∩ (dom(bv) ∪ FV(bv)) = ∅

(bv ` let rec b in e) ����� c bv, b ` e
(EM)

�
[](x) = v

�
[[x]] ����� c

�
[[v]]

(Subst)

Evaluation contexts

Lift context:�
::=
 e | v
 |
 .X | { � }

Nested lift context:�
::=
 |

�
[
�

]
Evaluation context:�

::= (bv `
�

) | (
 [
�

] ` e)

Record contexts:
� ::= sv, X =
 , s

Binding contexts:

 ::= bv, x =
 , b

Dereferencing contexts:
	 ::=
 v |
 .X

Access in evaluation contexts

(bv `
�

)(x) = bv(x) (EA) (bv, y =
�

, b ` e)(x) = bv(x) (IA)

Figure 4: Reduction semantics for λ◦

Configurations c ::= b ` e
Values v ∈ values ::= x | λx.e | {sv}
Value records sv ::= X1 = v1 . . . Xn = vn

Value bindings bv ::= x1 = v1 . . . xn = vn

Answers a ∈ answers ::= bv ` v

Figure 5: Configurations and answers in λ◦

rules, defining the local computational contraction relation
�

c. Record projection selects the appropriate field in the
record. The application of a function λx.e to a value v re-
duces to the body of the function where the argument is
bound to x using a let rec.

The remaining rules in figure 4 are computational reduc-
tion rules that deal with the reduction of let rec bindings.
These rules implement a deterministic evaluation strategy
over the five basic operations on recursive bindings identi-
fied by Ariola et al. [2]. Before explaining the strategy, we
first recall these five basic operations.

1. let rec lifting lifts a let rec node up one level in an
expression. For example, an expression of the shape
e1 + (let rec b in e2) becomes let rec b in e1 + e2.

2. Internal merging. During the evaluation of a bind-
ing, a definition may return a let rec as an answer,
where a value is expected. Internal merging merges
this binding with the current one. An expression of
the shape let rec b1, x = (let rec b2 in e), b3 in f be-

comes let rec b1, b2, x = e, b3 in f , provided no vari-
able capture occurs.

3. External merging. As shown in figure 5, the shape of
answers in λ◦ allows only one binding to wrap values.
Therefore, if evaluation results in two nested bindings,
they must be merged into a single one. An expres-
sion of the shape let rec b1 in let rec b2 in e becomes
let rec b1, b2 in e, provided no variable capture occurs.

4. External substitution allows to access bound
variables that are defined by an enclosing binding.
An expression of the shape let rec b in � [x] becomes
let rec b in � [e], if x = e appears in b, and x is not
captured by � , and no variable capture occurs.

5. Internal substitution allows to access identifiers
bound earlier in the same binding. (Assuming left-to-
right evaluation, “earlier” means “to the left of”.) An
expression of the shape let rec b1, y = � [x], b2 in e
becomes let rec b1, y = � [f], b2 in e if x = f appears
in b1, and x is not captured by � , and no variable
capture occurs.

The issue is how to arrange these operations to make the
evaluation deterministic and ensure that it reaches the an-
swer when it exists. Our choice can be summarized as fol-
lows. There is a top-most binding. When this top-most
binding is already evaluated, evaluation can proceed under
this binding. Otherwise, evaluation is allowed inside this

binding. If evaluation meets another binding inside the ex-
pression, this binding is lifted until it is immediately under
the topmost binding. Then, it is merged with it, internally
or externally according to the context. External and inter-
nal substitutions are allowed only from the evaluated part
of the top-most binding, and when the substituted variable
is in a dereferencing context (see below). In order to sim-
plify the presentation of the translation and the correctness
proof, we distinguish this topmost binding syntactically: the
global computational reduction relation ��� � c is a binary re-
lation on configurations c, which are pairs of a binding, the
top-most binding, and an expression, written b ` e (see fig-
ure 5). Thus, the top-most binding plays the role of an
environment, with the additional feature that values bound
in this environment can be mutually recursive.

More formally, the contraction rule Lift lifts a let rec

binding up a lift context
�

. As defined in figure 4, a lift
context is any non-let rec expression where the context hole

 appears immediately under the first node, in position of
the next sub-expression to be evaluated.

The computational reduction relation � � � c extends the
computational contraction relation to any evaluation con-
text

�
, as defined in figure 4. A nested lift context

�
is a

series of nested lift contexts, and an evaluation context
�

is a
nested lift context, possibly inside the (partially evaluated)
top-most binding, or under the (fully evaluated) top-most
binding.

The reduction rule IM corresponds to internal merging. If,
during the evaluation of the top-most binding, one definition
evaluates to a binding, then this binding is merged with the
top-most one, provided no variable capture occurs. The
evaluation can then continue.

The EM reduction rule corresponds to external merging.
It is only possible at top-level, provided no variable capture
occurs.

Finally, the external and internal substitution operations
are modeled within a single reduction rule Subst. This rule
transforms an expression of the shape

�
[[x]] into

�
[[v]],

provided the context
�

[] defines x as v and no variable
capture occurs. The meta-variable 	 ranges over derefer-
encing contexts. A dereferencing context is a context that
expects a non-variable value to fill the hole in order to eval-
uate. An example of dereferencing context is
 v, that is,
the function part of a function application. An example of
a non-dereferencing context is (λx.e)
 , that is, the argu-
ment part of a function application, where a variable would
allow the evaluation to continue. Dereferencing contexts are
formally defined in figure 4. The Subst rule replaces a vari-
able in a dereferencing context with its value, found in the
current top-most binding.

The values of the variables bound by the top-most bind-
ing are accessible in two possible ways. If bv, x = e, b is
the partially evaluated, top-most binding, then the already
evaluated definitions in bv can be used for the evaluation
of the remaining definitions, beginning with e. Otherwise,
if the top-most binding is fully evaluated, then the bound
variables can be used to evaluate the enclosed expression.
Rules EA and IA in figure 4 capture these two possibili-
ties. They implement the external and internal substitution
operations, respectively.

3.3 The source language
The computational reduction relation on expressions is

Variables x ∈ Vars

Names X ∈ Names

Locations ` ∈ Locs

Expressions E ∈ Expr ::= n integers
| x | λx.E | E E λ-calculus
| let B in E let

| {S} records
| E.X selection
| ` locations
| alloc allocation
| update update

Records S ::= X1 = E1 . . . Xn = En

Bindings B ::= x1 = E1 . . . xn = En

Figure 6: Syntax of λalloc

Configurations
C ::= Θ ` E

Heaps

Θ ∈ Heaps = Locs
Fin
−−→ HeapValues

Answers
A ∈ Answers ::= Θ ` V

Values
V ∈ Values ::= x | ` | n

Heap values
Hv ∈ HeapValues ::= λx.E | {Sv} | alloc n

Sv ::= X1 = V1 . . . Xn = Vn

Figure 7: Configurations and answers in λalloc

compatible with structural equivalence. Hence we can de-
fine computational reduction over equivalence classes of ex-
pressions, obtaining the reduction relation −→.

Definition 1 The λ◦ language is the set of terms equipped
with the relation −→.

In the remainder of this paper, we study the compilation
of the λ◦ language, concentrating on its non-standard let rec

construct. Our target language for this compilation is pre-
sented in the next section: it is a λ-calculus without a let rec

construct, but with support for heap blocks, locations, and
in-place update.

4. THE TARGET LANGUAGE
The syntax of the target language λalloc is presented in

figure 6. It includes the λ-calculus with integer constants,
and a non-recursive let binding. The expression let x1 =
E1 . . . xn = En in E is semantically equivalent to let x1 =
E1 in . . . let xn = En in E. Additionally, there are con-
structs for record operations (creation and selection), and
constructs for modeling the heap: an allocation operator
alloc, an update operator update, and heap locations `.

The semantics of λalloc is defined as a reduction relation
on configurations. As defined in figure 7, a configuration C
is a pair of a heap Θ and an expression E, written Θ ` E.
A heap is a finite map from locations ` to evaluated heap
blocks. An evaluated heap block Hv ∈ HeapValues is either
a function λx.E, or an evaluated record {Sv} (where Sv is
an evaluated record sequence of the shape X1 = V1 . . . Xn =
Vn), or an application of the shape alloc n for some positive

integer n. The heap value alloc n represents a dummy heap
block of size n, containing unspecified data. A well-formed
configuration is such that all the locations it mentions are
bound in its heap.

Evaluated heap blocks are not values. Only integers, vari-
ables and locations are values. In this calculus, function ab-
stractions are not values, since their evaluation allocates the
function in the heap, and returns its location: the answer of
the evaluation of λx.E is a configuration Θ ` `, where the
location ` is bound to λx.E in the heap Θ.

The operators related to heaps are alloc, which creates
a new empty block of the size given by its argument, and
update, which overwrites the contents of its first argument
with the contents of its second argument, provided they have
the same size. To model this constraint, we assume given a
function Size from heap values Hv to integers.

Notations We write Θ〈` 7→ Hv〉 for the map equal to
Θ anywhere but on ` where it returns Hv. We write Θ1 +Θ2

for the union of two heaps Θ1 and Θ2 whose domains are
disjoint. In particular, when the heap Θ is undefined on
`, we write Θ + {` 7→ Hv} to denote the union of Θ and
{` 7→ Hv}.

Structural equivalence and substitutions In λalloc ,
expressions are identified up to renaming of bound locations.
Locations are bound only by heaps, at top level in configu-
rations. We consider configurations equal modulo renaming
of bound locations. This relation is easy to define since the
location renamings never cross any location binder.

Moreover, we consider configurations equal modulo re-
naming of bound variables. However, we will see that the
computational reduction relation uses a more complex no-
tion of substitution than just variable renaming: it must also
replace variables with locations in some cases. Therefore, we
consider variable renaming as a special case of general sub-
stitutions, which we now define.

Substitutions are elements of Subst = Vars → Values.
The domain of a substitution is the set of variables x such
that σ(x) 6= x. Its codomain is the image of its domain. We
write x{σ} as synonymous for σ(x). We often describe sub-
stitutions by sets of bindings {x1 7→ V1 . . . xn 7→ Vn}, imply-
ing that their domain is included in the set {x1 . . . xn}. We
sometimes consider substitutions as sets, taking the union of
two of them when it makes sense, and sometimes we com-
pose them. The composition of σ1 and σ2 is defined by
e{σ2◦σ1} = e{σ1}{σ2}: it acts like σ1 followed by σ2. More-
over, we call variable renamings, or simply renamings, the
injective substitutions whose codomains contain only vari-
ables, and we denote them by ζ. Symmetrically, we call
variable allocations the injective substitutions mapping vari-
ables to locations, and denote them by η.

We extend substitutions to λalloc expressions and config-
urations in the usual capture-avoiding manner. A precise
definition of substitution is given in the companion techni-
cal report [9].

4.1 Semantics
The semantics of λalloc , like the one of λ◦, is given in terms

of a computational contraction relation that handles rules
for the basic constructions, and a computational reduction
relation that handles global rules. Evaluation answers Θ `
V are values surrounded by a heap binding. (See figure 7.)

Computational contraction relation The computa-
tional contraction relation is defined by the rules in figure

8, using the notion of lift contexts.
The Beta rule is unusual in that it applies a heap allo-

cated function to an argument V . The function must be a
location ` bound in the heap to a value λx.E, and the result
is E{x 7→ V }.

The Project rule works similarly: it projects a name
X out of a heap-allocated record {Sv} at location `, where
Sv is a finite set of evaluated record field definitions of the
shape X1 = V1 . . . Xn = Vn. The result is Sv(X), i.e. Vi if
X = Xi.

The Allocate rule is one of the key points of λalloc . It
states that a value block Hv evaluates into a fresh heap
location containing Hv, and a pointer to it: Θ+{` 7→ Hv} `
` (` fresh). In particular, if Hv is a dummy block alloc n,
the result is a dummy block on the heap.

The Update rule copies the contents of a heap block into
another heap block. If the locations `1 and `2 are respec-
tively bound to blocks Hv1 and Hv2 in the heap Θ, then
Θ ` update `1 `2 will evaluate to Θ〈`1 7→ Hv2〉 ` {}.

Finally, as in λ◦, the evaluation of bindings is confined to
the top level of configurations. This requires the Lift rule,
which lifts a binding outside of a lift context. In λalloc , lift
contexts Λ are defined by

Λ ::=
 E | V
 |
 .X | {Σ} | let x =
 , B in e,

where Σ ranges over record contexts, of the shape Σ ::=
Sv, X =
 , S.

Computational reduction relation The computa-
tional reduction relation is defined in figure 8.

The Context rule shifts the contraction relation to a
nested lift context Φ. Lift contexts have been defined in the
last paragraph, and nested lift contexts are simply series of
nested lift contexts.

The Let rule describes the top-level evaluation of bind-
ings. Once the first definition is evaluated, the bound vari-
able is replaced by the obtained value in the rest of the
expression. Eventually, the binding becomes empty and can
be removed with rule EmptyLet.

By rule GC, when a heap binding is not used by any
other binding than itself, and not used either by the ex-
pression, it may be removed. (The need for this rule arises
from the translation scheme for let rec definitions: after a
pre-allocated block has been updated by the contents of the
value of the right-hand side expression, the top-most block
of this value becomes unreferenced. Rule GC allows to re-
move this top-most block entirely.)

Finally, the EM rule states that it is equivalent to evaluate
two bindings in succession, or to evaluate their union.

4.2 The calculus and its confluence
The computational reduction relation on expressions is

compatible with structural equivalence, so we can extend it
to terms, obtaining the reduction relation −→.

Definition 2 The λalloc calculus is the set of terms,
equipped with the relation −→.

Unlike in λ◦, the reduction of λalloc is not deterministic
because of rules GC and EM. Rule GC can apply at any
time, and rule EM gives a choice between two possibilities
when two successive bindings are encountered. Despite this
source of non-determinism, it can be shown that λalloc is
confluent [9].

Computational contraction rules

Θ(`) = λx.E

Θ ` ` V �
c Θ ` E{x 7→ V }

(Beta)
` /∈ dom(Θ)

Θ ` Hv
�

c Θ + {` 7→ Hv} ` `
(Allocate)

Θ(`) = {Sv}

Θ ` `.X �
c Θ ` Sv(X)

(Project)
Size(Θ(`1)) = Size(Θ(`2))

Θ ` update `1 `2
�

c Θ〈`1 7→ Θ(`2)〉 ` {}
(Update)

dom(B) ∩ Λ = ∅

Θ ` Λ[let B in E] � c Θ ` let B in Λ[E]
(Lift)

Computational reduction rules

Θ ` E �
c Θ′ ` E′

Θ ` Φ[E] ����� c Θ′ ` Φ[E′]
(Context) Θ ` let x = V, B in E � ��� c Θ ` (let B in E){x 7→ V } (Let)

Θ ` let ε in E � ��� c Θ ` E (EmptyLet)
` /∈ (FV(Θ\{`}) ∪ FV(E))

Θ ` E ����� c Θ\{`} ` E
(GC)

Θ ` let B1 in let B2 in E � ��� c Θ ` let B1, B2 in E (EM)

Evaluation contexts

Lift contexts: Record contexts: Nested lift contexts:
Λ ::=
 E | V
 |
 .X | {Σ} | let x =
 , B in e Σ ::= Sv, X =
 , S Φ ::=
 | Λ[Φ]

Figure 8: Computational reduction for λalloc

Theorem 1 (Confluence of λalloc) The λalloc calculus is
confluent.

4.3 Relation to a machine language
While λalloc is presented above as an extended λ-calculus

with reduction semantics, it was carefully engineered to map
directly to an abstract machine with a store, and to allow
efficient compilation to machine code. In particular, the
heaps and locations used in the semantics correspond ex-
actly to machine-level heaps and memory addresses. (This
is apparent in the requirement that the update operation
works only if the two blocks have the same size.) Actually,
the λalloc calculus is similar to a subset of one of the inter-
mediate languages used by the OCaml compiler, from which
it generates efficient native machine code.

5. TRANSLATION

5.1 The standard translation
We now define a translation from λ◦ to λalloc that im-

plements straightforwardly the in-place update trick. This
translation, called the standard translation, is defined in fig-
ure 9. It is straightforward for variables, functions, applica-
tions, and record operations, but the translation of bindings
is more intricate. The translation of a binding b is the con-
catenation of two bindings in λalloc . The first binding is
called the pre-allocation binding, and gives instructions to
allocate dummy blocks on the heap for definitions of known
sizes. The second binding is called the update binding. It
computes definitions, and either updates the previously pre-
allocated dummy blocks for definitions of known sizes, or
simply binds the result for definitions of unknown sizes.

This translation relies on a function Size that associates
to each λ◦ expression a size indication, which can be either

an integer (a number of memory words) or the undefined
size, written [?]. This function is supposed to guess the size
of the value of the translation of its argument. We assume
that the size of any expression of predictable shape is known,
and moreover that the size of variables is undefined. In
other words, Size(e↓) 6= [?] for any e↓ ∈ Predictable, and
Size(x) = [?] for any variable x,

While perfectly adequate as a compilation scheme in an
actual compiler, the standard translation does not lend itself
to a correctness proof. Such a correctness proof should be
a simulation argument: if e −→ e′ in λ◦, then

�
e � −→+

�
e′ � ;

moreover, if e is an answer,
�
e � should be an answer as well.

However, both properties fail. For instance, the expression
λx.x is an answer in λ◦, but it translates to λx.x, which
reduces in λalloc to the configuration {` 7→ λx.x} ` `.

Similarly, consider e = let rec y = λx.x in f . If f −→ f ′,
the expression e reduces to e′ = let rec y = λx.x in f ′ in
λ◦. However, the translations of e and e′ are

�
e � = let y = alloc n, y′ = update y (λx.x) in

�
f ��

e′ � = let y = alloc n, y′ = update y (λx.x) in
�
f ′ �

and
�
e � does not reduce to

�
e′ � in λalloc : it is not possible to

reduce
�
f � until the enclosing let has been reduced.

To overcome this difficulty, we are going to define another
translation scheme from λ◦ to λalloc , called the TOP trans-
lation. This alternate translation is less intuitive than the
standard translation, but is easier to prove correct using a
simulation argument. The correctness of the standard trans-
lation follows from that of the TOP translation because the
standard translation of a term reduces to its TOP transla-
tion.

The intuition behind the TOP translation is that
it performs “on the fly” a number of administrative
reductions over the result of the standard translation.

Translation of expressions:

�
x � = x�
λx.e � = λx.

�
e ��

e1 e2 � =
�
e1 � �

e2 ��
{ . . . Xi = ei . . . } � = { . . . Xi =

�
ei � . . . }�

e.X � =
�
e � .X�

let rec b in e � = let Dummy(b), Update(b)
in

�
e �

Dummy pre-allocation of bindings:

Dummy(ε) = ε
Dummy(x = e, b) = (x = alloc n, Dummy(b))

if Size(e) = n
Dummy(x = e, b) = Dummy(b)

if Size(e) = [?]

Computation of bindings:

Update(ε) = ε
Update(x = e, b) = (y = (updatex

�
e �),Update(b))

if Size(e) = n, with y fresh
Update(x = e, b) = (x =

�
e � , Update(b))

if Size(e) = [?]

Figure 9: Translation (standard translation)

These additional reductions suffice to ensure, in particular,
that answers are mapped to answers. Continuing the
example above, the TOP translation maps λx.x to the
configuration {` 7→ λx.x} ` `, which is an answer.

5.2 Compositionality
As outlined above, the TOP translation maps λ◦ expres-

sions to λalloc configurations, and not just expressions.
An unfortunate consequence of this requirement is that
the TOP translation cannot be compositional, in the
usual sense: configurations do not compose syntactically.
For instance, the translation of an application such as
(λx.x) (λx.x) is not the application of the translation of
the function to the translation of the argument.

To recover some degree of compositionality, we introduce
a non-standard notion of contexts in λalloc , which take as
an argument configurations, rather than just expressions.
Contexts are pairs of a heap and a nested lift context, and
the application of a context Θ ` Φ to a configuration Θ′ ` E
is the configuration Θ + Θ′ ` Φ[E].

This is not sufficient, however. Recall that answers in
λ◦ can be of the shape bv ` v. Intuitively, bv should be
translated as a heap. But heaps of λalloc only contain heap
blocks, i.e. dummy blocks, functions or evaluated records,
while the binding bv can also contain definitions of the shape
x = y for example (or x = 1 if λ◦ featured constants), which
we do not want to translate as heap bindings. Furthermore,
we have to take into account the asymmetry of let rec in
λ◦. Indeed, the heap x = y, z = x maps both x and z to
the value y. Our solution is to retain the part of λ◦ heaps
that cannot be included in λalloc heaps as substitutions. For
instance, the λ◦ binding x = y, z = x is translated as the
substitution {x 7→ y} ◦ {z 7→ x}.

This approach complicates the notion of contexts: now,

they must include a substitution. Indeed, the λ◦ context
x = y, z = x `
 does not correspond to any standard
evaluation context in λalloc . Instead, we have to define a
stronger kind of evaluation contexts, including a heap Θ, a
standard context Φ, and a substitution σ. We write these
extended contexts Θ ` Φ[σ], and denote them by Ψ.

Applying a context to a configuration is valid if the two
heaps define disjoint sets of locations, and if the substitu-
tion carried by the context is correct for the configuration.
Fortunately, when the proposed substitution is not correct
for the considered configuration, structural equivalence al-
lows to rename all the problematic binders in it, and find an
equivalent configuration for which the substitution is cor-
rect. The application of a context Θ ` Φ[σ] to a configura-
tion Θ′ ` E is the configuration (Θ + Θ′ ` Φ[E]){σ}.

Similarly, the composition Ψ1 ◦ Ψ2 of two contexts Ψi =
Θi ` Φi[σi] is Θ1+Θ2 ` Φ1[Φ2][σ1 ◦σ2], provided the substi-
tution σ1◦σ2 is correct for the heap Θ1+Θ2 and the context
Φ1[Φ2]. Fortunately, in λalloc contexts, binders are not in po-
sition to capture the placeholder, so structural equivalence
always allows to find correct, equivalent contexts.

5.3 Definition of the TOP translation
TOP translation of expressions The TOP transla-

tion, defined in figures 10 and 11, associates λalloc config-
urations to λ◦ expressions, and λalloc configurations to λ◦

configurations.
The idea is that the TOP translation is used until the

current point of evaluation in the expression, and beyond
that point, the standard translation is used.

Variables are still translated as variables. A function λx.e
is translated as with the standard translation, i.e. λx.

�
e � ,

but the result is allocated on the heap, at a fresh location `:
{` 7→ λx.

�
e � } ` `.

The translation of an evaluated record takes the transla-
tions of its fields and puts them in a record allocated on the
heap at a fresh location `, obtaining Θ + {` 7→ {Sv}} ` `.
Here, Θ ` Sv is the translation of the record sv, defined
in figure 10. If sv = (X1 = v1 . . . Xn = vn), and for each

i,
�
vi � TOP = Θi ` Vi, then Θ ` Sv = �

1≤i≤n

Θi ` (X1 =

V1 . . . Xn = Vn).
When the record is not fully evaluated, it is not yet al-

located on the heap. It is divided into its evaluated part
sv, and the rest X = e, s. The sv part is translated as for
evaluated records, into Θ1 ` Sv. The field e is translated
with the TOP translation, into Θ2 ` E, and s is translated
with the standard translation. We denote by

�
s � the record

s, translated with the standard translation. The result is
Θ1 + Θ2 ` {Sv, X = E,

�
s � }.

Function application works like records: if the function
part is not a value, then it is translated with the TOP trans-
lation, while the argument is translated with the standard
translation. If the function is a value, then both parts are
translated with the TOP translation.

The translation of a record selection e.X consists of trans-
lating e with the TOP translation, and then selecting the
field X.

TOP translation of bindings The TOP translation
of bindings is more complicated. As for records, the binding
is divided into its evaluated part bv and the rest b, which
can be empty, but does not begin with a value.

The unevaluated part of the binding, b, is translated as

Translation of expressions into configurations:

�
x � TOP = ∅ ` x�
λx.e � TOP = {` 7→ λx.

�
e � } ` `�

{sv} � TOP = Θ + {` 7→ {Sv}} ` ` for
�
sv � TOP = Θ ` Sv

�
{sv, X = e, s} � TOP = Θ1 + Θ2 ` {Sv, X = E,

�
s � } for

�� � e /∈ values�
sv � TOP = Θ1 ` Sv�
e � TOP = Θ2 ` E

�
v e � TOP = Θ1 + Θ2 ` V E for � �

v � TOP = Θ1 ` V�
e � TOP = Θ2 ` E

�
e1 e2 � TOP = Θ ` E

�
e2 � for � e1 /∈ values�

e1 � TOP = Θ ` E�
e.X � TOP = Θ ` E.X for

�
e � TOP = Θ ` E

�
let rec b in e � TOP = � �

b � TOP[∅ `
�
e �] if b is not evaluated�

b � TOP[
�
e � TOP] otherwise

Translation of configurations:

�
b ` e � TOP =

�
let rec b in e � TOP

Translation of bindings and evaluated records:

�
bv, b � TOP = TDum(b) ◦ TOP(bv) ◦ TUp(b) where b 6= (x = v, b′)�
X1 = v1 . . . Xn = vn � TOP = �

1≤i≤n

Θi ` (X1 = V1 . . . Xn = Vn) with ∀i,
�
vi � TOP = Θi ` Vi

Figure 10: The TOP translation (first part)

Translation of evaluated bindings: Evaluated binding → (heap × substitution × variable allocation)

TOP(ε) = ∅ ` (id , id)
TOP(x = y, bv) = Θ ` ({x 7→ y} ◦ σ, η) if TOP(bv) = Θ ` (σ, η)

TOP(x = v, bv) = Θ1 + Θ2 ` (σ, η ∪ {x 7→ `}) if

�� � v /∈ Vars�
v � TOP = Θ1 ` `

TOP(bv) = Θ2 ` (σ, η)

Actual dummy pre-allocation: Binding → (heap × variable allocation)

TDum(ε) = ∅ ` id
TDum(x = e, b) = TDum(b) if Size(e) = [?]

TDum(x = e, b) = Θ + {` 7→ alloc n} ` η ∪ {x 7→ `} if � Size(e) = n
TDum(b) = Θ ` η

Actual computation of bindings: Binding of λ◦ → (heap × binding of λalloc)

TUp(ε) = ∅ ` ε

TUp(x = e, b) = Θ1 + Θ2 ` x = E,B if

�� � Size(e) = [?]�
e � TOP = Θ1 ` E

TUp(b) = Θ2 ` B

TUp(x = e, b) = Θ1 + Θ2 ` y = (updatex E), B if

���� ��� Size(e) 6= [?]�
e � TOP = Θ1 ` E

TUp(b) = Θ2 ` B
y fresh

Figure 11: The TOP translation (continued): bindings

follows. In the standard translation, the pre-allocation pass,
consists in giving instructions for allocating dummy blocks.
Here, these blocks are directly allocated by the function
TDum, which returns the heap of dummy blocks, and the
substitution replacing variables with the corresponding lo-
cations. The update pass, in the standard translation, ei-
ther updates a dummy block with the translation of the
definition, or simply binds it. In the TOP translation, the
only difference is that the first definition is translated with
the TOP translation, while the remaining ones are trans-
lated with the standard translation. The function TUp is in
charge of these operations.

The evaluated part of the binding, bv, is translated as a
heap and a substitution, by the TOP function. A definition
of unknown size x = v yields a translation of the shape
∅ ` V , and is included in the translation as the substitution
x 7→ V . A definition of known size x = v is translated as
a heap and a variable allocation: v has a translation of the
shape Θ ` `, and it is included in the translation of bv as Θ,
and the allocation x 7→ `.

In practice, it is useful to distinguish substitutions com-
ing from definitions of unknown sizes, which can be of any
shape, from substitutions coming from definitions of known
sizes, which are allocations, and therefore have the shape
x 7→ `. Indeed, when putting the results together, it is
important to take the order into account for definitions of
unknown sizes. For instance, as noticed above, a binding
such as x = y, z = x generates two substitutions x 7→ y
and z 7→ x, but the former must be performed last. This
is why, according to the definition of TOP, the result is
{x 7→ y} ◦ {z 7→ x}. This works because, due to the syntac-
tic restrictions on let rec, definitions of unknown sizes can
only be mentioned by subsequent definitions in the bind-
ing. However, definitions of known sizes can be mentioned
by previous definitions. The key observation is that the
substitutions they generate are allocations, so they are not
modified by other substitutions, and can be performed last.
Formally, the translation of bv is a heap Θ, a substitution
σ, corresponding to the definitions of unknown sizes, and
an allocation η, giving the locations allocated in Θ for the
definitions of known sizes. Semantically, it corresponds to a
heap Θ and the substitution η ◦ σ, and will be used as such.

The three functions for translating bindings, TDum, TUp,
and TOP, can be viewed as contexts. The TDum function
returns a heap Θ and an allocation η, which form a con-
text Θ `
 [η]. The TUp function returns a heap Θ and a
binding B, which form a context Θ ` let B in
 [id]. The
TOP function returns a heap Θ, a substitution σ, and an
allocation η, which form a context Θ `
 [η ◦ σ]. Notice
that the context corresponding to TUp is not an evalua-
tion context. Fortunately, the substitutions that are ap-
plied to it do not involve the domain of its binding, thus
preserving the meaning. In case the whole binding bv, b
is evaluated (i.e. b is empty), then the contexts for pre-
allocation and update, TDum(b) and TUp(b) are empty, and
the translation of let rec bv, b in e is the TOP translation
of e put in the context TOP(bv). Otherwise, the translation
of let rec bv, b in e is the standard translation of e, put in
the context TDum(b) ◦ TOP(bv) ◦ TUp(b).

5.4 Relating the two translations
An interesting fact is that the standard translation of any

expression reduces to its TOP translation, in any context,

provided the following hypotheses on the Size function are
met.

Hypothesis 1 For all expressions e, f, e′, value v, bindings
b, b′, substitution σ, and context � :

• If Size(e) = n and b ` e −→ b′ ` e′, then Size(e′) = n.

• If Size(v) = n, then there exist Θ and ` such that�
v � TOP = Θ ` ` and Size(Θ(`)) = n.

• If Size(e) = Size(f) = n, then Size(� [e]) =
Size(� [f]).

• Size(e{σ}) = Size(e).

• Size(let rec b in e) = Size(e).

Lemma 1 For all contexts Ψ and for all expressions e,

Ψ[∅ `
�
e �] −→∗ Ψ[

�
e � TOP].

6. CORRECTNESS OF THE TRANSLA-
TION

Owing to their different ways of handling bindings, the
two languages λ◦ and λalloc do not yield a step-by-step sim-
ulation. Indeed, a redex and its reduct in λ◦ may have the
same translation. As an example, consider two expressions
of the shape

�
[let rec bv in e] and let rec bv in

�
[e]. The

binding bv is translated as a heap Θ and a substitution σ,
in both cases, and the fact that it is under or above the�

context is not visible in the translation. This gives rise
to a “stuttering problem”: conceivably, an infinite reduc-
tion sequence in λ◦ could be translated to no reduction at
all in λalloc , thus changing the termination behavior of the
program. In order to ensure that this cannot happen, we
prove that such silent reduction steps cannot happen indefi-
nitely. For this, we introduce a measure µ on expressions and
configurations that strictly decreases during silent reduction
steps. Its precise definition is given in the companion tech-
nical report [9]. Intuitively, the three kinds of silent steps
cause a decrease in a syntactic feature of the term:

• internal or external merge steps strictly decrease the
number of let rec nodes;

• lift steps move a let rec node up one level toward the
top;

• internal or external substitution steps replace a vari-
able with another variable bound earlier in the expres-
sion.

The last obstacle to the simulation theorem is the different
sharing properties of the two languages. Consider the con-
figuration c = (x = {X = λy.y} ` (x.X) x). It reduces by
rule Subst to c′ = (x = {X = λy.y} ` ({X = λy.y}.X) x).
By the TOP translation, c is translated to a configuration

C = � `1 7→ λy.y,
`2 7→ {X = `1} � ` (`2.X) `2.

By the same translation, c′ is translated to a configuration

C′ =

���� ��� `1 7→ λy.y,
`2 7→ {X = `1},
`3 7→ λy.y,
`4 7→ {X = `3}

� ������ ` (`4.X) `2.

The heap Θ′ of C′ contains an additional copy of the record
and the function. This phenomenon happens at each appli-
cation of the Subst rule. But, except in case of a faulty
configuration, such a reduction step can be followed imme-
diately by a Beta or a Project step. In our example,
a Project step occurs in λ◦, which destroys the copied
record: c′ reduces to c′′ = (x = {X = λy.y} ` (λy.y) x).
This reduction step destroys the copied record immediately
after it has been copied. Similarly, when a function is copied,
the copy is immediately destroyed by the subsequent Beta
reduction step. In both cases, the translated configuration
reduces in one step, by the same rule (Project or Beta).
As a consequence, our simulation theorem takes this possi-
bility into account, and allows a couple of successive reduc-
tion steps to be simulated by a single one.

This is not yet sufficient. Indeed, in the case of the
Project rule, not only the record is duplicated, but also
the values it contains. In our example, the function λy.y
is copied. And even after applying the Project rule, it
remains, as shown by the translation of c′′:

C′′ =

�� � `1 7→ λy.y,
`2 7→ {X = `1},
`3 7→ λy.y

� �
� ` `3 `2.

Our solution to this problem consists in considering only ex-
pressions where all the record fields are variables, which we
call R-normal expressions. Any expression can be trans-
formed into an R-normal one, by applying the following
NameFields rule, in any context.

∃i, ei /∈ Vars ∀i, j, xi /∈ FV(ej)

{X1 = e1 . . . Xn = en}
R
−→

let rec x1 = e1 . . . xn = en

in {X1 = x1 . . . Xn = xn}

(NameFields)

This process necessarily terminates since the number of
records containing expressions other than variables strictly
decreases. The reduction rules of λ◦ obviously preserve
R-normality. This way, after a sequence of a Subst step
followed by a Project step, no duplication has been made:
an expression of the shape x.X has been replaced with
another variable.

We can now state our main theorem. A λ◦ configuration
is said to be stuck on a free variable when it is of the shape�

[[x]] and
�

(x) is undefined. This definition is extended
to λalloc configurations (replace

�
with Ψ and 	 with the

obvious notion of dereferencing contexts for λalloc). We say
that a configuration is faulty if it is in normal form and is
not a valid answer and is not stuck on a free variable.

Theorem 2 (Simulation) For all R-normal configuration
c, if c−→c′ and

�
c � TOP = C, then one of the four situations

below holds.

1. Either c′ and C are
faulty.

c //

���
TOP

��

c′ / //

C / //

2. Or, there exists C ′

such that
�
c′ � TOP =

C′ and C −→+ C′.

c //

���
TOP

��

c′

���
TOP

��

C
+

// C′

3. Or there exists c′′, C′

such that
�
c′′ � TOP =

C′, c −→ c′′, and
C −→+ C′.

c //

���
TOP

��

c′ // c′′

���
TOP

��

C
+

// C′

4. Or
�
c′ � TOP = C di-

rectly, and µ(c) >
µ(c′).

c
µ↘

//

���
TOP

��

c′

���
TOP

���
�
�
�
�
�
�

C

As a corollary, we obtain the correctness of the transla-
tion.

Theorem 3 (Correctness) For all expression e in R-
normal form:

1. If ∅ ` e −→∗ a, then ∅ `
�
e � −→∗ �

a � TOP.

2. If e goes wrong, i.e. ∅ ` e reduces to a faulty configu-
ration, then

�
e � also goes wrong.

3. If e loops, i.e. there exists an infinite reduction se-
quence starting from ∅ ` e, then

�
e � also loops.

4. If e gets stuck on a free variable, then so does
�
e � .

While our initial goal was to prove the correctness of our
compilation scheme, a completeness result also follows from
theorem 2.

Theorem 4 (Completeness) For all expression e in R-
normal form:

1. If ∅ `
�
e � −→∗ A, then there exists a such that ∅ `

e −→∗ a and
�
a � TOP = A.

2. If
�
e � goes wrong, then e also goes wrong.

3. If
�
e � loops, then e also loops.

4. If
�
e � gets stuck on a free variable, then so does e.

Remark 1 (Free variables) Free variables do not appear
during reduction. Thus, evaluation never gets stuck on a
free variable if the initial expression is closed.

7. RELATED WORK
Cyclic explicit substitutions Rose [14] defines a cal-

culus with mutually recursive definitions, where recursion
is introduced by explicit cyclic substitutions, extending the
explicit substitutions of Abadi et al. [1]. Instead of lifting
recursive bindings to the top of terms like we do, Rose’s
calculus pushes them inside terms, as usual with explicit
substitutions. This results in the loss of sharing informa-
tion. Any term is allowed in recursive bindings, but inside
a recursive binding, when computing a definition, it is not
possible to use the value of any definition from the same
binding. In λ◦, the rule for substitution Subst allows this,
in conjunction with the internal access rule IA. In Rose’s
calculus, correct call-by-value reduction requires that in any
binding, recursive definitions reduce to values, without using
the value of each other. In this respect, it is less powerful
than λ◦. Besides, it does not impose size constraints on

definitions, but does not address the issue of efficient data
representation.

Benaissa et al. [3] study sharing and different evaluation
strategies, for a slightly different notion of cyclic explicit
substitution. Any term is accepted in a recursive definition,
but instead of going wrong when the recursive value is re-
ally needed, as in our system, the system of Benaissa et al.
loops. The focus of the paper is on the comparison between
λ-graph reduction and environment based evaluation, and
different evaluation strategies. No emphasis is put on data
representation either.

Equational theories of the λ-calculus with explicit
recursion Ariola et al. [2] study a λ-calculus with ex-
plicit recursion. Its semantics is given by source-to-source
rewrite rules, where let rec is lifted to the top of terms, and
definitions in a binding may use each other, as in λ◦. The
semantics of our source language λ◦ is largely inspired by
their call-by-value calculus. Thus, our work can be seen
as transferring the internal substitution rule IA from equa-
tional theory to actual language design. Nevertheless, the
concerns are different: we deal with implementation and
data representation, while Ariola et al. focus on confluence,
sharing and different evaluation strategies, including strong
reduction (reduction under λ-abstraction).

let rec for objects and mixin modules The let rec

constructs used by Boudol [4] and Hirschowitz and Leroy
[8] differ from the one of λ◦ in several aspects. First, they
accept strictly more expressions as recursive definitions. For
instance, Boudol’s semantics of objects makes extensive use
of recursive definitions such as let rec o = generator (o) in e.
Such definitions are not allowed in λ◦. However, λ◦ allows
to define in the same binding recursive values and compu-
tations using these values. The semantics of mixin mod-
ules [10] requires complex sequences of alternate recursive
and non-recursive bindings, which are trivial to write in λ◦.
Moreover, compared to Boudol’s language, the restrictions
of λ◦ allow for more efficient execution, since additional in-
directions are avoided.

8. CONCLUSION AND FUTURE WORK
We have presented and proved correct an efficient compi-

lation scheme for call-by-value evaluation of mutually recur-
sive definitions. The recursive definitions supported by this
scheme go beyond recursive functions, and include recursive
data structures, as well as the interleaving of recursive and
non-recursive bindings in a single let rec construct. These
results are relevant to the efficient implementation of call-
by-value mixin modules. Additionally, they formally justify
the compilation scheme for non-functional let rec definitions
used in the OCaml compiler.

In future work, we plan to extend further the class of
let rec definitions supported by the compilation scheme.
Consider a language where the right-hand sides of recursive
definitions are arbitrary expressions, optionally annotated
with integers representing the expected sizes for the r.h.s.
expressions. This language can be compiled exactly like
λ◦: r.h.s. expressions annotated with sizes are treated
as having predictable shape, with pre-allocation and
in-place update, while unannotated r.h.s. expressions are
handled by evaluation and binding. This language is
more expressive than λ◦, since it can evaluate recursive
definitions such as o = generator (o) provided the size of
the result of generator can be predicted. For some typed

compilation schemes, the size of the result of an expression
is a function of the static type of the expression, and
can easily be predicted. In other settings, compile-time
determination of sizes can be achieved by static analysis.

9. REFERENCES
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy.

Explicit substitutions. J. Func. Progr., 1(4):375–416,
1991.

[2] Z. M. Ariola and S. Blom. Skew confluence and the
lambda calculus with letrec. Annals of pure and
applied logic, 117(1–3):95–178, 2002.

[3] Z.-E.-A. Benaissa, P. Lescanne, and K. H. Rose.
Modeling sharing and recursion for weak reduction
strategies using explicit substitution. In Prog. Lang.,
Impl., Logics, and Programs, volume 1140 of LNCS,
pages 393–407, 1996.

[4] G. Boudol. The recursive record semantics of objects
revisited. In D. Sands, editor, Europ. Symp. on Progr.,
volume 2028 of LNCS, pages 269–283.
Springer-Verlag, 2001.

[5] G. Boudol and P. Zimmer. Recursion in the
call-by-value lambda-calculus. Fixed Points in Comp.
Sc. 2002.

[6] G. Cousineau, P.-L. Curien, and M. Mauny. The
categorical abstract machine. Science of Computer
Programming, 8(2):173–202, 1987.

[7] The Haskell language. http://www.haskell.org.

[8] T. Hirschowitz and X. Leroy. Mixin modules in a
call-by-value setting. In D. Le Métayer, editor, Europ.
Symp. on Progr., volume 2305 of LNCS, pages 6–20,
2002.

[9] T. Hirschowitz, X. Leroy, and J. B. Wells. On the
implementation of recursion in call-by-value functional
languages. Research report RR-4728, INRIA,
February 2003.

[10] T. Hirschowitz, X. Leroy, and J. B. Wells. A reduction
semantics for call-by-value mixin modules. Research
report RR-4682, INRIA, January 2003.

[11] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and
J. Vouillon. The OCaml 3.06 reference manual, 2002.
Available at http://caml.inria.fr/.

[12] X. Leroy, D. Doligez, J. Garrigue, and J. Vouillon.
The Objective Caml system. Software and
documentation available on the Web,
http://caml.inria.fr/, 1996–2003.

[13] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML (revised). The MIT
Press, 1997.

[14] K. H. Rose. Explicit cyclic substitutions. In
M. Rusinowitch and J.-L. Rémy, editors,
CTRS ’92—3rd International Workshop on
Conditional Term Rewriting Systems, volume 656 of
LNCS, pages 36–50. Springer-Verlag, 1992.

[15] O. Waddell, D. Sarkar, and R. K. Dybvig. Robust and
effective transformation of letrec. In Electronic
proceedings of the 2002 Scheme Workshop, 2002.
http://scheme2002.ccs.neu.edu/.

