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Abstract Functional Reactive Programming (FRP) is an approach tdivegprogramming
where systems are structured as networks of functions tipgran signals (time-varying
values). FRP is based on the synchronous data-flow paradigsLgoports both (an approx-
imation to) continuous-time and discrete-time signald¢fd/systems). What sets FRP apart
from most other languages for similar applications is itspgrt for systems with dynamic
structure and for higher-order reactive constructs.

This paper contributes towards advancing the state of thaf &RP implementation by
studying the notion of signal change and change propagatiarsetting of structurally dy-
namic networks of-ary signal functions operating on mixed continuous-time discrete-
time signals. We first define an ideal denotational semaftiit is truly continuous) for
this kind of FRP, along with temporal properties, expressetmporal logic, of signals
and signal functions pertaining to change and change patipag Using this framework,
we then show how to reason about change; specifically, weifdemd justify a number of
possible optimisations, such as avoiding recomputatiamohanging values. Note that due
to structural dynamism, and the fact that the output of aadifymction may change because
time is passing even if the input is unchanging, the probkesignificantly more complex
than standard change propagation in networks with statictstre.
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1 Introduction

Functional Reactive Programming (FRP) grew out of Conabfh and Paul Hudak’s work
on Functional Reactive Animation [15]. The idea of FRP isltovathe full power of modern
Functional Programming to be used for implementigactive systemsystems that interact
with their environment in a timely mannefThis is achieved by describing systems in terms
of functions mappingignals(time-varying values) to signals, and combining ssamnal
functionsinto signal-processing networks, through plain functi@mposition and other
combining forms. The nature of the signals depends on thikcagipn domain. Examples
include sensor input in robotics applications [34], videeams in the context of graphical
user interfaces [11] and games [12, 7], and synthesisedisignals [16].

A number of FRP variants exist. We discuss the basics of figenat approach [15, 39],
now commonly referred to as Classic FRP (CFRP), in Secti@n8,we give an overview
of a number of others in Section 9. However, ffyachronous data-flow principland sup-
port for bothcontinuousand discretetime (hybrid systems), are common to most of the
variants. There are thus close connections to synchroratasfldw languages such as Es-
terel [3], Lustre [20], and Lucid Synchrone [35]; hybrid antata [21]; and languages for
hybrid modelling and simulation, such as Simulink [1]. Hoee FRP goes beyond most of
these approaches by supportahgmamisnihighly dynamic system structure), and first-class
reactive constructs(higher-order data-flow). Support for structural dynamiggnificantly
extends the range of reactive systems that can be descialha@@ly and easily. Typical ex-
amples include video games [12, 7]; virtual reality applmas [4]; and maintaining models
of a changing number of entities in view, say for UBipplications [27].

It is well-known how to implement first-order synchronougadfiow networks with
static structure efficiently [24,20]. However, higher-erdlata-flow and dynamic system
structure in combination with support for hybrid systemiseganew implementation chal-
lenges. FRP implementations usually adopt eith@ush or pull driven implementation
strategy [14]. The essence of the push-driven approachaitioa to events occurring at
some specific point in time by pushing changes through thesysThis is a good fit for
discrete-time signals. Pull is the opposite, where the h@edmpute the current value of a
signal necessitates computing the current values of amaksigt depends on, thus pulling
data through the network. This is a good fit for continuoungetsignals. Thus push and pull
have complementary strengths, but combining the apprgaci@ one system has turned
out to be hard.

In this paper, by studying the notion of signal change and bbange propagates in
a structurally dynamic signal-processing network, we Gbuate to the state of the art of
FRP implementation by identifying when computation is wessary and thus could be
avoided. We hope this will help reconcile the advantagesush@and pull. Note that struc-
tural dynamism, and the fact that FRP signals can changbéusiuse time passes, make the
problem significantly more complex than standard changpagation in a network with a
static structure.

The FRP variant that is the starting point for this paper is\a [27], a domain-specific
embedding in Haskell and one of the most expressive FRP imgi&tions to date when it
comes to structural dynamism. Yampa takes signal functioihe the primary reactive ab-

1 Aresponse is expected within an amount of time that is “redslehor the application at hand. We do
thus not predicate reactivity on hard real-time guarant®est FRP variants only achieve soft real-time.

2 Signals or signal functions, depending on the FRP variant.
3 Unmanned Aerial Vehicle



straction; signals are secondary, existing only indiyettttough the notion of signal func-
tions. Many other approaches to FRP, including CFRP, optdkersignals their primary

notion. We give the necessary background and discuss wéisthin important FRP design
consideration in sections 2 and 3, and in Section 3.5 we explaaome detail our reasons
for choosing signal functions as the base. In brief, theaifgmction approach in princi-

ple allows for a strict separation between the reactive amdtfonal layers. This in turn

facilitates implementation in many ways, and providesaiertonceptual and expressivity
advantages.

However, note that a setting of signal functions is alsorthtiral choice for studying
change and change propagation in signal processing neswdfd need to understand the
properties of the network nodes, and these natessignal functions, regardless of the
surface syntax used to set up the network. Thus, much of ady $¢ relevant to FRP in
general, not just to FRP versions based on signal functions.

We argue that an FRP approach based on signal functions imesdistinct advantages,
and note that Yampa, currently the main such FRP varianensostrably useful for fairly
demanding applications [7,16,4]. However, it is also ctbat the current version of Yampa
has a number of conceptual as well as practical issues tinatgst other things, limit its
scalability. A discussion can be found in Section 4.

These issues were what initially prompted us to start ingashg a new FRP model
based om-ary (multi-input and output) signal functions and differeteid kinds of signals
[36,37]. Working towards overcoming the limitations of theesent Yampa approach is
an additional goal of this paper, so we adopt this model, uttte nameN-ary FRP, and
develop it further and in more detail. We then use this moaléientify and study general
temporal properties relevant éamyfaithful implementation of the model, and how these can
be used to justify a range of optimisations. For examplegrgia signal-function network,
we can characterise exactly which signals remain unchafgeatbitrary combinations of
changing or unchanging input, and where updates nonethatesiecessary due to internal
state changes.

In more detail, the contributions of this paper are as faow

— We define a denotational semantics for an ideal, mixed cootis-time and discrete-
time N-ary FRP. While a concrete digital implementation would & approximate
some aspects of this semantics, it does capture a numbemgbtal aspects that a
faithful implementation would have to, and can, respecttya

— We identify a number of temporal propertiesmséry signal functions that are useful for
studying the behaviour of networks of such signal functi@specially concerning how
changes propagate, and we define these properties exdatytesporal logic.

— We characterise the primitiid-ary FRP signal functions and combinators, as defined
by the denotational semantics, in terms of which of our teralgaroperties they satisfy
or preserve, and we study the relations between these fiesper

— We demonstrate how our temporal properties can be usedttfy japtimisations and
identify optimisation opportunities in concrete netwod€sn-ary signal functions, as-
suming that the implementation is faithful to the tempormagerties: that is, assuming
that the implementation of each primitive satisfies the stermgoral properties as the
denotational model of the primitive.

A limitation of the present paper, compared both with Yampd some of our earlier
work [37], is that we only consideaicyclic networks, leaving consideration of cyclic net-
works (feedback) as future work.



The notation we use in this paper is mostly thaAgtla[30], a dependently typed func-
tional language with many similarities to Haskell. We hatiesen Agda as it can be used
for defining the semantics of FRP, for proving propertiestalioat semantics, and as a host
language for an FRP embedding. However, as our interestasonceptual model, rather
than a specific implementation, we occasionally make useagrgeneral mathematical
notation when defining the semantics. We also borrow sonmasyrom Haskell in order to
clarify the presentation. In particular, we allow: pattematching under lambdas, operator
sections, case expressions, pattern guards, list commsieins and overloading. In all cases
that we do so, it is possible to translate into equivalent thore verbose) Agda code in a
fairly straightforward mannér To make clear the distinction between conceptual defimstio
and embedded FRP code, we useshgymbol when defining an entity conceptually.

The rest of the paper is structured as follows:

— Section 2 explains the fundamental concepts of FRP.

— Section 3 reviews Classic FRP, and motivates the first-sigssl-function abstraction.

— Section 4 describes the new conceptiNairy FRP model.

— Section 5 defines the primitives of theary FRP language, and then demonstrates how
they can be used to constridtary FRP programs.

— Section 6 discusses optimisation opportunities for FRRémpntations.

— Section 7 defines a number properties of signals and signatifuns using temporal
logic, in particular properties related to change and haynali functions propagate
change.

— Section 8 describes how the properties from Section 7 gieetd optimisations.

— Section 9 considers related work.

— Section 10 considers future work.

— Section 11 provides some concluding remarks.

2 FRP Fundamentals

FRP programs can be considered to have two levels to themctonal leveland areactive
level The functional level is a pure functional language. FRPl@mgntations are usually
embedded in a host language, and in these cases the fuh&tieglas provided entirely by
the host. For example, Haskell is the host language of CFBRB@] and Yampa [27]. The
reactive level is concerned with time-varying values chiignals At this level, functions
operating on signals are used to construct synchronoudldataetworks. The levels are,
however, interdependent. The reactive level relies on dinetfonal level for carrying out
arbitrary pointwise computations on signals, while reectionstructs are first-class entities
at the functional level.

2.1 Continuous-Time Signals

Time is considered to be continuous in FRP. Signals are thadelied as functions from
continuous-time to value, where we take time to be the sevofrmregative real numbers:

Time~ {te R | t > 0}
Signal A~ Time— A

4 The code can be viewed on the first author’s website: httphes.nott.ac.uktnas/hosc10.html



This conceptual model provides the foundation for an idé&dP Bemantics. Of course, any
digital implementation of continuous signals will have teeute over a discrete series of
time steps, and will consequently only approximate thelidemantics. The advantage of
the conceptual model is that it abstracts away from suchémphtation details. It makes no
assumptions as to the rate of sampling, whether the samplieds fixed, or how sampling is
performed. It also avoids many of the problems of composifiggstems that have different
sampling rates. The ideal semantics is helpful for undeditey FRP programs, at least to
a first approximation. It is also abstract enough to leave KR#ementers considerable
freedom.

That said, implementing FRP completely faithfully to theatlsemantics is challenging.
At the very least, a faithful implementation should, fordsenable programs”, converge to
the ideal semantics in the limit as the sampling intervatiseto zero [39]. But even then it
is hard to know how densely one needs to sample before an aisaeceptably close to
the ideal.

2.2 Signal Functions

Signal functionsre conceptually functions on signals:

SF A B~ Signal A— Signal B

In the N-ary FRP model we define later in this paper (Section 4), a$ agein Yampa
[27], it is signal functions, rather than signals, that arstftlass entities. Signals have no
independent existence of their own; they exist only indlyethirough the signal functions.

What if plain signals are needed; that is, a time-varyingedhat depends on no input?
Well, a signal function that takes a unit signal as input eally serves the same purpose.
Alternatively, a signal function that completely ignorésinput, and therefore is polymor-
phic in the type of the input signal, could be used. (Howesee the discussion in Section
2.5: these are reallsignal generators

To make it possible to implement signal functions such thégpat is produced in lock-
step with the input arriving, as is required for a system todsetive, we constrain signal
functions to beemporally causal

Definition 1 (Causal Signal Function)A signal function istemporally causalf, at any
given time, its output can depend upon its past and prespatinbut not its future inputs.

There are other notions of causality, but, throughout thisep, when we say causality we
will always mean temporal causality. We define causalitynfalty in Section 7.3.2.

2.3 Discrete-Time Signals

Conceptually, discrete-time signals (often called evégnals) are signals whose domain
of definition is an at-most-countable set of points in timack point of definition signifies
some event that is without any extent in time. Inclusion stdéte-time signals, along with
operations on them and operations for mediating betweeiintmus-time and discrete-time
signals, is what makes most FRP variants capable of hanlyibgd systems.

However, different FRP variants have taken different apphes to the nature of discrete-
time signals. One possibility is to make a fundamental miisidn between continuous-time



and discrete-time signals on the grounds that they enjaindigroperties. Separating them
facilitates taking advantage of these differences fordpainre precise about applicable op-
erations or for optimisation purposes. We refer to this apph asnulti-kindedFRP as there
is more than one kind of signal. For example, CFRP is muttdkd.

Another possibility is to define discrete-time signals asibtype of continuous-time
signals by lifting the range of signals using an option typ& refer to this approach as
single-kindedFRP as there fundamentally is only one kind of signal. Fonee?:

data Event(A : Se) where
noEvent : Event A
event A — EventA

A discrete-time signal carrying elements of tyfievould then be represented as a signal
of type Signal(Event A, with a value ofnoEvent whenever the discrete-time signal is not
defined, and a value efent v whenever the discrete-time signal is defined with value

Yampa is single-kinded: a uniform treatment of continutioee and discrete-time sig-
nals fits well with the idea of signal functions being the cooacept and there only being
one kind of signal function. However, single-kindedness $@me drawbacks. We will re-
turn to this in Section 4.

2.4 Structural Dynamism

Most FRP variants suppastructural dynamismThis means that the structure of the signal-
processing network may change at run-time, and, furtheeptbat new signals or signal
functions may be computed at run-time. We refer to such okmingthe network structure
asstructural switches

A common way to allow for structural dynamism is to provideear moreswitching
combinators As structural switches are discrete instantaneous ceces, event signals
are used to control when they happen. A switch occurs at the jpotime of the first oc-
currence in the event signal. This point is thement of switchingrhe details of switching
combinators vary between FRP systems, but the essentelisddnat, at the moment of
switching, one signal, called theubordinatesignal, is removed from the network, and a
new signal, called thessidualsignal, is inserted in its place. At the moment of switching,
the subordinate signal switched outind the residual signal switched in

Switching combinators are often designed to allow the tegidignal todependon the
value carried by the event that triggered the switch. Thiamsehat, in general, the residual
signal is computed at the moment of switching. This has ingmbrconsequences. First, it
cannot be assumed that switching only happens within a fredmed finite set of system
configurations. Second, it raises the question as to overnahge of time the residual signal
is defined: from the system start time or from the time it wagcved in? We return to this
discussion in the next section.

For a concrete example of a switching combinator, see Se8iithat provides a formal
definition of such a combinator in the setting of CFRP.

What if we are in a setting where signal functions, not signial the primary reactive
abstraction? In that case, switching takes place betwgaaldunctions, not signals. Other
than that, the ideas are very similar. See Section 5.1.2defiaition of that style of switch-
ing combinator.

5 Agda notationSetis the type of types, similar to kindin Haskell.



2.5 Signal Generators

As previously mentioned, switching combinators definedignals could either “start” the
residual signal at the same time as the subordinate signalhen it is switched in. Note
that if all provided switching combinators adhere to thet fiqgtion, then the start times of
all signals in the entire system would always coincide with §rstean start time.

The first choice is problematic if the residual signal degeod the value of the trig-
gering event, as this is not known until the moment of switghiConsequently, when the
switch occurs, the signal has to be retroactively compufedouthat moment. In an im-
plementation, this requires all past input to be rememherexb-calledspace leakand a
catch-up computation to be performed, a so-callew leak This is particularly trouble-
some if all provided switching combinators are of the firstckias that would mean that all
newly switched-in signals are subject to catch-up commrtatfrom the system start time.
Furthermore, no input could ever be discarded: an incrghsoumbersome prospect the
longer the up-time of the system. Consequently, most FRntarwith first-class signals
choose the second option: to start the residual signal ahtment of switching.

However, once we have signals that can start at differerggjrthe conceptual model
of signals as functions from time to value is no longer si#fiti the value of a signal no
longer just depends on the time at which it is sampled, bat s time at which it starts.
To express this, the concept of@nal generatois needed:

StartTime = Time
SampleTime= Time

SignalGenerator Ax StartTime— SampleTime— A

Or, equivalently, a signal generator is a function thategia start time as an argument,
produces a signal as the result:

SignalGenerator Ax StartTime— Signal A

The key point is that two signals created from the same sigeaérator can be (and often
are) different if started at different times.

3 Classic FRP

To give further background on FRP, we take a look at the caigifRP work known as
Classic FRP (CFRP) in this section. This should also givet@benderstanding of the rel-
evance of, and relation between, the various FRP notiorsisiged in the previous section
(specifically signals, signal generators and signal femsfj. There are several variants of
CFRP, but they are all based around the idea of multi-kindetidlass signalBehaviours
(continuous-time signals) artevents(discrete-time signals). In the following we introduce
a basic CFRP language and give some examples of CFRP progrgnthowever, as CFRP
is not the principal topic of this paper, only primitives vied for our examples are dis-
cussed. We conclude the section with a discussion on faissdignals vs. first-class signal
functions, as a motivation for the work presented in the oé#ite paper.



3.1 Behaviours and Events

We said that CFRP has first-class signals cabBethavioursand Events In fact, in most
CFRP variantsBehavioursand Eventsare signal generatorsConceptually then, 8e-
haviouris a function that maps a start time and a sample time to avalue

Behaviour A= StartTime— SampleTime— A

An Eventis similar, except that it produces a (time-ordered andejrist of all event oc-
currenceslp tothe sample time:

Event A= StartTime— SampleTime- List (Timex A)

3.2 CFRP Primitives

We now introduce some CFRP primitives, along with their epigal definitions. The util-
ity functions used in these definitions can be found in AppeAd We adopt the naming
convention of adding a ‘B’ or ‘E’ suffix to distinguish betwesimilar functions that operate
onBehavioursandEventsrespectively. In most implementations, some form of meating
is usually employed.

We begin with a family of lifting combinators that allow us lifi pure functions from
the functional level to operate d@ehavioursandEventsin a pointwise fashioh

constant: {A : Sett — A — Behaviour A
constantax~ A tgt; — a

liftE : {AB: Sett — (A — B) — Event A— EventB
liftE f ev ~ (result2o mapo second f ev

liftB : {AB: Sett — (A — B) — Behaviour A~ Behaviour B
liftB f beh ~ result2 f beh

liftB2 : {ABC: Set} — (A — B — C) — Behaviour A— Behaviour B— Behaviour C
liftB2 f beh behy ~ A tot; — f (beh toty) (beh tots)

A more interesting primitive is thentegral function that integrates Behaviourwith
respect to time. Note that unlike the liftings above, theigadf the outpuBehaviourat any
given time depends upon past inputs.

integral : BehaviourR — BehaviourR
integral behx A tot; — .ftgl (behpt) dt

It is also useful to have an integration function that hasratial value other than zero.
We can define such an initialised integration within the CH&Rjuage (rather than as a
primitive):

ilntegral : R — BehaviourR — BehaviourR
ilntegral x = liftB (+Xx) o integral

Finally, we introduce a primitive function that mediate$vibeenBehavioursandEvents

when: {A: Set} — (A — Bool) — Behaviour A— Event A

6 Agda notation: Curly braces are used to enclose implicit rmenis: arguments that only have to be
provided at an application site if they cannot be inferrearfithe context. Implicit type arguments are often
used to define polymorphic functions.



We have omitted the conceptual definitiorvdienas it is quite involved. It can be found in
Wan and Hudak [39]. Informally, the resultaBtentcontains an occurrence at each point
in time that the predicate (the first explicit argument) &apto the value of thBehaviour
(the second explicit argument) changes friafge to true. The value of the occurrence is the
value of theBehaviourat that point in time. Let us emphasise that events occurwhin
the result of the predicatthangesnot whenever it holds.

3.3 Switching between Behaviours

As discussed in Section 2.4, switching combinators are@alraspect of FRP as they allow
us to construct dynamic programs. Here we define a CFRP sagtclombinator:

untilB : {A : Sett — Behaviour A— Event(Behaviour A — Behaviour A
untilB beh eva A tgt; — caseev pt; of

H — beh totg
(te,behp) :: = — beh ety

The first argumentkieh) is the subordinat®ehaviour the second argumeng\j is the
Eventthat controls the switch occurrence. The value ofventis aBehaviour and it is
this Behaviourthat will be switched in as the residuAehaviour The residuaBehaviour
will not start until it is switched in, and at the moment of gshiing the overall value is taken
from the residuaBehaviour

Recall that an alternative design choice would be to haveetsidualBehaviourstart at
the same time as the subordinBehaviour The semantics of such a switching combinator
would be:

untilB’ : {A: Set} — Behaviour A~ Event(Behaviour A — Behaviour A
untilB’ beh, ev~ A tgt; — caseev t tq of
— beh tot;
(te,behp) :: = — behptoty

However, ifall switches were of thentilB’ type, thenty would always be 0, the global
system start time. This means that the start time parametnhes redundant, and the
definitions ofBehaviourandEventbecome signals as opposed to signal generators. But as
we have discussed, this leads to severe performance preblednso tends to be avoided.

3.4 Example: Bouncing Balls

As an example, we will construct a simple model of bouncinligsb@his a hybrid model,
because the continuous motion of the balls is broken by etis@vents (when the ball hits
the ground). For simplicity, we assume no air resistancecamgdider only one dimension
(the height of the ball above the ground). To demonstratertbeularity and higher-order
benefits of FRP, we will consider distinct balls that behaifeg:ntly when they impact the
ground.

We represent the configuration of a ball by a pair of its he#gid velocity:

Acceleration= R
Velocity = R
Height = R

Ball = Height x Velocity
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For the purposes of this example, we assume our units aresraatd seconds. We thus set
the gravitational constant:

g : Acceleration
g =981

We now construct @8ehaviourthat models a freely falling ball. This is achieved by
integrating the acceleration (in this case caused by gfatot compute the velocity, and
integrating the velocity to compute the height. Behaviouris parameterised on an initial
ball configuration:

falling : Ball — Behaviour Ball
falling (ho,vo) = leta = constant—g)
v = ilntegral vp a
h = ilntegral hy v
in
liftB2 (,) hv

The next step is to model interaction with the ground. We @efirpredicate to detect
when a ball impacts the ground, and a function that negatefi's elocity:

detectimpact Ball — Bool
detectimpacth,v) = (h <= 0)&& (v < 0)
negateVel Ball — Ball

negateVe(h,v) = (h,—v)

We now turn our attention to the bounce itself. A bounce issamdite occurrence that
will cause a discontinuity in the behaviour of the ball. Glgdahen, a bounce is an event,
and a bounce detector is a function mappehaviour Ballto Event Ball(the value of the
event is the configuration of the ball at the moment of impact)

detectBounce Behaviour Ball— Event Ball
detectBounce= when detectimpact

We can now define Behaviourfor a ball that bounces perfectly elastically:

elasticBall: Ball — Behaviour Ball
elasticBall b= let beh = falling b
in
untilB beh(liftE (elasticBallo negateVe)l (detectBounce bgh

Intuitively, this says that an elastic ball should behaveadalling ball until a bounce is
detected. At which point, the ball should have its velociégated, and then have its config-
uration used to initialise a neelasticBall

Note thatelasticBallis recursively defined. When the bounce occurs, a elasticBall
Behaviourbegins, taking the final ball configuration from the previ@ehaviouras its ini-
tial configuration. We now see the usefulness of not stagiBghaviouruntil it is switched
in. Imagine the ball first bounces after 5 secondseléfsticBall had been defined using
untilB’, then the residud@ehaviourimmediately after being switched in would be the ball's
configuration 5 seconds after that bounce! This is not to kaythere are never situations
when it is desirous to havBehavioursstarting before they are switched in though, as we
will see shortly.

First however, we define Behaviourfor a ball that collides perfectly inelastically with
the ground:
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inelasticBall: Ball — Behaviour Ball
inelasticBall b = let beh = falling b
in
untilB beh(liftE (A — — constant(0,0)) (detectBounce bgh
Notice the similarity of theelasticBallandinelasticBalldefinitions. There is obviously an
opportunity for abstraction here, so we define a more genewdkl of a bouncing ball that
is parameterised on thigehaviourto switch in when bouncing:

bouncingBall: (Ball — Behaviour Balj — Ball — Behaviour Ball
bouncingBall f b= let beh = falling b
in
untilB beh(liftE f (detectBounce bgh

We can then redefine our two balls as:

elasticBall = bouncingBall(elasticBallo negateVel
inelasticBall = bouncingBall(A _ — constant(0,0))

Finally, we add the capacity for the ball to be arbitrarilyvad to a new position (and
given a new velocity) by some external actor. We model thesrgsvent with the event val-
ues being new ball configurations. An event occurrence thereepresents a repositioning
of the ball (which we will call a reset). The intuitive way tapress this would seem to be
as follows:

resetBB: (Ball — Behaviour Bal) — Event Ball— Ball — Behaviour Ball
resetBB f ev b= untilB (bouncingBall f b) (liftE (resetBB f eyev)

Thus,resetBB(resettable bouncing ball) behavedasincingBalluntil a reset event occurs,
at which point it recursively starteesetBB using the samé&ventbut a new initial ball
configuration.

However, this doesn’'t do what we want, becatesetBBis defined in terms ofintilB.
Thus, when the switch occurs, not only is the motion of thé keet, but so too is the
Event Consequently, the first event occurrence will trigger tbset repeatedly, and any
events thereafter will be ignored. For example, if the fivetre: occurs after 3 seconds, then
the reset will be triggered every 3 seconds, regardlessyobtiner events. This is not what
we intended. We will discuss this issue further later, as iine of the motivating factors
behind first-class signal functions. For now, we will explabw this is dealt with in CFRP.

One could imagine providing switches of both tin&ilB anduntilB’ variety. However,
what CFRP variants addressing this problem do is to provigengly of runningln primi-
tives that allonBehavioursandEventsto start running before they are switched in. This is
achieved by fixing the start time of tiBehaviouror Eventsuch that when it is switched in its
start time does not change. In effect, thaninglnprimitives coercd8ehaviourandEvents
from signal generators to signals, thus providing the mogner with both first-class signal
generators and first-class signals. These signals (rudehgvioursor Event$ can then be
used in the definitions of oth&ehavioursandEventsthat have not yet been switched in.

There are four functions in th@nninglnfamily, one for each possible pair combination
of EventandBehaviour We first considerunningInBB which starts a behaviour inside a
behaviour. It has the following type and semantics:

runninginBB: {AB: Set — Behaviour A~ (Behaviour A— Behaviour B — Behaviour B
runninginBB beh f~ A tg — f (A — — behp) to

The first argumentk{eh is the Behaviourwe wish to start running. The second argument
(f) is a function that uses thBehaviour(which is really a signal, despite the lack of type
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distinction) to define anothéBehaviour The semantics say thaehcan be used in the
definition of the seconBehaviour but that whenevdsehis switched in, the local start time
is ignored and the start time of thenninginBBexpression is used instead.

The runningln primitive that we need for our bouncing balls isnningInEB which
starts arEventinside aBehaviour

runningInEB: {AB: Sett — Event A— (Event A— Behaviour B — Behaviour B
runninginEB ev f~ A tg — f (A tt — dropWhile((< t) o fst) o ev ) tg

The semantics are similar tanningInBB except that we applgiropWhile((< t) o fst) to
the runningevent This is because the meaning offaventis all event occurrences between
the start time and the sample time (where&ehaviouris only concerned with the sample
time). While theEventshould start running before it is switched in, only event tccur
after it is switched in should be observable.

We can now redefineesetBBwith the behaviour we require:

resetBB : (Ball — Behaviour Bal) — Event Ball— Ball — Behaviour Ball
resetBBf evb = runningInEB eYA rev — resetBBaux revpb
where
resetBBaux Event Ball— Ball — Behaviour Ball
resetBBaux rev’b= untilB (bouncingBall f b) (liftE (resetBBaux reyrev)

ThebouncingBall Behaviouis reset, but not thEventthat triggers the resets.

3.5 First-Class Signals or First-Class Signal Functions?

The notion of a signal is absolutely central to any FRP inar\s discussed, a way to
start the computation of a signal at any desired point in ting just when the overall
system starts, is key if we wish to support a dynamic systeuttsire, both for reasons of
expressivity and to avoid time and space leaks. This sugdeshotion of signal generators
as the central first-class abstraction at the functionadllé®ut first-class generators alone
are not enough: the ability to refer to already existing algifirom within the definition of a
generator is needed as well, suggesting that signals taddshe first-class entities. In the
overview of CFRP we encountered one particular approacidaieving this, theunningin
primitive, even if a signal through that particular fornmtiga ends up being disguised as a
Behaviouror Event that is, as a signal generator. As a more recent examples&[82]
also provides both signals and signal generators as fassd@dbstractions, but this time
carefully distinguished at the type level. Either way, osggnals are first-class entities,
signal functions come for free.

However, an alternative is to make signal functions the reg¢first-class abstraction.
They will then play the role of generators, as a signal wiligemerated whenever a signal
function is applied to a signal, either when the system fiests or when a signal function
is switched in at some later point in time. This way, the &pilo make a generated signal
depend on already existing signals comes for free. Thusakigio longer have to be a first-
class notion at the functional level, but can be relegatesttmndary status, existing only
indirectly through the signal-function abstraction. Tisithe approach taken by Yampa [27].

So, which option should one choose? First-class signats danerators), or first-class
signal functions? There are pros and cons to each, mangdeathe specifics of a partic-
ular setting (embedded or stand-alone implementatiorfaitikities of the host language if
an embedded approach is chosen, intended applicationedceaand some somewhat sub-
jective. Moreover, they are not mutually exclusive; for exde, Grapefruit [23] provides
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first-class signal and signal function abstractions, aliveitivated by somewhat different
considerations from those we outlined above.

In this paper we have chosen to develop and study a YampaeddgRP variant where
signal functions are the primary notion and signals arerseay. As a motivation, we con-
clude this section with a brief discussion on some of the aidges we think this approach
offers: the nub is that making the signal-function notiommary allows for a stricter sepa-
ration between the functional and reactive layers. Howehexis not to say that CFRP-like
approaches are not viable; recent FRP implementationg [93131,32] have shown that
they are. Nor is it to say that the work in this paper appliediesively to FRP approaches
based on signal functions being the central abstractionreiterate that the nodes of a
signal-processing network are signal functions in theseliscussed in this paper, meaning
that many aspects of the present work are relevant to FRPierge

3.5.1 Implementation Implications

Implementing first-class signals efficiently in their fubbmgerality has turned out to be very
hard. The essential difficulty is that signals &iree-varyingentities occurring at the func-
tional level where everything notionally must ti@e-invariantso as to not break referential
transparency. The key to solving this apparent contramfigs to adopt the view that the sig-
nal abstraction represents thitiresignal, which is time invariant. But this does not change
the fact that signals, if space and time leaks are to be aspltheve to bemplementeds
truly time-varying values by updating them as soon as ttseeaechange. Note that if signals
are truly first-class, then they can be put into data strestor be part of closures, and be
kept there for a long time without any connection to the algsiorld.

To our knowledge, all practically useful FRP implementasicsupporting first-class
signals resort to imperative techniques to address thisekample,runningln was im-
plemented by updating the runniBghaviouror Eventas a side effect (using Haskell’s
unsafePerformlof consuming the produced signal (that need not dependerutiming
Behaviouror Eventat all points of time; in fact, normally would not). For anetlexample,
Elerea [32] maintains a pool of (weak) references to allvacttateful signal computations
to enable all of them to be updated, regardless of whetheotathe result of an individual
computation is currently being used, by making a sweep dvepool at every time step.

In contrast, an approach based on signal functions can Henmepted remarkably sim-
ply and purely functionally. In essence, a signal functi®ijuist a state transition function
taking an input sample and current state to an output sampl@ew state. As the compo-
sition of such state transition functions is another statesition function, the entire system
just becomes a state transition function. Signal functibesnselves aréme-invariant so
giving them first-class status at the functional level igiti

Another issue concerns sharing. As signal generators tiggeare functions mapping
a start time to a signal, the normal lazy evaluation mackinéra language like Haskell
is not enough to ensure that signals generated by the sameeag@mapplied to the same
start time are shared. This leads to a lot of redundant caatipntunless addressed, in
particular for recursively defined signal generators. Theal solution is to employ some
form of memoisation (again using imperative techniqguese Memoisation is often done
behind the scenes, as part of the abstractions; but at leastnplementation, Elerea, albeit
for somewhat different reasons, provides an explicit meat@n primitive as memoising
everything is usually redundant and has a negative impagedormance. In contrast, with
signal functions, it is easy to arrange that each signal Eaimgomputed exactly once and
distributed to where it is needed, thus avoiding any rislost sharing.
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Of course, once everything works, what matters to an endsiset the complexity of an
implementation, but the facilities provided, how easy theyto use for the purpose at hand,
and how good the performance ultimately is. As to the peréoroe of FRP implementations
based on signals vs. signal functions, it is safe to say liegtity is still out: lots of research,
implementation, and practical evaluation is still needHtere may not even be a simple,
conclusive answer. However, we note that Yampa, despigeikability issues, has proved
to be quite efficient for many applications as witnessed ldeeigame implementations
[12,7] or the Yampa synthesiser [16]. We speculate thatithi®o small part is due to the
implementation being purely functional, and functionatmlers being good at compiling
purely functional code. Moreover, we note that the work amseacommutative arrows [25]
has shown that switch-free signal-function networks caaxeeuted very efficiently.

3.5.2 Routing

In a language with first-class signal functions, synchremata-flow networks can be con-
structed using routing combinators that operate on sigmattfons. This has the potential
of internalisingall routing at the reactive level, giving much greater scopeofiimisation
than when the routing is hidden at the host-language leveln@ée that Yampa, which is
structured using arrows, is a half-way house in this respectuse of the way the arrow
framework is set up: some routing is through combinatormestakes place at the func-
tional level. An explicit goal of our work olN-ary FRP is to do all routing at the reactive
level. While using routing combinators is more awkward thest applying functions to ar-
guments, we envision that syntax along the lines of Pat&rsorow notation [33] would
alleviate the burden.

3.5.3 Signal-Function Objects

By making the notion of a signal function a first-class alatiom, an FRP implementer has
great freedom in choosing its representation and, subsdgui exploiting information
manifest in this representation. For example, Yampa erscsideple properties about signal
functions in their representation, which in favourablegmstances allows compositions of
signal functions to be fused for better performance [26]e ©fthe goals of the present
work is to identify properties of signal functions that cd@nable such optimisation in a
more systematic and formally justifiable manner: see Seatio

Similarly, as we have shown in earlier work [37], being aldeassociate additional
information with signal functionst the type levehllows certain safety guarantees, such
as absence of instantaneous feedback loops, to be enfdetexdly. If signal functions
were ordinary host-language functions on signals, it wowd be possible to take such
information into account if it truly relates to the functi@s opposed to its argument or
result.

Finally, Yampa allows a switched-in signal function to beofen”: effectively unap-
plied from its input signals and switched out of the netwdte result is an aged version of
the initial signal function; that is, its internal state la¢ time of being switched out is main-
tained. At some later point, the signal function can be gwveittin again. This is a powerful
capability, forming the basis of Yampa’s collection-bassdtching primitives that allow
highly dynamic signal-function networks to be describede Bame fundamental mecha-
nism is also used in the virtual-reality project FRVR [4] wgthrough a Yampa extension,
it is used to implement an undo facility by capturing the egsttate as frozen signal func-
tions at various points in time. This allows interaction ésume from any saved point at a
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later stage, thereby undoing the effects of any interveimtegaction. It would seem hard to
replicate the freezing functionality in a setting with ficdass signals.

3.5.4 Other Applications

Signal functions also have applications beyond FRP, mattieg interesting to study in
their own right. The connections to the synchronous datafmguages and to modelling
and simulation languages such as Simulink were mention8ddtion 1. Functional Hybrid

Modelling (FHM) [28] is an approach to modelling and simidat in part inspired by FRP,

where signal functions are generalised to relations oratsgfor efficient simulation, while

still allowing dynamic structure, these relations are coetto native simulation code using
the LLVM just-in-time compiler [17]. As the notions of sigh@lations and signal functions
are related, and as it would be desirable to have signalifinxin the FHM setting, the

work in this paper is potentially of use for FHM. ConversdiM’s compilation-based

implementation strategy could potentially be applied irPR&pplications.

4 Signal Kinds

In Section 2 we gave a conceptual definition of signal fumdithat map a single signal to
a single signal. We refer to FRP models with such signal fanstas the central abstraction
as Unary FRP. The Yampa implementation is based on singtieki Unary FRP. While
both simple and expressive, single-kinded Unary FRP hasrauof inherent problems,
practical as well as conceptual. In this section we reviesg¢hproblems, and introduce a
further refined (but still high-level and general) conceptonodel based on multi-kinded
n-ary signal functions that we will refer to dd-ary FRP. This model will serve as the
foundation for the rest of this paper.

4.1 Routing Limitations and Atrtificial Interdependencies

In Unary FRP, signal functions have only a single input amgjlei output. Consequently,
the only way to represent signal functions operating ongturning, more than one signal
is to exploit the fact that a product of signals is (in this rdsomorphic to a single signal
carrying a product of elements of the constituent signalsekample, a signal function that
maps a pair of signals carrying doubles to another pair afadgycarrying doubles has type:

SF (Double Double) (Double Double)

This means that there is no distinction (and cannot be) l@twesignal that carries a “gen-
uine” pair of values, and one that is the result of pairing imaependent signals.

Moreover, exploiting this isomorphism is often the only wayroute signals between
signal functions: Signals are grouped together into a sisignal according to the structure
of signal-function composition, and then, at the functidesel, values of this signal are
regrouped so as to enable decomposition according to thetste of the receiving signal
function.

Unfortunately, this approach hides the routing from thectiga level, and creates arti-
ficial interdependencies between independent individigalags. This makes it difficult to



16

implement the Unary FRP model in a way that scales well, sec¢hraugh direct point-to-
point communication between signal functions or minima@abf redundant computation
through change propagation (see Section 8.4) [36].

The Unary FRP model certainly does not rule out all optinnisabpportunities, as ev-
idenced by the latest Yampa implementation [26]. Howeveer@oming these limitations
in a more comprehensive and systematic way necessitatggalising the routing at the
reactive level, as well as introducimgary signal functions that truly map multipledepen-
dentinput signals to multipléndependentutput signals. Thus we take this approach in the
following. However, first we need to revisit the nature ofrsits.

4.2 Different Kinds of Signal

As discussed in Section 2.3, most versions of FRP cater éomtiplementation of hybrid
systems by supporting multi-kinded signals. However, ve® alaw that in single-kinded
FRP, discrete-time signals were defined in terms of contiattone signals by lifting the
signal range using an option type. This means that therdligmgpthat rules out semantic in-
felicities such as dense event occurrences: event sigiedsevevents are always occurring,
regardless of how densely the signal is sampled. This @sldte conceptual model of at-
most-countably many event occurrences. While such opyioestare typically kept abstract
to prevent the programmer from accidentally creating dewsats, it is nevertheless fairly
easy for a “mischievous” programmer to do so deliberateys Theans an implementation
cannot safely carry out optimisations that are predicateéwents occurring non-densely,
even though that is the intent.

Another problem of single-kinded signals is that some opmra need to be done in
different ways on the two kinds of signal in order to maintaémtral properties of the signal
kind in question. For example, in a typical sampled impletaton, it may be necessary to
insert or delete samples of continuous-time signals to atedietween different sampling
rates. However, for event signals, duplicating event aetwges would often be disastrous.
There may be specific versions of such operations that womlecity for events, but as
any operation that works on polymorphic signals is alsoiapple to event signals, there is
nothing to enforce that these specific operations are usgldde of the generic ones.

Furthermore, we can observe that many continuous-timealsiggre piecewise con-
stant (mainly due to their interaction with discrete-tinignsls). However, if all signals are
continuous-time signals, without any further guaranteexperties, then there is not much
that can be gained from this observation.

This is all in sharp contrast to multi-kinded FRP (such as BFfat makes a strict
distinction between continuous-time and discrete-tingaais, allowing the differences to
be used for both gaining semantic precision and better img@hation.

For reasons such as these, it is desirable to make a cleatetygdalistinction between
different kinds of signal. To this end, we have identifiecethuseful kinds of signal:

— Event Signals: These signals are only defined at an at-noosttable set of points in
time. Each point at which an event signal is defined is knowarae/ent occurrence

— Step Signals: These signals are piecewise constant. Theghaays defined, but their
value only changes at an at-most-countable set of poinimin t

— Continuous Signals: These signals are always defined.
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4.3 N-ary Signal Functions

To address the routing limitations of Unary FRP, and to datemulti-kinded signals, we in-
troducen-ary signal functions, signal functions that can have mbag tne input or output,
by defining signal functions osignal vectorgather than signals. Signal vectors are concep-
tually products of heterogeneous signals. However, natedignals doot nest: there are
never any signals carrying signals.

Now, the crucial point is that we define the different kindsiginal, and vectors of such
signals, only as an integral part of the signal-functiorti@usion: they have no independent
existence of their own and are thus completely internaligetle reactive level. This means
that the FRP implementer has great freedom in choosingseptations of signals, signal
functions, and the routing between them; and in exploitiragé choices.

4.3.1 Signal-Vector Descriptors

We begin by definingsignal-vector descriptorsA signal-vector descriptor is a type-level
value that describes key characteristics of a signal ve8ignal-vector descriptors only
exist at the type level dfl-ary FRP, and will only be used to index signal-function type

We are interested in the time domain and the type (of the sataeried by) a signal.
Thus we introduce one descriptor for each kind of signalhgerameterised on the signal
type, and a pairing descriptoto construct vectors of more than one signal:

data SVDesc Setwhere

C : Set — SVDesc -- continuous signal
E : Set — SVDesc -- event signal
S :Set — SVDesc -- step signal

_,_ : SVDesc— SVDesc— SVDesc -- product of signals

4.3.2 Signal Vectors

We now refine the conceptual definition of signals as follows:

— Continuous signals remain functions from time to value,efete.

— Step signals are modelled as an initial value, along wittmatfan from time to a finite
list of changes. These changes are represented as pairstatty(positive) time delta
and a value.

— Event signals are modelled BEaybean initial event, along with a function from time to
a finite list of event occurrences. These occurrences aregepted as pairs of a (strictly
positive) time-delta and a value.

We will refer to lists of time-delta—value pairs abange listsand to functions mapping
time to change lists ashange prefixesdMe also introduce the notatidiime’ for the set of
strictly positive time, and the synonyat for time deltas:

Time" ~ {teR | t > 0}
At = Time"

ChangelList. Set— Set
ChangelList A= List (At x A)

7 Agda notation: Infix (and more generally mixfix) functions ammhstructors are defined by underscores
denoting the positions of the arguments.
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ChangePrefix Set— Set
ChangePrefix A= Time — ChangeList A

Signal vectors are thus defined:

Sigvec: SVDesc— Set

SigVeqCA) = Time— A

SigVed EA) = Maybe Ax ChangePrefix A
SigvedSA) = A x ChangePrefix A
SigVegas bs) = SigVec as«< SigVec bs

We then refine signal functions to operate over signal vector

SF: SVDesc— SVDesc— Set
SF as bsx SigVec as— SigVec bs

4.3.3 Why Change Prefixes?

The desired properties of an event signal are that events coantably and not simultane-
ously. The change-prefix representation enforces thisliasvi

As we want our model to enforce causality, a change prefix ragjpmse to a finite list
of changesup to that point in timeCrucially, this means that at any point in time, we do
not know the times or values of future events. As we requia tihe change list is finite,
this also ensures that events are at most countable: thgreer@untably infinite events in
the limit as time tends towards infinity, but only a finite nuenlof events up to any specific
point. We use strictly positive time deltas to ensure thahéy cannot occur simultaneously.
However, a consequence of this is that the change list cappagsent an event at the first
point in time (which we will refer to henceforth &isng)), and so we pair it with &Maybe
value to represent the possibility of an initial event.

The definition of step signals is the same idea, but with thenghk list representing
changes of the signal value, rather than event occurretregisad of the possibility of an
initial event, a step signal always has an initial value.

However, there are some required properties that chan@i@geelo not enforce. First,
we want to ensure that the change list produced by a chan{ie isra prefix of all change
lists produced at future sample times (intuitively, higtarust not be “rewritten”). We say
that a change prefix istableif it has this property. Second, the change list produceadhat a
sample time must not extend beyond that sample time (imélytiit must not “see into the
future”). We say that a change prefixdsntainedif it has this property. We could incor-
porate these properties into the change-prefix data steydbut that would substantially
complicate the definitions in this paper. Thus, we state thera as side conditions that are
required to hold for all change prefixes in our mddel

Stable: {A : Set} — ChangePrefix A~ Set
Stable cp= {ty t : Time} — (t1 < tp) — (cpt = takelncly (cptr))

Contained: {A : Set} — ChangePrefix A+ Set
Contained cp= {t : Time} — (lastChangeTimécpt) < t)

The definitions otakelnclandlastChangeTimean be found in Appendix A.

8 Agda notation: We are working in dependent-type theory [#8jere a proposition is represented as a
type Se). The elements of that type are the proofs of the proposithors to prove a proposition, one has to
produce an inhabitant of that type. Henlieie is represented by the unit type, aRalseby the empty type.
We can refine the domain of a function by requiring a proof thatargument meets some condition. For
example(t; < tp) is atype the elements of which are proofs thais indeed less than.
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Fig. 1 Routing Primitives

5 N-ary FRP

An FRP language consists of a set of primitives: signal fionst signal-function combina-
tors, and lifting functions that convert pure functionsoisignal functions. FRP programs
are constructed by using the combinators to compose thetpenand lifted signal func-
tions into signal-function networks. The key point abowgg primitives is that they only
allow the construction of signal functions that respectateceptual model.

In this section we first introduce the primitives fary FRP, giving their definitions at
the conceptualevel. We then demonstrab-ary FRP programming by defining some new
combinators and signal functions using those primitives.

The utility functions we use in our definitions can be foundAppendix A. When the
(conceptual) definition of a signal function is particwarerbose, we give only its type and
relegate the definition to Appendix B.

5.1 Routing Primitives

As previously discussed, we wish to express all routing atréactive level. To this end,
there is a set of combinators and primitives that exist gglrouting purposes. All routing
should be expressed using these primitives (as opposdtirig liouting functions from the
functional level) so that an implementation can fully explbis information.

Let us reiterate: we do not expect emplementatiorof FRP to be structured in a way
that corresponds directly to the conceptual definitionswehll that is required is that the
semantic®f the implemented routing corresponds to our conceptualeho

The routing primitives can be divided into: those fmyclic static routing switching
combinatorswhich add the capacity for dynamism; afegtdback combinatorsvhich add
the capacity for cyclic networks.

5.1.1 Acyclic Static Routing

We can define all acyclic static routing at the reactive leighg five primitivesidentity,
sfFst sfSnd >> and &&. These primitives can be represented graphicafiysleown in Fig.
1. This set of primitives is minimal in the sense that any #cystatic network structure
can be described by them, yet none of these primitives caretiged in terms of the other
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four. There are of course other sets of minimal combinatwas ¢an likewise express such
routing. In Section 5.4.1 we demonstrate the expressigeokthese primitives by using
them to define several other routing combinators.

We begin with the identity signal function:

identity : {as: SVDes¢ — SF as as
identity ~ A as — as

The projection signal functions extract the first or secamthjgonent of a signal vector:

sfFst: {as bs: SVDes¢ — SF(asbs) as
sfFst~ fst

sfSnd: {as bs: SVDes¢ — SF(as bs) bs
sfSnd~ snd

The sequential-composition combinator composes two kfgnations:

_>>_: {asbscs SVDes¢ — SF as bs— SF bscs— SFascs
sfi > sh ~shosh

The fan-out combinator applies two signal functions to e input in parallel:

_&88& _ : {asbscs SVDes¢ — SF as bs— SF as cs— SF as(bs cs)
sh &&& sf; ~ A as— (sh assf, as)

5.1.2 Switching

One of the main things that sets FRP apart from the syncheodata-flow languages is its
highly dynamic nature. Yampa, for example, provides a farofl switching combinators
that operate on signal functions. New first-class signattions can be created, and first-
class signal functions can be switched in to replace runsigngal functions. Running signal
functions can be “frozen” (transformed back into first-slastities, maintaining any internal
state), removed from the network, and then later switchedyain if desired. [27]

There is a similar family of switching combinators Mrary FRP, but in this paper we
present only one as a primitive:;

switch: {as bs: SVDes¢ — {A: Sett — SFas(bsEA) — (A — SFasb$ — SFasbs

Informally, the behaviour oBwitchis to apply the subordinate signal function (the first
explicit argument) to the input signal. The first componeinthe subordinate’s output is
emitted as the overall output until there is an occurrencthénevent signal (the second
component of the subordinate’s output). The switching fiomc(the second explicit argu-
ment) is then applied to the value of that event to producesidual signal function. This
residual signal function is then applied to the input sigstdrting at the time of the event
occurrence, and henceforth the overall output is taken fremesidual signal function.

The formal definition ofswitchover signal vectors is somewhat involved in our con-
ceptual model, but to give the idea we define the specialiasd of one continuous output
signal. The full definition can be found in Appendix B.

switchC: {as: SVDes¢ — {AB: Sett — SFas(CB,EA) — (A — SF as(CB)) — SFas(CB)
switchC sf fa~ A sat — let (s,%) = sf s
in casefstOcc g t of
nothing — St
just (te,e) — (f e) (advancedsa) (t —te)
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The key point here is that the residual signal functibe)(only “starts” at the moment of
switching. Thus we have to “advance” (time-shift) the ingigihal so that the residual signal
function can only observe the input signal after the switctuos. Furthermore, we modify
the sampling time to match this time shifting, so that thédwe signal function does not
examine the future of the advanced signal.

Note that this differs from the CFRP switching combinatarse( Section 3.3), which
had signal generators and start times. Here, each signaidans running in its owrocal
time and thus always starts at (loctihey.

Definition 2 (Local Time) The time since a signal function was applied to its input sig-
nal. This will have been either when the entire system staxde when the sub-network
containing the signal function in question was switched in.

5.1.3 Feedback

Animportant facility in FRP (and synchronous data-flow gaiig) is to be able to introduce
feedback into a network. However, when doing so, one has takeful not to introduce ill-
defined feedback that could cause an implementation to lbemaime. Ideally, one wants
a language that disallows ill-defined feedback, withoubesifg conservative restrictions
on the well-defined feedback.

We have considered this issue in earlier work [37], but ferghrposes of this paper we
will concentrate only on acyclic networks, and so do not ging feedback combinators.
We discuss feedback further in Section 10.

5.2 Primitive Signal Functions

In this section we give the primitive signal functions, alamith their conceptual definitions.
In some cases, the definition of a signal function differs mvapplied to (or producing)
different kinds of signals. We define a separate versionettgnal function for each such
signal kind. In an implementation, some form of overloadmngchanism would probably
be employed on top of these.

We begin with a signal function that emits constant output:

constantS {as: SVDes¢ — {A: Sett - A — SFas(SA)
constantS av const(a, const|])

Note thatconstantSs polymorphic in its input signal-vector descriptor. Asdissed in Sec-
tion 2.2, this is the way of embedding what are really sigealegators into signal functions.
That is,constantSs a generator of constant step signals.

Similarly, the primitiveneverandnoware also embedded event-signal generators:

— nevergenerates an event signal with no event occurrences;
— nowgenerates an event signal containing exactly one eventrecme atimey.

never: {as: SVDes¢ — {A: Sett — SFas(EA)
never= const(nothing,const[])

now: {as: SVDes¢ — SF as(E Unit)
now = const(just unit, const|])

We can mediate between event and step signals bsiltbgandedge
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— hold emits a step signal carrying the value of its most recenttiepent;
— edgeemits an event whenever the value of the Boolean input stgralschanges from
false to true:

hold : {A: Sett - A— SF(EA) (SA)

hold a = first (fromMaybe &

edge: SF(S Bool) (E Unit)

edge~ A (b,cp) — (nothing,edgeAux v cp)

where

edgeAux Bool — ChangeList Bool» ChangeList Unit
edgeAux.  [] =]
edgeAuxrue ((—,b)  :: dbs) = edgeAux Bbs
edgeAuxalse ((_,false) :: dbs) = edgeAuxalse dbs
edgeAuxalse ((,true) :: dbs) = (4, unit) :: edgeAuxrue dbs

We can integrate a real-valued step or continuous signhlnegtpect to time. The output
of such an integration is always a continuous signal. Naewile an implementation will
only be able to approximate the integral of an arbitrary itw@us signal, it can compute
the exact integral of a step signal:

integralS: SF(SR) (CR)
integralC : SF(CR) (CR)
integralC~ A st; — j'él (st)dt

The signal functiorwhenapplies a predicate to a continuous input signal, produaing
event occurrence as output whenever that predicate chémgesalse to true. Note that,
as withedge this is only at the moment of change: another event will reziuo until the
predicate has ceased to hold and then becoemeeagain.

when: {A: Sett — (A — Bool) - SF(CA) (EA)

The delay primitives delay a signal vector by a specified amount of tihete that in
the case of continuous and step signals, we have to inditlies signal for the delay period:

delayE: {A: Sef} — Time"~ — SF(EA) (EA)

delayE d~ A (macp) — (nothing,delayCP d ma cp

delayS: {A: Sett — Time" — A — SF(SA) (SA)
delaySda~ A (a,cp) — (ap,delayCP d(just a;) cp)

delayC: {A: Sef — Time" — (Time— A) — SF(CA) (CA)
delayCdf~ Ast— ift < dthenf telses(t —d)

Finally, to allow us to combine step and continuous signved¢sprovide a coercion signal
function that converts a step signal to a continuous signal:

fromS: {A: Sett - SF(SA) (CA)
fromS~ valS

5.3 Lifting Functions

There is a family of lifting functions that allow us to lift p&i functions from the functional
level to the reactive level in a pointwise fashion:

9 Up to the limit of the underlying numeric representation, tgly floating-point numbers.
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iftC : {AB: Sett — (A — B) — SF(CA) (CB)

liftC f ~ mapC f

lifts : {AB: Sett — (A— B) — SF(SA)(SB)

liftS f ~ mapS f

liftE : {AB: Sett — (A — B) — SF(EA) (EB)

liftE f ~ mapE f

liftC2 : {ABZ:Sett - (A—B—Z) - SF(CACB)(CZ)
liftC2 f ~ uncurry(mapC2 f)

liftS2: {ABZ: Sett — (A— B — Z) — SF(SASB)(S2)
liftS2 f ~ uncurry(mapS2 §

We have deliberately omittdiftE2, because the intended meaning of such a combinator
is not obvious. Consider: there are two input event sigraaid,one output event signal. At
any point in time, if there is no occurrence on either inpghal, then there shouldn’t be an
occurrence on the output signal. And if there are event eenges on both input signals,
then it seems reasonable that there should be an event ecceron the output. But what
about the case when there is an event occurrence on one igpat and not the other?
Should there be an event occurrence on the output or not?

To address this question, we define two separate primitimesgeand join. The be-
haviour ofmergeis to produce an event occurrence when either input has amreoce; the
behaviour ofoin is to produce an event only when both inputs have an eventierme:

merge: {ABZ:Set - (A—2Z) - (B—~2Z)—- (A—B—2Z) - SF(EAEB)(EZ2)
merge fa fb fab~ uncurry (mergeE2 fa fb fap

join: {ABZ: Sett — (A— B — Z) — SF(EAEB) (EZ)

joinf ~ uncurry(joinE2 f)

Finally, sampleWithmerges event signals with continuous or step signals, gingwan
output event occurrence exactly when there is an occur@méee input event signal:

sampleWithC {ABZ: Sett - (A - B — Z) —» SF(CAEB) (EZ)
sampleWithC f~ uncurry (mapCE )

sampleWithS {ABZ: Seff - (A — B — Z) — SF(SAEB) (E2)
sampleWithS &= uncurry (mapSE j

5.4 Examples

Having introduced the primitives dfi-ary FRP, we will now write som&l-ary FRP pro-
grams using those primitives. We are no longer working attreeptual level: thus signal
functions are now abstract, and signals do not exist.

5.4.1 Additional Combinators

We begin by defining some useful routing combinators (shawkig. 2):

toFst: {asbscs SVDes¢ — SF as cs— SF(asbs) cs

toFst sf = sfFst >> sf

toSnd: {as bs cs SVDes¢ — SF bs cs— SF(asbs) cs

toSnd sf= sfSnd>> sf

_xwx_ : {asbscsds SVDes¢ — SF as cs— SF bs ds— SF(as bs) (cs ds)
sk #xx sf, = toFst sf && toSnd sf
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Fig. 2 Additional routing combinators

sfFirst : {as bs cs SVDes¢ — SF as bs— SF(ascs) (bs,cs)
sfFirst sf = sf x«x identity

sfSecond {as bs cs SVDes¢ — SF bs cs— SF(asbs) (ascs)
sfSecond sf= identity s sf

sfFork: {as: SVDes¢ — SF as(as as)
sfFork = identity&&& identity

sfSwap: {as bs: SVDes¢ — SF(as bs) (bs as)
sfSwap= sfSnd8&& sfFst

fanoutFirst: {as bs: SVDes¢ — SF as bs— SF as(bs as)
fanoutFirst sf = sf && identity

fanoutSecond {as bs: SVDes¢ — SF as bs— SF as(as bs)
fanoutSecond st= identity88& sf

We also define a switching combinator calsitchWherthat will be convenient later:

switchWhen {as bs: SVDes¢ — {A : Set}
— SFasbs— SFbs(EA) — (A — SFasb$ — SF asbs
switchWhen sf sfe= switch(sf >> fanoutSecond sfe

Roughly,switchWheris the same aswitch except the subordinate signal function has been
split into two: one to produce the output and one to produeeetfent. You can consider
switchWherio be aswitchspecialised to the case where:

— the event that causes the switch to occur only depends orutpatmf the subordinate
signal function, and
— the output of the subordinate signal function does not deéperthe event.

Notice that we did not use the functional level in any of thdsénitions—the set of
routing primitives is sufficient. This is key: as discussedSiection 3.5.2, it is one of our
objectives to express all routing at the reactive level.
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Fig. 3 A signal-function network modelling falling balls

5.4.2 Simple Signal Functions

Let us construct some simple signal-function networkstkie define a signal function that
outputs the current local time by integrating the constant 1

localTime: {as: SVDes¢ — SF as(CR)
localTime = constant >> integralS

Next we define a signal function that emits a single event aftgpecified amount of time
has passed:

after : {as: SVDes¢ — Time — SF as(E Unit)
aftert = now >> delayE t

When working with continuous signals, it is useful to progwonstant continuous signals:

constantC: {as: SVDes¢ — {A: Seft - A — SFas(CA)
constantC a= constantS as> fromS

Finally, we define initialised versions of the integratidggrsl functions:

iintegralS: R — SF(SR) (CR)
ilntegralS x = integralS >> liftC (+ X)

ilntegralC : R — SF(CR) (CR)
ilntegralC x = integralC >> liftC (+ x)

5.4.3 Bouncing Balls Revisited

The example signal-function networks we have seen so far begn static in structure. As
an example of a dynamic network, we will revisit the boundiadjs example from Section
3.4. We will reuse the definitions from the functional levie¢ (those that do not contain
Eventsor Behaviour, but replace the reactive level definitions (i.e. thosé diog.

We begin by defining a signal function to model a falling ball:

falling : {as: SVDes¢ — Ball — SF as(C Ball)
falling (h,v) = constant§—g) >> ilntegralS v > fanoutFirst(ilntegralC h) >> liftC2 (,)

For this signal function, the code is less clear than its ClgRivalent. You may find
the graphical representation in Fig. 3 helpful. In YampageR@n’s arrow notation [33]
is used for signal functions such as this to make the codessl§z/] (and we would expect
an implementation oN-ary FRP to provide similar notation). However, the defons of
bouncingBal] elasticBallandinelasticBallclosely follow those of CFRP:

detectBounce SF(C Ball) (E Ball)
detectBounce= when detectimpact
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bouncingBall: {as: SVDes¢ — (Ball — SF as(C Ball)) — Ball — SF as(C Ball)
bouncingBall f b= switchWherifalling b) detectBounce f

elasticBall: {as: SVDes¢ — Ball — SF as(C Ball)
elasticBall = bouncingBall(elasticBallo negateVel

inelasticBall: {as: SVDes¢ — Ball — SF as(C Ball)
inelasticBall = bouncingBall(A — — constantC0,0))

Finally, we add the capacity for the ball to be reset:

resetBB: (Ball - SF(E Ball) (C Ball)) — Ball - SF(E Ball) (C Ball)
resetBB f b= switch(fanoutFirst(bouncingBall f b)) (resetBB f

This signal function is much easier to defineNrary FRP than CFRP. Primarily, this is
because of the modular nature of signal functions. They aranpeterised on their input,
and so we can define a signal function that receives input dotside theswitch thereby
allowing us to retain (rather than resetting) the input algvhen the switch occurs. In CFRP
therunninglnprimitive was required to achieve this.

6 FRP Optimisation

In order to be reactive (delivering timely responses), aRy kmplementation must be dis-
cretely sampled. Consequently, if notionally continutiose signals are provided, a con-
crete implementation can only approximate the ideal seicgant

However, we aim to make the approximation as faithful asiptessHere, the semantic
distinction between different kinds of signals helps. Ascdssed in Section 4.2, we can
statically rule out certain uses of signals by making thel&imanifest in the type system.
This allows employing an implementation strategy that israpriate for a specific kind of
signal, but which would have risked breaking the abstrastioad said uses not been ruled
out. Moreover, this also opens up opportunities for sidiadi—specific optimisations.

In this section, we first briefly review the two basic FRP inmpémntation strategies. We
then discuss the archetypal optimisation opportunitieswaeld like to identify in an FRP
system, as a background and motivation for the signal fangiroperties in the next section.

6.1 Basic FRP Implementation Strategies

An FRP instance typically employs eitherpall-based(demand-driven) opush-based
(data-driven) implementation approach [14].

A pull-based approach repeatedly samples the output signvalr a sequence of time
steps, recomputing every signal at each step. This is a ggwoach for signals that change
often, as is common for continuous-time signals. In faa, tore frequent the changes,
the more efficient this approach. However, signals that gaamly rarely have their value
unnecessarily recomputed repeatedly. This is inefficindtszales poorly, as the amount of
work is proportional to the number of signals, not to the algctivity.

In contrast, a push-based approach only recomputes sighels the signals they de-
pend on change. This is a natural fit for discrete-time sgnahen nothing changes, no
updates are needed. However, in FRP there are signals tpetdl®n time (and can thus
change even if their inputs do not), as well as continuowg-8ignals that change frequently,
often at every sample step. The former implies that justtimeg¢o external events is not
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enough. The second, that there can be a substantial oveitreasding a push-based ap-
proach for continuous-time signals as the costs assoawgtadpushing are incurred very
frequently.

Ideally, one would like to employ both strategies seledyive reap the benefits of each.
A solid understanding of how change works in signal functietworks is a good first step
in that direction.

6.2 Optimisation Opportunities

For most networks, many signals will be unchanging for sigant periods of time, with

changes occurring sparsely compared to the sampling ratexod like an implementation

to be able to optimise as much as possible based on this,witiheaking any abstractions.
There are three archetypal ways in which we can optimiserabkfgnction network:

— Eliminate any signal function whose output is not used.
— Avoid recomputation of signals whose values will never gean
— Apply a change-propagation execution scheme (where valid)

For the first, we need to keep track of which signals are use@nGhe dynamic nature of
FRP, and the combinator style used to construct networksyéry common for signals to
be used for a while, but then later ignored. Often, the sifadtion that produces them is
still in the network, and consequently being executed. Tawasuch signal functions to be
garbage collected we need to track signal functions thabdase their inputs, as from that
we can determine which signals are not used.

For the second, we need to know that a signal will not changeypoint in the future.
If that is the case, then we can just compute the value of trebkbnce, and then employ
constant propagation.

For the third, we need to identify which signal functions speh that their output will
not change unless their input does. Then, when executimg Know that the input has not
changed, we can avoid recomputing the output.

By identifying the three different kinds of signals, we caamnprecisely track the prop-
erties of signals and signal functions, and hence are ablegly more precise optimisations.
For example, we know that continuous signals are likely talla&ys changing, no matter
how rapid the sampling rate. On the other hand, step sigeatsto change only sparsely,
and are thus likely to benefit greatly from change-propagatiptimisations. By combin-
ing this knowledge with knowledge about how signal functi@me affected by change, it
becomes possible to select appropriate implementatiooptiwisation strategies in a fine-
grained manner.

7 Properties of Signals and Signal Functions

In this section we define some properties of signals and kfgnations that could be ex-
ploited by an implementation to enable the optimisatiorggested in Section 6.2. As many
of the definitions in this section refer to time-varying peojes, we first introduce some
combinators frontemporal logic[22, 38] to simplify the definitions.
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7.1 Temporal Logic

First we introduce a type of temporal predicate:

TimePred= Time — Set

We then define pointwise versions of the standard logicalaipes°:

_V_: TimePred— TimePred— TimePred
vyt =¢tuyt

_A_ : TimePred— TimePred— TimePred
APt =ptxyt

_=_: TimePred— TimePred— TimePred
(p=v)t=9t— Yt

—_: TimePred— TimePred

(m¢)t = ¢t — False

We now introduce two unary temporal operatdB(Global) andH (History). They
should be read as “at all points in the future” and “at all p®in the past”, respectively:

G : TimePred— TimePred
(Go)t= (' :Timg —» (' >t) > ¢t
H : TimePred— TimePred
Ho)t= (' :Timg —» (' <t)— ¢t

Notice that the definitions o6& andH exclude the current time. However, we can define
reflexive variants that include the current time:

G' : TimePred— TimePred

G'p=¢AGo
H' : TimePred— TimePred
H¢ =¢pAHO

We next introduce the synonyBetweenas an aid to defining further temporal opera-
tors.Betweend ¢ t; should be taken to mean thfatholds over the interve(to, t1):

Between Time — TimePred— Time — Set
Betweendg¢t; = (t: Timg — (to <t) = (t < t1) > @t

We will now define some binary temporal operators. We begih Bi(Sincg. ¢ Sy
should be read agp‘sincey”, and should be taken to mean that there is a point in the past
at whichy held, andp has held since that point:

_S_: TimePred— TimePred— TimePred
(pSY)t = ZTime(At — (' < t) x Yt x Between't¢ t)

Our next binary operator ¥/ (Wait For or Weak Unti). ¢ W ¢ should be read asf*
waits for ", and should be taken to mean thfatvill hold until ¢ holds:

_W_: TimePred— TimePred— TimePred
(¢ W)t = G (Betweent— ) = Betweent)t

Note that the definition db requires thaty must have held at some point in the past, whereas
W does not requirg to ever hold.

10 Agda notationw is the Agda sum type, see Appendix A.
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Our final operator is a reflexive variant @f that requiresp to hold at the current time
if ¢ does not:

_W'_: TimePred— TimePred— TimePred
W Y=gV (dA(PWY))

We now define some functions for introducing and eliminatengporal predicates. We
can eliminate a temporal predicate by requiring it to holdlgpoints in time:

Always: TimePred— Set
Always¢ = (t: Time — ¢t

We can introduce a temporal predicate by requiring the te$al time function to equal its
result at a specified point in time:

EqualAt: {A: Sett — (Time— A) — Time— TimePred
EqualAtftt = ft=ft

7.2 Change

As previously discussed, many of our optimisations rely @me notion ofchange How-
ever, most obvious definitions of change are implementap@cific. In a sampled imple-
mentation, an obvious definition would be to say that a sidpaal changed if its current
sample differs from its previous sample. This would makessefior continuous signals,
but not for events which are supposed to occur in isolatiovo @djacent identical event
occurrences should be two changes, not a lack of change.isThlso specialised to the
implementation; in our conceptual model there is no notidtinoe samples.

Consequently, we use a more precise definition of changedbpects the conceptual
model of multi-kinded signals:

Definition 3 (Signal Change)At any given point in time, a signal is eithehangingor
unchangingexclusively):

— A continuous signal isnchangingat a timet iff there exists a non-empty closed interval
bounded to the right biyover which the signal remains constant.

— An event signal isinchangingat all points in time at which there is no event occurrence.

— A step signal ichangingattimey (see Section 8.5) and at all points in time at which it
assumes a new value. Ituschangingat all other points.

— A signal vector isunchangingf all signals in that vector arenchanging

UnchangingC: {A : Set} — SigveqC A) — TimePred
UnchangingC s t= ((EqualAts} S (EqualAts})t
UnchangingE: {A : Set} — Sigved E A) — TimePred
UnchangingEmacp)t | t == 0 = IsNothing ma

| t > 0 = IsNothing(lookupCP cp}
UnchangingS {A: Sett — SigveqS A) — TimePred
UnchangingS_,cp) t| t == 0 = False

| t > 0 = IsNothing(lookupCP cp}
Unchanging: {as: SVDes¢ — Sigvec as— TimePred
Unchanging{C _} s = UnchangingC s
Unchanging{E _} s = UnchangingE s
Unchanging{S _} s UnchangingS s
Unchanging{ —, -} (s,2) = Unchanging A Unchanging s
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Changing: {as: SVDes¢ — SigVec as— TimePred
Changing s= — (Unchanging $

The definition forUnchangingCcan be read as: “There was a point in the past such that the
value of the signal was equal to the current value of the ignd since that point they have
remained equal.”

Having defined what it means for a signal tolbehangingat an arbitrary point in time,
we can use the temporal-logic combinators to express thEepsothat a signal will remain
unchanginchenceforth. We define two variants of this property, one xefée one not:

Definition 4 (Changeless SignaljVe say that a signal shangeles# it will be unchanging
at all future points in time:

Changeless {as: SVDes¢ — SigVec as—+ TimePred
Changeless s= G (Unchanging $

Definition 5 (Reflexively Changeless SignalVe say that a signal igflexively changeless
if it is unchanginghow, and will remairunchanginghenceforth:

Changeless: {as: SVDes¢ — Sigvec as— TimePred
Changelesss = G (Unchanging $

7.3 Signal-Function Properties

In this section we define some properties of signal functibasare useful for optimisation.
We will define both time-invariant properties (those thalt aliways hold), as well as time-
varying properties. The former are suited to static opttids, whereas the latter present
opportunities for dynamic optimisation.

7.3.1 Time-Varying Equality

To express some of the properties in this section we willirecupointwise temporal equal-
ity of signal vectors. To achieve this, we definBampleof a signal vector, which represents
its value at a single point in time:

Sample: SVDesc— Set

SamplgCA) = A

SamplgEA) = Maybe A

SamplgSA) = A

Samplgas bs) = Sample as< Sample bs

We then define a functioat that computes this sample, given a time point:

at: {as: SVDes¢ — SigVec as—+ Time — Sample as
at{C_}s t=st

at{S_}s t= valSst

at{E_}s t=occst

at{_,-} (s,%)t = (atgtatst)

The pointwise equality that we need is then defined as a teahpaedicate that holds at any
given point in time if the samples of the two vectors are equal

_=s :{as: SVDes¢ — SigVec as— SigVec as— TimePred
(ss=so)t=atgt=atst
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7.3.2 Time-Invariant Properties

To begin, we formally define the causality property from &etp.2:

Causal: {asbs: SVDes¢ — SF as bs— Set
Causal{as} sf = (3 s : Sigvec ag — Always(H" (5 =s) = (sf 3§ =ssf 9))

Some signal functions are such that their output at any poitime only depends on
their input at that same point in time. These are knowstatelessignal functions:

Definition 6 (Stateless Signal Functionj signal function isstatelessf, at any given time,
its output can depend upon its current input, but not its pagiture inputs:

Stateless {as bs: SVDes¢ — SF as bs— Set
Stateles§as} sf = (s s : Sigvec ap — Always((s =s) = (sf 3§ =ssf 9))

Signal functions are often implemented as having an intestiase, in which they store any
required information about past inputs. Thus the systens da¢ have to record globally
all past signal information; each signal function will faxhat it requires. It is this com-
mon implementation choice that leads to the natagefulfor signal functions that require
such a state, anstatelesgor those that do not. In other settings, the tesaguentialand
combinatorialare used for the same notions, respectively.

Another interesting property of signal functions is wheitiey aredecoupledr not:

Definition 7 (Decoupled Signal Function)A signal function isdecoupledf, at any given
time, its output can depend upon its past inputs, but notrésemt and future inputs:

Decoupled: {as bs: SVDes¢ — SF as bs— Set
Decoupled{as} sf = (s : Sigvec ap — Always(H (s =s ) = (sf § =ssf 9))

A decoupledsignal function is a special case of the more general notfanamntractive
function. Identifying decoupled signal functions is peutarly useful as they can be used in
feedback loops to guarantee well defined feedback (see8exi) [37].

7.3.3 Time-Varying Properties

So far, the signal-function properties we have consideagd been time-invariant: they have

held for the entire lifetime of the signal function, and vabntinue to do so eternally. How-

ever, we now consider some time-varying properties of sigmections. These properties

may come to hold at some point during execution, usually a@saltrof structural switches.

These properties are valuable because they identify appitigs for run-time optimisations.
We begin withsourcessignal functions that ignore their input:

Definition 8 (Source Signal Function)A signal function is aourceif its current and future
outputs do not depend on its current or future inputs:

Source: {as bs: SVDes¢ — SF as bs— TimePred
Source{as} sft = (5 : Sigvecag— (H (s =s2) = G' (sf g3 =ssf 9))t

This is a time-varying property becauseurcescan arise dynamically; typically as a result
of switching in asource

We next overload thehangelesandreflexively changeleggoperties from signals onto
signal functions:
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Definition 9 (Changeless Signal FunctionA signal function ischangelessf its output
signal ischangeless

Changeless {as bs: SVDes¢ — SF as bs— TimePred
Changelesgas} sf t = (s: Sigvec ay — Changelesssf 9 t

Definition 10 (Reflexively Changeless Signal Functionh signal function isreflexively
changeles§ its output signal igeflexively changeless

Changeless: {as bs: SVDes¢ — SF as bs— TimePred
Changeless{as} sf t = (s: Sigvec ag — Changeless(sf 9t

Finally we define two very similar propertieshange propagatingndchange depen-
dent Change propagatings the stronger property, but for our suggested optimisatio
change dependemtill be sufficient (see sections 8.2 and 8.4).

Definition 11 (Change-Propagating Signal FunctionA signal function ischange propa-
gatingif, now and henceforth, its output will henchangingvhenever its input isinchang-
ing:

ChangePrp: {as bs: SVDes¢ — SF as bs— TimePred

ChangePrp{as} sf t = (s: Sigvec as — G" (Unchanging s= Unchanging(sf g)) t

Definition 12 (Change-Dependent Signal Functionf signal function ischange depen-
dentif its output will beunchanginguntil its input ischanging

ChangeDep {asbs: SVDes¢ — SF as bs— TimePred
ChangeDef as} sf t = (s: SigVec ay — (Unchanging(sf s W' Changing $t

Note thatchange dependemiffers from our other properties in thatchange-dependent
signal function may cease to lohange dependerm the future. This can only happen if
a structural switch occurs within ttehange-dependesignal function. Thus, if @hange-
dependensignal function contains no switching combinators, theés élsochange propa-
gating

7.3.4 Implied Properties

Many of the signal-function properties imply others difgctVe list these implications be-
low, omitting those that follow from transitivity.

Note that for clarity of presentation we will usually omit antification of variables
when giving implications. In these cases, any free var@abl®uld be assumed to be univer-
sally quantified at the top level. Also, note that the difigrnotation is due to some of the
properties being time-varying, and some time-invariant.

Stateless st Decoupled sf— Causal sf

Changelesssf = Changeless sf
ChangePrp sf = ChangeDep sf
Changelesssf = ChangePrp sfA Source sf

ChangeDep sh Source sf = Changelesssf
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7.3.5 Properties of Primitives

All of the primitive signal functions we have defined aausal This is required so that our
signal functions can be realised by an implementation. Thergroperties that hold for the

primitives are as follows:

— Statelessidentity, sfFst sfSndconstantnever lift, mergejoin, fromS sampleWith

Decoupled constantnevet now, integral, delay
— Source constanfnever now

— Changelessconstantnever now

— Changeless never

— ChangePrpidentity, sfFst sfSndnever hold, edgelift, mergejoin, fromS when sampleWith
— ChangeDepidentity, sfFst sfSndnever hold, edgelift, mergejoin, fromS when sampleWith

Note that for families of primitives that share the same prtips, only the family name has
been given (e.glelayrather thardelayC delayE delay$.

7.3.6 Properties of Combinators

The three primitive combinatorss¢, 8& and switch preserve the properties of their con-

stituent signal functions as follows

Causal sf x Causal s§
Stateless sf  x Stateless sf
Decoupled sf W Decoupled sf
Source sf V Source sf
Changeless sf

Changelesssf,
ChangePrp sf A ChangePrp sf
ChangeDep sf A ChangeDep sf

Causal sf x Causal s§

Stateless sf  x Stateless sf

Decoupled gf x Decoupled sf

Source sf A Source sf

Changeless sf A Changeless sf
Changelesssf; A Changelesssf,
ChangePrp sf A ChangePrp sf
ChangeDep gf A ChangeDep sf

Causal sf x (V{e} — Causal(f e))
Decoupled sf x (V {e} — Decoupledf e))
Source sf A (At — V{e} — Sourcef ) t)

(
ChangePrpsf A (At — V {e} — ChangePr(f e) t)

ChangeDep sf
Changelesssf

— Causal(sf >> sfy)

— Statelesgsh >> sfy)

— Decoupledsf >> sh)

= Source(sf >> sh)

= Changeless$sf >> sf,)
= Changeless(sf >> sh)
= ChangePrp(sfi >> sh)
= ChangeDefsf >> sh)

— Causal(sf && sh)

— Statelesgsf 88& sf)

— Decoupledsf 8& sf)

= Source(sh && sf;)

= Changeles$sf 88& sfy)
= Changeless(sf && sf;)
= ChangePrp(sf && sf)
= ChangeDefisf &8& sf)

— Causal(switch sf 1)

— Decoupled switch sf f)
= Source(switch sf )

= ChangePrp(switch sf f)
= ChangeDegswitch sf 1)
= Changeless(switch sf f)

The quantification over the event)(in the temporal predicates requires us to explicitly
route through the time argument, rather than it being hahotiglicitly by the temporal

combinators.

Notice that most of the properties are only preservedwitchif the residual signal
function also has that property. As the residual signal ioncis computed dynamically
by a host-language function, the implementation has veilg knowledge of this signal
function. Consequently, optimisations based on theseeptieg are limited. We return to

this in Section 8.7.

11 Agda notation: Th&/ { e} is shorthand for the universal quantification of implicit amgents whose type

can be inferred automatically.
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However, thereflexively changelessndchange-dependemptropertiesare preserved by
switch Intuitively, this is because a structural switch cannatuwaintil the subordinate sig-
nal function emits an event (a change). This will never odoura reflexively changeless
signal function, and thehange-dependemroperty only guarantees the output to remain
unchanging until the input changes. Thus optimisation dfchwes based on these two prop-
erties is much more feasible, as no information is requibeaiathe residual signal function.

Finally, the interaction between properties gives riséntofollowing implications:

Changeless sf A ChangePrp sf = Changelessgsfy >> sf,)
Changelesssfi A ChangeDep sf=- Changeless(sf >> sf)

8 Suggested Optimisations

In this section we overview the change-based optimisatibasare possible on a signal-
function network. We do not discuss howitoplemenisuch optimisations, as that depends
on the details of the specific FRP implementation involvesm8 optimisations would no
doubt be more applicable for some implementations tharrsithe

We describe many of the optimisations in this sectiors@sic that is, they can be
applied at compile time. A common way to implement signaktions is as state transition
functions in a data-flow network. Such functions execute avdiscrete sequence of time
steps, mapping an input sample and state to an output samgplstate at each step. Each
signal function maintains an internal state, rather thanmg on a global state. In this style
of implementation, our static optimisations could also ppli®d dynamically (at run-time)
after each structural switch in the network, as new optitiiea may be possible for the
new network configuration. The capacity for dynamic optatien is the reason that many
of our properties are time-varying: they allow for optintieas that are only valid at certain
points in time.

8.1 Eliminating Unused Signal Functions

Any signal function whose output signal is not used can baielted. This could arise ei-
ther because the signal is eliminated by routing primit{zesd thus never reaches another
signal function), or because all signal functions that diee it aresources This is essen-
tially reactive-level garbage collection, exploiting g@perties of our routing combinators
and signal functions to identify these unused signal femsti This is a static optimisation,
because we know that, except at the moments of switchings wié be no change in which
signals are used.

The latest version of Yampa [10,26] uses this technique teesdegree, but is limited
by the Unary FRP model. As discussed in Section 4.1, mucheofdhting of the arrow
framework is carried out by lifted pure functions, hiding ttouting from the reactive level.

8.2 Compressing Changeless Signals
If a signal isreflexively changelesthen we know it is constant. Repeatedly recomputing a

constant value (in a pull-based implementation) is a waSt®mputational resources and
should be avoided. As a static optimisation, the signal @odmpressed (i.e. compute the
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value and then discard the signal function that computeanit)then constant propagation

applied. This, in turn, could cause other signal functianbeécomesources As achange-

dependent sourds reflexively changelesthis could lead tehange-dependestgnal func-

tions becomingeflexively changelesand thus present further optimisation opportunities.
In terms of the implications from Section 7.3:

Changelesssfy A ChangeDep sf=- Changeless(sf >> sh)
ChangeDep sf A Source sf = Changeledssf

8.3 Switch Elimination

We can eliminate switching combinators that will never stibut the subordinate signal
function. This will sometimes occur as part of the aforerimer@d optimisation to compress
changeless signals, but only in the case that the outpuedduhordinate signal function is
reflexively changeless

However, there is another static optimisation that can diebéf we know that the event
signal produced by the subordinate signal functioswitchis reflexively changelesghen
we know that the subordinate signal function will never bétclved out. Consequently, a
valid optimisation is to remove thewitchcombinator and replace it with the subordinate
signal function, discarding the event signal.

Changeless(snd(sf g) = G ((switch sf ) s =5 (sf >> sfFsi s)

Eliminating switching combinators can be considerablydfieral, as they often obstruct
other optimisations (such as causal-commutative-arrawnigation [25]).

8.4 Change Propagation

The motivation for change propagation optimisations i$ tha output of a signal function
may often beunchangingover a period of time, often as a consequence of its inputgbein
unchanging The idea is to identify where this is the case, and then nmimgute that
unchanging output. This approach is inherent to push-biaselémentations of FRP (such
as FrTime [9]), wherein a signal is never recomputed unlesietis a change in its input. It
is also present in push-pull implementations (such as Gmaip23] and Reactive [14]) that
make use of push-based execution for step and event signdlpull-based implementation
for continuous signals. However, some change propagatietill possible to some degree
for the “pulled” signals of such systems, and is also usefukhtirely pull-based systems
(such as Yampa [27]).

In our setting, it is the signal functions that we have idigedi aschange-dependetttat
we can exploit for change propagation. Consider a disgretghpled pull-based implemen-
tation where signal functions are executed every time stgpping an input sample to an
output sample. If a signal functionéhange-dependerdand its current input isnchanging
then its current output is guaranteed toumehanging

ChangeDep sf\ Unchanging s= Unchanging(sf 9

Thus there is no need to compute an output sample becaussidort signals there is no
event occurrence; and for step and continuous signals the iwknown from the previous
sample.
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Implementation note: If signal functions are implementathwan internal state (as in
Yampa), then anghange-dependesignal functions must be implemented such that there
is no modification of that state whenever their inputiihanging Without this condition,
state updates would be lost and the optimisation would kedigated.

Change propagation is hindered if information about whigimals areunchangingis
lost. For example, the latest version of Yampa [10, 26] eygpbome limited change prop-
agation. However, as discussed in Section 4.1, there isffevalice in Yampa between a
tuple of signals and a signal of tuples. Thus a change to gmalkin a tuple appears to be
a change to all signals in the tuple. FrTime, on the other hhad very effective change
propagation because it performs run-time equality chesksompare recomputed values
with the previous value, to determine if it really has chahge

8.5 Interaction between Optimisations and Switching

When giving the definition of change, we defined step sigaetethangingattimey (we did
the same for continuous signals, though this may be les®obyiThis may seem counter-
intuitive: for example, a constant signal may seem neveh&mge. However, we chose this
definition with optimisation in mind.

The reason pertains to the dynamic nature of signal-funct@&works. Each signal func-
tion runs in its owrlocal time(see Section 5.1.2). Consequently, whairisy to one signal
function may not be to another. In particular, after a strradtswitch, the residual signal
function will be at its locatimey, whereas the network external to the switching combinator
will not. Assume the output is a constant step signal. Theinialue of that signal appears
as a change to the rest of the network, as this is a new valubahanot been seen before. If
the signal was treated asflexively changelesthen the network could be incorrectly opti-
mised based on the assumption that the value of the sigrte# satme as it was at previous
time points.

8.6 Decoupled Switches

There is a design choice for switching combinators as to drethe output at the moment
of switching should be taken from the residual or subordirsegnal. Many FRP implemen-
tations provide two versions of each switching combinatardter for both. The switching
combinators we have defined in this paper take their outpuot the residual signal. Those
that take their output from the subordinate signal are dftewn asdecoupled switches
We mention decoupled switches because they can be a pitfathwerforming optimi-

sations of sampled implementations. This is related togbed in Section 8.5. The problem
is that from the point of view of the external network, theueabf any step or continuous
signals in the residual signal function of a decoupled swippears to change not at the
moment of switching, but immediately afterwards. Thuspafehe residual signal function
is a constant signal, there would appear to be a change inhthigyelessignal aftetime.

8.7 Implementing Signal-Function Properties

As discussed in Section 3.5.3, one of the advantages of s signal-function abstrac-
tion is that additional information can be associated witfitius signal functions can record
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FRP Variant Signal Kind

N-ary FRP Event Signal Step Signal Continuous Signal
Reactive Event Reactive Value Time Function

Grapefruit | Discrete Signal| Segmented Signal Continuous Signal

Table 1 Naming conventions for signal kinds

internally which properties they satisfy. Provided the lempenter identifies the properties
of all the primitives, the properties of any composite sigonaction can be computed from
those of its components, using the implications in Secti@67

In most cases these properties would be kept internal toribeementation and hidden
from the FRP programmer. However, there are propertiesitigtuseful to make visible.
For example, consider théecoupledsignal-function property. In a language that allows
cyclic networks, requiring aecoupledsignal function on all feedback paths prevents any
instantaneous cyclic dependencies. Ifdeeouplecproperty is encoded in thgpeof signal
functions, then the host-language type checker can rulmstantaneous feedback. [37]

Another advantage of encoding properties in types is thataveinfer properties of
switching combinators that depend on the residual sigrmattfan. We do not know the
value of the residual signal function in advance, but we dowvkiits type and thus can
perform optimisations based on any properties in that type.

9 Related Work

Devising semantic models for FRP that respect the abstrectf discrete and continuous
time is nothing new. Daniels [13] has constructed a formadasgics for an idealised CFRP
language (that assumes no approximation errors in the mgi&tion), while Wan and
Hudak [39] have shown that with certain constraints, a sathphplementation of CFRP
can be ensured to converge to the semantics. The main diflesdbetween such works and
ours is that they consider signals (not signal functionghascentral abstraction, and that
they do not distinguish between continuous and step signals

Two Haskell-embedded FRP implementations currently udéeelopment ar®eac-
tive [14] and Grapefruit[23]. They both identify the three signal kinds (see Tableahd
use push-based approaches for the implementation of stepwemt signals. Signals are
first class in both systems, though Grapefruit also has adlest signal function construct.
Switching combinators switch between signals in Reactweg, signal functions in Grape-
fruit.

Central to FRP’s hybrid capabilities is the notion of evemtsurring at specific points
in time, and specifying reactions to such events. This maakisig whether some event has
occurred yet or not. A natural way of doing this is to compaetime associated with the
event with the present time. However, this directly leads tausality problem: how can the
precise future time of an event that has not yet occurred bevirin general? Predicating
an FRP semantics on such a capability would inevitably retieiewhole model non-causal,
severely limiting its usefulness for describing the megnifi FRP programs, especially
when fixed points (some form of feedback) is involved.

The key to resolving this dilemma is to concentrate on thgileal question above, has
an event occurred yet or not, not the exact future time ofdtuirence. In the original work
on Fran [15], this was achieved through a careful definitiba oustomised time domain
with an ordering that permitted deciding whether one timeevds before another without
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knowing the exact value of the second. The same problem iessied in a similar way in
Reactive by making events “future values”. Grapefruit degith the issue by considering
all possible interleavings of future event occurrencdging on laziness to ensure that only
the correct interleaving is evaluated. In our semantic hedehave addressed the problem
more directly by building a notion of observationly up to some specific point in tinreo
the definitions of event and step signals. This leads to & alehsimple semantics as it does
not rely on any auxiliary notions, and also to a finitary setitarfor events and changes.
Our approach is unlikely to be very useful as a direct basigiiplementation, but then the
goal of our semantics is not to serve as a basis for some spiecffiementation, but rather
to serve as a reference relevant&ory implementation.

Elerea (“Eventless Reactivity”) [31,32] is another Hatkehbedding of FRP currently
in development. Elerea has first-class signals and sigmargtors (as distinct types), but
is otherwise in many ways similar to Yampa, being a singlet&d pull-based discretely
sampled system. In contrast to Yampa, Elerea doesn’t abstnay from the discrete im-
plementation. Yampa provides a set of primitives that dgesan conceptually continuous
signals and conceptually discrete events, trying to hidestmpling rate from the program-
mer. Elerea, on the other hand, exposes the sampling raig;ing the number of primi-
tives required. Similarly, whereas Yampa provides an absgvent type that imternally a
continuous signal carrying an option type, Elerea direafigs continuous signals carrying
option types (or Booleans) for signals with discrete betawiUniquely, Elerea provides a
monadicjoin for signals:

join : Signal(Signal A — Signal A

One application of this is supporting dynamic collectiofisignals, allowing Elerea to be
used for expressing highly structurally dynamic reactiystems, such as video games, in
much the same way as Yampa.

The synchronous data-flow languages [2,18,19] have longelteabreactive programs
as synchronous data-flow networks. These languages tmeats discrete, and have static
first-order structures. Optimising such networks is weltgd [24,20]. However, they lack
the dynamism and higher-order reactive constructs of FR&ygh there has been some
work on extending Lucid Synchrone in this direction [6, 8].

FrTime[9,5] is a push-based FRP language (embedded in Schemeljnafitblass sig-
nals, which uses a variety of optimisation techniques. Tihetient change propagation of
the push-based execution is enhanced by performing ruméumality checks on the values
of recomputed signals to determine whether they really lchamged. It also uses a static
optimisation calledowering, which reduces a data-flow network by fusing together com-
posite signal functions into single signal functions (disting the routing information). In
FrTime, this technique is only applied to signal functionattare lifted pure functions. For
example, (in our setting) a typical lowering optimisatioawd look like:

liftf s> liftg = lift (gof)

FrTime’s lowering optimisations are applied staticallycaimpile time, which allows for
substantial optimisation of source code, but does not allgmamic optimisation of the net-
work after structural switches. Lowering optimisatione atso applied by Elerea [31] and
Yampa [26], albeit not to the extent of FrTime. However, Yangan lower some stateful
signal functions as well as stateless ones. Yampa perfdsrewering optimisations dy-
namically, which suffers from additional run-time overteaut does allow for continued
optimisation after structural changes.
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A recent development has been a static optimisation teabrfiy Causal Commutative
Arrows [25] that lowers any static arrow network (which may inclugjeles) to a single
arrow with a single internal state. When applied to some @tasnfrom Yampa (where a
signal function is an arrow), the elimination of most of thmeoav infrastructure has resulted
in impressive performance gains. However, this techniages ot extend to networks con-
taining switching combinators, and so cannot be appliedtirary Yampa programs.

10 Future Work

All of the code in this paper has been formulated directly gdA without the syntactic
sugar we used for presentational purposes. Formally pgavie properties of signals and
signal functions from Section 7 is ongoing work; the proafsiialised thus far can be can
be found on the first author’s website.

In this paper we have only considered acyclic networks. Baeklis an essential facility
for a synchronous data-flow language, and thus we need tacewtgr routing primitives
with a feedback combinator. Ensuring that such a combinsieell-defined in a highly dy-
namic setting is not trivial. We have previously [37] propds feedback combinator, along
with a type system extension that can guarantee the corobisatell-defined, but have not
yet incorporated it in our new conceptual model. Teeoupledgroperty is key to the above
type system, as well as to several other FRP primitives tkediave not defined in this paper.
For example, the signal functiqure, which appears in most reactive languages, conceptu-
ally introduces an infinitesimal delay in a signal. Howewegst implementations givere
the behaviour of a one—time-sample delay, which does npeotsts conceptual definition.
Furthermore, having done this, a programmer can (indifegtin access to the sampling
rate, and thence define various things that break the sifpsédagtions (such as events oc-
curring at all points in time). We aim to extend our model wdgcoupling primitives, and
to precisely address the notions of feedback and decoupling

Finally, our long term goal is an efficient scalable impletagion of FRP that respects
the conceptual definitions of signal functions. To achieffeciency, we believe such an
implementation would dynamically (i.e. at run-time) empthe optimisations suggested in
this paper, optimising after each structural switch.

11 Conclusions

In this paper we introduced a conceptual model of FRP thatalleNzary FRP, and we
defined it through an ideal denotational semantics. Thisahigch development of our pre-
vious attempts to modei-ary (multi-input and multi-output) signal functions thaperate
over distinct kinds of signals.

With this model as a base, we identified and formally definethgitemporal logic,
several important temporal properties of signals and s$ifymections pertaining to change
and change propagation. These properties hold in our maddiwe would expect them
to hold in any implementation that we would consider “faithfto the semantics. Having
defined these properties, we described how they relate bmigption techniques for FRP
implementations, and what properties have to hold for sedptimisations to be valid.

Reasoning about change in the setting of FRP is challengiadgalstructural dynamism
and changes due just to time passing. For example, it is @syte introduce invalid optimi-
sations by failing to appreciate subtle aspects of the sgosaflaving a formal framework
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that allows optimisation opportunities to be identified @ndperly justified is thus a useful
aid for FRP implementers.
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A Utilities

This appendix contains the definitions of some of the datasygnd utility functions that
we use. This is not exhaustive; we assume familiarity witla égpes and functions from the
Haskell Prelude. The complete code is available on the fitsica’'s website.

A.1 Data Types

We assume familiarity with the data typemit, Bool, List and Maybe Sum and product
types are given below. Note that the usual produtig defined in terms of Agda’s depen-
dent productX):

data_w_ (AB: Seb : Setwhere

inl :A— AwB
inr:B— AwWB

dataX (A: Sep (B: A — Se) : Setwhere

_,-:(@a:A)—>Ba— ZAB

_x_: Set— Set— Set
AxB=ZXZA(A_—B)

We define propositional equality as follows:

data_=_{A: Set (a: A) : A— Setwhere

refl:a=a



42

A.2 Combinators

We define some basic function combinators:

const: {AB:Set 4 A—-B— A

consta_ = a

first: {ABC: Sett - (A—C) - AxB—-CxB

firstf (a,b) = (f a,b)

second: {ABC: Sett -~ (B—+C) - AxB—AxC

second f(a,b) = (a,f b)

result: {ABC: Sett -+ (B—~C) - (A—B) - (A—C)
resultfg=fog

result2: {ABCD: Set - (C—D)—-(A—-B—-C)—- (A—B—D)
result2f ga= foga

We also define some functions owdaybetypes:

maybeMap: {AB: Sett — (A — B) — Maybe A— Maybe B

maybeMap fnothing = nothing

maybeMap f(justa) = just (f @)

maybeMap2 {ABC: Sett —+ (A — B — C) — Maybe A— Maybe B— Maybe C

maybeMap?2 hothing mb = nothing

maybeMap2 fjust a) mb = maybeMagf a) mb

maybeMerge {ABC: Sett -+ (A—C)—» (B—C)—> (A—-B—C)
— Maybe A— Maybe B— Maybe C

maybeMerge fa fb fahothing nothing = nothing

maybeMerge fa fb fabothing (just b) = just (fb b)

maybeMerge fa fb faust a) nothing = just (fa a)

maybeMerge fa fb faust a) (justb) = just (fabab)

A.3 Functions on Signals

We now define some functions over signals, change prefixestante lists; for use at the
conceptual level. We begin with some look-up functions tfetermine if there is a change
at a given time point:

lookupCL: {A : Sett — ChangelList A~ Time — Maybe A
lookupCL{[] = nothing
lookupCL((9,a), das) nothing

justa

lookupCLdas(t — 9)
lookupCP: {A : Sett — ChangePrefix A~ Time — Maybe A
lookupCP cp t= lookupCL(cp t) t

tjt<
|t ==
[ t>

[STRSTReY
[

We can compute the value of a step signal at a given time point:

valS: {A: Sett — SigVegS A) — Time— A
valS(ag,cp)t = casereverse(cp t) of
— @
(ma1) i —o—a

Similarly, we can determine if an event is occurring at a gitime point:
occ: {A: Sett — Sigved EA) — Time — Maybe A

occ(macp)t |t == 0= ma
|t > 0 = lookupCPcpt
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We now define some mappings:

mapCL: {AB: Sett — (A — B) — ChangeList A~ ChangeList B
mapCL = mapo second

mapCP: {AB: Sett — (A — B) — ChangePrefix A~ ChangePrefix B
mapCP = resulto mapCL

mapC: {AB: Sett — (A — B) — SigvVeqC A) — SigVedqC B)
mapC = result

mapE: {AB: Sett — (A — B) — SigvedE A) — SigVedE B)

mapE f(macp) = (maybeMap f manapCP f cp

mapS: {AB: Sett — (A — B) — SigveqS A) — SigVeqS B)

mapS f(a,cp) = (f a,mapCP f cp

Mapping over two signals is somewhat more involved. To aithese definitions, we
also definenapCPtimewhich allows the mapped function to depend upon the timetgi
which it is applied:

mapCLtime: {AB: Sett — (Time— A — B) — Time — ChangelList A~ ChangelList B
mapCLtimef d] = []

mapCLtime f d(d,a) :: das) = letd’ = d+ din (4,f d’ a) :: mapCLtime f ddas
mapCPtime {AB: Sett — (Time— A — B) — ChangePrefix A~ ChangePrefix B
mapCPtime f= result(mapCLtime 0)

mapC2: {ABZ: Sett — (A — B — Z) — Sigveq CA) — SigVeqC B) — SigVeqC Z)
mapC2fsst = f (st) (21)

mapS2: {ABZ: Sett - (A — B — Z) — SigveqS A) — SigveqS B) — SigveqS Z)
mapS2 f(a,cpa) (b,cp) = (fabAt — mergeSalicpat) (cpt))
where
mergeS: A — B — ChangeList A~ ChangeList B— ChangelList Z
mergeS ghyg [] dbs = mapCL(f ag) dbs
mergeS abg das[] = mapCL(A ay — f a, bp) das

mergeS abo ((8a,a1), 6as) (&, b1), 5bs)
| &a < & = (0a,f a1 bg) :: mergeS abp 6as((d, — da,b1) :: bs)
| 62 == & = (0a,f @1 b1) :: mergeS ab; dasdbs
| 62 > & = (&,fagb1) :: mergeSaby ((6a — oy, &) :: das) obs

mergeE2: (A - Z) - (B— Z) - (A — B — Z) — SigvedE A) — SigvedE B) — SigvVedE Z)
mergeE2 fa fb falfma cpa) (mh,cp,) = (maybeMerge fa fb fab ma mbt — mergeCL(cpat) (Cpp t))
where
mergeCL: ChangeList A» ChangeList B— ChangelList Z
mergeCL|| dbs = mapCL fhobs
mergeCLdas|] = mapCL fadas

mergeCL((5,a), 6as) ((&y,b),8b9) | & == & = (d,fabab) :: mergeCLSasdbs
| 3% < & = (3,faa) :: mergeCldas((& — da,b) :: 3bs)
| % > & = (&,fbb) :: mergeCL((3 — &,a) :: 5as) Sbs

joinE2: {ABZ: Sett — (A — B — Z) — SigveqE A) — SigveqE B) — SigVeqE 2)
joinE2 f (macpa) (Mbcpy) = (maybeMap2 f mami t — joinCLO (cpat) (Cppt))
where
joinCL : Time — ChangeList A— ChangeList B+ ChangelList Z
joinCL_[] — = []
joinCL__[] = []
joinCL d ((0a,a) :: 0as) ((dy,b) :: dbs) | da
| o
| G

(d+ 4,f @ab) :: joinCL O dasdbs
joinCL (d + 8,) das((d — Oa,b) :: dbs)
joinCL (d + &) ((0a — &, @) :: das) dbs

-5
5
5

VoAl
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mapCE: {ABZ: Set} — (A — B — Z) — SigVeq C A) — SigVedE B) — SigvedE Z)
mapCE f §mh cp) = (maybeMag(f (s0)) mb mapCPtimgf o s) cp)

mapSE: {ABZ: Sett — (A — B — Z) — SigvedS A) — SigVed E B) — SigVeqE Z)
mapSE f §mbcp) = (maybeMagf (valS s0)) mb,mapCPtime&f o valS g cp)

Next we define some utility functions on change lists and ghaprefixes. The time of
the last change in a change list is the sum of its time deltas:

lastChangeTime {A : Sett — ChangelList A~ Time
lastChangeTime= sumo map fst

We can take the prefix of a change list up to a specified poinime {inclusive or
exclusive):

takelncl: {A : Sett — Time — ChangeList A~ ChangeList A
takelncl_[] = []
takelnclt((d,a) = das) |t < O =[]
| t >= & = (0,a) :: takelncl(t — 0) das
takeExcl: {A : Sett — Time — ChangelList A~ ChangeList A
takeExcL [] = []
[]

takeExcl t((d,a) :: das) | t <= O
|[t> & = (0,a) :: takeExcl(t — J) das

ThedelayCLfunction delays a change list by increasing the first timéd@hedelayCP
function delays a change prefix by reducing the sample timthéydelay periodd), and
then delaying the resultant change list by that amountsé elkesviaybean initial value as
an argument, allowing an initial change, if any, to be iresgihto the resultant change list.

delayCL: {A: Sef} — Time" — ChangeList A~ ChangeList A
delayCLd[] = []
delayCL d((d,a) :: das) = (d+ d,a) :: das
delayCP: {A: Set — Time™ — Maybe A— ChangePrefix A~ ChangePrefix A
delayCPdmacptt < d =[]
| t >= d = casemaof
nothing — delayCL d(cp(t — d))
justa — (d,a)::cp(t—d)

A.4 Switching Utilities

In this section we define utility functions that are only usgawitch(see Appendix B).

The advancefunction shifts the time frame of a signal forwards by a giaemount of
time (d), discarding everything before tingds(some authors call thigeingthe signal). This
is similar to thedelay signal function, except it looks into the future instead lué past.
Unlike delaythis is acausal, and so wouldn't make sense as a signal dmndtdowever,
advances only used as a utility bgwitch connecting a signal from outsidasvitchto the
local time of the residual signal function (because from gbent of view of the residual
signal function, the local time of the external network ighe future). Semantically this is
achieved by advancing any sample pointdyyand, in the case of step and event signals,
discarding the prefix of the signal up to tirde

advanceCL {A: Sett — Time— ChangeList A~ ChangeList A

advanceCLd]| = []

advanceCL d(d,a) :: das) | 0 <= advanceCl(d — ) das
| 6 >

(6 —d,a) :: das

d
d
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advanceCP. {A : Sett — Time — ChangePrefix A~ ChangePrefix A
advanceCP d cp & advanceCL dcp (t + d))

advance: {as: SVDes¢ — Time — SigVec as— SigVec as
advance{C _} ds = At—s(t+d)

advance{S _} ds = (valS s dadvanceCP dsnd 9)
advance{E_} ds = (occ s dadvanceCP dsnd 9)
advance{_,_} d (s,5) = (advance disadvance d 5)

The svAtTimefunction allows us to construct a signal vector based ondhgpte time,
even though that sample time is not yet known:

svAtTime: {as: SVDes¢ — (SampleTime— SigVec as — SigVec as
SVAtTime{C _}f = At — ftt

sVALTIme{E _} f = (fst(f 0),A t — snd(f t) t)

SVALTIme(S _} f = (fst(f 0),A t — snd(f t) t)

sVALTIme{ _, _} f = (svAtTimgfsto f),svAtTimesndo f))

The fstOccfunction returns the first event occurrence of an event sigmavided it
occurs before a specified point in time (inclusive):

fstOcc: {A : Sett — SigveqE A) — Time — Maybe(Time x A)
fstOcc(justa,—) _ = just (0,a)
fstOcc(nothing,cp)t = casecp tof

[] — nothing

(da:: _) — just da

ThetakeExclEndunction applies a change prefix to a (strictly positive)dijrdiscards
any change at precisely that time, and returns the remadatiagge list and the time delta
since the final change:

takeExclEnd: {A : Sett — ChangePrefix A+ Time" — ChangelList Ax At
takeExclEnd cp t= let das = takeExcl t(cpt)
in (dast — lastChangeTim@&as)

Finally, we define some splicing functions that compose tigna vectorgemporally
cutting the first vector at the given event occurrence time:

spliceC: {A : Set} — SigveqC A) — Sigveq(C A) — EventTimé — Sigveq(C A)
spliceC_sptet = s (t —te)
spliceS: {A: Set} — SigvedS A) — SigVedS A) — EventTime — SigvedS A)
spliceS(ag,cp;) (az,cpy) te = let (das;,d) = takeExclEnd cpte
in (ag,A t = das, H (0,a) :: cp, (t—te))
spliceE: {A: Sett — SigveqE A) — SigveqE A) — EventTimeé — SigvedE A)
spliceE(mayg,cp;) (Mmap,cp,) te = let (das;,d) = takeExclEnd cpte
in (mag,At — letdasp = cp, (t —te)
in das; + casemg of
nothing — delayCLd das,
justay — (0,a) :: dax)
splice" : {as: SVDes¢ — SigVec as—+ Sigvec as— EventTimeé — SigVec as

splice” {C_} g S te = spliceCsspte
splice {S_} s S te = spliceSss; te
splice {E_} s S te = spliceEs S te

splice” {_,_} (say,shy) (s&,shy) te = (splice” sa sa te,splice’ shy shy te)
splice: {as: SVDes¢ — SigVec as— SigVec as— EventTime— SigVec as
spliceste [t ==0 =%

|tt> 0 = splice" gt
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B Signal-Function Conceptual Definitions

Some of the primitive signal functions in Section 5 were givéthout conceptual defini-
tions. Those definitions are given in this appendix.

switch: {as bs: SVDes¢ — {A: Sett} — (SFas(bsEA)) — (A — SFasb$ — SFasbs
switch sf fa~ A 53 — let (s,%) = sf s
in svAtTimgA t — casefstOcc g t of
nothing —
just (te,€) — splice g ((f €) (advanced sa)) te)

integralS: SF(S R) (CR)
integralS~ A (ag,cp)t — letdas = cpt
os map fstdas + (t — lastChangeTiméas) :: []
as ap :: map snddas
in
sum(zipWith(x) ds ag

The following conceptual definition afhenis inspired by Wan and Hudak’s definition
[39]. The key difference, beside an adaptation to our masi¢hat we directly characterise
when a time-varying Boolean is sufficiently well-behavedrtake the definition ofvhen
meaningful. In Wan and Hudak’s definition, this is indirerh the lack of a solution sat-
isfying their stated semantic conditions. Intuitivelyjra¢-varying Boolean is well-behaved
if there exists some temporal imprecisien At such that a list o&ll times at which there
is a transition fronfalse to true over any given interval is computable, with each time point
within € from its true occurrence time according to the ideal sernaniihis means that
a sampled implementation will converge to the ideal semaritir well-behaved predicate
and signal combinations as the sampling interval tends to 0.

We first define a number of auxiliary predicates on time-vagyBoolean® : Time —
Booland time points : Time

Ppt (s:At).(Vre(t—et) S(pT)ANVTE (tL,t+€).pT)
Npt=3(e:At).(Vre(t—gt).pr)A(VT e (t,t+¢€).-(pT))
Upt = 3(e: At). (VTe(tfet+ ).~ (pr)vV(Vrie(t—et+e).pT)
Rpt=ptA(3(e:At). (VT e (t—¢€t).-(pT)))

P holds if p has a positive transition at poihtN if p has a negative transition at this point,
andU if pis unchanging at this point. Note thatandN are not concerned with the value
of p att, only that there exist open intervals to the left and righth&f point wherep is
constant. Similarlyl) holds if there exists a neighbourhood arounthis time including,
wherep is constant. FinallyR is the left-biased version & that only considers an interval
to the left oft. However, this time, the value @fatt is considered.

We can now define a predicai that holds if a time-varying Boolean is well-behaved
on an open intervalto, ty):

Wpipty = finite{1 | T € (to,t1),PPT} A (VT € (to,th) . PpTVNpPTVUPT)

The finiteness condition rules out the time-varying Booleanillating betweeralse and
true infinitely often over a finite interval. The second part sdyat it must be possible to
characterise every interior point either as a positivesitam, a negative transition, or a point
where no change occurs. This rules out “spikes”: points w/itee value of the time-varying
Boolean differs from its value in all neighbourhoods of thaint.

The finite ascending list of time points of positive trar@it for a time-varying Boolean
p over an interva(0,t] can now be defined:
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poccs: (Time— Bool) — Time — List Time
poccspt| WpOt = [T | T+ (O,t),PpT] + [t | Rpt]

Finally, we definewhenusingpoccs Note thatpoccsis only defined for well-behaved
time-varying Booleans. The semanticsfenapplied to an ill-behaved predicate and signal
composition is thus that it diverges:

when: {A: Sef} — (A — Bool) - SF(CA) (EA)
when px~ A s — (nothing, whenAux
where
whenAux t= letts = poccs(po s) t
in[(t—t,st) | (t,t') « zipts(0 :: ts)]



