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Abstract Functional Reactive Programming (FRP) is an approach to reactive programming
where systems are structured as networks of functions operating on signals (time-varying
values). FRP is based on the synchronous data-flow paradigm and supports both (an approx-
imation to) continuous-time and discrete-time signals (hybrid systems). What sets FRP apart
from most other languages for similar applications is its support for systems with dynamic
structure and for higher-order reactive constructs.

This paper contributes towards advancing the state of the art of FRP implementation by
studying the notion of signal change and change propagationin a setting of structurally dy-
namic networks ofn-ary signal functions operating on mixed continuous-time and discrete-
time signals. We first define an ideal denotational semantics(time is truly continuous) for
this kind of FRP, along with temporal properties, expressedin temporal logic, of signals
and signal functions pertaining to change and change propagation. Using this framework,
we then show how to reason about change; specifically, we identify and justify a number of
possible optimisations, such as avoiding recomputation ofunchanging values. Note that due
to structural dynamism, and the fact that the output of a signal function may change because
time is passing even if the input is unchanging, the problem is significantly more complex
than standard change propagation in networks with static structure.
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1 Introduction

Functional Reactive Programming (FRP) grew out of Conal Elliott’s and Paul Hudak’s work
on Functional Reactive Animation [15]. The idea of FRP is to allow the full power of modern
Functional Programming to be used for implementingreactive systems: systems that interact
with their environment in a timely manner1. This is achieved by describing systems in terms
of functions mappingsignals(time-varying values) to signals, and combining suchsignal
functionsinto signal-processing networks, through plain function composition and other
combining forms. The nature of the signals depends on the application domain. Examples
include sensor input in robotics applications [34], video streams in the context of graphical
user interfaces [11] and games [12,7], and synthesised sound signals [16].

A number of FRP variants exist. We discuss the basics of the original approach [15,39],
now commonly referred to as Classic FRP (CFRP), in Section 3,and we give an overview
of a number of others in Section 9. However, thesynchronous data-flow principle, and sup-
port for bothcontinuousanddiscretetime (hybrid systems), are common to most of the
variants. There are thus close connections to synchronous data-flow languages such as Es-
terel [3], Lustre [20], and Lucid Synchrone [35]; hybrid automata [21]; and languages for
hybrid modelling and simulation, such as Simulink [1]. However, FRP goes beyond most of
these approaches by supportingdynamism(highly dynamic system structure), and first-class
reactive constructs2 (higher-order data-flow). Support for structural dynamismsignificantly
extends the range of reactive systems that can be described naturally and easily. Typical ex-
amples include video games [12,7]; virtual reality applications [4]; and maintaining models
of a changing number of entities in view, say for UAV3 applications [27].

It is well-known how to implement first-order synchronous data-flow networks with
static structure efficiently [24,20]. However, higher-order data-flow and dynamic system
structure in combination with support for hybrid systems raise new implementation chal-
lenges. FRP implementations usually adopt either apushor pull driven implementation
strategy [14]. The essence of the push-driven approach is reaction to events occurring at
some specific point in time by pushing changes through the system. This is a good fit for
discrete-time signals. Pull is the opposite, where the needto compute the current value of a
signal necessitates computing the current values of any signals it depends on, thus pulling
data through the network. This is a good fit for continuous-time signals. Thus push and pull
have complementary strengths, but combining the approaches into one system has turned
out to be hard.

In this paper, by studying the notion of signal change and howchange propagates in
a structurally dynamic signal-processing network, we contribute to the state of the art of
FRP implementation by identifying when computation is unnecessary and thus could be
avoided. We hope this will help reconcile the advantages of push and pull. Note that struc-
tural dynamism, and the fact that FRP signals can change justbecause time passes, make the
problem significantly more complex than standard change propagation in a network with a
static structure.

The FRP variant that is the starting point for this paper is Yampa [27], a domain-specific
embedding in Haskell and one of the most expressive FRP implementations to date when it
comes to structural dynamism. Yampa takes signal functionsto be the primary reactive ab-

1 A response is expected within an amount of time that is “reasonable” for the application at hand. We do
thus not predicate reactivity on hard real-time guarantees;most FRP variants only achieve soft real-time.

2 Signals or signal functions, depending on the FRP variant.
3 Unmanned Aerial Vehicle
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straction; signals are secondary, existing only indirectly through the notion of signal func-
tions. Many other approaches to FRP, including CFRP, opt to make signals their primary
notion. We give the necessary background and discuss why this is an important FRP design
consideration in sections 2 and 3, and in Section 3.5 we explain in some detail our reasons
for choosing signal functions as the base. In brief, the signal function approach in princi-
ple allows for a strict separation between the reactive and functional layers. This in turn
facilitates implementation in many ways, and provides certain conceptual and expressivity
advantages.

However, note that a setting of signal functions is also thenatural choice for studying
change and change propagation in signal processing networks. We need to understand the
properties of the network nodes, and these nodesare signal functions, regardless of the
surface syntax used to set up the network. Thus, much of our study is relevant to FRP in
general, not just to FRP versions based on signal functions.

We argue that an FRP approach based on signal functions has some distinct advantages,
and note that Yampa, currently the main such FRP variant, is demonstrably useful for fairly
demanding applications [7,16,4]. However, it is also clearthat the current version of Yampa
has a number of conceptual as well as practical issues that, amongst other things, limit its
scalability. A discussion can be found in Section 4.

These issues were what initially prompted us to start investigating a new FRP model
based onn-ary (multi-input and output) signal functions and differentiated kinds of signals
[36,37]. Working towards overcoming the limitations of thepresent Yampa approach is
an additional goal of this paper, so we adopt this model, under the nameN-ary FRP, and
develop it further and in more detail. We then use this model to identify and study general
temporal properties relevant toanyfaithful implementation of the model, and how these can
be used to justify a range of optimisations. For example, given a signal-function network,
we can characterise exactly which signals remain unchangedfor arbitrary combinations of
changing or unchanging input, and where updates nonetheless are necessary due to internal
state changes.

In more detail, the contributions of this paper are as follows:

– We define a denotational semantics for an ideal, mixed continuous-time and discrete-
time N-ary FRP. While a concrete digital implementation would have to approximate
some aspects of this semantics, it does capture a number of temporal aspects that a
faithful implementation would have to, and can, respect exactly.

– We identify a number of temporal properties ofn-ary signal functions that are useful for
studying the behaviour of networks of such signal functions, especially concerning how
changes propagate, and we define these properties exactly using temporal logic.

– We characterise the primitiveN-ary FRP signal functions and combinators, as defined
by the denotational semantics, in terms of which of our temporal properties they satisfy
or preserve, and we study the relations between these properties.

– We demonstrate how our temporal properties can be used to justify optimisations and
identify optimisation opportunities in concrete networksof n-ary signal functions, as-
suming that the implementation is faithful to the temporal properties: that is, assuming
that the implementation of each primitive satisfies the sametemporal properties as the
denotational model of the primitive.

A limitation of the present paper, compared both with Yampa and some of our earlier
work [37], is that we only consideracyclic networks, leaving consideration of cyclic net-
works (feedback) as future work.
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The notation we use in this paper is mostly that ofAgda[30], a dependently typed func-
tional language with many similarities to Haskell. We have chosen Agda as it can be used
for defining the semantics of FRP, for proving properties about that semantics, and as a host
language for an FRP embedding. However, as our interest is ina conceptual model, rather
than a specific implementation, we occasionally make use of more general mathematical
notation when defining the semantics. We also borrow some syntax from Haskell in order to
clarify the presentation. In particular, we allow: patternmatching under lambdas, operator
sections, case expressions, pattern guards, list comprehensions and overloading. In all cases
that we do so, it is possible to translate into equivalent (but more verbose) Agda code in a
fairly straightforward manner4. To make clear the distinction between conceptual definitions
and embedded FRP code, we use the≈ symbol when defining an entity conceptually.

The rest of the paper is structured as follows:

– Section 2 explains the fundamental concepts of FRP.
– Section 3 reviews Classic FRP, and motivates the first-classsignal-function abstraction.
– Section 4 describes the new conceptualN-ary FRP model.
– Section 5 defines the primitives of theN-ary FRP language, and then demonstrates how

they can be used to constructN-ary FRP programs.
– Section 6 discusses optimisation opportunities for FRP implementations.
– Section 7 defines a number properties of signals and signal functions using temporal

logic, in particular properties related to change and how signal functions propagate
change.

– Section 8 describes how the properties from Section 7 give rise to optimisations.
– Section 9 considers related work.
– Section 10 considers future work.
– Section 11 provides some concluding remarks.

2 FRP Fundamentals

FRP programs can be considered to have two levels to them: afunctional leveland areactive
level. The functional level is a pure functional language. FRP implementations are usually
embedded in a host language, and in these cases the functional level is provided entirely by
the host. For example, Haskell is the host language of CFRP [15,39] and Yampa [27]. The
reactive level is concerned with time-varying values called signals. At this level, functions
operating on signals are used to construct synchronous data-flow networks. The levels are,
however, interdependent. The reactive level relies on the functional level for carrying out
arbitrary pointwise computations on signals, while reactive constructs are first-class entities
at the functional level.

2.1 Continuous-Time Signals

Time is considered to be continuous in FRP. Signals are thus modelled as functions from
continuous-time to value, where we take time to be the set of non-negative real numbers:

Time≈ { t ∈ R | t > 0}

Signal A≈ Time→ A

4 The code can be viewed on the first author’s website: http://www.cs.nott.ac.uk/∼nas/hosc10.html
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This conceptual model provides the foundation for an ideal FRP semantics. Of course, any
digital implementation of continuous signals will have to execute over a discrete series of
time steps, and will consequently only approximate the ideal semantics. The advantage of
the conceptual model is that it abstracts away from such implementation details. It makes no
assumptions as to the rate of sampling, whether the samplingrate is fixed, or how sampling is
performed. It also avoids many of the problems of composing subsystems that have different
sampling rates. The ideal semantics is helpful for understanding FRP programs, at least to
a first approximation. It is also abstract enough to leave FRPimplementers considerable
freedom.

That said, implementing FRP completely faithfully to the ideal semantics is challenging.
At the very least, a faithful implementation should, for “reasonable programs”, converge to
the ideal semantics in the limit as the sampling interval tends to zero [39]. But even then it
is hard to know how densely one needs to sample before an answer is acceptably close to
the ideal.

2.2 Signal Functions

Signal functionsare conceptually functions on signals:

SF A B≈ Signal A→ Signal B

In the N-ary FRP model we define later in this paper (Section 4), as well as in Yampa
[27], it is signal functions, rather than signals, that are first-class entities. Signals have no
independent existence of their own; they exist only indirectly through the signal functions.

What if plain signals are needed; that is, a time-varying value that depends on no input?
Well, a signal function that takes a unit signal as input essentially serves the same purpose.
Alternatively, a signal function that completely ignores its input, and therefore is polymor-
phic in the type of the input signal, could be used. (However,see the discussion in Section
2.5: these are reallysignal generators.)

To make it possible to implement signal functions such that output is produced in lock-
step with the input arriving, as is required for a system to bereactive, we constrain signal
functions to betemporally causal:

Definition 1 (Causal Signal Function)A signal function istemporally causalif, at any
given time, its output can depend upon its past and present inputs, but not its future inputs.

There are other notions of causality, but, throughout this paper, when we say causality we
will always mean temporal causality. We define causality formally in Section 7.3.2.

2.3 Discrete-Time Signals

Conceptually, discrete-time signals (often called event signals) are signals whose domain
of definition is an at-most-countable set of points in time. Each point of definition signifies
some event that is without any extent in time. Inclusion of discrete-time signals, along with
operations on them and operations for mediating between continuous-time and discrete-time
signals, is what makes most FRP variants capable of handlinghybrid systems.

However, different FRP variants have taken different approaches to the nature of discrete-
time signals. One possibility is to make a fundamental distinction between continuous-time
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and discrete-time signals on the grounds that they enjoy distinct properties. Separating them
facilitates taking advantage of these differences for being more precise about applicable op-
erations or for optimisation purposes. We refer to this approach asmulti-kindedFRP as there
is more than one kind of signal. For example, CFRP is multi-kinded.

Another possibility is to define discrete-time signals as a subtype of continuous-time
signals by lifting the range of signals using an option type.We refer to this approach as
single-kindedFRP as there fundamentally is only one kind of signal. For example5:

data Event(A : Set) where
noEvent : Event A
event : A→ Event A

A discrete-time signal carrying elements of typeA would then be represented as a signal
of typeSignal(Event A), with a value ofnoEvent whenever the discrete-time signal is not
defined, and a value ofevent v whenever the discrete-time signal is defined with valuev.

Yampa is single-kinded: a uniform treatment of continuous-time and discrete-time sig-
nals fits well with the idea of signal functions being the coreconcept and there only being
one kind of signal function. However, single-kindedness has some drawbacks. We will re-
turn to this in Section 4.

2.4 Structural Dynamism

Most FRP variants supportstructural dynamism. This means that the structure of the signal-
processing network may change at run-time, and, furthermore, that new signals or signal
functions may be computed at run-time. We refer to such changes in the network structure
asstructural switches.

A common way to allow for structural dynamism is to provide one or moreswitching
combinators. As structural switches are discrete instantaneous occurrences, event signals
are used to control when they happen. A switch occurs at the point in time of the first oc-
currence in the event signal. This point is themoment of switching. The details of switching
combinators vary between FRP systems, but the essential idea is that, at the moment of
switching, one signal, called thesubordinatesignal, is removed from the network, and a
new signal, called theresidualsignal, is inserted in its place. At the moment of switching,
the subordinate signal isswitched outand the residual signal isswitched in.

Switching combinators are often designed to allow the residual signal todependon the
value carried by the event that triggered the switch. This means that, in general, the residual
signal is computed at the moment of switching. This has important consequences. First, it
cannot be assumed that switching only happens within a predetermined finite set of system
configurations. Second, it raises the question as to over what range of time the residual signal
is defined: from the system start time or from the time it was switched in? We return to this
discussion in the next section.

For a concrete example of a switching combinator, see Section 3.3 that provides a formal
definition of such a combinator in the setting of CFRP.

What if we are in a setting where signal functions, not signals, is the primary reactive
abstraction? In that case, switching takes place between signal functions, not signals. Other
than that, the ideas are very similar. See Section 5.1.2 for adefinition of that style of switch-
ing combinator.

5 Agda notation:Setis the type of types, similar to kind∗ in Haskell.
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2.5 Signal Generators

As previously mentioned, switching combinators defined on signals could either “start” the
residual signal at the same time as the subordinate signal, or when it is switched in. Note
that if all provided switching combinators adhere to the first option, then the start times of
all signals in the entire system would always coincide with the system start time.

The first choice is problematic if the residual signal depends on the value of the trig-
gering event, as this is not known until the moment of switching. Consequently, when the
switch occurs, the signal has to be retroactively computed up to that moment. In an im-
plementation, this requires all past input to be remembered, a so-calledspace leak, and a
catch-up computation to be performed, a so-calledtime leak. This is particularly trouble-
some if all provided switching combinators are of the first kind, as that would mean that all
newly switched-in signals are subject to catch-up computations from the system start time.
Furthermore, no input could ever be discarded: an increasingly cumbersome prospect the
longer the up-time of the system. Consequently, most FRP variants with first-class signals
choose the second option: to start the residual signal at themoment of switching.

However, once we have signals that can start at different times, the conceptual model
of signals as functions from time to value is no longer sufficient: the value of a signal no
longer just depends on the time at which it is sampled, but also the time at which it starts.
To express this, the concept of asignal generatoris needed:

StartTime = Time
SampleTime= Time

SignalGenerator A≈ StartTime→ SampleTime→ A

Or, equivalently, a signal generator is a function that, given a start time as an argument,
produces a signal as the result:

SignalGenerator A≈ StartTime→ Signal A

The key point is that two signals created from the same signalgenerator can be (and often
are) different if started at different times.

3 Classic FRP

To give further background on FRP, we take a look at the original FRP work known as
Classic FRP (CFRP) in this section. This should also give a better understanding of the rel-
evance of, and relation between, the various FRP notions discussed in the previous section
(specifically signals, signal generators and signal functions). There are several variants of
CFRP, but they are all based around the idea of multi-kinded first-class signals:Behaviours
(continuous-time signals) andEvents(discrete-time signals). In the following we introduce
a basic CFRP language and give some examples of CFRP programming. However, as CFRP
is not the principal topic of this paper, only primitives required for our examples are dis-
cussed. We conclude the section with a discussion on first-class signals vs. first-class signal
functions, as a motivation for the work presented in the restof the paper.



8

3.1 Behaviours and Events

We said that CFRP has first-class signals calledBehavioursand Events. In fact, in most
CFRP variants,Behavioursand Eventsare signal generators. Conceptually then, aBe-
haviour is a function that maps a start time and a sample time to a value:

Behaviour A≈ StartTime→ SampleTime→ A

An Eventis similar, except that it produces a (time-ordered and finite) list of all event oc-
currencesup tothe sample time:

Event A≈ StartTime→ SampleTime→ List (Time× A)

3.2 CFRP Primitives

We now introduce some CFRP primitives, along with their conceptual definitions. The util-
ity functions used in these definitions can be found in Appendix A. We adopt the naming
convention of adding a ‘B’ or ‘E’ suffix to distinguish between similar functions that operate
onBehavioursandEvents, respectively. In most implementations, some form of overloading
is usually employed.

We begin with a family of lifting combinators that allow us tolift pure functions from
the functional level to operate onBehavioursandEventsin a pointwise fashion6:

constant: {A : Set} → A→ Behaviour A
constant a≈ λ t0 t1 → a

liftE : {A B : Set} → (A→ B) → Event A→ Event B
liftE f ev≈ (result2◦map◦ second) f ev

liftB : {A B : Set} → (A→ B) → Behaviour A→ Behaviour B
liftB f beh≈ result2 f beh

liftB2 : {A B C : Set} → (A→ B→ C) → Behaviour A→ Behaviour B→ Behaviour C
liftB2 f beh1 beh2 ≈ λ t0 t1 → f (beh1 t0 t1) (beh2 t0 t1)

A more interesting primitive is theintegral function that integrates aBehaviourwith
respect to time. Note that unlike the liftings above, the value of the outputBehaviourat any
given time depends upon past inputs.

integral : BehaviourR → BehaviourR
integral beh≈ λ t0 t1 →

∫ t1
t0

(beh t0 t) dt

It is also useful to have an integration function that has an initial value other than zero.
We can define such an initialised integration within the CFRPlanguage (rather than as a
primitive):

iIntegral : R → BehaviourR → BehaviourR
iIntegral x = liftB (+x) ◦ integral

Finally, we introduce a primitive function that mediates betweenBehavioursandEvents:

when: {A : Set} → (A→ Bool) → Behaviour A→ Event A

6 Agda notation: Curly braces are used to enclose implicit arguments: arguments that only have to be
provided at an application site if they cannot be inferred from the context. Implicit type arguments are often
used to define polymorphic functions.
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We have omitted the conceptual definition ofwhenas it is quite involved. It can be found in
Wan and Hudak [39]. Informally, the resultantEventcontains an occurrence at each point
in time that the predicate (the first explicit argument) applied to the value of theBehaviour
(the second explicit argument) changes fromfalse to true. The value of the occurrence is the
value of theBehaviourat that point in time. Let us emphasise that events occur onlywhen
the result of the predicatechanges, not whenever it holds.

3.3 Switching between Behaviours

As discussed in Section 2.4, switching combinators are a crucial aspect of FRP as they allow
us to construct dynamic programs. Here we define a CFRP switching combinator:

untilB : {A : Set} → Behaviour A→ Event(Behaviour A) → Behaviour A
untilB beh1 ev≈ λ t0 t1 → caseev t0 t1 of

[ ] → beh1 t0 t1
(te,beh2) :: → beh2 te t1

The first argument (beh1) is the subordinateBehaviour, the second argument (ev) is the
Eventthat controls the switch occurrence. The value of theEventis aBehaviour, and it is
this Behaviourthat will be switched in as the residualBehaviour. The residualBehaviour
will not start until it is switched in, and at the moment of switching the overall value is taken
from the residualBehaviour.

Recall that an alternative design choice would be to have theresidualBehaviourstart at
the same time as the subordinateBehaviour. The semantics of such a switching combinator
would be:

untilB′ : {A : Set} → Behaviour A→ Event(Behaviour A) → Behaviour A
untilB′ beh1 ev≈ λ t0 t1 → caseev t0 t1 of

[ ] → beh1 t0 t1
(te,beh2) :: → beh2 t0 t1

However, if all switches were of theuntilB′ type, thent0 would always be 0, the global
system start time. This means that the start time parameter becomes redundant, and the
definitions ofBehaviourandEventbecome signals as opposed to signal generators. But as
we have discussed, this leads to severe performance problems and so tends to be avoided.

3.4 Example: Bouncing Balls

As an example, we will construct a simple model of bouncing balls. This a hybrid model,
because the continuous motion of the balls is broken by discrete events (when the ball hits
the ground). For simplicity, we assume no air resistance andconsider only one dimension
(the height of the ball above the ground). To demonstrate themodularity and higher-order
benefits of FRP, we will consider distinct balls that behave differently when they impact the
ground.

We represent the configuration of a ball by a pair of its heightand velocity:

Acceleration= R

Velocity = R

Height = R

Ball = Height× Velocity
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For the purposes of this example, we assume our units are metres and seconds. We thus set
the gravitational constant:

g : Acceleration
g = 9.81

We now construct aBehaviourthat models a freely falling ball. This is achieved by
integrating the acceleration (in this case caused by gravity) to compute the velocity, and
integrating the velocity to compute the height. TheBehaviouris parameterised on an initial
ball configuration:

falling : Ball → Behaviour Ball
falling (h0,v0) = let a = constant(−g)

v = iIntegral v0 a
h = iIntegral h0 v

in
liftB2 (,) h v

The next step is to model interaction with the ground. We define a predicate to detect
when a ball impacts the ground, and a function that negates a ball’s velocity:

detectImpact: Ball → Bool
detectImpact(h,v) = (h <= 0) && (v < 0)

negateVel: Ball → Ball
negateVel(h,v) = (h,−v)

We now turn our attention to the bounce itself. A bounce is a discrete occurrence that
will cause a discontinuity in the behaviour of the ball. Clearly then, a bounce is an event,
and a bounce detector is a function mappingBehaviour Ballto Event Ball(the value of the
event is the configuration of the ball at the moment of impact):

detectBounce: Behaviour Ball→ Event Ball
detectBounce= when detectImpact

We can now define aBehaviourfor a ball that bounces perfectly elastically:

elasticBall : Ball → Behaviour Ball
elasticBall b= let beh = falling b

in
untilB beh(liftE (elasticBall◦ negateVel) (detectBounce beh))

Intuitively, this says that an elastic ball should behave asa falling ball until a bounce is
detected. At which point, the ball should have its velocity negated, and then have its config-
uration used to initialise a newelasticBall.

Note thatelasticBallis recursively defined. When the bounce occurs, a newelasticBall
Behaviourbegins, taking the final ball configuration from the previousBehaviouras its ini-
tial configuration. We now see the usefulness of not startingaBehaviouruntil it is switched
in. Imagine the ball first bounces after 5 seconds. IfelasticBall had been defined using
untilB′, then the residualBehaviourimmediately after being switched in would be the ball’s
configuration 5 seconds after that bounce! This is not to say that there are never situations
when it is desirous to haveBehavioursstarting before they are switched in though, as we
will see shortly.

First however, we define aBehaviourfor a ball that collides perfectly inelastically with
the ground:
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inelasticBall : Ball → Behaviour Ball
inelasticBall b= let beh = falling b

in
untilB beh(liftE (λ → constant(0,0)) (detectBounce beh))

Notice the similarity of theelasticBalland inelasticBalldefinitions. There is obviously an
opportunity for abstraction here, so we define a more generalmodel of a bouncing ball that
is parameterised on theBehaviourto switch in when bouncing:

bouncingBall: (Ball → Behaviour Ball) → Ball → Behaviour Ball
bouncingBall f b= let beh = falling b

in
untilB beh(liftE f (detectBounce beh))

We can then redefine our two balls as:

elasticBall = bouncingBall(elasticBall◦ negateVel)
inelasticBall = bouncingBall(λ → constant(0,0))

Finally, we add the capacity for the ball to be arbitrarily moved to a new position (and
given a new velocity) by some external actor. We model this asanEvent, with the event val-
ues being new ball configurations. An event occurrence therefore represents a repositioning
of the ball (which we will call a reset). The intuitive way to express this would seem to be
as follows:

resetBB: (Ball → Behaviour Ball) → Event Ball→ Ball → Behaviour Ball
resetBB f ev b= untilB (bouncingBall f b) (liftE (resetBB f ev) ev)

Thus,resetBB(resettable bouncing ball) behaves asbouncingBalluntil a reset event occurs,
at which point it recursively startsresetBB, using the sameEventbut a new initial ball
configuration.

However, this doesn’t do what we want, becauseresetBBis defined in terms ofuntilB.
Thus, when the switch occurs, not only is the motion of the ball reset, but so too is the
Event. Consequently, the first event occurrence will trigger the reset repeatedly, and any
events thereafter will be ignored. For example, if the first event occurs after 3 seconds, then
the reset will be triggered every 3 seconds, regardless of any other events. This is not what
we intended. We will discuss this issue further later, as it is one of the motivating factors
behind first-class signal functions. For now, we will explain how this is dealt with in CFRP.

One could imagine providing switches of both theuntilB anduntilB′ variety. However,
what CFRP variants addressing this problem do is to provide afamily of runningInprimi-
tives that allowBehavioursandEventsto start running before they are switched in. This is
achieved by fixing the start time of theBehaviouror Eventsuch that when it is switched in its
start time does not change. In effect, therunningInprimitives coerceBehavioursandEvents
from signal generators to signals, thus providing the programmer with both first-class signal
generators and first-class signals. These signals (runningBehavioursor Events) can then be
used in the definitions of otherBehavioursandEventsthat have not yet been switched in.

There are four functions in therunningInfamily, one for each possible pair combination
of EventandBehaviour. We first considerrunningInBB, which starts a behaviour inside a
behaviour. It has the following type and semantics:

runningInBB: {A B : Set} → Behaviour A→ (Behaviour A→ Behaviour B) → Behaviour B
runningInBB beh f≈ λ t0 → f (λ → beh t0) t0

The first argument (beh) is theBehaviourwe wish to start running. The second argument
(f ) is a function that uses thisBehaviour(which is really a signal, despite the lack of type
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distinction) to define anotherBehaviour. The semantics say thatbeh can be used in the
definition of the secondBehaviour, but that wheneverbehis switched in, the local start time
is ignored and the start time of therunningInBBexpression is used instead.

The runningIn primitive that we need for our bouncing balls isrunningInEB, which
starts anEventinside aBehaviour:

runningInEB: {A B : Set} → Event A→ (Event A→ Behaviour B) → Behaviour B
runningInEB ev f≈ λ t0 → f (λ te → dropWhile((< te) ◦ fst) ◦ ev t0) t0

The semantics are similar torunningInBB, except that we applydropWhile((< te) ◦ fst) to
the runningEvent. This is because the meaning of anEventis all event occurrences between
the start time and the sample time (whereas aBehaviouris only concerned with the sample
time). While theEventshould start running before it is switched in, only events that occur
after it is switched in should be observable.

We can now redefineresetBBwith the behaviour we require:

resetBB′ : (Ball → Behaviour Ball) → Event Ball→ Ball → Behaviour Ball
resetBB′ f ev b = runningInEB ev(λ rev→ resetBBaux rev b)

where
resetBBaux: Event Ball→ Ball → Behaviour Ball
resetBBaux rev b′ = untilB (bouncingBall f b′) (liftE (resetBBaux rev) rev)

ThebouncingBall Behaviouris reset, but not theEventthat triggers the resets.

3.5 First-Class Signals or First-Class Signal Functions?

The notion of a signal is absolutely central to any FRP instance. As discussed, a way to
start the computation of a signal at any desired point in time, not just when the overall
system starts, is key if we wish to support a dynamic system structure, both for reasons of
expressivity and to avoid time and space leaks. This suggested a notion of signal generators
as the central first-class abstraction at the functional level. But first-class generators alone
are not enough: the ability to refer to already existing signals from within the definition of a
generator is needed as well, suggesting that signals too should be first-class entities. In the
overview of CFRP we encountered one particular approach forachieving this, therunningIn
primitive, even if a signal through that particular formulation ends up being disguised as a
Behaviouror Event; that is, as a signal generator. As a more recent example, Elerea [32]
also provides both signals and signal generators as first-class abstractions, but this time
carefully distinguished at the type level. Either way, oncesignals are first-class entities,
signal functions come for free.

However, an alternative is to make signal functions the central first-class abstraction.
They will then play the role of generators, as a signal will begenerated whenever a signal
function is applied to a signal, either when the system first starts or when a signal function
is switched in at some later point in time. This way, the ability to make a generated signal
depend on already existing signals comes for free. Thus, signals no longer have to be a first-
class notion at the functional level, but can be relegated tosecondary status, existing only
indirectly through the signal-function abstraction. Thisis the approach taken by Yampa [27].

So, which option should one choose? First-class signals (and generators), or first-class
signal functions? There are pros and cons to each, many related to the specifics of a partic-
ular setting (embedded or stand-alone implementation, thefacilities of the host language if
an embedded approach is chosen, intended application area,etc.), and some somewhat sub-
jective. Moreover, they are not mutually exclusive; for example, Grapefruit [23] provides
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first-class signal and signal function abstractions, albeit motivated by somewhat different
considerations from those we outlined above.

In this paper we have chosen to develop and study a Yampa-inspired FRP variant where
signal functions are the primary notion and signals are secondary. As a motivation, we con-
clude this section with a brief discussion on some of the advantages we think this approach
offers: the nub is that making the signal-function notion primary allows for a stricter sepa-
ration between the functional and reactive layers. However, this is not to say that CFRP-like
approaches are not viable; recent FRP implementations [9,14,23,31,32] have shown that
they are. Nor is it to say that the work in this paper applies exclusively to FRP approaches
based on signal functions being the central abstraction; wereiterate that the nodes of a
signal-processing network are signal functions in the sense discussed in this paper, meaning
that many aspects of the present work are relevant to FRP in general.

3.5.1 Implementation Implications

Implementing first-class signals efficiently in their full generality has turned out to be very
hard. The essential difficulty is that signals aretime-varyingentities occurring at the func-
tional level where everything notionally must betime-invariantso as to not break referential
transparency. The key to solving this apparent contradiction is to adopt the view that the sig-
nal abstraction represents theentiresignal, which is time invariant. But this does not change
the fact that signals, if space and time leaks are to be avoided, have to beimplementedas
truly time-varying values by updating them as soon as there is a change. Note that if signals
are truly first-class, then they can be put into data structures or be part of closures, and be
kept there for a long time without any connection to the outside world.

To our knowledge, all practically useful FRP implementations supporting first-class
signals resort to imperative techniques to address this. For example,runningIn was im-
plemented by updating the runningBehaviouror Eventas a side effect (using Haskell’s
unsafePerformIO) of consuming the produced signal (that need not depend on the running
Behaviouror Eventat all points of time; in fact, normally would not). For another example,
Elerea [32] maintains a pool of (weak) references to all active stateful signal computations
to enable all of them to be updated, regardless of whether or not the result of an individual
computation is currently being used, by making a sweep over the pool at every time step.

In contrast, an approach based on signal functions can be implemented remarkably sim-
ply and purely functionally. In essence, a signal function is just a state transition function
taking an input sample and current state to an output sample and new state. As the compo-
sition of such state transition functions is another state transition function, the entire system
just becomes a state transition function. Signal functionsthemselves aretime-invariant, so
giving them first-class status at the functional level is trivial.

Another issue concerns sharing. As signal generators essentially are functions mapping
a start time to a signal, the normal lazy evaluation machinery of a language like Haskell
is not enough to ensure that signals generated by the same generator applied to the same
start time are shared. This leads to a lot of redundant computation unless addressed, in
particular for recursively defined signal generators. The usual solution is to employ some
form of memoisation (again using imperative techniques). The memoisation is often done
behind the scenes, as part of the abstractions; but at least one implementation, Elerea, albeit
for somewhat different reasons, provides an explicit memoisation primitive as memoising
everything is usually redundant and has a negative impact onperformance. In contrast, with
signal functions, it is easy to arrange that each signal sample is computed exactly once and
distributed to where it is needed, thus avoiding any risk of lost sharing.



14

Of course, once everything works, what matters to an end useris not the complexity of an
implementation, but the facilities provided, how easy theyare to use for the purpose at hand,
and how good the performance ultimately is. As to the performance of FRP implementations
based on signals vs. signal functions, it is safe to say that the jury is still out: lots of research,
implementation, and practical evaluation is still needed.There may not even be a simple,
conclusive answer. However, we note that Yampa, despite itsscalability issues, has proved
to be quite efficient for many applications as witnessed by video-game implementations
[12,7] or the Yampa synthesiser [16]. We speculate that thisin no small part is due to the
implementation being purely functional, and functional compilers being good at compiling
purely functional code. Moreover, we note that the work on causal commutative arrows [25]
has shown that switch-free signal-function networks can beexecuted very efficiently.

3.5.2 Routing

In a language with first-class signal functions, synchronous data-flow networks can be con-
structed using routing combinators that operate on signal functions. This has the potential
of internalisingall routing at the reactive level, giving much greater scope foroptimisation
than when the routing is hidden at the host-language level. We note that Yampa, which is
structured using arrows, is a half-way house in this respectbecause of the way the arrow
framework is set up: some routing is through combinators, some takes place at the func-
tional level. An explicit goal of our work onN-ary FRP is to do all routing at the reactive
level. While using routing combinators is more awkward thanjust applying functions to ar-
guments, we envision that syntax along the lines of Paterson’s arrow notation [33] would
alleviate the burden.

3.5.3 Signal-Function Objects

By making the notion of a signal function a first-class abstraction, an FRP implementer has
great freedom in choosing its representation and, subsequently, in exploiting information
manifest in this representation. For example, Yampa encodes simple properties about signal
functions in their representation, which in favourable circumstances allows compositions of
signal functions to be fused for better performance [26]. One of the goals of the present
work is to identify properties of signal functions that could enable such optimisation in a
more systematic and formally justifiable manner: see Section 7.

Similarly, as we have shown in earlier work [37], being able to associate additional
information with signal functionsat the type levelallows certain safety guarantees, such
as absence of instantaneous feedback loops, to be enforced statically. If signal functions
were ordinary host-language functions on signals, it wouldnot be possible to take such
information into account if it truly relates to the functionas opposed to its argument or
result.

Finally, Yampa allows a switched-in signal function to be “frozen”: effectively unap-
plied from its input signals and switched out of the network.The result is an aged version of
the initial signal function; that is, its internal state at the time of being switched out is main-
tained. At some later point, the signal function can be switched in again. This is a powerful
capability, forming the basis of Yampa’s collection-basedswitching primitives that allow
highly dynamic signal-function networks to be described. The same fundamental mecha-
nism is also used in the virtual-reality project FRVR [4] where, through a Yampa extension,
it is used to implement an undo facility by capturing the system state as frozen signal func-
tions at various points in time. This allows interaction to resume from any saved point at a
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later stage, thereby undoing the effects of any interveninginteraction. It would seem hard to
replicate the freezing functionality in a setting with first-class signals.

3.5.4 Other Applications

Signal functions also have applications beyond FRP, makingthem interesting to study in
their own right. The connections to the synchronous data-flow languages and to modelling
and simulation languages such as Simulink were mentioned inSection 1. Functional Hybrid
Modelling (FHM) [28] is an approach to modelling and simulation, in part inspired by FRP,
where signal functions are generalised to relations on signals. For efficient simulation, while
still allowing dynamic structure, these relations are compiled to native simulation code using
the LLVM just-in-time compiler [17]. As the notions of signal relations and signal functions
are related, and as it would be desirable to have signal functions in the FHM setting, the
work in this paper is potentially of use for FHM. Conversely,FHM’s compilation-based
implementation strategy could potentially be applied in FRP applications.

4 Signal Kinds

In Section 2 we gave a conceptual definition of signal functions that map a single signal to
a single signal. We refer to FRP models with such signal functions as the central abstraction
as Unary FRP. The Yampa implementation is based on single-kinded Unary FRP. While
both simple and expressive, single-kinded Unary FRP has a number of inherent problems,
practical as well as conceptual. In this section we review these problems, and introduce a
further refined (but still high-level and general) conceptual model based on multi-kinded
n-ary signal functions that we will refer to asN-ary FRP. This model will serve as the
foundation for the rest of this paper.

4.1 Routing Limitations and Artificial Interdependencies

In Unary FRP, signal functions have only a single input and single output. Consequently,
the only way to represent signal functions operating on, or returning, more than one signal
is to exploit the fact that a product of signals is (in this model) isomorphic to a single signal
carrying a product of elements of the constituent signals. For example, a signal function that
maps a pair of signals carrying doubles to another pair of signals carrying doubles has type:

SF(Double,Double) (Double,Double)

This means that there is no distinction (and cannot be) between a signal that carries a “gen-
uine” pair of values, and one that is the result of pairing twoindependent signals.

Moreover, exploiting this isomorphism is often the only wayto route signals between
signal functions: Signals are grouped together into a single signal according to the structure
of signal-function composition, and then, at the functional level, values of this signal are
regrouped so as to enable decomposition according to the structure of the receiving signal
function.

Unfortunately, this approach hides the routing from the reactive level, and creates arti-
ficial interdependencies between independent individual signals. This makes it difficult to
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implement the Unary FRP model in a way that scales well, such as through direct point-to-
point communication between signal functions or minimisation of redundant computation
through change propagation (see Section 8.4) [36].

The Unary FRP model certainly does not rule out all optimisation opportunities, as ev-
idenced by the latest Yampa implementation [26]. However, overcoming these limitations
in a more comprehensive and systematic way necessitates internalising the routing at the
reactive level, as well as introducingn-ary signal functions that truly map multipleindepen-
dentinput signals to multipleindependentoutput signals. Thus we take this approach in the
following. However, first we need to revisit the nature of signals.

4.2 Different Kinds of Signal

As discussed in Section 2.3, most versions of FRP cater for the implementation of hybrid
systems by supporting multi-kinded signals. However, we also saw that in single-kinded
FRP, discrete-time signals were defined in terms of continuous-time signals by lifting the
signal range using an option type. This means that there is nothing that rules out semantic in-
felicities such as dense event occurrences: event signals where events are always occurring,
regardless of how densely the signal is sampled. This violates the conceptual model of at-
most-countably many event occurrences. While such option types are typically kept abstract
to prevent the programmer from accidentally creating denseevents, it is nevertheless fairly
easy for a “mischievous” programmer to do so deliberately. This means an implementation
cannot safely carry out optimisations that are predicated on events occurring non-densely,
even though that is the intent.

Another problem of single-kinded signals is that some operations need to be done in
different ways on the two kinds of signal in order to maintaincentral properties of the signal
kind in question. For example, in a typical sampled implementation, it may be necessary to
insert or delete samples of continuous-time signals to mediate between different sampling
rates. However, for event signals, duplicating event occurrences would often be disastrous.
There may be specific versions of such operations that work correctly for events, but as
any operation that works on polymorphic signals is also applicable to event signals, there is
nothing to enforce that these specific operations are used inplace of the generic ones.

Furthermore, we can observe that many continuous-time signals are piecewise con-
stant (mainly due to their interaction with discrete-time signals). However, if all signals are
continuous-time signals, without any further guaranteed properties, then there is not much
that can be gained from this observation.

This is all in sharp contrast to multi-kinded FRP (such as CFRP) that makes a strict
distinction between continuous-time and discrete-time signals, allowing the differences to
be used for both gaining semantic precision and better implementation.

For reasons such as these, it is desirable to make a clear type-level distinction between
different kinds of signal. To this end, we have identified three useful kinds of signal:

– Event Signals: These signals are only defined at an at-most-countable set of points in
time. Each point at which an event signal is defined is known asanevent occurrence.

– Step Signals: These signals are piecewise constant. They are always defined, but their
value only changes at an at-most-countable set of points in time.

– Continuous Signals: These signals are always defined.
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4.3 N-ary Signal Functions

To address the routing limitations of Unary FRP, and to caterfor multi-kinded signals, we in-
troducen-ary signal functions, signal functions that can have more than one input or output,
by defining signal functions onsignal vectorsrather than signals. Signal vectors are concep-
tually products of heterogeneous signals. However, note that signals donot nest: there are
never any signals carrying signals.

Now, the crucial point is that we define the different kinds ofsignal, and vectors of such
signals, only as an integral part of the signal-function abstraction: they have no independent
existence of their own and are thus completely internalisedat the reactive level. This means
that the FRP implementer has great freedom in choosing representations of signals, signal
functions, and the routing between them; and in exploiting those choices.

4.3.1 Signal-Vector Descriptors

We begin by definingsignal-vector descriptors. A signal-vector descriptor is a type-level
value that describes key characteristics of a signal vector. Signal-vector descriptors only
exist at the type level ofN-ary FRP, and will only be used to index signal-function types.

We are interested in the time domain and the type (of the values carried by) a signal.
Thus we introduce one descriptor for each kind of signal, each parameterised on the signal
type, and a pairing descriptor7 to construct vectors of more than one signal:

data SVDesc: Setwhere
C : Set → SVDesc -- continuous signal
E : Set → SVDesc -- event signal
S : Set → SVDesc -- step signal
, : SVDesc→ SVDesc→ SVDesc -- product of signals

4.3.2 Signal Vectors

We now refine the conceptual definition of signals as follows:

– Continuous signals remain functions from time to value, as before.
– Step signals are modelled as an initial value, along with a function from time to a finite

list of changes. These changes are represented as pairs of a (strictly positive) time delta
and a value.

– Event signals are modelled asMaybean initial event, along with a function from time to
a finite list of event occurrences. These occurrences are represented as pairs of a (strictly
positive) time-delta and a value.

We will refer to lists of time-delta–value pairs aschange lists, and to functions mapping
time to change lists aschange prefixes. We also introduce the notationTime+ for the set of
strictly positive time, and the synonym∆ t for time deltas:

Time+ ≈ { t ∈ R | t > 0}

∆ t = Time+

ChangeList: Set→ Set
ChangeList A= List (∆ t × A)

7 Agda notation: Infix (and more generally mixfix) functions and constructors are defined by underscores
denoting the positions of the arguments.



18

ChangePrefix: Set→ Set
ChangePrefix A= Time→ ChangeList A

Signal vectors are thus defined:

SigVec: SVDesc→ Set
SigVec(C A) = Time→ A
SigVec(E A) = Maybe A× ChangePrefix A
SigVec(S A) = A× ChangePrefix A
SigVec(as,bs) = SigVec as× SigVec bs

We then refine signal functions to operate over signal vectors:

SF : SVDesc→ SVDesc→ Set
SF as bs≈ SigVec as→ SigVec bs

4.3.3 Why Change Prefixes?

The desired properties of an event signal are that events occur countably and not simultane-
ously. The change-prefix representation enforces this as follows:

As we want our model to enforce causality, a change prefix mapsa time to a finite list
of changes,up to that point in time. Crucially, this means that at any point in time, we do
not know the times or values of future events. As we require that the change list is finite,
this also ensures that events are at most countable: there may be countably infinite events in
the limit as time tends towards infinity, but only a finite number of events up to any specific
point. We use strictly positive time deltas to ensure that events cannot occur simultaneously.
However, a consequence of this is that the change list cannotrepresent an event at the first
point in time (which we will refer to henceforth astime0), and so we pair it with aMaybe
value to represent the possibility of an initial event.

The definition of step signals is the same idea, but with the change list representing
changes of the signal value, rather than event occurrences.Instead of the possibility of an
initial event, a step signal always has an initial value.

However, there are some required properties that change prefixes do not enforce. First,
we want to ensure that the change list produced by a change prefix is a prefix of all change
lists produced at future sample times (intuitively, history must not be “rewritten”). We say
that a change prefix isstableif it has this property. Second, the change list produced at any
sample time must not extend beyond that sample time (intuitively, it must not “see into the
future”). We say that a change prefix iscontainedif it has this property. We could incor-
porate these properties into the change-prefix data structure, but that would substantially
complicate the definitions in this paper. Thus, we state themhere as side conditions that are
required to hold for all change prefixes in our model8:

Stable: {A : Set} → ChangePrefix A→ Set
Stable cp= { t1 t2 : Time} → (t1 < t2) → (cp t1 ≡ takeIncl t1 (cp t2))

Contained: {A : Set} → ChangePrefix A→ Set
Contained cp= { t : Time} → (lastChangeTime(cp t) 6 t)

The definitions oftakeInclandlastChangeTimecan be found in Appendix A.

8 Agda notation: We are working in dependent-type theory [29], where a proposition is represented as a
type (Set). The elements of that type are the proofs of the proposition;thus to prove a proposition, one has to
produce an inhabitant of that type. HenceTrue is represented by the unit type, andFalseby the empty type.
We can refine the domain of a function by requiring a proof that the argument meets some condition. For
example,(t1 < t2) is atype, the elements of which are proofs thatt1 is indeed less thant2.



19

&&&

sf
2

sf
1

>>>

sfl sfr

sfs

switch

?

sfSnd

identitysfFst

Fig. 1 Routing Primitives

5 N-ary FRP

An FRP language consists of a set of primitives: signal functions, signal-function combina-
tors, and lifting functions that convert pure functions into signal functions. FRP programs
are constructed by using the combinators to compose the primitive and lifted signal func-
tions into signal-function networks. The key point about these primitives is that they only
allow the construction of signal functions that respect theconceptual model.

In this section we first introduce the primitives ofN-ary FRP, giving their definitions at
theconceptuallevel. We then demonstrateN-ary FRP programming by defining some new
combinators and signal functions using those primitives.

The utility functions we use in our definitions can be found inAppendix A. When the
(conceptual) definition of a signal function is particularly verbose, we give only its type and
relegate the definition to Appendix B.

5.1 Routing Primitives

As previously discussed, we wish to express all routing at the reactive level. To this end,
there is a set of combinators and primitives that exist purely for routing purposes. All routing
should be expressed using these primitives (as opposed to lifting routing functions from the
functional level) so that an implementation can fully exploit this information.

Let us reiterate: we do not expect animplementationof FRP to be structured in a way
that corresponds directly to the conceptual definitions below. All that is required is that the
semanticsof the implemented routing corresponds to our conceptual model.

The routing primitives can be divided into: those foracyclic static routing; switching
combinators, which add the capacity for dynamism; andfeedback combinators, which add
the capacity for cyclic networks.

5.1.1 Acyclic Static Routing

We can define all acyclic static routing at the reactive levelusing five primitives:identity,
sfFst, sfSnd, ≫ and &&&. These primitives can be represented graphically, as shown in Fig.
1. This set of primitives is minimal in the sense that any acyclic static network structure
can be described by them, yet none of these primitives can be defined in terms of the other
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four. There are of course other sets of minimal combinators that can likewise express such
routing. In Section 5.4.1 we demonstrate the expressiveness of these primitives by using
them to define several other routing combinators.

We begin with the identity signal function:

identity : {as : SVDesc} → SF as as
identity≈ λ as→ as

The projection signal functions extract the first or second component of a signal vector:

sfFst : {as bs: SVDesc} → SF(as,bs) as
sfFst≈ fst

sfSnd: {as bs: SVDesc} → SF(as,bs) bs
sfSnd≈ snd

The sequential-composition combinator composes two signal functions:

≫ : {as bs cs: SVDesc} → SF as bs→ SF bs cs→ SF as cs
sf1 ≫ sf2 ≈ sf2 ◦ sf1

The fan-out combinator applies two signal functions to the same input in parallel:

&&& : {as bs cs: SVDesc} → SF as bs→ SF as cs→ SF as(bs,cs)
sf1 &&& sf2 ≈ λ as→ (sf1 as,sf2 as)

5.1.2 Switching

One of the main things that sets FRP apart from the synchronous data-flow languages is its
highly dynamic nature. Yampa, for example, provides a family of switching combinators
that operate on signal functions. New first-class signal functions can be created, and first-
class signal functions can be switched in to replace runningsignal functions. Running signal
functions can be “frozen” (transformed back into first-class entities, maintaining any internal
state), removed from the network, and then later switched inagain if desired. [27]

There is a similar family of switching combinators inN-ary FRP, but in this paper we
present only one as a primitive:

switch : {as bs: SVDesc} → {A : Set} → SF as(bs,E A) → (A→ SF as bs) → SF as bs

Informally, the behaviour ofswitch is to apply the subordinate signal function (the first
explicit argument) to the input signal. The first component of the subordinate’s output is
emitted as the overall output until there is an occurrence inthe event signal (the second
component of the subordinate’s output). The switching function (the second explicit argu-
ment) is then applied to the value of that event to produce a residual signal function. This
residual signal function is then applied to the input signal, starting at the time of the event
occurrence, and henceforth the overall output is taken fromthe residual signal function.

The formal definition ofswitchover signal vectors is somewhat involved in our con-
ceptual model, but to give the idea we define the specialised case of one continuous output
signal. The full definition can be found in Appendix B.

switchC : {as : SVDesc} → {A B : Set} → SF as(C B,E A) → (A→ SF as(C B)) → SF as(C B)
switchC sf f≈ λ sa t → let (sb,se) = sf sa

in casefstOcc se t of
nothing → sb t
just (te,e) → (f e) (advance te sa) (t − te)
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The key point here is that the residual signal function (f e) only “starts” at the moment of
switching. Thus we have to “advance” (time-shift) the inputsignal so that the residual signal
function can only observe the input signal after the switch occurs. Furthermore, we modify
the sampling time to match this time shifting, so that the residual signal function does not
examine the future of the advanced signal.

Note that this differs from the CFRP switching combinators (see Section 3.3), which
had signal generators and start times. Here, each signal function is running in its ownlocal
time, and thus always starts at (local)time0.

Definition 2 (Local Time) The time since a signal function was applied to its input sig-
nal. This will have been either when the entire system started, or when the sub-network
containing the signal function in question was switched in.

5.1.3 Feedback

An important facility in FRP (and synchronous data-flow generally) is to be able to introduce
feedback into a network. However, when doing so, one has to becareful not to introduce ill-
defined feedback that could cause an implementation to loop at run-time. Ideally, one wants
a language that disallows ill-defined feedback, without enforcing conservative restrictions
on the well-defined feedback.

We have considered this issue in earlier work [37], but for the purposes of this paper we
will concentrate only on acyclic networks, and so do not giveany feedback combinators.
We discuss feedback further in Section 10.

5.2 Primitive Signal Functions

In this section we give the primitive signal functions, along with their conceptual definitions.
In some cases, the definition of a signal function differs when applied to (or producing)
different kinds of signals. We define a separate version of the signal function for each such
signal kind. In an implementation, some form of overloadingmechanism would probably
be employed on top of these.

We begin with a signal function that emits constant output:

constantS: {as : SVDesc} → {A : Set} → A→ SF as(S A)
constantS a≈ const(a,const[ ])

Note thatconstantSis polymorphic in its input signal-vector descriptor. As discussed in Sec-
tion 2.2, this is the way of embedding what are really signal generators into signal functions.
That is,constantSis a generator of constant step signals.

Similarly, the primitivesneverandnoware also embedded event-signal generators:

– nevergenerates an event signal with no event occurrences;
– nowgenerates an event signal containing exactly one event occurrence attime0.

never : {as : SVDesc} → {A : Set} → SF as(E A)
never≈ const(nothing,const[ ])

now : {as : SVDesc} → SF as(E Unit)
now≈ const(just unit,const[ ])

We can mediate between event and step signals usinghold andedge:
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– hold emits a step signal carrying the value of its most recent input event;
– edgeemits an event whenever the value of the Boolean input step signal changes from

false to true:

hold : {A : Set} → A→ SF(E A) (S A)
hold a≈ first (fromMaybe a)

edge: SF(S Bool) (E Unit)
edge≈ λ (b,cp) → (nothing,edgeAux b◦ cp)

where
edgeAux: Bool→ ChangeList Bool→ ChangeList Unit
edgeAux [ ] = [ ]
edgeAuxtrue (( ,b) :: δbs) = edgeAux bδbs
edgeAuxfalse (( , false) :: δbs) = edgeAuxfalse δbs
edgeAuxfalse ((δ ,true) :: δbs) = (δ ,unit) :: edgeAuxtrue δbs

We can integrate a real-valued step or continuous signal with respect to time. The output
of such an integration is always a continuous signal. Note that while an implementation will
only be able to approximate the integral of an arbitrary continuous signal, it can compute
the exact9 integral of a step signal:

integralS : SF(S R) (C R)

integralC : SF(C R) (C R)

integralC≈ λ s t1 →
∫ t1

0 (s t) dt

The signal functionwhenapplies a predicate to a continuous input signal, producingan
event occurrence as output whenever that predicate changesfrom false to true. Note that,
as withedge, this is only at the moment of change: another event will not occur until the
predicate has ceased to hold and then becometrue again.

when: {A : Set} → (A→ Bool) → SF(C A) (E A)

The delayprimitives delay a signal vector by a specified amount of time. Note that in
the case of continuous and step signals, we have to initialise the signal for the delay period:

delayE : {A : Set} → Time+ → SF(E A) (E A)
delayE d≈ λ (ma,cp) → (nothing,delayCP d ma cp)

delayS : {A : Set} → Time+ → A→ SF(S A) (S A)
delayS d a0 ≈ λ (a1,cp) → (a0,delayCP d(just a1) cp)

delayC : {A : Set} → Time+ → (Time→ A) → SF(C A) (C A)
delayC d f≈ λ s t→ if t < d then f t elses(t − d)

Finally, to allow us to combine step and continuous signals,we provide a coercion signal
function that converts a step signal to a continuous signal:

fromS : {A : Set} → SF(S A) (C A)
fromS≈ valS

5.3 Lifting Functions

There is a family of lifting functions that allow us to lift pure functions from the functional
level to the reactive level in a pointwise fashion:

9 Up to the limit of the underlying numeric representation, typically floating-point numbers.
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liftC : {A B : Set} → (A→ B) → SF(C A) (C B)
liftC f ≈ mapC f

liftS : {A B : Set} → (A→ B) → SF(S A) (S B)
liftS f ≈ mapS f

liftE : {A B : Set} → (A→ B) → SF(E A) (E B)
liftE f ≈ mapE f

liftC2 : {A B Z : Set} → (A→ B→ Z) → SF(C A,C B) (C Z)
liftC2 f ≈ uncurry(mapC2 f)

liftS2 : {A B Z : Set} → (A→ B→ Z) → SF(S A,S B) (S Z)
liftS2 f ≈ uncurry(mapS2 f)

We have deliberately omittedliftE2, because the intended meaning of such a combinator
is not obvious. Consider: there are two input event signals,and one output event signal. At
any point in time, if there is no occurrence on either input signal, then there shouldn’t be an
occurrence on the output signal. And if there are event occurrences on both input signals,
then it seems reasonable that there should be an event occurrence on the output. But what
about the case when there is an event occurrence on one input signal and not the other?
Should there be an event occurrence on the output or not?

To address this question, we define two separate primitives:mergeand join. The be-
haviour ofmergeis to produce an event occurrence when either input has an occurrence; the
behaviour ofjoin is to produce an event only when both inputs have an event occurrence:

merge: {A B Z : Set} → (A→ Z) → (B→ Z) → (A→ B→ Z) → SF(E A,E B) (E Z)
merge fa fb fab≈ uncurry(mergeE2 fa fb fab)

join : {A B Z : Set} → (A→ B→ Z) → SF(E A,E B) (E Z)
join f ≈ uncurry(joinE2 f)

Finally, sampleWithmerges event signals with continuous or step signals, producing an
output event occurrence exactly when there is an occurrenceon the input event signal:

sampleWithC: {A B Z : Set} → (A→ B→ Z) → SF(C A,E B) (E Z)
sampleWithC f≈ uncurry(mapCE f)

sampleWithS: {A B Z : Set} → (A→ B→ Z) → SF(S A,E B) (E Z)
sampleWithS f≈ uncurry(mapSE f)

5.4 Examples

Having introduced the primitives ofN-ary FRP, we will now write someN-ary FRP pro-
grams using those primitives. We are no longer working at theconceptual level: thus signal
functions are now abstract, and signals do not exist.

5.4.1 Additional Combinators

We begin by defining some useful routing combinators (shown in Fig. 2):

toFst : {as bs cs: SVDesc} → SF as cs→ SF(as,bs) cs
toFst sf = sfFst ≫ sf

toSnd: {as bs cs: SVDesc} → SF bs cs→ SF(as,bs) cs
toSnd sf= sfSnd≫ sf

∗∗∗ : {as bs cs ds: SVDesc} → SF as cs→ SF bs ds→ SF(as,bs) (cs,ds)
sf1 ∗∗∗ sf2 = toFst sf1 &&& toSnd sf2
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Fig. 2 Additional routing combinators

sfFirst : {as bs cs: SVDesc} → SF as bs→ SF(as,cs) (bs,cs)
sfFirst sf = sf ∗∗∗ identity

sfSecond: {as bs cs: SVDesc} → SF bs cs→ SF(as,bs) (as,cs)
sfSecond sf= identity ∗∗∗ sf

sfFork : {as : SVDesc} → SF as(as,as)
sfFork = identity&&& identity

sfSwap: {as bs: SVDesc} → SF(as,bs) (bs,as)
sfSwap= sfSnd&&& sfFst

fanoutFirst : {as bs: SVDesc} → SF as bs→ SF as(bs,as)
fanoutFirst sf = sf &&& identity

fanoutSecond: {as bs: SVDesc} → SF as bs→ SF as(as,bs)
fanoutSecond sf= identity&&& sf

We also define a switching combinator calledswitchWhenthat will be convenient later:

switchWhen: {as bs: SVDesc} → {A : Set}
→ SF as bs→ SF bs(E A) → (A→ SF as bs) → SF as bs

switchWhen sf sfe= switch(sf ≫ fanoutSecond sfe)

Roughly,switchWhenis the same asswitch, except the subordinate signal function has been
split into two: one to produce the output and one to produce the event. You can consider
switchWhento be aswitchspecialised to the case where:

– the event that causes the switch to occur only depends on the output of the subordinate
signal function, and

– the output of the subordinate signal function does not depend on the event.

Notice that we did not use the functional level in any of thesedefinitions—the set of
routing primitives is sufficient. This is key: as discussed in Section 3.5.2, it is one of our
objectives to express all routing at the reactive level.
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Fig. 3 A signal-function network modelling falling balls

5.4.2 Simple Signal Functions

Let us construct some simple signal-function networks. First we define a signal function that
outputs the current local time by integrating the constant 1:

localTime : {as : SVDesc} → SF as(C R)
localTime= constantS1 ≫ integralS

Next we define a signal function that emits a single event after a specified amount of time
has passed:

after : {as : SVDesc} → Time→ SF as(E Unit)
after t = now ≫ delayE t

When working with continuous signals, it is useful to produce constant continuous signals:

constantC: {as : SVDesc} → {A : Set} → A→ SF as(C A)
constantC a= constantS a≫ fromS

Finally, we define initialised versions of the integration signal functions:

iIntegralS : R → SF(S R) (C R)
iIntegralS x= integralS≫ liftC (+ x)

iIntegralC : R → SF(C R) (C R)
iIntegralC x = integralC ≫ liftC (+ x)

5.4.3 Bouncing Balls Revisited

The example signal-function networks we have seen so far have been static in structure. As
an example of a dynamic network, we will revisit the bouncingballs example from Section
3.4. We will reuse the definitions from the functional level (i.e. those that do not contain
Eventsor Behaviours), but replace the reactive level definitions (i.e. those that do).

We begin by defining a signal function to model a falling ball:

falling : {as : SVDesc} → Ball → SF as(C Ball)
falling (h,v) = constantS(−g) ≫ iIntegralS v≫ fanoutFirst(iIntegralC h) ≫ liftC2 (,)

For this signal function, the code is less clear than its CFRPequivalent. You may find
the graphical representation in Fig. 3 helpful. In Yampa, Paterson’s arrow notation [33]
is used for signal functions such as this to make the code clearer [27] (and we would expect
an implementation ofN-ary FRP to provide similar notation). However, the definitions of
bouncingBall, elasticBallandinelasticBallclosely follow those of CFRP:

detectBounce: SF(C Ball) (E Ball)
detectBounce= when detectImpact
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bouncingBall: {as : SVDesc} → (Ball → SF as(C Ball)) → Ball → SF as(C Ball)
bouncingBall f b= switchWhen(falling b) detectBounce f

elasticBall : {as : SVDesc} → Ball → SF as(C Ball)
elasticBall = bouncingBall(elasticBall◦ negateVel)

inelasticBall : {as : SVDesc} → Ball → SF as(C Ball)
inelasticBall = bouncingBall(λ → constantC(0,0))

Finally, we add the capacity for the ball to be reset:

resetBB: (Ball → SF(E Ball) (C Ball)) → Ball → SF(E Ball) (C Ball)
resetBB f b= switch(fanoutFirst(bouncingBall f b)) (resetBB f)

This signal function is much easier to define inN-ary FRP than CFRP. Primarily, this is
because of the modular nature of signal functions. They are parameterised on their input,
and so we can define a signal function that receives input fromoutside theswitch, thereby
allowing us to retain (rather than resetting) the input signal when the switch occurs. In CFRP
therunningInprimitive was required to achieve this.

6 FRP Optimisation

In order to be reactive (delivering timely responses), any FRP implementation must be dis-
cretely sampled. Consequently, if notionally continuous-time signals are provided, a con-
crete implementation can only approximate the ideal semantics.

However, we aim to make the approximation as faithful as possible. Here, the semantic
distinction between different kinds of signals helps. As discussed in Section 4.2, we can
statically rule out certain uses of signals by making the kinds manifest in the type system.
This allows employing an implementation strategy that is appropriate for a specific kind of
signal, but which would have risked breaking the abstractions had said uses not been ruled
out. Moreover, this also opens up opportunities for signal-kind–specific optimisations.

In this section, we first briefly review the two basic FRP implementation strategies. We
then discuss the archetypal optimisation opportunities wewould like to identify in an FRP
system, as a background and motivation for the signal function properties in the next section.

6.1 Basic FRP Implementation Strategies

An FRP instance typically employs either apull-based(demand-driven) orpush-based
(data-driven) implementation approach [14].

A pull-based approach repeatedly samples the output signals over a sequence of time
steps, recomputing every signal at each step. This is a good approach for signals that change
often, as is common for continuous-time signals. In fact, the more frequent the changes,
the more efficient this approach. However, signals that change only rarely have their value
unnecessarily recomputed repeatedly. This is inefficient and scales poorly, as the amount of
work is proportional to the number of signals, not to the signal activity.

In contrast, a push-based approach only recomputes signalswhen the signals they de-
pend on change. This is a natural fit for discrete-time signals: when nothing changes, no
updates are needed. However, in FRP there are signals that depend on time (and can thus
change even if their inputs do not), as well as continuous-time signals that change frequently,
often at every sample step. The former implies that just reacting to external events is not
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enough. The second, that there can be a substantial overheadfor using a push-based ap-
proach for continuous-time signals as the costs associatedwith pushing are incurred very
frequently.

Ideally, one would like to employ both strategies selectively, to reap the benefits of each.
A solid understanding of how change works in signal functionnetworks is a good first step
in that direction.

6.2 Optimisation Opportunities

For most networks, many signals will be unchanging for significant periods of time, with
changes occurring sparsely compared to the sampling rate. We would like an implementation
to be able to optimise as much as possible based on this, without breaking any abstractions.

There are three archetypal ways in which we can optimise a signal function network:

– Eliminate any signal function whose output is not used.
– Avoid recomputation of signals whose values will never change.
– Apply a change-propagation execution scheme (where valid).

For the first, we need to keep track of which signals are used. Given the dynamic nature of
FRP, and the combinator style used to construct networks, itis very common for signals to
be used for a while, but then later ignored. Often, the signalfunction that produces them is
still in the network, and consequently being executed. To allow such signal functions to be
garbage collected we need to track signal functions that do not use their inputs, as from that
we can determine which signals are not used.

For the second, we need to know that a signal will not change atany point in the future.
If that is the case, then we can just compute the value of the signal once, and then employ
constant propagation.

For the third, we need to identify which signal functions aresuch that their output will
not change unless their input does. Then, when executing, ifwe know that the input has not
changed, we can avoid recomputing the output.

By identifying the three different kinds of signals, we can more precisely track the prop-
erties of signals and signal functions, and hence are able toapply more precise optimisations.
For example, we know that continuous signals are likely to bealways changing, no matter
how rapid the sampling rate. On the other hand, step signals tend to change only sparsely,
and are thus likely to benefit greatly from change-propagation optimisations. By combin-
ing this knowledge with knowledge about how signal functions are affected by change, it
becomes possible to select appropriate implementation andoptimisation strategies in a fine-
grained manner.

7 Properties of Signals and Signal Functions

In this section we define some properties of signals and signal functions that could be ex-
ploited by an implementation to enable the optimisations suggested in Section 6.2. As many
of the definitions in this section refer to time-varying properties, we first introduce some
combinators fromtemporal logic[22,38] to simplify the definitions.
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7.1 Temporal Logic

First we introduce a type of temporal predicate:

TimePred= Time→ Set

We then define pointwise versions of the standard logical operators10:

∨ : TimePred→ TimePred→ TimePred
(ϕ ∨ ψ) t = ϕ t ⊎ ψ t

∧ : TimePred→ TimePred→ TimePred
(ϕ ∧ ψ) t = ϕ t × ψ t

⇒ : TimePred→ TimePred→ TimePred
(ϕ ⇒ ψ) t = ϕ t → ψ t

¬ : TimePred→ TimePred
(¬ ϕ) t = ϕ t → False

We now introduce two unary temporal operators:G (Global) and H (History). They
should be read as “at all points in the future” and “at all points in the past”, respectively:

G : TimePred→ TimePred
(G ϕ) t = (t′ : Time) → (t′ > t) → ϕ t′

H : TimePred→ TimePred
(H ϕ) t = (t′ : Time) → (t′ < t) → ϕ t′

Notice that the definitions ofG andH exclude the current time. However, we can define
reflexive variants that include the current time:

Gr : TimePred→ TimePred
Gr ϕ = ϕ ∧ G ϕ
Hr : TimePred→ TimePred
Hr ϕ = ϕ ∧ H ϕ

We next introduce the synonymBetween, as an aid to defining further temporal opera-
tors.Between t0 ϕ t1 should be taken to mean thatϕ holds over the interval(t0, t1):

Between: Time→ TimePred→ Time→ Set
Between t0 ϕ t1 = (t : Time) → (t0 < t) → (t < t1) → ϕ t

We will now define some binary temporal operators. We begin with S (Since). ϕ S ψ
should be read as “ϕ sinceψ”, and should be taken to mean that there is a point in the past
at whichψ held, andϕ has held since that point:

S : TimePred→ TimePred→ TimePred
(ϕ Sψ) t = Σ Time(λ t′ → (t′ < t) × ψ t′ × Between t′ ϕ t)

Our next binary operator isW (Wait For or Weak Until). ϕ W ψ should be read as “ϕ
waits forψ”, and should be taken to mean thatϕ will hold until ψ holds:

W : TimePred→ TimePred→ TimePred
(ϕ W ψ) t = G (Between t(¬ ψ) ⇒ Between tϕ) t

Note that the definition ofSrequires thatψ must have held at some point in the past, whereas
W does not requireψ to ever hold.

10 Agda notation:⊎ is the Agda sum type, see Appendix A.
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Our final operator is a reflexive variant ofW that requiresϕ to hold at the current time
if ψ does not:

Wr : TimePred→ TimePred→ TimePred
ϕ Wr ψ = ψ ∨ (ϕ ∧ (ϕ W ψ))

We now define some functions for introducing and eliminatingtemporal predicates. We
can eliminate a temporal predicate by requiring it to hold atall points in time:

Always: TimePred→ Set
Alwaysϕ = (t : Time) → ϕ t

We can introduce a temporal predicate by requiring the result of a time function to equal its
result at a specified point in time:

EqualAt : {A : Set} → (Time→ A) → Time→ TimePred
EqualAt f t′ t = f t ≡ f t′

7.2 Change

As previously discussed, many of our optimisations rely on some notion ofchange. How-
ever, most obvious definitions of change are implementationspecific. In a sampled imple-
mentation, an obvious definition would be to say that a signalhas changed if its current
sample differs from its previous sample. This would make sense for continuous signals,
but not for events which are supposed to occur in isolation. Two adjacent identical event
occurrences should be two changes, not a lack of change. Thisis also specialised to the
implementation; in our conceptual model there is no notion of time samples.

Consequently, we use a more precise definition of change thatrespects the conceptual
model of multi-kinded signals:

Definition 3 (Signal Change)At any given point in time, a signal is eitherchangingor
unchanging(exclusively):

– A continuous signal isunchangingat a timet iff there exists a non-empty closed interval
bounded to the right byt over which the signal remains constant.

– An event signal isunchangingat all points in time at which there is no event occurrence.
– A step signal ischangingat time0 (see Section 8.5) and at all points in time at which it

assumes a new value. It isunchangingat all other points.
– A signal vector isunchangingif all signals in that vector areunchanging.

UnchangingC: {A : Set} → SigVec(C A) → TimePred
UnchangingC s t= ((EqualAt s t) S(EqualAt s t)) t

UnchangingE: {A : Set} → SigVec(E A) → TimePred
UnchangingE(ma,cp) t | t == 0 = IsNothing ma

| t > 0 = IsNothing(lookupCP cp t)

UnchangingS: {A : Set} → SigVec(S A) → TimePred
UnchangingS( ,cp) t | t == 0 = False

| t > 0 = IsNothing(lookupCP cp t)

Unchanging: {as : SVDesc} → SigVec as→ TimePred
Unchanging{C } s = UnchangingC s
Unchanging{E } s = UnchangingE s
Unchanging{S } s = UnchangingS s
Unchanging{ , } (s1,s2) = Unchanging s1 ∧ Unchanging s2
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Changing: {as : SVDesc} → SigVec as→ TimePred
Changing s= ¬ (Unchanging s)

The definition forUnchangingCcan be read as: “There was a point in the past such that the
value of the signal was equal to the current value of the signal, and since that point they have
remained equal.”

Having defined what it means for a signal to beunchangingat an arbitrary point in time,
we can use the temporal-logic combinators to express the property that a signal will remain
unchanginghenceforth. We define two variants of this property, one reflexive, one not:

Definition 4 (Changeless Signal)We say that a signal ischangelessif it will be unchanging
at all future points in time:

Changeless: {as : SVDesc} → SigVec as→ TimePred
Changeless s= G (Unchanging s)

Definition 5 (Reflexively Changeless Signal)We say that a signal isreflexively changeless
if it is unchangingnow, and will remainunchanginghenceforth:

Changelessr : {as : SVDesc} → SigVec as→ TimePred
Changelessr s = Gr (Unchanging s)

7.3 Signal-Function Properties

In this section we define some properties of signal functionsthat are useful for optimisation.
We will define both time-invariant properties (those that will always hold), as well as time-
varying properties. The former are suited to static optimisation, whereas the latter present
opportunities for dynamic optimisation.

7.3.1 Time-Varying Equality

To express some of the properties in this section we will require a pointwise temporal equal-
ity of signal vectors. To achieve this, we define aSampleof a signal vector, which represents
its value at a single point in time:

Sample: SVDesc→ Set
Sample(C A) = A
Sample(E A) = Maybe A
Sample(S A) = A
Sample(as,bs) = Sample as× Sample bs

We then define a functionat that computes this sample, given a time point:

at : {as : SVDesc} → SigVec as→ Time→ Sample as
at {C } s t = s t
at {S } s t = valS s t
at {E } s t = occ s t
at { , } (s1,s2) t = (at s1 t,at s2 t)

The pointwise equality that we need is then defined as a temporal predicate that holds at any
given point in time if the samples of the two vectors are equal:

≡s : {as : SVDesc} → SigVec as→ SigVec as→ TimePred
(s1 ≡s s2) t = at s1 t ≡ at s2 t
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7.3.2 Time-Invariant Properties

To begin, we formally define the causality property from Section 2.2:

Causal: {as bs: SVDesc} → SF as bs→ Set
Causal{as} sf = (s1 s2 : SigVec as) → Always(Hr (s1 ≡s s2) ⇒ (sf s1 ≡s sf s2))

Some signal functions are such that their output at any pointin time only depends on
their input at that same point in time. These are known asstatelesssignal functions:

Definition 6 (Stateless Signal Function)A signal function isstatelessif, at any given time,
its output can depend upon its current input, but not its pastor future inputs:

Stateless: {as bs: SVDesc} → SF as bs→ Set
Stateless{as} sf = (s1 s2 : SigVec as) → Always((s1 ≡s s2) ⇒ (sf s1 ≡s sf s2))

Signal functions are often implemented as having an internal state, in which they store any
required information about past inputs. Thus the system does not have to record globally
all past signal information; each signal function will store what it requires. It is this com-
mon implementation choice that leads to the namestatefulfor signal functions that require
such a state, andstatelessfor those that do not. In other settings, the termssequentialand
combinatorialare used for the same notions, respectively.

Another interesting property of signal functions is whether they aredecoupledor not:

Definition 7 (Decoupled Signal Function)A signal function isdecoupledif, at any given
time, its output can depend upon its past inputs, but not its present and future inputs:

Decoupled: {as bs: SVDesc} → SF as bs→ Set
Decoupled{as} sf = (s1 s2 : SigVec as) → Always(H (s1 ≡s s2) ⇒ (sf s1 ≡s sf s2))

A decoupledsignal function is a special case of the more general notion of a contractive
function. Identifying decoupled signal functions is particularly useful as they can be used in
feedback loops to guarantee well defined feedback (see Section 8.7) [37].

7.3.3 Time-Varying Properties

So far, the signal-function properties we have considered have been time-invariant: they have
held for the entire lifetime of the signal function, and willcontinue to do so eternally. How-
ever, we now consider some time-varying properties of signal functions. These properties
may come to hold at some point during execution, usually as a result of structural switches.
These properties are valuable because they identify opportunities for run-time optimisations.

We begin withsources, signal functions that ignore their input:

Definition 8 (Source Signal Function)A signal function is asourceif its current and future
outputs do not depend on its current or future inputs:

Source: {as bs: SVDesc} → SF as bs→ TimePred
Source{as} sf t = (s1 s2 : SigVec as) → (H (s1 ≡s s2) ⇒ Gr (sf s1 ≡s sf s2)) t

This is a time-varying property becausesourcescan arise dynamically; typically as a result
of switching in asource.

We next overload thechangelessandreflexively changelessproperties from signals onto
signal functions:
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Definition 9 (Changeless Signal Function)A signal function ischangelessif its output
signal ischangeless:

Changeless: {as bs: SVDesc} → SF as bs→ TimePred
Changeless{as} sf t = (s : SigVec as) → Changeless(sf s) t

Definition 10 (Reflexively Changeless Signal Function)A signal function isreflexively
changelessif its output signal isreflexively changeless:

Changelessr : {as bs: SVDesc} → SF as bs→ TimePred
Changelessr {as} sf t = (s : SigVec as) → Changelessr (sf s) t

Finally we define two very similar properties:change propagatingandchange depen-
dent. Change propagatingis the stronger property, but for our suggested optimisations
change dependentwill be sufficient (see sections 8.2 and 8.4).

Definition 11 (Change-Propagating Signal Function)A signal function ischange propa-
gating if, now and henceforth, its output will beunchangingwhenever its input isunchang-
ing:

ChangePrp: {as bs: SVDesc} → SF as bs→ TimePred
ChangePrp{as} sf t = (s : SigVec as) → Gr (Unchanging s⇒ Unchanging(sf s)) t

Definition 12 (Change-Dependent Signal Function)A signal function ischange depen-
dentif its output will beunchanginguntil its input ischanging:

ChangeDep: {as bs: SVDesc} → SF as bs→ TimePred
ChangeDep{as} sf t = (s : SigVec as) → (Unchanging(sf s) Wr Changing s) t

Note thatchange dependentdiffers from our other properties in that achange-dependent
signal function may cease to bechange dependentin the future. This can only happen if
a structural switch occurs within thechange-dependentsignal function. Thus, if achange-
dependentsignal function contains no switching combinators, then itis alsochange propa-
gating.

7.3.4 Implied Properties

Many of the signal-function properties imply others directly. We list these implications be-
low, omitting those that follow from transitivity.

Note that for clarity of presentation we will usually omit quantification of variables
when giving implications. In these cases, any free variables should be assumed to be univer-
sally quantified at the top level. Also, note that the differing notation is due to some of the
properties being time-varying, and some time-invariant.

Stateless sf⊎ Decoupled sf→ Causal sf
Changelessr sf ⇒ Changeless sf
ChangePrp sf ⇒ ChangeDep sf
Changelessr sf ⇒ ChangePrp sf∧ Source sf
ChangeDep sf∧ Source sf ⇒ Changelessr sf
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7.3.5 Properties of Primitives

All of the primitive signal functions we have defined arecausal. This is required so that our
signal functions can be realised by an implementation. The other properties that hold for the
primitives are as follows:

– Stateless: identity,sfFst,sfSnd,constant,never, lift ,merge, join, fromS,sampleWith
– Decoupled: constant,never,now, integral,delay
– Source: constant,never,now
– Changeless: constant,never,now
– Changelessr : never
– ChangePrp: identity,sfFst,sfSnd,never,hold,edge, lift ,merge, join, fromS,when,sampleWith
– ChangeDep: identity,sfFst,sfSnd,never,hold,edge, lift ,merge, join, fromS,when,sampleWith

Note that for families of primitives that share the same properties, only the family name has
been given (e.g.delayrather thandelayC,delayE,delayS).

7.3.6 Properties of Combinators

The three primitive combinators (≫, &&& and switch) preserve the properties of their con-
stituent signal functions as follows11:

Causal sf1 × Causal sf2 → Causal(sf1 ≫ sf2)
Stateless sf1 × Stateless sf2 → Stateless(sf1 ≫ sf2)
Decoupled sf1 ⊎ Decoupled sf2 → Decoupled(sf1 ≫ sf2)
Source sf1 ∨ Source sf2 ⇒ Source(sf1 ≫ sf2)

Changeless sf2 ⇒ Changeless(sf1 ≫ sf2)
Changelessr sf2 ⇒ Changelessr (sf1 ≫ sf2)

ChangePrp sf1 ∧ ChangePrp sf2 ⇒ ChangePrp(sf1 ≫ sf2)
ChangeDep sf1 ∧ ChangeDep sf2 ⇒ ChangeDep(sf1 ≫ sf2)

Causal sf1 × Causal sf2 → Causal(sf1 &&& sf2)
Stateless sf1 × Stateless sf2 → Stateless(sf1 &&& sf2)
Decoupled sf1 × Decoupled sf2 → Decoupled(sf1 &&& sf2)
Source sf1 ∧ Source sf2 ⇒ Source(sf1 &&& sf2)
Changeless sf1 ∧ Changeless sf2 ⇒ Changeless(sf1 &&& sf2)
Changelessr sf1 ∧ Changelessr sf2 ⇒ Changelessr (sf1 &&& sf2)
ChangePrp sf1 ∧ ChangePrp sf2 ⇒ ChangePrp(sf1 &&& sf2)
ChangeDep sf1 ∧ ChangeDep sf2 ⇒ ChangeDep(sf1 &&& sf2)

Causal sf × (∀ {e} → Causal(f e)) → Causal(switch sf f)
Decoupled sf × (∀ {e} → Decoupled(f e)) → Decoupled(switch sf f)
Source sf ∧ (λ t → ∀ {e} → Source(f e) t) ⇒ Source(switch sf f)
ChangePrp sf ∧ (λ t → ∀ {e} → ChangePrp(f e) t) ⇒ ChangePrp(switch sf f)
ChangeDep sf ⇒ ChangeDep(switch sf f)
Changelessr sf ⇒ Changelessr (switch sf f)

The quantification over the event (e) in the temporal predicates requires us to explicitly
route through the time argument, rather than it being handled implicitly by the temporal
combinators.

Notice that most of the properties are only preserved byswitch if the residual signal
function also has that property. As the residual signal function is computed dynamically
by a host-language function, the implementation has very little knowledge of this signal
function. Consequently, optimisations based on these properties are limited. We return to
this in Section 8.7.

11 Agda notation: The∀ {e} is shorthand for the universal quantification of implicit arguments whose type
can be inferred automatically.
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However, thereflexively changelessandchange-dependentpropertiesare preserved by
switch. Intuitively, this is because a structural switch cannot occur until the subordinate sig-
nal function emits an event (a change). This will never occurfor a reflexively changeless
signal function, and thechange-dependentproperty only guarantees the output to remain
unchanging until the input changes. Thus optimisation of switches based on these two prop-
erties is much more feasible, as no information is required about the residual signal function.

Finally, the interaction between properties gives rise to the following implications:

Changeless sf1 ∧ ChangePrp sf2 ⇒ Changeless(sf1 ≫ sf2)
Changelessr sf1 ∧ ChangeDep sf2 ⇒ Changelessr (sf1 ≫ sf2)

8 Suggested Optimisations

In this section we overview the change-based optimisationsthat are possible on a signal-
function network. We do not discuss how toimplementsuch optimisations, as that depends
on the details of the specific FRP implementation involved. Some optimisations would no
doubt be more applicable for some implementations than others.

We describe many of the optimisations in this section asstatic; that is, they can be
applied at compile time. A common way to implement signal functions is as state transition
functions in a data-flow network. Such functions execute over a discrete sequence of time
steps, mapping an input sample and state to an output sample and state at each step. Each
signal function maintains an internal state, rather than relying on a global state. In this style
of implementation, our static optimisations could also be applied dynamically (at run-time)
after each structural switch in the network, as new optimisations may be possible for the
new network configuration. The capacity for dynamic optimisation is the reason that many
of our properties are time-varying: they allow for optimisations that are only valid at certain
points in time.

8.1 Eliminating Unused Signal Functions

Any signal function whose output signal is not used can be eliminated. This could arise ei-
ther because the signal is eliminated by routing primitives(and thus never reaches another
signal function), or because all signal functions that do receive it aresources. This is essen-
tially reactive-level garbage collection, exploiting theproperties of our routing combinators
and signal functions to identify these unused signal functions. This is a static optimisation,
because we know that, except at the moments of switching, there will be no change in which
signals are used.

The latest version of Yampa [10,26] uses this technique to some degree, but is limited
by the Unary FRP model. As discussed in Section 4.1, much of the routing of the arrow
framework is carried out by lifted pure functions, hiding the routing from the reactive level.

8.2 Compressing Changeless Signals

If a signal isreflexively changeless, then we know it is constant. Repeatedly recomputing a
constant value (in a pull-based implementation) is a waste of computational resources and
should be avoided. As a static optimisation, the signal can be compressed (i.e. compute the
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value and then discard the signal function that computes it)and then constant propagation
applied. This, in turn, could cause other signal functions to becomesources. As achange-
dependent sourceis reflexively changeless, this could lead tochange-dependentsignal func-
tions becomingreflexively changeless, and thus present further optimisation opportunities.

In terms of the implications from Section 7.3:

Changelessr sf1 ∧ ChangeDep sf2 ⇒ Changelessr (sf1 ≫ sf2)
ChangeDep sf∧ Source sf ⇒ Changelessr sf

8.3 Switch Elimination

We can eliminate switching combinators that will never switch out the subordinate signal
function. This will sometimes occur as part of the aforementioned optimisation to compress
changeless signals, but only in the case that the output of the subordinate signal function is
reflexively changeless.

However, there is another static optimisation that can do better. If we know that the event
signal produced by the subordinate signal function ofswitchis reflexively changeless, then
we know that the subordinate signal function will never be switched out. Consequently, a
valid optimisation is to remove theswitchcombinator and replace it with the subordinate
signal function, discarding the event signal.

Changelessr (snd(sf s)) ⇒ Gr ((switch sf f) s≡s (sf ≫ sfFst) s)

Eliminating switching combinators can be considerably beneficial, as they often obstruct
other optimisations (such as causal-commutative-arrow optimisation [25]).

8.4 Change Propagation

The motivation for change propagation optimisations is that the output of a signal function
may often beunchangingover a period of time, often as a consequence of its input being
unchanging. The idea is to identify where this is the case, and then not recompute that
unchanging output. This approach is inherent to push-basedimplementations of FRP (such
as FrTime [9]), wherein a signal is never recomputed unless there is a change in its input. It
is also present in push-pull implementations (such as Grapefruit [23] and Reactive [14]) that
make use of push-based execution for step and event signals,and pull-based implementation
for continuous signals. However, some change propagation is still possible to some degree
for the “pulled” signals of such systems, and is also useful for entirely pull-based systems
(such as Yampa [27]).

In our setting, it is the signal functions that we have identified aschange-dependentthat
we can exploit for change propagation. Consider a discretely sampled pull-based implemen-
tation where signal functions are executed every time step,mapping an input sample to an
output sample. If a signal function ischange-dependent, and its current input isunchanging,
then its current output is guaranteed to beunchanging:

ChangeDep sf∧ Unchanging s⇒ Unchanging(sf s)

Thus there is no need to compute an output sample because: forevent signals there is no
event occurrence; and for step and continuous signals the value is known from the previous
sample.
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Implementation note: If signal functions are implemented with an internal state (as in
Yampa), then anychange-dependentsignal functions must be implemented such that there
is no modification of that state whenever their input isunchanging. Without this condition,
state updates would be lost and the optimisation would be invalidated.

Change propagation is hindered if information about which signals areunchangingis
lost. For example, the latest version of Yampa [10,26] employs some limited change prop-
agation. However, as discussed in Section 4.1, there is no difference in Yampa between a
tuple of signals and a signal of tuples. Thus a change to one signal in a tuple appears to be
a change to all signals in the tuple. FrTime, on the other hand, has very effective change
propagation because it performs run-time equality checks to compare recomputed values
with the previous value, to determine if it really has changed.

8.5 Interaction between Optimisations and Switching

When giving the definition of change, we defined step signals to bechangingattime0 (we did
the same for continuous signals, though this may be less obvious). This may seem counter-
intuitive: for example, a constant signal may seem never to change. However, we chose this
definition with optimisation in mind.

The reason pertains to the dynamic nature of signal-function networks. Each signal func-
tion runs in its ownlocal time(see Section 5.1.2). Consequently, what istime0 to one signal
function may not be to another. In particular, after a structural switch, the residual signal
function will be at its localtime0, whereas the network external to the switching combinator
will not. Assume the output is a constant step signal. The initial value of that signal appears
as a change to the rest of the network, as this is a new value that has not been seen before. If
the signal was treated asreflexively changeless, then the network could be incorrectly opti-
mised based on the assumption that the value of the signal is the same as it was at previous
time points.

8.6 Decoupled Switches

There is a design choice for switching combinators as to whether the output at the moment
of switching should be taken from the residual or subordinate signal. Many FRP implemen-
tations provide two versions of each switching combinator to cater for both. The switching
combinators we have defined in this paper take their output from the residual signal. Those
that take their output from the subordinate signal are oftenknown asdecoupled switches.

We mention decoupled switches because they can be a pitfall when performing optimi-
sations of sampled implementations. This is related to the issue in Section 8.5. The problem
is that from the point of view of the external network, the value of any step or continuous
signals in the residual signal function of a decoupled switch appears to change not at the
moment of switching, but immediately afterwards. Thus, even if the residual signal function
is a constant signal, there would appear to be a change in thischangelesssignal aftertime0.

8.7 Implementing Signal-Function Properties

As discussed in Section 3.5.3, one of the advantages of a first-class signal-function abstrac-
tion is that additional information can be associated with it. Thus signal functions can record
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FRP Variant Signal Kind
N-ary FRP Event Signal Step Signal Continuous Signal
Reactive Event Reactive Value Time Function

Grapefruit Discrete Signal Segmented Signal Continuous Signal

Table 1 Naming conventions for signal kinds

internally which properties they satisfy. Provided the implementer identifies the properties
of all the primitives, the properties of any composite signal function can be computed from
those of its components, using the implications in Section 7.3.6.

In most cases these properties would be kept internal to the implementation and hidden
from the FRP programmer. However, there are properties thatit is useful to make visible.
For example, consider thedecoupledsignal-function property. In a language that allows
cyclic networks, requiring adecoupledsignal function on all feedback paths prevents any
instantaneous cyclic dependencies. If thedecoupledproperty is encoded in thetypeof signal
functions, then the host-language type checker can rule outinstantaneous feedback. [37]

Another advantage of encoding properties in types is that wecan infer properties of
switching combinators that depend on the residual signal function. We do not know the
value of the residual signal function in advance, but we do know its type and thus can
perform optimisations based on any properties in that type.

9 Related Work

Devising semantic models for FRP that respect the abstractions of discrete and continuous
time is nothing new. Daniels [13] has constructed a formal semantics for an idealised CFRP
language (that assumes no approximation errors in the implementation), while Wan and
Hudak [39] have shown that with certain constraints, a sampled implementation of CFRP
can be ensured to converge to the semantics. The main differences between such works and
ours is that they consider signals (not signal functions) asthe central abstraction, and that
they do not distinguish between continuous and step signals.

Two Haskell-embedded FRP implementations currently underdevelopment areReac-
tive [14] andGrapefruit [23]. They both identify the three signal kinds (see Table 1), and
use push-based approaches for the implementation of step and event signals. Signals are
first class in both systems, though Grapefruit also has a first-class signal function construct.
Switching combinators switch between signals in Reactive,and signal functions in Grape-
fruit.

Central to FRP’s hybrid capabilities is the notion of eventsoccurring at specific points
in time, and specifying reactions to such events. This meansasking whether some event has
occurred yet or not. A natural way of doing this is to compare the time associated with the
event with the present time. However, this directly leads toa causality problem: how can the
precise future time of an event that has not yet occurred be known in general? Predicating
an FRP semantics on such a capability would inevitably render the whole model non-causal,
severely limiting its usefulness for describing the meaning of FRP programs, especially
when fixed points (some form of feedback) is involved.

The key to resolving this dilemma is to concentrate on the original question above, has
an event occurred yet or not, not the exact future time of its occurrence. In the original work
on Fran [15], this was achieved through a careful definition of a customised time domain
with an ordering that permitted deciding whether one time value is before another without
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knowing the exact value of the second. The same problem is addressed in a similar way in
Reactive by making events “future values”. Grapefruit deals with the issue by considering
all possible interleavings of future event occurrences, relying on laziness to ensure that only
the correct interleaving is evaluated. In our semantic model, we have addressed the problem
more directly by building a notion of observationonly up to some specific point in timeinto
the definitions of event and step signals. This leads to a clear and simple semantics as it does
not rely on any auxiliary notions, and also to a finitary semantics for events and changes.
Our approach is unlikely to be very useful as a direct basis for implementation, but then the
goal of our semantics is not to serve as a basis for some specific implementation, but rather
to serve as a reference relevant forany implementation.

Elerea (“Eventless Reactivity”) [31,32] is another Haskell embedding of FRP currently
in development. Elerea has first-class signals and signal generators (as distinct types), but
is otherwise in many ways similar to Yampa, being a single-kinded pull-based discretely
sampled system. In contrast to Yampa, Elerea doesn’t abstract away from the discrete im-
plementation. Yampa provides a set of primitives that operate on conceptually continuous
signals and conceptually discrete events, trying to hide the sampling rate from the program-
mer. Elerea, on the other hand, exposes the sampling rate, reducing the number of primi-
tives required. Similarly, whereas Yampa provides an abstract event type that isinternally a
continuous signal carrying an option type, Elerea directlyuses continuous signals carrying
option types (or Booleans) for signals with discrete behaviour. Uniquely, Elerea provides a
monadicjoin for signals:

join : Signal(Signal A) → Signal A

One application of this is supporting dynamic collections of signals, allowing Elerea to be
used for expressing highly structurally dynamic reactive systems, such as video games, in
much the same way as Yampa.

The synchronous data-flow languages [2,18,19] have long modelled reactive programs
as synchronous data-flow networks. These languages treat time as discrete, and have static
first-order structures. Optimising such networks is well studied [24,20]. However, they lack
the dynamism and higher-order reactive constructs of FRP; though there has been some
work on extending Lucid Synchrone in this direction [6,8].

FrTime [9,5] is a push-based FRP language (embedded in Scheme) withfirst-class sig-
nals, which uses a variety of optimisation techniques. The inherent change propagation of
the push-based execution is enhanced by performing run-time equality checks on the values
of recomputed signals to determine whether they really havechanged. It also uses a static
optimisation calledlowering, which reduces a data-flow network by fusing together com-
posite signal functions into single signal functions (discarding the routing information). In
FrTime, this technique is only applied to signal functions that are lifted pure functions. For
example, (in our setting) a typical lowering optimisation would look like:

lift f ≫ lift g = lift (g ◦ f )

FrTime’s lowering optimisations are applied statically atcompile time, which allows for
substantial optimisation of source code, but does not allowdynamic optimisation of the net-
work after structural switches. Lowering optimisations are also applied by Elerea [31] and
Yampa [26], albeit not to the extent of FrTime. However, Yampa can lower some stateful
signal functions as well as stateless ones. Yampa performs its lowering optimisations dy-
namically, which suffers from additional run-time overhead, but does allow for continued
optimisation after structural changes.
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A recent development has been a static optimisation technique forCausal Commutative
Arrows [25] that lowers any static arrow network (which may includecycles) to a single
arrow with a single internal state. When applied to some examples from Yampa (where a
signal function is an arrow), the elimination of most of the arrow infrastructure has resulted
in impressive performance gains. However, this technique does not extend to networks con-
taining switching combinators, and so cannot be applied to arbitrary Yampa programs.

10 Future Work

All of the code in this paper has been formulated directly in Agda without the syntactic
sugar we used for presentational purposes. Formally proving the properties of signals and
signal functions from Section 7 is ongoing work; the proofs formalised thus far can be can
be found on the first author’s website.

In this paper we have only considered acyclic networks. Feedback is an essential facility
for a synchronous data-flow language, and thus we need to extend our routing primitives
with a feedback combinator. Ensuring that such a combinatoris well-defined in a highly dy-
namic setting is not trivial. We have previously [37] proposed a feedback combinator, along
with a type system extension that can guarantee the combinator is well-defined, but have not
yet incorporated it in our new conceptual model. Thedecoupledproperty is key to the above
type system, as well as to several other FRP primitives that we have not defined in this paper.
For example, the signal functionpre, which appears in most reactive languages, conceptu-
ally introduces an infinitesimal delay in a signal. However,most implementations givepre
the behaviour of a one–time-sample delay, which does not respect its conceptual definition.
Furthermore, having done this, a programmer can (indirectly) gain access to the sampling
rate, and thence define various things that break the signal abstractions (such as events oc-
curring at all points in time). We aim to extend our model withdecoupling primitives, and
to precisely address the notions of feedback and decoupling.

Finally, our long term goal is an efficient scalable implementation of FRP that respects
the conceptual definitions of signal functions. To achieve efficiency, we believe such an
implementation would dynamically (i.e. at run-time) employ the optimisations suggested in
this paper, optimising after each structural switch.

11 Conclusions

In this paper we introduced a conceptual model of FRP that we call N-ary FRP, and we
defined it through an ideal denotational semantics. This model is a development of our pre-
vious attempts to modeln-ary (multi-input and multi-output) signal functions thatoperate
over distinct kinds of signals.

With this model as a base, we identified and formally defined, using temporal logic,
several important temporal properties of signals and signal functions pertaining to change
and change propagation. These properties hold in our model,and we would expect them
to hold in any implementation that we would consider “faithful” to the semantics. Having
defined these properties, we described how they relate to optimisation techniques for FRP
implementations, and what properties have to hold for certain optimisations to be valid.

Reasoning about change in the setting of FRP is challenging due to structural dynamism
and changes due just to time passing. For example, it is very easy to introduce invalid optimi-
sations by failing to appreciate subtle aspects of the semantics. Having a formal framework
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that allows optimisation opportunities to be identified andproperly justified is thus a useful
aid for FRP implementers.
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A Utilities

This appendix contains the definitions of some of the data types and utility functions that
we use. This is not exhaustive; we assume familiarity with data types and functions from the
Haskell Prelude. The complete code is available on the first author’s website.

A.1 Data Types

We assume familiarity with the data typesUnit, Bool, List andMaybe. Sum and product
types are given below. Note that the usual product (×) is defined in terms of Agda’s depen-
dent product (Σ ):

data ⊎ (A B : Set) : Setwhere
inl : A→ A⊎ B
inr : B→ A⊎ B

data Σ (A : Set) (B : A→ Set) : Setwhere
, : (a : A) → B a→ Σ A B

× : Set→ Set→ Set
A× B = Σ A (λ → B)

We define propositional equality as follows:

data ≡ {A : Set} (a : A) : A→ Setwhere
refl : a ≡ a
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A.2 Combinators

We define some basic function combinators:

const : {A B : Set} → A→ B→ A
const a = a

first : {A B C : Set} → (A→ C) → A× B→ C× B
first f (a,b) = (f a,b)

second: {A B C : Set} → (B→ C) → A× B→ A×C
second f(a,b) = (a, f b)

result : {A B C : Set} → (B→ C) → (A→ B) → (A→ C)
result f g = f ◦ g

result2 : {A B C D : Set} → (C→ D) → (A→ B→ C) → (A→ B→ D)
result2 f g a= f ◦ g a

We also define some functions overMaybetypes:

maybeMap: {A B : Set} → (A→ B) → Maybe A→ Maybe B
maybeMap fnothing = nothing

maybeMap f(just a) = just (f a)

maybeMap2: {A B C : Set} → (A→ B→ C) → Maybe A→ Maybe B→ Maybe C
maybeMap2 fnothing mb = nothing

maybeMap2 f(just a) mb = maybeMap(f a) mb

maybeMerge: {A B C : Set} → (A→ C) → (B→ C) → (A→ B→ C)
→ Maybe A→ Maybe B→ Maybe C

maybeMerge fa fb fabnothing nothing = nothing

maybeMerge fa fb fabnothing (just b) = just (fb b)
maybeMerge fa fb fab(just a) nothing = just (fa a)
maybeMerge fa fb fab(just a) (just b) = just (fab a b)

A.3 Functions on Signals

We now define some functions over signals, change prefixes andchange lists; for use at the
conceptual level. We begin with some look-up functions thatdetermine if there is a change
at a given time point:

lookupCL: {A : Set} → ChangeList A→ Time→ Maybe A
lookupCL[ ] = nothing

lookupCL((δ ,a),δas) t | t < δ = nothing

| t == δ = just a
| t > δ = lookupCLδas(t − δ )

lookupCP: {A : Set} → ChangePrefix A→ Time→ Maybe A
lookupCP cp t= lookupCL(cp t) t

We can compute the value of a step signal at a given time point:

valS : {A : Set} → SigVec(S A) → Time→ A
valS(a0,cp) t = casereverse(cp t) of

[ ] → a0
( ,a1) :: → a1

Similarly, we can determine if an event is occurring at a given time point:

occ : {A : Set} → SigVec(E A) → Time→ Maybe A
occ(ma,cp) t | t == 0 = ma

| t > 0 = lookupCP cp t
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We now define some mappings:

mapCL : {A B : Set} → (A→ B) → ChangeList A→ ChangeList B
mapCL= map◦ second

mapCP: {A B : Set} → (A→ B) → ChangePrefix A→ ChangePrefix B
mapCP= result◦mapCL

mapC : {A B : Set} → (A→ B) → SigVec(C A) → SigVec(C B)
mapC= result

mapE : {A B : Set} → (A→ B) → SigVec(E A) → SigVec(E B)
mapE f(ma,cp) = (maybeMap f ma,mapCP f cp)

mapS: {A B : Set} → (A→ B) → SigVec(S A) → SigVec(S B)
mapS f(a,cp) = (f a,mapCP f cp)

Mapping over two signals is somewhat more involved. To aid inthese definitions, we
also definemapCPtime, which allows the mapped function to depend upon the time point at
which it is applied:

mapCLtime: {A B : Set} → (Time→ A→ B) → Time→ ChangeList A→ ChangeList B
mapCLtime f d[ ] = [ ]
mapCLtime f d((δ ,a) :: δas) = let d′ = d+ δ in (δ , f d′ a) :: mapCLtime f d′ δas

mapCPtime: {A B : Set} → (Time→ A→ B) → ChangePrefix A→ ChangePrefix B
mapCPtime f= result(mapCLtime f0)

mapC2: {A B Z : Set} → (A→ B→ Z) → SigVec(C A) → SigVec(C B) → SigVec(C Z)
mapC2 f s1 s2 t = f (s1 t) (s2 t)

mapS2: {A B Z : Set} → (A→ B→ Z) → SigVec(S A) → SigVec(S B) → SigVec(S Z)
mapS2 f(a,cpa) (b,cpb) = (f a b,λ t → mergeS a b(cpa t) (cpb t))

where
mergeS: A→ B→ ChangeList A→ ChangeList B→ ChangeList Z
mergeS a0 b0 [ ] δbs = mapCL(f a0) δbs
mergeS a0 b0 δas[ ] = mapCL(λ an → f an b0) δas
mergeS a0 b0 ((δa,a1),δas) ((δb,b1),δbs)
| δa < δb = (δa, f a1 b0) :: mergeS a1 b0 δas((δb − δa,b1) :: δbs)
| δa == δb = (δa, f a1 b1) :: mergeS a1 b1 δasδbs
| δa > δb = (δb, f a0 b1) :: mergeS a0 b1 ((δa − δb,a1) :: δas) δbs

mergeE2: (A→ Z) → (B→ Z) → (A→ B→ Z) → SigVec(E A) → SigVec(E B) → SigVec(E Z)
mergeE2 fa fb fab(ma,cpa) (mb,cpb) = (maybeMerge fa fb fab ma mb,λ t → mergeCL(cpa t) (cpb t))

where
mergeCL: ChangeList A→ ChangeList B→ ChangeList Z
mergeCL[ ] δbs = mapCL fbδbs
mergeCLδas[ ] = mapCL faδas
mergeCL((δa,a),δas) ((δb,b),δbs) | δa == δb = (δa, fab a b) :: mergeCLδasδbs

| δa < δb = (δa, fa a) :: mergeCLδas((δb − δa,b) :: δbs)
| δa > δb = (δb, fb b) :: mergeCL((δa − δb,a) :: δas) δbs

joinE2 : {A B Z : Set} → (A→ B→ Z) → SigVec(E A) → SigVec(E B) → SigVec(E Z)
joinE2 f (ma,cpa) (mb,cpb) = (maybeMap2 f ma mb,λ t → joinCL 0 (cpa t) (cpb t))

where
joinCL : Time→ ChangeList A→ ChangeList B→ ChangeList Z
joinCL [ ] = [ ]
joinCL [ ] = [ ]
joinCL d ((δa,a) :: δas) ((δb,b) :: δbs) | δa == δb = (d+ δa, f a b) :: joinCL 0 δasδbs

| δa < δb = joinCL (d+ δa) δas((δb − δa,b) :: δbs)
| δa > δb = joinCL (d+ δb) ((δa − δb,a) :: δas) δbs
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mapCE: {A B Z : Set} → (A→ B→ Z) → SigVec(C A) → SigVec(E B) → SigVec(E Z)
mapCE f s(mb,cp) = (maybeMap(f (s0)) mb,mapCPtime(f ◦ s) cp)

mapSE: {A B Z : Set} → (A→ B→ Z) → SigVec(S A) → SigVec(E B) → SigVec(E Z)
mapSE f s(mb,cp) = (maybeMap(f (valS s0)) mb,mapCPtime(f ◦ valS s) cp)

Next we define some utility functions on change lists and change prefixes. The time of
the last change in a change list is the sum of its time deltas:

lastChangeTime: {A : Set} → ChangeList A→ Time
lastChangeTime= sum◦ map fst

We can take the prefix of a change list up to a specified point in time (inclusive or
exclusive):

takeIncl : {A : Set} → Time→ ChangeList A→ ChangeList A
takeIncl [ ] = [ ]
takeIncl t((δ ,a) :: δas) | t < δ = [ ]

| t >= δ = (δ ,a) :: takeIncl(t − δ ) δas

takeExcl: {A : Set} → Time→ ChangeList A→ ChangeList A
takeExcl [ ] = [ ]
takeExcl t((δ ,a) :: δas) | t <= δ = [ ]

| t > δ = (δ ,a) :: takeExcl(t − δ ) δas

ThedelayCLfunction delays a change list by increasing the first time delta. ThedelayCP
function delays a change prefix by reducing the sample time bythe delay period (d), and
then delaying the resultant change list by that amount. It also takesMaybean initial value as
an argument, allowing an initial change, if any, to be inserted into the resultant change list.

delayCL: {A : Set} → Time+ → ChangeList A→ ChangeList A
delayCL d[ ] = [ ]
delayCL d((δ ,a) :: δas) = (d+ δ ,a) :: δas

delayCP: {A : Set} → Time+ → Maybe A→ ChangePrefix A→ ChangePrefix A
delayCP d ma cp t| t < d = [ ]

| t >= d = casemaof
nothing → delayCL d(cp(t − d))
just a → (d,a) :: cp(t − d)

A.4 Switching Utilities

In this section we define utility functions that are only usedby switch(see Appendix B).
Theadvancefunction shifts the time frame of a signal forwards by a givenamount of

time (d), discarding everything before timed (some authors call thisageingthe signal). This
is similar to thedelaysignal function, except it looks into the future instead of the past.
Unlike delay this is acausal, and so wouldn’t make sense as a signal function. However,
advanceis only used as a utility byswitch, connecting a signal from outsideswitchto the
local time of the residual signal function (because from thepoint of view of the residual
signal function, the local time of the external network is inthe future). Semantically this is
achieved by advancing any sample point byd, and, in the case of step and event signals,
discarding the prefix of the signal up to timed:

advanceCL: {A : Set} → Time→ ChangeList A→ ChangeList A
advanceCL d[ ] = [ ]
advanceCL d((δ ,a) :: δas) | δ <= d = advanceCL(d− δ ) δas

| δ > d = (δ − d,a) :: δas
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advanceCP: {A : Set} → Time→ ChangePrefix A→ ChangePrefix A
advanceCP d cp t= advanceCL d(cp(t + d))

advance: {as : SVDesc} → Time→ SigVec as→ SigVec as
advance{C } d s = λ t → s(t + d)
advance{S } d s = (valS s d,advanceCP d(snd s))
advance{E } d s = (occ s d,advanceCP d(snd s))
advance{ , } d (s1,s2) = (advance d s1,advance d s2)

ThesvAtTimefunction allows us to construct a signal vector based on the sample time,
even though that sample time is not yet known:

svAtTime: {as : SVDesc} → (SampleTime→ SigVec as) → SigVec as
svAtTime{C } f = λ t → f t t
svAtTime{E } f = (fst (f 0),λ t → snd(f t) t)
svAtTime{S } f = (fst (f 0),λ t → snd(f t) t)
svAtTime{ , } f = (svAtTime(fst ◦ f ),svAtTime(snd◦ f ))

The fstOcc function returns the first event occurrence of an event signal, provided it
occurs before a specified point in time (inclusive):

fstOcc : {A : Set} → SigVec(E A) → Time→ Maybe(Time× A)
fstOcc(just a, ) = just (0,a)
fstOcc(nothing,cp) t = casecp tof

[ ] → nothing

(δa :: ) → just δa

The takeExclEndfunction applies a change prefix to a (strictly positive) time, discards
any change at precisely that time, and returns the remainingchange list and the time delta
since the final change:

takeExclEnd: {A : Set} → ChangePrefix A→ Time+ → ChangeList A× ∆ t
takeExclEnd cp t= let δas = takeExcl t(cp t)

in (δas, t − lastChangeTimeδas)

Finally, we define some splicing functions that compose two signal vectorstemporally,
cutting the first vector at the given event occurrence time:

spliceC : {A : Set} → SigVec(C A) → SigVec(C A) → EventTime+ → SigVec(C A)
spliceC s2 te t = s2 (t − te)

spliceS: {A : Set} → SigVec(S A) → SigVec(S A) → EventTime+ → SigVec(S A)
spliceS(a1,cp1) (a2,cp2) te = let (δas1,δ ) = takeExclEnd cp1 te

in (a1,λ t → δas1 ++ (δ ,a2) :: cp2 (t − te))

spliceE : {A : Set} → SigVec(E A) → SigVec(E A) → EventTime+ → SigVec(E A)
spliceE(ma1,cp1) (ma2,cp2) te = let (δas1,δ ) = takeExclEnd cp1 te

in (ma1,λ t → let δas2 = cp2 (t − te)
in δas1 ++ casema2 of

nothing → delayCLδ δas2
just a2 → (δ ,a2) :: δas2)

splice+ : {as : SVDesc} → SigVec as→ SigVec as→ EventTime+ → SigVec as
splice+ {C } s1 s2 te = spliceC s1 s2 te
splice+ {S } s1 s2 te = spliceS s1 s2 te
splice+ {E } s1 s2 te = spliceE s1 s2 te
splice+ { , } (sa1,sb1) (sa2,sb2) te = (splice+ sa1 sa2 te,splice+ sb1 sb2 te)

splice : {as : SVDesc} → SigVec as→ SigVec as→ EventTime→ SigVec as
splice s1 s2 te | te == 0 = s2

| te > 0 = splice+ s1 s2 te
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B Signal-Function Conceptual Definitions

Some of the primitive signal functions in Section 5 were given without conceptual defini-
tions. Those definitions are given in this appendix.

switch : {as bs: SVDesc} → {A : Set} → (SF as(bs,E A)) → (A→ SF as bs) → SF as bs
switch sf f≈ λ sa → let (sb,se) = sf sa

in svAtTime(λ t → casefstOcc se t of
nothing → sb
just (te,e) → splice sb ((f e) (advance te sa)) te)

integralS : SF(S R) (C R)
integralS≈ λ (a0,cp) t → let δas = cp t

δs = map fstδas ++ (t − lastChangeTimeδas) :: [ ]
as = a0 :: map sndδas

in
sum(zipWith(∗) δs as)

The following conceptual definition ofwhenis inspired by Wan and Hudak’s definition
[39]. The key difference, beside an adaptation to our model,is that we directly characterise
when a time-varying Boolean is sufficiently well-behaved tomake the definition ofwhen
meaningful. In Wan and Hudak’s definition, this is indirect from the lack of a solution sat-
isfying their stated semantic conditions. Intuitively, a time-varying Boolean is well-behaved
if there exists some temporal imprecisionε : ∆ t such that a list ofall times at which there
is a transition fromfalse to true over any given interval is computable, with each time point
within ε from its true occurrence time according to the ideal semantics. This means that
a sampled implementation will converge to the ideal semantics for well-behaved predicate
and signal combinations as the sampling interval tends to 0.

We first define a number of auxiliary predicates on time-varying Booleansp : Time→
Booland time pointst : Time:

P p t = ∃ (ε : ∆ t) . (∀ τ ∈ (t − ε, t) . ¬ (p τ)) ∧ (∀ τ ∈ (t, t + ε) . p τ)
N p t = ∃ (ε : ∆ t) . (∀ τ ∈ (t − ε, t) . p τ) ∧ (∀ τ ∈ (t, t + ε) . ¬ (p τ))
U p t = ∃ (ε : ∆ t) . (∀ τ ∈ (t − ε, t + ε) . ¬ (p τ)) ∨ (∀ τ ∈ (t − ε, t + ε) . p τ)
Pl p t = p t ∧ (∃ (ε : ∆ t) . (∀ τ ∈ (t − ε, t) . ¬ (p τ)))

P holds if p has a positive transition at pointt, N if p has a negative transition at this point,
andU if p is unchanging at this point. Note thatP andN are not concerned with the value
of p at t, only that there exist open intervals to the left and right ofthe point wherep is
constant. Similarly,U holds if there exists a neighbourhood aroundt, this time includingt,
wherep is constant. Finally,Pl is the left-biased version ofP that only considers an interval
to the left oft. However, this time, the value ofp at t is considered.

We can now define a predicateW that holds if a time-varying Boolean is well-behaved
on an open interval(t0, t1):

W p t0 t1 = finite {τ | τ ∈ (t0, t1),P pτ } ∧ (∀ τ ∈ (t0, t1) . P pτ ∨ N pτ ∨ U p τ)

The finiteness condition rules out the time-varying Booleanoscillating betweenfalse and
true infinitely often over a finite interval. The second part says that it must be possible to
characterise every interior point either as a positive transition, a negative transition, or a point
where no change occurs. This rules out “spikes”: points where the value of the time-varying
Boolean differs from its value in all neighbourhoods of thatpoint.

The finite ascending list of time points of positive transitions for a time-varying Boolean
p over an interval(0, t] can now be defined:
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poccs: (Time→ Bool) → Time→ List Time
poccs p t| W p0 t = [τ | τ ← (0, t),P pτ ] ++ [ t | Pl p t]

Finally, we definewhenusingpoccs. Note thatpoccsis only defined for well-behaved
time-varying Booleans. The semantics ofwhenapplied to an ill-behaved predicate and signal
composition is thus that it diverges:

when: {A : Set} → (A→ Bool) → SF(C A) (E A)
when p≈ λ s→ (nothing,whenAux)

where
whenAux t= let ts = poccs(p ◦ s) t

in [(t − t′,s t) | (t, t′) ← zip ts(0 :: ts)]


