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Abstract The conceptual spaces approach has recently emerged as a novel
account of concepts. Its guiding idea is that concepts can be represented
geometrically, by means of metrical spaces. While it is generally recognized
that many of our concepts are vague, the question of how to model vagueness
in the conceptual spaces approach has not been addressed so far, even though
the answer is far from straightforward. The present paper aims to fill this
lacuna.

Keywords Vagueness · Conceptual spaces · Voronoi diagrams · Gardenfors

1 Introduction

The conceptual spaces approach is enjoying growing popularity in the cogni-
tive psychology and cognitive science communities. In this approach, concepts

I. Douven (B)
Faculty of Philosophy, University of Groningen, Oude Boteringestraat 52, 9712 Groningen,
The Netherlands
e-mail: i.e.j.douven@rug.nl

L. Decock
Faculty of Philosophy, VU University Amsterdam, Amsterdam, The Netherlands
e-mail: lb.decock@ph.vu.nl

R. Dietz
Department of Philosophy, University of Tokyo, Tokyo, Japan
e-mail: rdietz@l.u-tokyo.ac.jp

P. Égré
Institut Jean–Nicod (CNRS), Paris, France
e-mail: paulegre@gmail.com



138 I. Douven et al.

are represented geometrically, by means of so-called metrical spaces, an
approach which allows for a formally precise treatment of how the human mind
conceptualizes the world. The approach is relatively young and still develop-
ing, and there are some foundational issues that are yet to be addressed. One
key issue concerns the fact that, while many of our concepts are vague, it is not
evident how to model vagueness in the framework of the conceptual spaces
approach.

The vagueness of concepts manifests itself most prominently in the occur-
rence of borderline cases, cases that we do not quite regard as falling under a
given concept nor quite regard as not falling under that concept. Any theory of
concepts will, on pain of material inadequacy, have to account for the existence
of borderline cases, and it will have to do so in a way that explains our typical
responses to such cases.

Theorists employing conceptual spaces in their work have to this date
ignored the issue of vagueness. Yet their work does suggest an answer to
the question of how there can be borderline cases, and, importantly, one that
might explain why we respond to such cases the way we do. As we shall see,
however, this answer cannot quite be correct, for it fails to do justice to some
incontrovertible data concerning vagueness. To arrive at a satisfactory account
of vagueness within the conceptual spaces approach, one that does do justice
to the said data, this paper proposes two extensions of the formal framework
of the approach.

Naturally, the account of vagueness to be offered can lay no greater claim to
generality than can the conceptual spaces approach. And it must be admitted
that, while this approach works very well for perceptual concepts, it does
not obviously apply to more complex and abstract concepts. It may be a
matter of time before the theory can satisfactorily deal with the latter kinds of
concepts as well. Or, given that it is not a priori that all conceptualization must
eventually be accounted for in the same terms, non-perceptual concepts may
require some altogether different approach. In the latter case, non-perceptual
concepts will require their own account of vagueness as well. We do not regard
this as a downside of our proposal. After all, it is not a priori that all cases of
vagueness must, in the end, be accounted for in the same way. It may even
be prudent to assume that this is not so. In any event, we regard as the scope
of our proposal concerning vagueness whatever the scope of the conceptual
spaces approach will turn out to be.

As a further disclaimer, we note that our aim is to give an account of
borderline vagueness within the conceptual spaces approach. We do not aim
to give a full-fledged account of any of the other properties that may typically
come with vagueness. Most notably, the treatment of the issue of soriticality in
our framework must await another occasion.

We start by outlining the conceptual spaces approach and relating it to
the issue of vagueness, particularly the question concerning borderline cases
(Section 2). We then present two extensions of the conceptual spaces frame-
work (Sections 3 and 4), and we argue that thereby we obtain a framework that
enables us to deal with vague properties and concepts more satisfactorily than
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the original one (Section 5). Finally, we point at some empirical consequences
of the resulting account of vagueness (Section 6).

2 Conceptual Spaces and Vagueness

Many researchers in cognitive psychology and cognitive science have con-
tributed to the development of the conceptual spaces approach, but the
following exposition is mostly based on Gärdenfors’s [6] exemplarily clear
presentation of the approach and its main results. As intimated, the basic idea
of this approach is that concepts can be represented geometrically, specifically
as regions in certain well-defined spaces. These spaces are one-dimensional
or multidimensional structures—sets of points—with a distance function (a
metric) defined on them. Objects are mapped onto points in these spaces,
and the dimensions of these spaces correspond to “qualities” objects may
have. Formally, where S is a space, δS : S × S → R

+
0 is a distance function

on S iff, for all a, b , c ∈ S: (i) δS(a, b) � 0, and δS(a, b) = 0 iff a = b ; (ii)
δS(a, b) = δS(b , a); and (iii) δS(a, b) + δS(b , c) � δS(a, c). A common distance
function is the Euclidean metric. Following Gärdenfors, we will mostly assume
a generalized version of this metric, which, for an m-dimensional space S,
defines the distance between points p = 〈x1, . . . , xm〉 and p′ = 〈x′

1, . . . , x′
m〉 as

δS(p, p′) :=
√∑

i�m wi · (xi − x′
i)

2. (1)

With wi = 1 for all i, Eq. 1 gives the standard Euclidean metric. By varying the
weights relative to one another, one can give more “salience” to some dimen-
sions than to others.1 Other metrics—most notably, the city-block metric—
have also been discussed in the conceptual spaces literature, but for our later
purposes the above is the most relevant one.

As defined on a conceptual space, a distance function measures the sim-
ilarity between objects. More exactly, the similarity between two objects is
assumed to be a monotonically decreasing function of their distance in the
space: the greater the distance, the less similar the objects are. It is worth
noting that the notion of similarity at stake here is not similarity tout court,
but similarity in a given respect, where the respect corresponds to the given
space.

One of the simplest examples of a conceptual space is a three-dimensional
Euclidean space with a Euclidean metric defined on it which serves to repre-
sent proximity relations between objects in the world. Other well-known exam-
ples are temporal space, auditory space, olfactory and taste spaces, and spaces
corresponding to various physical parameters such as density and hardness. In

1Whenever we use “δS” in the following, we refer to instances of Eq. 1, with values for the wi
assumed to be in place.
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his writings, Gärdenfors also discusses multidimensional shape spaces [6: 94–
98] and action spaces [7], but these are among the more controversial examples
hinted at in the introduction. A further well-known example, which will be
invoked repeatedly in the following, is color space. This is standardly taken to
be three-dimensional, and to be equipped with a Euclidean distance function.
One dimension represents hue; this dimension can be pictured as a color circle
with yellow, green, blue, violet, red, and orange (neighboring yellow again)
lying in that order on the circle, with one color gradually merging into the
next. The second dimension is saturation, or chromaticity, which represents
the intensity of the color. And the third dimension is brightness, or luminosity,
which ranges from white to black, through all shades of gray.

As already mentioned, in this approach concepts are identified with regions
of conceptual spaces. For instance, the concept red corresponds to a particular
region of the aforementioned color space. Of course, red is not just any
concept; it is a natural concept. While, technically speaking, a region of a space
is any subset of points of that space, not all regions in this sense correspond
to natural concepts. Indeed, the regions of a space that do correspond to
such concepts will typically be sparse. Gärdenfors does not give necessary and
sufficient conditions for when a region represents a natural concept.2 However,
he does at least give a necessary condition for naturalness, to wit, convexity,
meaning that for any pair of points in the region, the line segment connecting
the points lies, in its entirety, in the region as well.3

In order to arrive at a plausible account of categorization, that is, of how
people carve up conceptual spaces into regions corresponding to natural
concepts, Gärdenfors [6: 87–91] invokes prototype theory together with the
mathematical technique of Voronoi diagrams.

Prototype theory capitalizes on the observation that among the instances
of a concept, some are more representative of that concept than others. The
one that is most representative is the prototype of the concept. While the
original advocates of this theory had clearly universalist aspirations in that
the classification of certain instances as prototypes was believed to transcend
cultural boundaries (e.g., Rosch [15]), for the purposes of the conceptual
spaces approach one can stay entirely noncommittal on this issue. For instance,

2Gärdenfors [6: 67] does say that natural concepts are “those that are natural for the purposes
of problem-solving, planning, memorizing, communicating, and so forth” (original emphasis).
This is compatible with a pragmatic conception of natural kinds, and does not commit him to
the metaphysically more loaded conception of natural kinds as ultimate building blocks of the
universe.
3A related topological property of regions that will be referred to below is connectedness. A
region r is said to be connected iff, for all points pi and p j in r, there is a curve connecting pi
and p j such that the curve lies entirely in r (or, to be more precise, such that all points lying on
the curve lie in r). Clearly, a region that is convex is connected, but not necessarily the other way
round.
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for the purposes of the conceptual spaces approach, a prototype may just be a
typical case, where this is understood as a case that competent members of a
given language community in normal circumstances classify, or would classify,
unhesitatingly as being typical. Whether such a classification is determined by
something hard-wired in people’s heads, or whether it merely reflects cultural
bias, or whether it depends both on physiology and cultural background, is
immaterial for the combined use of prototypes and Voronoi diagrams that
Gärdenfors proposes.4

Voronoi diagrams have been applied in diverse fields, including physics,
astronomy, geology, geography, meteorology, and recently also the cognitive
sciences. A Voronoi diagram of a given space is a division of that space into
cells such that each cell has a center and consists of all and only those points
that lie no closer to the center of any other cell than to its own center. More
formally put, given an m-dimensional space S and a set P = {p1, . . . , pn} ⊂ R

m

of pairwise distinct points in S, we call the region

v(pi) := {
p
∣∣δS(p, pi) � δS(p, pj), for all j ∈ {1, . . . , n} with j �= i

}

the Voronoi polygon/polyhedron associated with pi. Then the Voronoi diagram
generated by P is the set

V(P) := {v(pi) | pi ∈ P}.
The points pi ∈ P are called the generator points of V(P), and P is called
the generator set. The vertices of the polygons/polyhedrons v(pi) are called
Voronoi points of V(P), the edges/faces of the polygons/polyhedrons the
Voronoi edges/faces. Generator points that share a Voronoi edge/face are
said to be adjacent.5 An example of a Voronoi diagram of a bounded two-
dimensional space is given in Fig. 1.

According to Gärdenfors, “the Voronoi tessellation provides a constructive
answer to how a similarity measure together with a set of prototypes determine
a set of natural properties” [6: 88], emphasis omitted). That his criterion for
naturalness—convexity—is satisfied follows from

4In the introduction, we already noted that the conceptual spaces approach is presently limited
in that not all properties and concepts are handled equally well by it. We cannot exclude the
possibility that if the idea of prototypes is taken aboard, this places a further limitation on the
approach. After all, it is far from obvious that for every concept the idea of a prototypical instance
makes sense. For instance, what is a prototypical instance of the concept tall, or of poor, or
of beautiful? Even when relativized, such gradable adjectives may pose problems, given that
it would be hard to say what a prototypical instance of a tall (or poor, or beautiful) person
is. Perhaps instead of prototypes, the conceptual spaces account (as well as the approach to
vagueness to be developed) can make do with exemplars, that is, clear examples which play a
central role in learning the use of a predicate (this is rough; see Gärdenfors [6: 123 f] for a precise
characterization). Whether or not the resulting account (or rather accounts) would be empirically
adequate is not something we will try to determine here.
5See Okabe et al. [11, Ch. 2] for these definitions.
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Fig. 1 A two-dimensional
Voronoi diagram

Fact 2.1 All Voronoi polygons/polyhedrons of Voronoi diagrams based on a
Euclidean metric are convex.6

But what reasons do we have for thinking that the designated “constructive
answer” accords with how people actually categorize reality? Some support for
Gärdenfors’s proposal may come from theoretical considerations, in particular
considerations of cognitive economy:

A Voronoi tessellation based on a set of prototypes is a simple way
of classifying a continuous space of stimuli. The partitioning results
in a discretization of the space. The prime cognitive effect is that the
discretization speeds up learning. The reason for this is that remembering
the finite prototypes, which is sufficient to compute the tessellation
once the metric is given, puts considerably less burden on memory than
remembering the categorization of each single point in the space. In
other words, a Voronoi tessellation is a cognitively economical way of
representing information about concepts. Furthermore, having a space
partitioned into a finite number of classes means that it is possible to give
names to the classes. (Gärdenfors [6: 89])

Still, it might be objected that nothing much can be said about how economical
the said way of representing information is as long as we do not know how
much effort it takes to mentally generate a Voronoi diagram from a set of
prototypical points. It would also be an exaggeration to say that the empirical
studies Gärdenfors musters in support of his proposal are conclusive or even
nearly so. Nevertheless, we adopt as our working hypothesis that, to a first
approximation at least, the conceptual spaces approach, coupled with the ideas
of prototypes and Voronoi diagrams as a way of generating categorizations,
captures an important part of the truth about human cognition.

To accommodate the fact that concepts can be vague, one must be able to
make sense of the notion of borderline case, we said in the introduction. The
above theory would seem to have no difficulty with that. Just have another
look at Fig. 1. In the present approach, concepts clearly have borderlines. A

6Gärdenfors [6: 88]. See Okabe et al. [11: 58] for a proof.
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borderline case could thus be said to be a case that falls on the borderline
between different natural concepts, a case for which there is no unique
prototype to which it is closest, a case, again differently put, that is at equal
distance from adjacent prototypes. The answer would seem to be of exactly
the type we are after, in that it provides an explanation of why we respond to
borderline cases the way we do: we do not quite regard a particular color shade
as falling under, say, the concept red, nor quite regard it as not falling under
that concept, because it is as far removed from the prototypical shade of red as
it is from the prototypical shade of, for example, orange.

While a characterization of borderline cases in terms of their positions
relative to prototypical instances in conceptual space is along the right lines,
it is not complete enough to be empirically adequate. Specifically, the problem
is that, on this characterization, all X/Y borderline cases (that is, borderline
cases between properties X and Y) are at an equal distance from X as they are
from Y. So, given the intended interpretation of the metric, all X/Y borderline
cases should be as much X as they are Y. Surely, however, there exist, for
instance, red/orange borderline cases which are more reddish than “orangish”
as well as ones that are more orangish than reddish. The problem—which,
for reasons that will become apparent, we term the “thickness problem”—
is that, in the present picture, such cases cannot occur. In the following, we
will propose a solution to this problem that fits broadly with Gärdenfors’s
approach. It adds to the approach a more realistic conception of prototypes
and a sort of Voronoi diagram that is slightly different from the standard one
invoked by Gärdenfors.

3 Prototypical Areas

It was probably only as a simplification that some have supposed every
concept to have a unique prototype. For most concepts, the thought of there
being exactly one most representative instance appears to make little sense.
This is particularly obvious if the notion of prototype is understood in a
metaphysically lightweight, non-universalist sense, according to which the
prototypical instances of a concept are its typical instances. Few people will
consider exactly one shade of red to be typically red. Rather, we count many—
slightly different—shades of red as being typical instances of red, though we
count many more as being nontypical instances. The same is true for the other
colors and for a great many other concepts. It is worth noting that this is not
just intuitively plausible. At least insofar as colors are concerned, there is also
ample empirical evidence for the non-uniqueness of typical cases. In their [1],
Berlin and Kay report by now famous research in which they asked subjects to
mark, on a board with all the Munsell color chips ordered on it, “the best, most
typical examples of x” (p. 7). They found that, in response to this question, the
subjects frequently marked more than one chip (p. 10).

As Gärdenfors [6: 139] shows, supplanting the assumption of prototypical
points by that of prototypical areas hardly necessitates a large-scale revision
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of the conceptual spaces approach, for one can as easily carve up conceptual
spaces on the one assumption as one can do on the other. Specifically, one can
also have prototypical areas generate a Voronoi diagram. To show how to do
this, Gärdenfors assumes that prototypical areas are circles.7 Then for a set of
prototypical circles with centers {p1 = 〈p11, . . . , pm1〉, . . . , pn = 〈p1n , . . . , pmn〉}
and radii {cp1 , . . . , cpn}, a “generalized Voronoi diagram” is defined in the same
way as an ordinary Voronoi diagram is, except that now for each circle with
center pi the associated Voronoi polygon/polyhedron is defined to be the set

{
p

∣∣∣
√∑

k�m wk · (xk − pki)
2 − cpi

2 �
√∑

k�m wk · (xk − pk j)
2 − cpj

2,

for all j ∈ {1, . . . , n} with j �= i
}
,

where p = 〈x1, . . . , xm〉. Gärdenfors (ibid.) notes that, given the metric as-
sumed here, all points lying on a prototypical circle come out as having
distance zero from the center of the area, and points lying within the circle—
including the center itself—as having imaginary distances from the center.
These mathematical facts are not easy to interpret if distances are supposed
to reflect degrees of similarity.

But even apart from this oddity, the above way of combining the non-
uniqueness of prototypes with Voronoi diagrams is not the only way, and not
the best, at least not for the purposes of representing vagueness. In particular,
appealing to generalized Voronoi diagrams is not going to help with solving the
thickness problem, in as much as the boundaries of such diagrams still consist
of lines of points all of which are equidistant (given the above metric) from the
relevant prototypical areas.

4 Collated Voronoi Diagrams

Though the main textbook on Voronoi diagrams (Okabe et al. [11]) lists
many more variants of such diagrams than the just-described generalized
version, the type of Voronoi diagram we want to make use of is, to our
knowledge, new. Instead of calculating a single diagram on the basis of a set
of prototypical areas—as the generalized Voronoi diagram does—we consider
a construction built out of a set of ordinary Voronoi diagrams. The basic idea
is that each choice function that picks from all prototypical areas exactly one
point determines a single diagram, and that these diagrams can be collated, or
projected onto each other. We call the result a collated Voronoi diagram (or
collated diagram, for short).

7This assumption is not necessary; see Okabe et al. [11: 186–189], who show how to generate
Voronoi diagrams on the basis of arbitrary areas. However, Gärdenfors’s assumption may have
been motivated by considerations of cognitive economy; see below.
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Before stating the definition, we first introduce the notion of a restricted
Voronoi polygon/polyhedron:

Definition 4.1 Given an m-dimensional space S and a set P = {p1, . . . , pn} ⊂
R

m of pairwise distinct points, the restricted Voronoi polygon/polyhedron
associated with pi is the region

v(pi) := {
p
∣∣δS(p, pi) < δS(p, pj), with j: 1 � j � n

}
.

Thus, less formally, a restricted Voronoi polygon/polyhedron associated with
a given generator point is the (unrestricted) Voronoi polygon/polyhedron
associated with that point minus its edges/faces.

Let R = {r1, . . . , rn} be a set of pairwise disjoint regions of a space S. Then

�(R) :=
n∏

i=1

ri = {〈p1, . . . , pn〉
∣∣pi ∈ ri

}

is the set of all ordered sequences 〈p1, . . . , pn〉 such that pi ∈ ri ∈ R for 1 �
i � n; that is, each sequence in �(R) contains exactly one point out of each
region in R. We note that, where |r| denotes the number of points in r and
R = {r1, . . . , rn}, the cardinality of �(R), |�(R)|, equals

∏
i�n |ri|.

Given a set R of disjoint regions of a space S, we can consider the set of all
Voronoi diagrams of S generated by elements of �(R):

V(R) := {
V(P)

∣∣P ∈ �(R)
}
.

It is easy to see that not every Voronoi diagram corresponds to a unique set of
generator points. Therefore, |V(R)| � |�(R)|.

Let us introduce the following abbreviations for the set of all Voronoi
polygons/polyhedrons v(p) associated with the various points p in region
ri ∈ R, and similarly for restricted polygons/polyhedrons:

{
v(p)

}
ri∈R := {

v(p)
∣∣p ∈ ri ∧ v(p) ∈ V(P) ∈ V(R)

};
{
v(p)

}
ri∈R := {

v(p)
∣∣p ∈ ri ∧ v(p) ∈ V(P) ∈ V(R)

}
.

Given a set V(R), from its elements we can construct a collated Voronoi
diagram, as follows:

Definition 4.2 Let R = {r1, . . . , rn} be a set of pairwise disjoint regions of a
space S. Then the region

u(ri) :=
⋂{

v(p)
}

ri∈R

is the collated polygon/polyhedron associated with ri, and the set

U(R) := {
u(ri)

∣∣1 � i � n
}

is the collated diagram generated by R. The ri are called the generator regions
of U(R). The set S \ ⋃

U(R) is called the boundary region of U(R).
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So, where an ordinary Voronoi polygon/polyhedron associated with a gen-
erator point consists of precisely those points that lie at least as close to that
generator point as they lie to any other generator point, a collated polygon/
polyhedron associated with a given generator region consists of precisely those
points that are closer to every point in that region than they are to any point
in any other generator region; see Fig. 2 for an illustration. Note that, unlike
an ordinary Voronoi diagram, a collated diagram does not in general exhaust a
space, though a collated diagram together with its boundary region does. Also,
we stick to the terminology of polygons/polyhedrons, even though, depending
on the shapes of the generator regions, the elements of a collated diagram
need not literally be polygons/polyhedrons but may have different shapes as
well (e.g., they may be circles/spheres).

It is natural to define a notion dual to that of a collated polygon/polyhedron,
which we may call the expanded polygon/polyhedron associated with a region:

Definition 4.3 Let R = {r1, . . . , rn} be a set of pairwise disjoint regions of a
space S. Then the region

u(ri) :=
⋃{

v(p)
}

ri∈R

is the expanded polygon/polyhedron associated with ri.

Consequently, while the collated polygon/polyhedron is the intersection of the
associated polygons/polyhedrons excluding their edges/faces, the expanded
polygon/polyhedron corresponds to the union of the associated Voronoi
polygons/polyhedrons including their edges/faces.

With these definitions in place, we can think of at least two plausible ways
to define the notion of boundary region associated with a collated polygon/
polyhedron u(ri) ∈ U(R).
One possibility is to view this region as the set of points p such that p lies
on a Voronoi edge/face, or is a Voronoi point, of some ν(p′) ∈ V(P) ∈ V(R)

with p′ ∈ ri. On this definition, to be a boundary point of a collated polygon/
polyhedron means to lie on an edge/face of any of the polygons/polyhedrons in
the collation. We shall use the notation b 1

(
u(ri)

)
for boundary regions in this

first sense.

Fig. 2 A collated diagram
with a gappy boundary
region; the collated polygon
associated with generator
region r = {a, b} is the
smallest area containing r that
is enclosed by boundary lines

a
b
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Another possibility is to let the boundary region be the difference between
the expanded polygon/polyhedron and the collated polygon/polyhedron as-
sociated with ri, that is, u(ri) \ u(ri). On this definition, the boundary region
associated with a collated polygon/polyhedron u(ri) consists of the points that
lie in the union of all the inclusive Voronoi polygons/polyhedrons associated
with the various points in ri but not in the intersection of the correspond-
ing restricted polygons/polyhedrons. We shall use the notation b 2

(
u(ri)

)
for

boundary regions in this second sense.
The two definitions agree on the idea that if a point is in the boundary

region of u(ri), then it falls entirely out of u(ri). The first definition, however,
is more constraining than the second. Indeed, a point may belong to b 2(u(ri))

without belonging to b 1(u(ri)) if it does not lie on a Voronoi edge/face. On
the other hand, if a point belongs to b 1(u(ri)), then it lies on a Voronoi
edge/face of some polygon/polyhedron associated with a point in ri, and so it
belongs to the union of the polygons/polyhedrons, and therefore to b 2(u(ri)).
Though boundary regions in the first sense are not in general boundary regions
in the second sense, it will be seen that the two notions coincide provided
further topological restrictions are assumed to hold on the regions ri, namely,
regarding the distribution of prototypical instances.

In the next section, we will want collated diagrams to serve much the
same goal in the conceptual spaces approach that Gärdenfors had in mind for
ordinary Voronoi diagrams. To that end, we give two important facts about
collated diagrams. The first is this:

Fact 4.1 All collated polygons/polyhedrons are convex.

To see this, recall Fact 2.1, and note that by removing the edges/faces from
a Voronoi polygon/polyhedron we again obtain a convex set.8 Fact 4.1 then
follows via the observation that the intersection of a collection of convex sets
is itself convex.9

Stating the second fact takes a bit more preparation. Note that if, for some
P ∈ �(R), a point p in S lies on a boundary line of V(P), then p is an element
of S \ ⋃

U(R). To be precise, given a set R = {r1, . . . , rn} of pairwise disjoint

8Proof Suppose, towards a contradiction, that, for some p, ν(p) is convex but ν(p) is not. Then
there must be points a, b ∈ ν(p) such that ab lies in its entirety in ν(p) but does not lie in its entirety
in ν(p). Then ab must intersect some edge(s)/face(s) of ν(p). One easily verifies that there are only
two types of line segments that intersect some edge(s)/face(s) of ν(p), to wit, first, line segments
that connect points lying outside ν(p), and second, line segments that connect a point in ν(p) with
one outside ν(p). But, clearly, if ab were of the first type, neither a nor b would lie inside ν(p); if it
were of the second, a and b would not both lie inside ν(p). Either way it follows that there cannot
be points a, b ∈ ν(p) such that ab lies in its entirety in ν(p) but not in its entirety in ν(p). Hence,
given that ν(p) is convex, ν(p) must be convex, too. 
�
9Proof Any pair of points in the intersection will be in each of the intersecting sets. By the
convexity of these sets, they each also contain the whole line segment connecting the points.
Because this line segment is in each of the sets, it is in their intersection. Hence, the intersection is
convex. 
�
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regions in a space S, the set B(R, S) containing the points of S that lie on a
boundary line of V(P) ∈ V(R), for some P ∈ �(R), is equal to the set of points
p such that there is a P ∈ �(R) for which it holds that, for at least two points
pi, pj ∈ P, δS(p, pi) = δS(p, pj), and for no pk ∈ P, δS(p, pk) < δS(p, pi).

Does it necessarily hold that B(R, S) = S \ ⋃
U(R)? That is to say, can we

claim that a point p is an element of S \ ⋃
U(R) not just if, but also only

if, p lies on a boundary line of V(P), for some P ∈ �(R)? The answer is
negative, just as we observed when comparing b 1(u(ri)) to b 2(u(ri)). If, apart
from disjointness, no assumptions are made about the generator regions, then
the associated collated diagram may well have a boundary region that contains
gaps, in the following precise sense:

Definition 4.4 Given a space S and a collated diagram U(R) of S, a region
g is a gap of S \ ⋃

U(R) iff (i) g ⊂ S \ ⋃
U(R); (ii) g is connected; (iii) g ∩

B(R, S) = ∅; and (iv) for every set S′ ⊆ S, if g ⊂ S′, then S′ ∩ B(R, S) �= ∅.

To put this differently, a gap in a boundary region S \ ⋃
U(R) is any connected

region of points all of which lie in that boundary region, none of which lie on
a boundary line of any elements of V(R), such that if all points are properly
included in another set, then that other set does contain points lying on a
boundary line of some element of V(R).

We say that a boundary region of a collated diagram U(R) of a space S is
full iff S \ ⋃

U(R) contains no gaps, or equivalently, iff B(R, S) = S \ ⋃
U(R);

otherwise it is said to be gappy. Figure 2 shows a collated diagram generated
by four regions each consisting of a pair of points lying relatively close to each
other. The boundary region of this diagram is obviously gappy.

For the kind of application of collated diagrams that we are envisioning,
an important question is whether, under certain conditions for generator re-
gions, boundary regions are full. The following theorem provides the requisite
information:

Theorem 4.1 Let R = {r1, . . . , rn} be a set of pairwise disjoint regions of a given
space each of which is connected. Then the collated diagram U(R) on that space
has a full boundary region.

The formal proof of Theorem 4.1 is given in the Appendix. But to also
give an intuitive feel for it, we briefly point to a result concerning so-called
dynamic Voronoi diagrams. Consider a set of points in a space that move along
continuous paths through space, as time passes. At each particular time, the
set generates a Voronoi diagram. One can think of the family of diagrams as
a “dynamic” Voronoi diagram, a diagram constantly in flux. As is shown in
Roos and Noltemeier [14], dynamic Voronoi diagrams change in an entirely
continuous fashion.10 This is so even though the movements of the various

10See also Roos [13] and Gavrilova and Rokne [8].
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points may bring about what are called topological events, that is, changes in
adjacency relations between generator points. Such changes can obviously only
be discontinuous, adjacency being a categorical matter (two generator points
either share a Voronoi edge/face or they do not). But even these discontinuous
topological changes are accompanied by continuous geometrical changes in the
dynamic Voronoi diagram, that is, continuous movements of the diagram’s
Voronoi points and edges/faces. For a clear explanation of this phenomenon,
see Gavrilova and Rokne [8: 94–96].

This geometric continuity ensures that, when all the Voronoi edges/faces
and Voronoi points of the separate Voronoi diagrams generated at each
particular point in time are projected onto each other, the result is a diagram
with a full boundary region. Theorem 4.1 should then be more or less obvious
once we realize that, first, because the generator regions are connected, from
any selection of points from these regions we can reach any other selection
of points from those regions by having all points move along continuous
trajectories that lie entirely within the generator regions; and second, we can
exhaust the possible selections of points from the generator regions by, so to
speak, chaining together infinitely many such operations.

We further state, without proof, that Lemma A.2, which is used for proving
Theorem 4.1 in the Appendix, has the following corollary:

Corollary 4.1 Let U(R) be a collated diagram on a given space. Then, if R
satisf ies the conditions of Theorem 4.1, it holds that b 1

(
u(r)

) = b 2
(
u(r)

)
, for

all r ∈ R.

Because in the following we will be concerned only with collated diagrams
U(R) for which R satisfies the conditions of Theorem 4.1, we will henceforth
simply use the notation b

(
u(r)

)
for the boundary region associated with

collated polygon/polyhedron u(r) ∈ U(R).

5 Vagueness Reconsidered

With the new Voronoi construction in place, and assuming prototypical areas
rather than points, we obtain a picture of how human beings form categories
that is not so different from the one put forth in the current conceptual spaces
literature. In this picture, the set of all clear instances of a concept is identified
with the collated polygon/polyhedron associated with the region representing
the concept’s typical instances in the relevant conceptual space. That the
concepts thus defined satisfy Gärdenfors’s criterion for naturalness follows
from Fact 4.1.

The picture also offers a straightforward explanation of the phenomenon
that something can be borderline X/Y while being a bit more X-ish than
Y-ish. To make the explanation entirely precise, we first note that, while the
metrics so far assumed are defined for pairs of points only, they can be swiftly
generalized in a way that allows us to measure distances between points and
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regions, or between regions. Let � and � be nonempty regions of a space S.
Then the Hausdorf f distance between � and � is defined to be

max
{
supx∈� infy∈� δS(x, y), supy∈� infx∈� δS(x, y)

}
.

Figure 3 illustrates this definition. Note that because � or � may consist of
only one point, we can meaningfully speak of the Hausdorff distance between
single points and regions.

Given our assumption that, at least for the kind of properties we focus on,
prototypes are in general non-unique, one natural way to explicate expressions
like “a is more X than Y” would be in terms of the above measure. More
precisely, the idea would be that “a is more X than Y” is true iff a is closer
to the area of prototypical X’s than to the area of prototypical Y’s, where
closeness is measured by the Hausdorff metric. Then—to state our solution
to the thickness problem—we can say that, because in the present picture,
borderlines need not be lines in the strict sense, but may be broader areas,
there can be points p lying in b

(
u(r)

) ∩ b
(
u(r′)

)
, where r is the region of

prototypical instances of X and r′ the region of prototypical instances of Y,
such that p is closer (on the Hausdorff metric) to r than to r′, which, given the
intended interpretation of the metric, means that p is more X than it is Y.

We note at once that if boundary regions of the relevant conceptual spaces
could be gappy, the explanation might not be so straightforward after all. In
particular, it might not be immediately obvious how to interpret the existence
of gaps, given that points lying in a gap could easily appear to have some special
status, or at least to be not quite on a par with other points in the boundary
region. For—it might be said—they correspond to cases that on each particular
choice of points from the prototypical areas come out as being non-borderline,
while still ending up as borderline cases.

However, Theorem 4.1 establishes, together with some highly reasonable
assumptions about prototypical areas, that the possibility of gappy boundary
regions cannot obtain. For consider that, first, connectedness of prototypical
areas is an exceedingly weak assumption. We saw above that, for the purposes
of constructing a generalized Voronoi diagram, Gärdenfors even assumed
prototypical areas to be circles. While he does not provide an argument for that
assumption, one way to justify it would be by pointing to the considerations
of cognitive economy cited in Section 2: storing pairs of a prototypical point
and a radius presumably does not exact a much greater toll on the brain than

+

+

+

+

+

+

(c))b((a)

Fig. 3 Shortest distances from the +’s to some element of the set of •’s (a); shortest distances from
the •’s to some element of the set of +’s (b); the longest of those shortest distances, which is the
Hausdorff distance between the two sets (c)
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does storing prototypical points alone. We also note that the connectedness
assumption is supported by the findings of Berlin and Kay [1, Section 1.5],
given that whenever their test subjects pointed at more than one chip as being
a typical instance of a color, these chips were always adjacent. Second, we can
be assured that the areas of typical instances will be pairwise disjoint: it would
be absurd to think that we might find typical instances of, say, red that are
also typical instances of orange. This, too, is supported by Berlin and Kay’s
experimental work. Thus, where prototypical areas serve as generator regions
of the collated diagram of the relevant space, Theorem 4.1 entails that this
collated diagram has a full boundary region.

To summarize so far, we have arrived at a picture of categorization that
permits a characterization of borderline cases which very naturally explains
the phenomenological data about vagueness. In particular, we obtain a unified
set of answers to what are unarguably among the most central questions about
vagueness. What is a borderline case relative to a set of concepts? Answer: a
case represented by a point in the boundary region of the conceptual space
representing the concepts. What is, more specifically, a borderline case of X-
ness (or, if one likes, an X/not-X borderline case)? Answer: a case represented
by a point in b

(
u(r)

)
, where r is the region of typical instances of X. What

is a borderline case between X and Y (an X/Y borderline case)? Answer:
a case represented by a point in b

(
u(r)

) ∩ b
(
u(r′)

)
, where r is the region of

typical instances of X and r′ the region of typical instances of Y. How can
there be X/Y borderline cases that are more X than they are Y? Answer:
because borderlines between concepts need not be lines consisting of points
at equal distance from two prototypes; they may have a certain thickness, so
that some X/Y borderline cases can be closer to the prototypical X than to
the prototypical Y area, some can be closer to the prototypical Y than to the
prototypical X area, and some can be equidistant from the two areas.

We end this section with two comments on the foregoing. The first concerns
the worry that our account of how to model vagueness in the conceptual
spaces framework is seriously incomplete. Specifically, it might be thought that
already the prototypical areas in which the typical cases of the concepts are
to be found cannot be sharply delineated, so that we would have a residual
problem of vagueness that could not be explained along the above lines.

We believe that this worry is misplaced. In particular, it would be wrong to
think that if x is typically red and y has a color that is, so to speak, “directly
adjacent” to the color of x, then y must be typically red, too. If typical instances
are taken to have a metaphysically special status, then it may simply be a brute
fact of nature that x is typically red and y is not, however similar they look.
Even if typicality is taken in a metaphysically more neutral sense, it is far
from obvious that very similar shades of a color must have the same status qua
typical instance. For example, when going from somewhere in the prototypical
area of red to the (non-prototypical) clear cases of red, at some point a little
hesitancy may set in when one is asked, or otherwise contemplates, whether
this specific shade of red is typically red. And, on the presumed understanding
of typicality, it would seem reasonable to take any hesitancy on our part as
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being evidence that this particular shade of red is not typically red, at least
given normal circumstances.11 Thus, as far as we can see, there is no reason to
suppose that the area of typical instances of a vague concept must itself have
vague boundaries.

Our second comment concerns the worry that Gärdenfors’ original model
of categorization does not only make borderlines too thin to be empirically
adequate but also makes them come out as too sharp. This is a problem if
Sainsbury [17] (among others) is right that a concept’s having borderline cases
is consistent with its having sharp boundaries, and that vagueness is not merely
a matter of having borderline cases, but also of having blurred boundaries.
More importantly, this so-called problem of higher-order vagueness may also
seem to affect our model, given that collated diagrams by themselves do
nothing to “fuzzify” borderlines: even if borderlines are really areas, these
areas themselves have sharp boundaries.

In response, we make three remarks. The first is that it is not uncontroversial
that there is such a thing as higher-order vagueness.12 Secondly, we note that
even if we have to grant an intelligible notion of higher-order vagueness,
and also grant that our model is idealizing to some extent and therefore
does not accommodate higher-order vagueness, we could still claim that it
is less idealizing than Gärdenfors’ model, which even fails to accommodate
first-order vagueness. So our model would be a step forward in any case.13

Finally, however, and less indirectly, in addressing the problem of higher-order
vagueness, we may exploit the fact, pointed out by Gärdenfors [6: 89], that
psychological measures, such as the metrics defined on conceptual spaces, tend
to be imprecise and that, in particular, people may be uncertain about the exact
metrical structure of a given space, for example, because they are uncertain
about the values for the weights in the relevant instance of Eq. 1, that is to
say, about the relative scaling of the axes.14 For, as Gärdenfors (ibid.) notes,
as a result of this uncertainty “the borderlines [of the Voronoi diagram of a

11Doubts about the lighting conditions, or about one’s present judgmental capacities, may of
course cause some hesitancy. But often we can be sure enough that the lighting is normal and
our judgment unimpaired. In such circumstances, hesitancy about whether a given case is typical
may be taken to rule out typicality.
12According to Wright [18], for instance, higher-order vagueness is illusory.
13Sainsbury [16] argues that any semantics that allows the collection of definite truths to be a set,
with sharp boundaries, is inadequate, since it eliminates vagueness, that is, the very phenomenon
it is supposed to describe. But this point seems to overgenerate insofar as it may be turned into
a general objection to the application of mathematical models of whatsoever, which are always
idealizing in some way and not perfectly accurate descriptions of reality. For this point, compare
Cook [3] and Gaifman [5: 43 ff].
14On uncertainty about the exact structure specifically of color space, see Clark [2: 130 f], Fairchild
[4: 303], Wyszecki and Stiles [19: 165, 825–830], and Kuehni [10: 357].
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conceptual space] will not be exactly determined.” As collated diagrams are
composed out of simple Voronoi diagrams, the indeterminacy affecting the
borderlines of the latter will carry over to the boundary regions of the former
in that it will not be exactly determined where a collated polygon/polyhedron
ends and the boundary region begins. At the same time, given that the
boundary region is an area and not a line, there can be perfectly determinate
borderline cases between the indeterminate beginnings and endings of the
boundary region. For example, assuming a simple one-dimensional space, we
may be uncertain where between coordinates 0 and 1 the boundary region
between two concepts starts and where between 2 and 3 it stops—which may
account for the fact that we can experience cases as being vaguely borderline—
but we may be certain that any point lying in the interval [1, 2] represents a
borderline case, which may account for the fact that some borderline cases are
experienced as being clearly borderline.15 This may be all there is to higher-
order vagueness.

6 Matters Empirical

In arguing for the proposed extension of the conceptual spaces framework, we
have referred to data concerning vagueness, like data showing that people do
not experience sharp transitions from clear cases to borderline cases, or that we
can differentiate between clear borderline cases with regard to their distance
from clear (non-borderline) cases. These data are introspectively accessible to
anyone and do not need the backing of experiments. In the present section, we
want to argue that the proposed account of vagueness suggests experiments
that may generate further data relevant to vagueness, data which are not
as easily accessible as the aforementioned ones, and that may support or
undermine the account (as the case may be).

To introduce the idea for what is arguably the simplest and most direct
experiment we have in mind, note that, for any one-dimensional conceptual
space, it follows from our proposal that the length of the borderline area
between two concepts is a linear function of the lengths of the prototypical
areas, to wit, the sum of the lengths of the prototypical areas divided by

15It may at first be tempting to try and explain borderline vagueness purely in terms of the
uncertainty of psychological measures. However, this approach would seem to supply insufficient
means for doing justice to such intuitions as that there can be perfectly determinate borderline
cases, and that of two determinate red–orange borderline cases (say), one is more reddish than the
other.
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2.16 Just for expository purposes, consider a one-dimensional color space for
monochromatic color samples, having wavelength as its only dimension. Now
suppose that, for a given person, the typical cases of green are to be found
between 500 and 520 nanometers, the typical cases of yellow between 570 and
580 nm, and the typical cases of red between 650 and 660 nm.17 Then our
account predicts that, for the given person, the clear green/yellow borderline
cases are to be found between, roughly, 535 and 550 nm, and the clear
yellow/red borderline cases between, roughly, 610 and 620 nm (the qualifier
“roughly” is there on account of the presumed imprecision of the relevant
metric). At a minimum, it predicts that there is more variation between
the clear green/yellow borderline cases than between the clear yellow/red
borderline cases.

To make this idea more general, recall that, given a collated diagram U(R),
the region b

(
u(r)

)
was defined to be the boundary region associated with a

collated polygon/polyhedron u(r) ∈ U(R). Further notice that, depending on
the dimensionality of the relevant space, we can speak of the length, surface,
or volume of b

(
u(r)

)
. Then we want to make the following conjecture:

Conjecture 6.1 For every collated diagram U(R) of a given space and every
r ∈ R, the length/surface/volume of b

(
u(r)

)
correlates with the length/surface/

volume of r, all else being equal.

While, as we saw in note 16, for one-dimensional spaces this conjecture—
even a claim more specific than this conjecture—can be proven, we do not
currently see how to prove the conjecture for higher-dimensional spaces.
Nevertheless, it is easy to convince oneself of the correctness of the conjecture

16Proof Given a one-dimensional space S, consider two prototypical areas (line segments) of this
space, ab and cd, and let ef be the boundary region between them, as defined by a collated diagram
of S. Assume, without loss of generality, that b lies between a and e and c lies between f and d,
and note that δS(a, e) = δS(a, c)/2 and δS(a, f ) = δS(a, b) + δS(b , d)/2. Then we have

δS(e, f ) = δS(a, f ) − δS(a, e)

= δS(a, b) + δS(b , d)

2
− δS(a, c)

2

= δS(a, b) + δS(b , c) + δS(c, d)

2
− δS(a, b) + δS(b , c)

2

= δS(a, b) + δS(c, d) − δS(a, b)

2

= 2δS(a, b) + δS(c, d) − δS(a, b)

2

= δS(a, b) + δS(c, d)

2
.


�
17There is ample experimental evidence showing that different people will designate somewhat
different areas as containing the typical instances of various colors; see Berlin and Kay [1,
Section 1.5] and Hardin [9: 162].
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at least for two-dimensional spaces by considering simulations such as the ones
depicted in Fig. 4. Simulations that allow generator areas to have different
surfaces—such as the ones depicted in the lower row of Fig. 4—also make
it easy to appreciate that the volume (respectively, length/surface) of the
boundary region associated with u(r) depends not only on the volume (length/
surface) of r but also on the volumes (lengths/surfaces) of the generator regions
of the collated polygons/polyhedrons neighboring u(r). This is one reason why
the ceteris paribus clause is required. The other reason is that the volume (etc.)
of the said boundary region also depends on the locations of the neighboring
generator regions. This cannot be gleaned from Fig. 4, but it is not hard to
imagine.

Conjecture 6.1 is a purely mathematical statement about purely mathe-
matical constructs (collated Voronoi diagrams). However, if these constructs
provide faithful models of human categorization, then this statement points to
ways in which we may obtain evidence for our account of vagueness.

The simplest way to gain such evidence is probably to record the cases
that persons classify as being typical instances of various concepts and those
they classify as being borderline cases of those concepts, and then check for
the relevant correlations. For example, a straightforward test would be to
repeat the experiment reported in Berlin and Kay [1] that was mentioned at
the beginning of Section 3, this time also paying close attention to subjects’

Fig. 4 An ordinary Voronoi diagram (top left); a collated diagram with generator regions
uniformly of diameter 1 (top middle); a collated diagram with generator regions uniformly of
diameter 4 (top right); collated diagrams with generator regions varying in diameter from 1 to 4
(bottom row)
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responses to the boundary areas of colors (which Berlin and Kay [1: 13] found
too unreliable to give much weight in their analysis). Supposing Conjecture 6.1
to be correct, the prediction would be that there will be a correlation between
the surfaces of the areas in which the typical instances of the colors are located
and the surfaces of the color boundaries.

There may be other, less direct ways in which Conjecture 6.1 can manifest
itself experimentally. Raffman [12: 52] notes that when we go through a series
of color patches, ranging from a clearly red one to a clearly orange one, with
each new patch slightly different in color from the foregoing one, then, if
we are forced to judge them as either being red or being orange, the point
at which our judgments will switch from red to orange (or conversely) may
depend on whether we start at the “red end” and then proceed, patch by
patch, to the “orange end,” or whether we go through this process in the
opposite direction. This so-called hysteresis effect is presumed to be due to
“a kind of judgmental inertia” created by the starting point (ibid.). In the
paper just cited, Raffman based her claim not on an experiment but on
introspection and extrapolation from known data about seemingly analogous
phenomena (such as the occurrence of order effects in experiments concerning
assessments of sizes of objects). However, experimental results reported in
her [Raffman, D., forthcoming, Ch. 5] seem to buttress the claim. These same
results further suggest that subjects who are forced to choose in the way that
was described tend to stick to their initial judgment as far as possible, only
switching judgments when they encounter clear cases of the other color. Now,
we will call the point at which one switches from red to orange when one
starts at the red end the “red/orange switching point,” and the point at which
one switches from orange to red when one goes in the other direction the
“orange/red switching point.” If Raffman is right, then the distance between
the red/orange and orange/red switching points (for instance, as measured in
number of patches that lie between them) will not only be constrained by the
size of the boundary region between red and orange, but may be expected to
correlate with the size of that region. Given that, on our account, the size of
this region in turn correlates with the sizes of the prototypical areas of red
and orange, the distance between the red/orange and orange/red switching
points should correlate with the sizes of those areas. We may hence be able
to find further support for our account by checking for correlations between,
on the one hand, distances between switching points in the kind of processes
described by Raffman and, on the other hand, sizes of prototypical areas. For
example, a supporting finding would be that the prototypical areas for red
and orange are both small compared to the prototypical areas of yellow and
green, and that the red/orange and orange/red switching points are closer to
one another than the yellow/green and green/yellow switching points.

Here, we have only indicated some ways in which our proposal can be put to
the test. An obvious avenue for future research is to carry out these and similar
experiments. Needless to say, if these experiments turn out negatively—for
instance, if the predicted correlations between boundary regions and proto-
typical regions are found not to exist—then that will deliver a serious blow
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to our proposal. In fact, this would also have negative implications for the
conceptual spaces approach more generally (even if it would not refute it), in
as much as our account seems the natural way to extend that approach to vague
concepts, and given that, as we said, any account of concepts must be able to
accommodate the phenomena related to vagueness if it is to be adequate.
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Appendix: Proof of Theorem 4.1

In this Appendix, we prove Theorem 4.1. The proof of the theorem, as well
as the proofs of the lemmas we make use of, assume a standard Euclidean
metric, which assigns equal weight to each dimension. This assumption allows
us to speak of circles, spheres, and so forth, but otherwise does not affect the
generality of the proofs.

Lemma A.1 Given a Voronoi diagram V(P) = {
ν(p1), . . . , ν(pn)

}
on some

space S, if some pi1 , . . . , pim ∈ P lie on a circle (or, more generally, an m-
dimensional sphere) that is otherwise empty of elements of P, then the center
of that circle (sphere) lies on a Voronoi edge (face), or is a Voronoi point, of
V(P).

Proof Suppose the condition holds. By the definition of a Voronoi diagram,
each point in S either lies in ν(p) for precisely one p ∈ P or lies on a Voronoi
edge (face) or is a Voronoi point. Because the center of the circle (sphere) is
closer to any of the pik than it is to any other point in P, it is not an element
of ν(p) for some p �= pik (1 � k � m). Because the center is equally close to
each of pi1 , . . . , pim , it is neither an element of ν(pik) for precisely one k ∈
{1, . . . , m}. So it lies on a Voronoi edge (face) or is a Voronoi point. 
�

Lemma A.2 Let U(R) be a collated diagram of a space S, with R = {r1, . . . , rn}
such that the ri are pairwise disjoint and each ri is connected. Then consider
points a, b ∈ r for some r ∈ R (possibly with a = b) and two line segments l and
m such that (i) for some ν(a) and P such that ν(a) ∈ V(P) ∈ V(R), l is a Voronoi
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edge (in the higher-dimensional case, a Voronoi face) of v(a); (ii) for some ν ′(b)

and P′ such that ν ′(b) ∈ V(P′) ∈ V(R), m is a Voronoi edge (face) of ν ′(b); and
(iii) a line segment with a as one endpoint intersects l in point s, and m in point
s′, such that as < as′ (see Fig. 5). Then any point c lying on ss′ is an element of
B(R, S).

Proof Without loss of generality, let the geometric situation be as depicted in
Fig. 5. So l is the Voronoi edge a shares with a′, and m is the Voronoi edge b
shares with b ′. Then consider a point c lying between l and m on ss′, and let
a′ be an element of generator region r′ ∈ R. Suppose all points in r′ lie within
the circle C with center c and such that a lies on C, and suppose, again without
loss of generality, and as is the case in Fig. 5, that a is closer to c than b is to c.
Then c is always closer to some point in r′ than it is to b , so that for no ν∗(b)

would c ∈ ν∗(b). But then m cannot be a Voronoi edge of b , contrary to our
assumption. (This also holds if a and b are equally close to c; if b is closer to
a, one can rerun the argument with the tags interchanged.) Thus, some points
in r′ must lie outside C. Given that r′ is connected, there must be points in r′
lying on C. Now either there are regions r∗ ∈ R alongside r′ and the region r
in which a lies such that r∗ has points lying in C, or there are no such further
regions.

(i) Consider the latter case first. Say that p ∈ r′ lies on C. Then for some
P ∈ �(R), a and p lie on a circle that otherwise does not contain points
of P. It then follows from Lemma A.1 that c lies on a Voronoi edge, or is
a Voronoi point, of V(P). Because V(P) ∈ V(R), c will be an element of
B(R, S).

(ii) Next consider the case in which there are further regions r∗
1, . . . , r∗

k that
have points lying inside C. Again, none of these regions can lie entirely
within the circle, for then c would never be closer to b than to any other
point, which, we saw, excludes that m is a Voronoi edge that b shares
with b ′. So each r∗

i will have points lying outside C and therefore, by
connectedness, also points lying on C. There will thus be a P ∈ �(R) such

Fig. 5 Illustration of
Lemma A.2
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that P contains of each of r′, r∗
1, . . . , r∗

k exactly one point which lies on C
and no other points picked out by P lie inside C. Again by Lemma A.1,
it follows that c lies on a Voronoi edge, or is Voronoi point, of V(P) (it is
in effect easy to prove that c is a Voronoi point of V(P)). So, c will again
belong to B(R, S).

Hence, c will be an element of B(R, S) in either case. As c was arbitrarily
chosen among the points lying on ss′, it follows that all points lying on that line
segment belong to B(R, S). 
�

Theorem A.1 Let R = {r1, . . . , rn} be a set of pairwise disjoint regions of a
space S such that each region is connected. Then the collated diagram U(R)

of S has a full boundary region.

Proof Suppose, towards a contradiction, that U(R) satisfies the conditions of
the theorem, yet that S \ ⋃

U(R) contains gaps. Let g be one such gap, and
let a be a point lying in g (see Fig. 6 for an illustration). Further, consider a
point b ∈ S \ ⋃

U(R) such that b is a limit point of g (where “limit point”
is understood in the topological sense: each open set that contains b has a
nonempty intersection with g). Then for some P ∈ �(R) there will be a p ∈ P
such that b lies on the boundary line of ν(p) ∈ V(P) ∈ V(R). Furthermore, let
b be so chosen that δS(b , p) > δS(a, p) (such points must exist if a lies in g).
Then a ∈ ν(p). Let r ∈ R be the generator region containing p. Then note that
there cannot be a p′ ∈ r and a P′ ∈ �(R) such that a /∈ ν ′(p′) ∈ V(P′) ∈ V(R),
for else the conditions of Lemma A.2 would be satisfied, and thus we would
have that a ∈ B(R, S). Moreover, a cannot lie on a boundary line, given that
otherwise, again, a would be in B(R, S). So, for all ν(p) ∈ {

ν(p)
}

r∈R, a ∈ ν(p),
and so a ∈ u(r). But, by Definition 4.4, g ⊂ S \ ⋃

U(R). Hence, because a ∈ g,
also a ∈ S \ ⋃

U(R). However, together with the just-established fact that
a ∈ u(r), it follows that u(r) ∩ S \ ⋃

U(R) �= ∅. This is inconsistent with the

Fig. 6 Point a lying in gap g
of a boundary region (partly
represented, in gray); if there
were a ν′(p′) that did not
contain a (e.g., the area partly
represented by the thin lines),
the conditions of Lemma A.2
would be satisfied

b

g

a

p
r

p'
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assumption that U(R) is a collated diagram, for it is a direct consequence
of Definition 4.2 that, for all ri ∈ R, u(ri) ∩ S \ ⋃

U(R) = ∅. So, since our
assumption that there is a gap in the boundary region of U(R) leads to a
contradiction, and since U(R) was an arbitrary collated diagram generated by
a set of pairwise disjoint regions each of which is connected, it follows that
there can be no such diagrams with gappy boundary regions. 
�
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