Skip to main content
Log in

The Iterative Conception of Set

A (Bi-)Modal Axiomatisation

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

The use of tensed language and the metaphor of set ‘formation’ found in informal descriptions of the iterative conception of set are seldom taken at all seriously. Both are eliminated in the nonmodal stage theories that formalise this account. To avoid the paradoxes, such accounts deny the Maximality thesis, the compelling thesis that any sets can form a set. This paper seeks to save the Maximality thesis by taking the tense more seriously than has been customary (although not literally). A modal stage theory, \({\textsf{MST}}\), is developed in a bimodal language, governed by a tenselike logic. Such a language permits a very natural axiomatisation of the iterative conception, which upholds the Maximality thesis. It is argued that the modal approach is consonant with mathematical practice and a plausible metaphysics of sets and shown that \({\textsf{MST}}\) interprets a natural extension of Zermelo set theory less the axiom of Infinity and, when extended with a further axiom concerning the extent of the hierarchy, interprets Zermelo–Fraenkel set theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boolos, G. (1971). The iterative conception of set. The Journal of Philosophy, 68(8), 215–231. Reprinted in G. Boolos (1998). Logic, logic, and logic. Cambridge, MA.: Harvard Univesity Press. Page references to reprint.

    Google Scholar 

  2. Boolos, G. (1989). Iteration again. Philosophical Topics, 17, 5–21. Reprinted in G. Boolos (1998). Logic, logic, and logic. Cambridge, MA.: Harvard Univesity Press. Page references to reprint.

  3. Boolos, G. (1995). The logic of provability. Cambridge: Cambridge University Press.

    Google Scholar 

  4. Braüner, T., & Ghilardi, S. (2007). First-order modal logic. In: P. Blackburn, J. van Benthem, F. Wolter (Eds.), Handbook of modal logic. Amsterdam: Elsevier.

    Google Scholar 

  5. Bull, R., & Segerberg, K. (2001). Basic modal logic. In: D. Gabbay & F. Guenthner (Eds.), Handbook of Philosophical Logic (2nd ed., Vol. 3). Dordrecht: Kluwer.

    Google Scholar 

  6. Burgess, J.P. (2002). Basic tense logic. In: D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (2nd ed., Vol. 7). Dordrecht: Kluwer.

    Google Scholar 

  7. Burgess, J.P., & Rosen, G. (1997). A subject with no object. Oxford: Clarendon Press.

    Google Scholar 

  8. Cartwright, R. (1994). Speaking of everything. Noûs, 28(1), 1–20.

    Article  Google Scholar 

  9. Dummett, M. (1991). Frege: Philosophy of mathematics. London: Duckworth.

    Google Scholar 

  10. Fine, K. (1981). First-order modal theories I—sets. Noûs, 15(2), 177–205.

    Article  Google Scholar 

  11. Fine, K. (2005). Our knowledge of mathematical objects. In: T.S. Gendler & J. Hawthorne (Eds.), Oxford studies in epistemology (Vol. 1). Oxford: Clarendon Press.

    Google Scholar 

  12. Fine, K. (2006). Relatively unrestricted quantification. In: A. Rayo & G. Uzquiano (Eds.), Absolute generality. Oxford: Oxford University Press.

    Google Scholar 

  13. Gödel, K. (1964). What is Cantor’s continuum problem? In: P. Benacerraf, & H. Putnam (Eds.) (1983). Philosophy of mathematics: selected readings (2nd ed.). Cambridge: Cambridge University Press. Revised and expanded version of Gödel, K. (1947). What is Cantor’s continuum problem? The American Mathematical Monthly, 54(9), 515–525.

  14. Goldblatt, R. (1992). Logics of time and computation (2nd ed.). Stanford, CA.: CSLI.

    Google Scholar 

  15. Jech, T. (2003). Set theory (3rd, revised ed.). New York, NY.: Springer.

    Google Scholar 

  16. Lévy, A. (1960). Axiom schemata of strong infinity in axiomatic set theory. Pacific Journal of Mathematics, 10(1), 223–238.

    Article  Google Scholar 

  17. Lévy, A., & Vaught, R. (1961). Principles of partial reflection in the set theories of Zermelo and Ackermann. Pacific Journal of Mathematics, 11(3), 1045–1062.

    Article  Google Scholar 

  18. Linnebo, Ø. (2010). Pluralities and sets. The Journal of Philosophy, 107(3), 144–164.

    Google Scholar 

  19. Mathias, A. (2001). Slim models of Zermelo set theory. Journal of Symbolic Logic, 66(2), 487–496.

    Article  Google Scholar 

  20. Parsons, C. (1977). What is the iterative conception of set?. In: R. Butts & J. Hintikka (Eds.), Proceedings of the 5th international congress of logic, methodology and philosophy of science 1975, part I: Logic, foundations of mathematics, and computability theory. Dordrecht, Reidel. Reprinted in P. Benacerraf, & H. Putnam (1983). Philosophy of mathematics: selected readings (2nd ed.). Cambridge: Cambridge University Press. Pages references to reprint.

  21. Parsons, C. (1983) Sets and modality. In: Mathematics in philosophy. Ithaca, NY: Cornell University Press.

    Google Scholar 

  22. Paseau, A. (2007). Boolos on the justification of set theory. Philosophia Mathematica, 15(1), 30–53.

    Article  Google Scholar 

  23. Potter, M. (2004). Set theory and its philosophy: A critical introduction. Oxford: Oxford University Press.

    Book  Google Scholar 

  24. Scott, D. (1974). Axiomatizing set theory. In: Axiomatic set theory II: Proceedings of symposia in pure mathematics (Vol. 13). Providence, RI., American Mathematical Society.

    Google Scholar 

  25. Shoenfield, J. (1967) Mathematical logic. Reading, MA.: Addison-Wesley.

    Google Scholar 

  26. Uzquiano, G. (1999). Models of second-order Zermelo set theory. Bulletin of Symbolic Logic, 5(3), 289–302.

    Article  Google Scholar 

  27. Venema, Y. (2001). Temporal logic. In: L. Goble (Ed.), The Blackwell guide to philosophical logic. Oxford: Blackwell.

    Google Scholar 

  28. Wang, H. (1974). From mathematics to philosophy. London: Routledge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Studd.

Additional information

Thanks to Denis Bonnay, Øystein Linnebo, Sam Roberts, Gabriel Uzquiano, Timothy Williamson and anonymous referees for helpful written comments on earlier versions of this paper, and to audiences in Oxford, Cambridge, London and Paris for their questions and comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Studd, J.P. The Iterative Conception of Set. J Philos Logic 42, 697–725 (2013). https://doi.org/10.1007/s10992-012-9245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-012-9245-3

Keywords

Navigation