Skip to main content
Log in

The Graph Conception of Set

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

The non-well-founded set theories described by Aczel (1988) have received attention from category theorists and computer scientists, but have been largely ignored by philosophers. At the root of this neglect might lie the impression that these theories do not embody a conception of set, but are rather of mere technical interest. This paper attempts to dispel this impression. I present a conception of set which may be taken as lying behind a non-well-founded set theory. I argue that the axiom AFA is justified on the conception, which provides, contra Rieger (Mind 109:241–253, 2000), a rationale for restricting attention to the system based on this axiom. By making use of formal and informal considerations, I then make a case that most of the other axioms of this system are also justified on the conception. I conclude by commenting on the significance of the conception for the debate about the justification of the Axiom of Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczel, P. (1988). Non-well-founded sets. CSLI, Stanford.

    Google Scholar 

  2. Aczel, P., & Mendler, N. (1989). A final coalgebra theorem. In D. Pitt, D. Rydeheard, P. Dybjer, A. Pitts, A. Poigné (Eds.), Category theory and computer science. Lecture notes in computer science (Vol. 389, pp. 357–365). Berlin: Springer.

    Chapter  Google Scholar 

  3. Baltag, A. (1999). STS: A structural theory of sets. Logic Journal of the IGPL, 7, 481–515.

    Article  Google Scholar 

  4. Barr, M. (1993). Terminal coalgebras in well-founded set theory. Theoretical Computer Science, 114, 299–315.

    Article  Google Scholar 

  5. Barwise, J. (1986). Situations, sets, and the axiom of foundation. In J. Paris, A. Wilkie, G. Wilmers (Eds.), Logic colloquium ’84 (pp. 21–36). North-Holland, New York.

    Google Scholar 

  6. Barwise, J., & Etchemendy, J. (1987). The liar: An essay on truth and circularity. Oxford: Oxford University Press.

    Google Scholar 

  7. Barwise, J., & Moss, L. (1991). Hypersets. Mathematical Intelligencer, 13, 31–41.

    Article  Google Scholar 

  8. Barwise, J., & Moss, L. (1996). Vicious circles. CSLI, Stanford.

    Google Scholar 

  9. Boffa, M. (1969). Sur la théorie des ensembles sans axiome de Fondement. Bulletin de la Société Mathématique de Belgique, 31, 16–56.

    Google Scholar 

  10. Boolos, G. (1971). The iterative conception of set. Journal of Philosophy, 68, 215–231. Reprinted in Boolos, G. (1998). Logic, logic, and logic (pp. 13–29). Cambridge, Massachusetts: Harvard University Press.

    Article  Google Scholar 

  11. Boolos, G. (1989). Iteration again. Philosophical Topics, 17, 5–21. Reprinted in Boolos, G. (1998). Logic, logic, and LOGIC (pp. 88–104). Cambridge, Massachusetts: Harvard University Press.

    Article  Google Scholar 

  12. Boolos, G. (1998). Logic, logic, and logic. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  13. Booth, D., & Ziegler, R. (1996). Finsler set theory: Platonism and circularity. Birkhäuser Verlag, Basel. Translation of Paul Finsler’s papers with introductory comments.

    Book  Google Scholar 

  14. Devlin, K. (1993). The joy of sets. Fundamentals of contemporary set theory (2nd edn). New York: Springer.

    Google Scholar 

  15. Finsler, P. (1926). Über die Grundlagen der Mengenlehre, I. Mathematische Zeitschrift, 25, 683–713. Reprinted and translated in Booth, D., & Ziegler, R. (1996). Finsler set theory: Platonism and circularity (pp. 103–132). Birkhäuser Verlag, Basel. Translation of Paul Finsler’s papers with introductory comments.

    Article  Google Scholar 

  16. Forster, T. (1995). Set theory with a universal set (2nd edn). Oxford: University Press.

    Google Scholar 

  17. Forti, M., & Honsell, F. (1983). Set theory with free construction principles. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 10, 493–522.

    Google Scholar 

  18. Gödel, K. (1944). Russell’s mathematical logic. In P.A. Schilpp (Ed.), The philosophy of bertrand Russell (pp. 123–153). Evanston and Chicago: Northwestern University. Reprinted in Gödel, K. (1990). Collected Works II (pp. 119–141). Oxford: University Press.

    Google Scholar 

  19. Gödel, K. (1990). Collected works II. Oxford: University Press.

    Google Scholar 

  20. Incurvati, L. (2012). How to be a minimalist about sets. Philosophical Studies, 159, 69–87.

    Article  Google Scholar 

  21. Johnstone, P., Power, J., Tsujishita, T., Watanabe, H., Worrell, J. (2001). On the structure of categories of coalgebras. Theoretical Computer Science, 260, 87–117.

    Article  Google Scholar 

  22. Moschovakis, Y.N. (2006). Notes on set theory (2nd edn). New York: Springer.

    Google Scholar 

  23. Moss, L. (2009). Non-wellfounded set theory. In E.N. Zalta (Ed.), Stanford encyclopedia of philosophy (Fall 2009 edition). Available at http://plato.stanford.edu/archives/fall2009/entries/nonwellfounded-set-theory/.

  24. Paseau, A. (2007). Boolos on the justification of set theory. Philosophia Mathematica, 15, 30–53.

    Article  Google Scholar 

  25. Potter, M. (2004). Set theory and its philosophy. Oxford: University Press.

    Book  Google Scholar 

  26. Quine, W.V.O. (1937). New foundations for mathematical logic. American Mathematical Monthly, 44, 70–80.

    Article  Google Scholar 

  27. Ramsey, F.P. (1925). The foundations of mathematics. Proceedings of the London Mathematical Society, 25, 338–384. Reprinted in Ramsey, F.P. (1990). Philosophical Papers (pp. 164–224). Cambridge: Cambridge University Press. Edited by D.H. Mellor.

    Google Scholar 

  28. Ramsey, F.P. (1990). Philosophical papers. Cambridge: Cambridge University Press. Edited by D.H. Mellor.

    Google Scholar 

  29. Rieger, A. (2000). An argument for Finsler-Aczel set theory. Mind, 109, 241–253.

    Article  Google Scholar 

  30. Rutten, J. (2000). Universal coalgebra: A theory of systems. Theoretical Computer Science, 249, 3–80.

    Article  Google Scholar 

  31. Scott, D. (1960). A different kind of model for set theory. Stanford Congress of Logic, Methodology and Philosophy of Science (unpublished paper).

  32. Turi, D., & Rutten, J. (1998). On the foundations of final coalgebra semantics: Non-well-founded sets, partial orders, metric spaces. Mathematical Structures in Computer Science, 8, 481–540.

    Article  Google Scholar 

  33. Tutte, W.T. (2001). Graph theory (paperback edn). Cambridge: Cambridge University Press.

    Google Scholar 

  34. van den Berg, B., & De Marchi, F. (2007). Non-well-founded trees in categories. Annals of Pure and Applied Logic, 146, 40–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Incurvati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Incurvati, L. The Graph Conception of Set. J Philos Logic 43, 181–208 (2014). https://doi.org/10.1007/s10992-012-9259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-012-9259-x

Keywords

Navigation