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Abstract The combination of Fuzzy Logics and Description Logics (DLs) has been investi-
gated for at least two decades because such fuzzy DLs can be used to formalize imprecise
concepts. In particular, tableau algorithms for crisp Description Logics have been extended to
reason also with their fuzzy counterparts. It has turned out, however, that in the presence of
general concept inclusion axioms (GCIs) this extension is less straightforward than thought.
In fact, a number of tableau algorithms claimed to deal correctly with fuzzy DLs with GCIs
have recently been shown to be incorrect. In this paper, we concentrate on fuzzy ALC, the
fuzzy extension of the well-known DL ALC. We present a terminating, sound, and complete
tableau algorithm for fuzzy ALC with arbitrary continuous t-norms. Unfortunately, in the
presence of GCIs, this algorithm does not yield a decision procedure for consistency of fuzzy
ALC ontologies since it uses as a sub-procedure a solvability test for a finitely represented,
but possibly infinite, system of inequations over the real interval [0,1], which are built using
the t-norm. In general, it is not clear whether this solvability problem is decidable for such
infinite systems of inequations. This may depend on the specific t-norm used. In fact, we
also show in this paper that consistency of fuzzy ALC ontologies with GCIs is undecidable
for the product t-norm. This implies, of course, that for the infinite systems of inequations
produced by the tableau algorithm for fuzzy ALC with product t-norm, solvability is in
general undecidable. We also give a brief overview of recently obtained (un)decidability
results for fuzzy ALC w.r.t. other t-norms.
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1 Introduction

Description logics (DLs) [2] are a family of logic-based knowledge representation formalisms,
which can be used to represent the conceptual knowledge of an application domain in a
structured and formally well-understood way. They are employed in various application
domains, such as natural language processing, configuration, and databases, but their main
breakthrough arguably came with the adoption of the DL-based language OWL [19] as
standard ontology language for the semantic web. Another successful application area for
DLs is the definition of medical ontologies, such as SNOMED CT1 and GALEN.2

In Description Logics, concepts are formally described by concept descriptions, i.e.,
expressions that are built from concept names (unary predicates) and role names (binary
predicates) using concept constructors. The expressivity of a particular DL is determined by
the concept constructors available in it. From a semantic point of view, concept names and
concept descriptions represent sets of individuals, whereas roles represent binary relations
between individuals. For example, using the concept names Patient and Running-nose, and
the role name hasSymptom, the concept of all patients with running noses can be represented
by the concept description

Patientu∃hasSymptom.Running-nose.

In addition to the description language (i.e., the formalism for constructing concept descrip-
tions), DLs provide their users with a terminological and an assertional formalism. In its
simplest form, a DL terminology (usually called TBox) can be used to introduce abbreviations
for complex concept descriptions. For example, the concept definition

Private-patient≡ Patientu∃hasInsurance.Private-health

expresses that private patients are patients that have a private health insurance. So-called
general concept inclusions (GCIs) can be used to state additional constraints on the interpre-
tation of concepts and roles. In our medical example, one could express that patients with
running noses have a cold or hay fever using the GCI

Patientu∃hasSymptom.Running-nosev ∃hasDisease.(ColdtHay-fever).

Note that the concept definition A≡C can be expressed using the GCIs AvC and C v A.
In the assertional part (ABox) of a DL-based ontology, facts about a specific application

situation can be stated by introducing named individuals and relating them to concepts and
roles. For example, the assertions

Patient(linda), Private-health(AXA-PPP), hasInsurance(linda,AXA-PPP),

state that Linda is a patient that has the private health insurance AXA-PPP. An ontology is a
TBox together with an ABox, i.e., finite set of GCIs and assertions.

Knowledge representation systems based on DLs provide their users with various infer-
ence services that allow them to deduce implicit consequences from the explicitly represented
knowledge. For example, given the concept definition and the assertions introduced above,
one can deduce the assertion Private-patient(linda), i.e., that Linda is a private patient. An
important inference service for DL-based ontologies is testing their consistency, i.e., checking
whether a given ontology is non-contradictory by testing whether it has a model. Indeed,

1 http://www.ihtsdo.org/snomed-ct/
2 http://www.opengalen.org/
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for crisp DLs that are closed under all Boolean operations, all the other standard inference
problems can be reduced to consistency. For such DLs, tableau algorithms [5] are still the
method of choice to obtain practical inference procedures. In principle, to decide consistency
of a given ontology, such an algorithm tries to generate a finite model for this ontology by de-
composing complex concept assertions according to the semantics of the concept constructors.
For example, to satisfy the assertion

(∃hasInsurance.Private-health)(linda),

a tableau algorithm would introduce a new individual name, say INS, and generate the
assertions

hasInsurance(linda, INS), Private-health(INS).

In the presence of GCIs, introducing such new individuals may cause a non-terminating execu-
tion. For example, assume that the ontology contains the GCI Humanv ∃hasParent.Human
and the assertion Human(linda). The tableau algorithm would first add the assertion

(∃hasParent.Human)(linda),

and then a new individual name, say CHI1, together with the assertions

hasParent(linda,CHI1), Human(CHI1).

But now CHI1 is a human being, and thus needs a human parent CHI2, which again needs
a human parent, and so on. Thus, without additional precautions, the tableau algorithm
would not terminate. In the DL community, these precautions are called blocking. Basically,
blocking can be used to detect that the same situation that leads to the creation of new
individuals occurs repeatedly, and then blocks the application of the tableau rule that creates
the new individual (see [5] for details). This way, termination of the tableau algorithm can
be regained for the DL ALC considered in this paper, and also for various more expressive
DLs (see, e.g., [20]). However, for some DLs adding GCIs actually makes the consistency
problem undecidable [1,23].

Fuzzy variants of Description Logics (DLs) were introduced in order to deal with appli-
cations where membership to concepts cannot always be determined in a precise way. For
example, assume that we want to express that a patient that has a high temperature and a
running nose has a cold using the GCI

Patientu∃hasSymptom.Running-noseu∃hasTemperature.Highv ∃hasDisease.Cold.

Here it makes sense to view High as a fuzzy concept, to which 36◦C belongs with a low
membership degree (say 0.2), 38◦C with a higher membership degree (say 0.7), and 40◦C
with an even higher membership degree (say 0.9). In the presence of such fuzzy concepts,
ABox assertions must then be equipped with a membership degree. For example, the assertion
〈High(T1)≥ 0.8〉 says that temperature T1 is high with membership degree at least 0.8. If
we are not so sure about the measurement (e.g., if it was taken under the armpit), we could
also equip the role assertion hasTemperature(linda,T1) with a membership degree smaller
than 1. The use of fuzzy concepts in medical applications is, for instance, described in more
detail in [25].

A great variety of fuzzy DLs have been investigated in the literature [22,16]. In fact,
compared to crisp DLs, fuzzy DLs offer an additional degree of freedom when defining
their expressiveness: in addition to deciding which concept constructors (like conjunction u,
disjunction t, existential restriction ∃r.C) and which terminological formalism (like no TBox,
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acyclic concept definitions, general concept inclusions) to use, one must also decide how to
interpret the concept constructors by appropriate functions on the domain of fuzzy values
[0,1]. For example, conjunction can be interpreted by different t-norms ⊗ (such as Gödel,
Łukasiewicz, and product) [21] and there are also different options for how to interpret
negation (such as involutive negation and residual negation). In addition, one can either
consider all models or only so-called witnessed models [18] when defining the semantics of
fuzzy DLs. Here, we will restrict the attention to witnessed models.

Decidability of fuzzy DLs is often shown by adapting the tableau algorithms for the
corresponding crisp DL to the fuzzy case. This was first done for the case of DLs without
GCIs [33,31,29,9], but then also extended to GCIs [30,32,7,8]. Usually, these tableau
algorithms reason w.r.t. witnessed models.3 In principle, the extended tableau algorithms
generate a system of inequations that constrain the possible fuzzy degrees. For example, if
the assertion (AuB)(a) is supposed to hold with degree at least 0.7, then A(a) needs to hold
with a degree d1 and B(a) with a degree d2 such that d1⊗ d2 ≥ 0.7. After termination of
the tableau algorithm, one then needs to check the system of inequations for solvability. If
the algorithm is sound and complete, then the input ontology is consistent iff the system of
inequations produced by the tableau algorithm is solvable. As mentioned before, most of
the tableau algorithms for fuzzy DLs that were claimed to deal with GCIs are actually not
correct. The reason for this is that they use a blocking approach that does not take the system
of inequations into account in an appropriate way. In fact, some of fuzzy DLs in question
have later been shown to be undecidable [3,4,13,15].

The goal of this paper is to elucidate the causes of (un)decidability in fuzzy DLs with
GCIs. To achieve this, we proceed in the following two directions. First, we introduce a
more sophisticated blocking condition for the tableau algorithms that takes into account also
the system of inequations produced by the tableau. We show that the use of this blocking
condition ensures termination, and that the obtained tableau algorithm is sound and complete
in the following sense: after termination, the computed system of inequations together with
the blocking information uniquely determines a possibly infinite system of inequations such
that the input ontology is consistent iff this system is solvable.

Though solvability of finite systems of inequations is usually decidable, it is not clear
how to decide solvability of such finitely represented infinite systems. Thus, despite our
tableau algorithm being terminating, as well as sound and complete, it does not constitute
a decision procedure since it requires the solution of a problem whose decidability status
is not clear. Thus, undecidability is not caused by the impossibility of finding appropriate
blocking conditions, but rather by the inability of deciding whether the generated system of
inequations is contradictory or not.

Second, we examine the particular example of fuzzy ALC with the product t-norm to
demonstrate the basic ideas underlying the recent undecidability proofs for fuzzy DLs in the
presence of GCIs. This is done by a reduction from the Post Correspondence Problem, which
is well-known to be undecidable.

In brief, the main goal of this paper is to provide an intuitive understanding of what
makes reasoning in fuzzy DLs undecidable. To achieve this, we

– provide a sound, complete and terminating algorithm for fuzzy ALC;
– show why this algorithm is not a decision procedure for this logic; and
– provide a prototypical proof of undecidability.

3 In fact, witnessed models were introduced in [18] to correct the proof of correctness for the tableau
algorithm presented in [33].
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In the next section, we will introduce the (crisp) DL ALC and sketch a tableau algorithm
for this DL. In Section 3 we introduce t-norms and fuzzy logic, and in the subsequent section
we define fuzzy ALC. In Section 5, we introduce a tableau algorithm for fuzzy ALC, first
without and then with GCIs, and prove that it is terminating as well as sound and complete
in the sense introduced above. This algorithm is parameterized on the employed t-norm. In
Section 6, we show that GCIs actually cause undecidability of consistency of fuzzy ALC
with product t-norm. In addition, we review some of the recently obtained (un)decidability
results for other t-norms.

2 The Description Logic ALC

Description logics (DLs) [2] are logic-based knowledge representation formalisms tailored
towards representing the conceptual knowledge of an application domain in a structured and
well-understood way. In these logics, knowledge is expressed through concept descriptions
that are built from atomic concepts (corresponding to unary predicates from first-order logic)
and atomic roles (binary predicates) using a set of constructors, such as conjunction (u) or
existential restrictions (∃). We focus on the description logic ALC, the smallest DL that is
closed under propositional constructors and allows existential and value restrictions.

Definition 2.1 Let NC and NR be two disjoint sets of concept names and role names, re-
spectively. The set of ALC concept descriptions is the smallest set containing NC such
that:

– if C and D are ALC concept descriptions, then so are ¬C,CuD, and CtD; and
– if C is an ALC concept description and r ∈ NR, then ∃r.C and ∀r.C are ALC concept

descriptions.

For example, using the concept names Human and Male, and the role name hasParent, the
concept Maleu∃hasParent.Human expresses all male individuals that have a human parent.

Concept names can be seen as unary predicates of first-order logic, while role names
correspond to binary predicates. The semantics of concept descriptions is consequently
defined using interpretations that assign sets to concept descriptions and binary relations to
roles.

Definition 2.2 An interpretation is a tuple of the form I = (∆I , ·I), where ∆I is a non-
empty set called the domain and ·I is a function that assigns to every concept name A a set
AI ⊆ ∆I and to every role name r a binary relation rI ⊆ ∆I ×∆I .

This function is extended to ALC concept descriptions as follows:

– (¬C)I = ∆I \CI ;
– (CuD)I =CI ∩DI ;
– (CtD)I =CI ∪DI ;
– (∃r.C)I = {x ∈ ∆I | there is (x,y) ∈ rI with y ∈CI};
– (∀r.C)I = {x ∈ ∆I | for all (x,y) ∈ rI it holds that y ∈CI}.

Similar to first-order logic, existential and value restrictions are dual to each other, i.e., the
interpretations of the concepts ∃r.¬C and ¬∀r.C are always the same.

In description logics, knowledge is represented using a set of assertional axioms express-
ing properties of specific individuals of the domain, and terminological axioms, which restrict
the interpretations of concept descriptions. For example, the assertion Male(chiron) and
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Table 2.1 Tableau rules of the consistency algorithm for ALC.

(u) if (CuD)(x) ∈A but {C(x),D(x)} 6⊆A, then A′ :=A∪{C(x),D(x)}
(t) if (CtD)(x) ∈A but {C(x),D(x)}∩A= /0 then A′ :=A∪{C(x)}, and A′′ :=A∪{D(x)}
(∃) if (∃r.C)(x)∈A but there is no z such that {r(x,z),C(z)}⊆A then A′ :=A∪{r(x,y),C(y)}, where

y is an individual name not occurring in A
(∀) if {(∀r.C)(x),r(x,y)} ⊆A but C(y) /∈A, then A′ :=A∪{C(y)}

the terminological axiom Human v ∃hasParent.Human express that the named individual
Chiron is male, and that every human has a human parent, respectively.

To correctly deal with the assertional knowledge, we additionally consider a set NI of
individual names that is disjoint with NC and NR. The interpretation I maps every individual
name a ∈ NI to an element aI ∈ ∆I .

Definition 2.3 Let C be a concept description, r a role name, and a,b ∈ NI. An assertion is
of the form C(a) (called concept assertion) or r(a,b) (called role assertion). An ABox is a
finite set of assertions.

A general concept inclusion (GCI) is of the form C v D, where C,D are concept descrip-
tions. A finite set of GCIs is called a TBox.

An interpretation I satisfies the concept assertion C(a) if aI ∈ CI , satisfies the role
assertion r(a,b) if (aI ,bI) ∈ rI , and satisfies the GCI CvD if CI ⊆DI . This interpretation
I is a model of the ABox A if it satisfies all assertions in A, and is a model of the TBox T if
it satisfies all GCIs in T .

An ABox A is consistent w.r.t. a TBox T if there exists an interpretation that is a model
of both A and T . We say that a concept description C is subsumed by a concept description
D w.r.t. a TBox T if every model of T satisfies the GCI C v D.

The central reasoning task in DLs is to decide consistency of an ABox w.r.t. a TBox. Many
other reasoning problems, such as subsumption, can be reduced to the consistency problem.
In fact, C is subsumed by D w.r.t. T iff the singleton ABox {Cu¬D(a)} is inconsistent w.r.t.
T for an arbitrary individual name a. For the rest of this paper, we focus only on deciding
consistency.

The most widely used reasoning technique for DLs is the tableau-based approach, which
was first introduced in the context of DLs in [28]. We now describe this technique for deciding
consistency of an ABox assuming an empty TBox, and later show how to extend it to work
in the presence of GCIs.

2.1 Consistency without TBoxes

The tableau-based approach for deciding consistency of an ABox is based on the fact that
ALC has the finite model property, i.e., every consistent ABox has a finite model. Given
an ABox A0, the tableau algorithm for consistency tries to construct a finite interpretation
I that is a model of A0. We assume that every concept description is in negation normal
form (NNF), where negation appears only directly in front of concept names. Every concept
description can be transformed to NNF in linear time using de Morgan’s rules, the duality of
quantifiers, and elimination of double negations.

The algorithm starts with A0 and applies the consistency-preserving rules shown in
Table 2.1 to it. The transformation rule (t) is non-deterministic in the sense that a given ABox
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A is transformed into two new ABoxes such that A is consistent iff one of the new ABoxes is
also consistent. For this reason, we consider finite sets of ABoxes S = {A1, . . . ,Ak} instead
of a single ABox. Such a set is consistent iff there is some i, 1≤ i≤ k, where Ai is consistent.
A rule from Table 2.1 is applied to a given finite set of ABoxes S as follows: it takes an
element A of S and replaces it by one ABox A′ or by two ABoxes A′,A′′.

Definition 2.4 The ABox A is complete iff none of the transformation rules from Table 2.1
applies to it. It contains a clash if {A(x),¬A(x)}⊆A for some concept name A and individual
name x. It is closed if it contains a clash, and open otherwise.

The consistency algorithm for ALC works as follows. It starts with the singleton set of
ABoxes {A0} and applies the rules from Table 2.1 in arbitrary order until no more rules
apply. It answers “consistent” if the set S of ABoxes obtained this way contains an open
ABox, and “inconsistent” otherwise. The fact that this algorithm is a decision procedure for
consistency of ALC ABoxes is an easy consequence of the following facts [5]:

1. there is no infinite sequence of rule applications starting with {A0};
2. the transformation rules preserve consistency; that is, if S ′ is obtained from S by the

application of a transformation rule, then S is consistent iff S ′ is consistent;
3. any complete and open ABox is consistent; and
4. any closed ABox is inconsistent.

We now provide more details on the reasons for termination of the algorithm. The transforma-
tion rules are monotonic in the sense that every application of a rule to A adds a new concept
assertion and does not remove anything. Additionally, all concept descriptions appearing in
A are subconcepts of concept descriptions occurring in the initial ABox A0. Together, these
two facts imply that there can only be a finite number of rule application per individual. More-
over, only the existential rule can introduce new individuals. Every existentially quantified
assertion in A can trigger at most one introduction of a new individual, and hence the number
of successors of an individual in A is bounded by the number of existential restrictions in A0.
The length of successor chains of new individuals in A is also bounded by the maximal size
of the concept descriptions occurring in A. Thus, after a finite amount of rule applications,
all the ABoxes are complete.

2.2 Consistency w.r.t. TBoxes

If the TBox T is not empty, then every individual of the interpretation generated by the
tableau algorithm must also satisfy the restrictions imposed by the GCIs in T . If C v D ∈ T ,
then every individual must belong to the concept nnf(¬CtD).4 To impose this restriction, it
suffices to include the new rule (v):

(v) if we have C v D ∈ T , but (nnf(¬C tD))(x) /∈ A for some x ∈ NI occurring in A, then set
A′ :=A∪{(nnf(¬CtD))(x)}.

It is easy to see that this algorithm is sound and complete for ABox consistency w.r.t. TBoxes.
However, it may not terminate, as shown by the following example.

Example 2.5 Consider the ABox A0 := {Human(x0)} and the TBox

{Humanv ∃hasParent.Human}.

4 nnf(C) denotes the negation normal form of the concept C.
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x0

Human

x1

Human

x2

Human

. . .
hasParent hasParent hasParent

Fig. 2.1 An infinite ABox.

An application of the (v) rule adds the assertion ¬Humant ∃hasParent.Human(x0) to
A0. Applying the (t) and (∃) rules yields a new ABox A1 containing the two assertions
hasParent(x0,x1) and Human(x1). By repeating this argument, we generate an infinite se-
quence of sets of ABoxes S0,S1, . . . and individuals x1,x2, . . . such that the ABox

Ai+1 ⊇Ai∪{hasParent(xi,xi+1),Human(xi+1),∃hasParent.Human(xi+1)}

is in Si+1 for every i≥ 0 (see Figure 2.1). Notice that every individual xi, i≥ 1, receives the
same concept assertions as x1; intuitively, we can say that the procedure has run into a cycle.

To regain termination, one can use a cycle-detection mechanism to restrict the application of
rules generating new individuals—here, the (∃) rule. Let LA(x) := {C |C(x) ∈A} denote
the concept descriptions associated to the individual x in an ABox A. We say that the
application of the (∃) rule to an individual x is blocked by an individual y in an ABox A
if LA(x) = LA(y).5 The main idea behind blocking is that an open and complete ABox
describes a cyclic model, in which the blocked individual x reuses the role successors of its
blocking node y instead of generating new ones. For instance, rather than generating a new
hasParent-successor for x2 in Example 2.5, one can simply reuse the hasParent-successor of
x1.

To avoid a situation of cyclic blocking where x and y mutually block each other, one can
consider an enumeration of all individual names, for instance in the order in which they are
generated by rule applications, and require that nodes can only be blocked by other nodes
appearing earlier in the enumeration. This blocking condition does not affect the soundness
and completeness of the tableau procedure, but suffices to regain termination [5,14].

3 Triangular Norms and Fuzzy Logic

Fuzzy logics are formalisms introduced to express imprecise or vague information [34,17].
They extend classical logic by interpreting predicates as fuzzy sets, rather than crisp sets,
over an interpretation domain.

Given a non-empty domain ∆ , a fuzzy set is a function F : ∆ → [0,1] from ∆ into the
real unit interval [0,1], expressing that an element x ∈ ∆ belongs to F with degree F(x). The
interpretation of the logical constructors is based on appropriate truth functions that generalize
the properties of the connectives of classical logic to the interval [0,1]. The most prominent
truth functions used in the fuzzy logic literature are based on triangular norms (t-norms) [21].
A t-norm is an associative, commutative binary operator ⊗ : [0,1]× [0,1]→ [0,1] that has
unit 1, and is monotonic, i.e., for every ξ ,χ,ζ ∈ [0,1], if ξ ≤ χ , then ξ ⊗ ζ ≤ χ ⊗ ζ . A
t-norm is called continuous if it is continuous as a function from [0,1]× [0,1] to [0,1]. Here
we consider only continuous t-norms and often call them simply t-norms.

5 For the case of ALC, the weaker blocking condition LA(x)⊆LA(y) would suffice. We describe equality
blocking, as it is closer to the blocking condition introduced later for fuzzy DLs (see Definition 5.8).
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Table 3.1 The three fundamental continuous t-norms.

Name t-norm (ξ ⊗χ) t-conorm (ξ ⊕χ) residuum (ξ ⇒ χ)

Gödel (G) min{ξ ,χ} max{ξ ,χ}

{
1 if ξ ≤ χ

χ otherwise

product (Π) ξ ·χ ξ +χ−ξ ·χ
{

1 if ξ ≤ χ

χ/ξ otherwise

Łukasiewicz (Ł) max{ξ +χ−1,0} min{ξ +χ,1} min{1−ξ +χ,1}

Every continuous t-norm ⊗ has a unique residuum⇒, which is defined as

ξ ⇒ χ := sup{ζ ∈ [0,1] | ξ ⊗ζ ≤ χ}.

Based on this residuum, the unary residual negation is defined as	ξ = ξ ⇒ 0.6 To generalize
disjunction, the t-conorm ⊕, given by ξ ⊕ χ = 1− ((1− ξ )⊗ (1− χ)), is used. Three
important continuous t-norms with their t-conorms and residua are depicted in Table 3.1.
These are fundamental in the sense that every continuous t-norm can be constructed from
these three as follows.

Definition 3.1 Let I be a set and for each i∈ I let⊗i be a continuous t-norm and αi,βi ∈ [0,1]
such that αi < βi and the intervals (αi,βi) are pairwise disjoint. The ordinal sum of the
t-norms ⊗i is the t-norm ⊗ with

ξ ⊗χ =

{
αi +(βi−αi)

(
ξ−αi
βi−αi

⊗i
χ−αi
βi−αi

)
if ξ ,χ ∈ [αi,βi], i ∈ I,

min{ξ ,χ} otherwise.

The ordinal sum of a class of continuous t-norms is itself a continuous t-norm, and its
residuum is given by

ξ ⇒ χ =


1 if ξ ≤ χ ,

αi +(βi−αi)
(

ξ−αi
βi−αi

⇒i
χ−αi
βi−αi

)
if αi ≤ χ < ξ ≤ βi, i ∈ I,

χ otherwise,

where⇒i is the residuum of ⊗i, for each i ∈ I. Intuitively, this means that at each interval
[αi,βi], a scaled-down and repositioned copy of the t-norm ⊗i and its residuum⇒i is used.
For elements not belonging to the same interval, the Gödel t-norm is used.

Theorem 3.2 ([26]) Every continuous t-norm is isomorphic to the ordinal sum of copies of
the Łukasiewicz and product t-norms.

Motivated by this representation as an ordinal sum, we say that a continuous t-norm ⊗ starts
with the Łukasiewicz t-norm if in its representation as ordinal sum there is an i ∈ I such that
αi = 0 and ⊗i is isomorphic to the Łukasiewicz t-norm.

An additional property that will be useful for characterizing decidability of fuzzy DLs
is the presence of zero divisors. An element ξ ∈ (0,1) is called a zero divisor for ⊗ if there
is a ζ ∈ (0,1) such that ξ ⊗ζ = 0. Of the three fundamental continuous t-norms, only the
Łukasiewicz t-norm has zero divisors. In fact, every element ξ in the interval (0,1) is a zero
divisor for this t-norm since (1−ξ ) ∈ (0,1) and ξ ⊗Ł (1−ξ ) = max{ξ +1−ξ −1,0}= 0.
Moreover, a continuous t-norm can only have zero divisors if it starts with the Łukasiewicz
t-norm.

6 The residual negation is also called precomplement.
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Lemma 3.3 ([21]) A continuous t-norm has zero divisors iff it starts with the Łukasiewicz
t-norm.

4 Fuzzy Description Logics

Just as classical description logics, fuzzy DLs are based on concept descriptions built from
the mutually disjoint sets NC,NR and NI of concept names, role names, and individual names,
respectively, using concept constructors. The syntax of the fuzzy variant of ALC is exactly
the same as that of classical ALC (see Definition 2.1). Compared to classical DLs, fuzzy
DLs have an additional degree of freedom in the selection of their semantics since the
interpretation of the constructors depends on the specific t-norm chosen. Given a continuous
t-norm ⊗, we obtain the fuzzy DL ⊗-ALC, whose semantics we introduce next.

Definition 4.1 An interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and an
interpretation function ·I that assigns to every a ∈ NI an element aI ∈ ∆I , to every A ∈ NC a
fuzzy set AI : ∆I → [0,1], and to every r ∈NR a fuzzy binary relation rI : ∆I×∆I → [0,1].

This function is extended to concept descriptions as follows:

– (¬C)I(x) =CI(x)⇒ 0,
– (CuD)I(x) =CI(x)⊗DI(x)
– (CtD)I(x) =CI(x)⊕DI(x),
– (∃r.C)I(x) = supy∈∆I (rI(x,y)⊗CI(y)),
– (∀r.C)I(x) = infy∈∆I (rI(x,y)⇒CI(y)).

We will abbreviate Au¬A, where A is an arbitrary concept name, as ⊥ and ¬⊥ as >. It is
easy to see that for every interpretation I and x ∈ ∆I , we have ⊥I(x) = 0 and >I(x) = 1.

Notice that, contrary to the crisp case, existential and value restrictions are not dual,
that is, in general ¬(∃r.¬C) and ∀r.C do not have the same semantics. Moreover, ¬¬C
is not equivalent to C. Consider for example the Gödel t-norm, and I = ({x}, ·I) with
AI(x) = 0.5 and rI(x,x) = 1. Then (i) (¬A)I(x) = 0, hence (¬¬A)I(x) = 1 6= AI(x), and
(ii) (∀r.A)I(x) = rI(x,x)⇒ AI(x) = 0.5 but (∃r.¬A)I(x) = 0. Thus, we cannot assume that
concept descriptions are given in negation normal form, as done for the crisp case.

The assertional and terminological knowledge is also represented by axioms, extended
with a degree to which they must be satisfied.

Definition 4.2 A fuzzy general concept inclusion (GCI) is of the form 〈C v D ≥ p〉 for
concept descriptions C and D and p ∈ [0,1]. A fuzzy TBox is a finite set of GCIs.

A fuzzy assertion is either a concept assertion of the form 〈C(a) . p〉 or a role assertion of
the form 〈r(a,b) . p〉, where C is a concept description, a,b ∈ NI, p ∈ [0,1], and . ∈ {≥,=}.
A fuzzy ABox is a finite set of assertions.

An interpretation I = (∆I , ·I) satisfies the GCI 〈C v D ≥ p〉 if CI(x)⇒ DI(x) ≥ p
for all x ∈ ∆I . It satisfies the assertion 〈C(a). p〉 (resp., 〈r(a,b). p〉) if CI(aI). p (resp.,
rI(aI ,bI). p). This interpretation is a model of the ABox A if it satisfies all assertions in A
and of the TBox T if it satisfies all GCIs in T .7

The ABox A is consistent w.r.t. a TBox T iff there is an interpretation I that is a model
of A and T .

7 When it is clear from the context, we will often drop the prefix fuzzy, and speak simply of e.g. ABoxes
and TBoxes.
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In fuzzy DLs, reasoning is often restricted to a special kind of models, called witnessed
models [18,9]. An interpretation I is called witnessed if for every concept description C,
r ∈ NR, and x ∈ ∆I there exist y,y′ ∈ ∆I such that

(∃r.C)I(x) = rI(x,y)⊗CI(y) and (∀r.C)I(x) = rI(x,y′)⇒CI(y′).

This means that the suprema and infima in the semantics of existential and value restrictions
are actually maxima and minima, respectively. Restricting to this kind of models changes the
reasoning problem since there exist consistent ontologies that have no witnessed models [18].
For the rest of this paper, we consider only witnessed interpretations and models, and analyze
reasoning under this restriction.

Example 4.3 Using fuzzy assertions, we can express that Chiron is human to degree 0.5
using the axiom 〈Human(chiron)= 0.5〉. The fuzzy GCI 〈Humanv ∃hasParent.Human≥ 1〉
expresses that every human must have a human parent (cf. Example 2.5). This means in
particular that in every model I of these two axioms there must be an element x ∈ ∆I such
that hasParentI(chironI ,x)⊗HumanI(x) ≥ 0.5, i.e., Chiron must have a parent that is at
least half human.

5 A Tableau Algorithm for ⊗-ALC

In this section we describe a tableau-based approach for deciding ABox consistency. Our
algorithm follows conceptually the ideas presented in [7,9], but introduces a corrected
blocking condition for dealing with GCIs. To simplify the description of the method, we
assume w.l.o.g. that the ABox is non-redundant in the following sense.

Definition 5.1 An ABox A is called non-redundant if it satisfies the following two condi-
tions:

– for every concept description C and individual name a, there is at most one concept
assertion of the form 〈C(a) . p〉 in A, and

– for every role name r and individual names a,b, there is at most one role assertion of the
form 〈r(a,b) . p〉 in A.

Given p < p′ ∈ [0,1] and an ABox A, if A contains 〈C(a) = p〉 and 〈C(a) . p′〉, then it is
trivially inconsistent, and if A contains 〈C(a)≥ p〉 and 〈C(a) . p′〉, it is consistent w.r.t. a
TBox T iff A\{〈C(a)≥ p〉} is consistent w.r.t. T . A similar argument can be made for role
assertions.

The following lemma shows that, under this assumption, we can consider only ABoxes
where all role assertions are of the form 〈r(a,b) = p〉; i.e., no inequations appear in role
assertions. This restriction will be useful for dealing with the semantics of existential and
value restrictions (see Table 5.1).

Lemma 5.2 Let A be an ABox such that A∪{〈r(a,b) ≥ p〉} is non-redundant, and T a
TBox. Then A∪{〈r(a,b)≥ p〉} is (witnessed-) consistent w.r.t. T iff A∪{〈r(a,b) = p〉} is
(witnessed-) consistent w.r.t. T .

Proof (Sketch) Every model of {〈r(a,b) = p〉} is trivially also a model of {〈r(a,b)≥ p〉}.
For the converse, given a model I = (∆I , ·I) of T and A∪{〈r(a,b)≥ p〉} and δ /∈ ∆I , we
construct the interpretation I ′ = (∆I ∪{δ}, ·I′), where

– bI
′
:= δ and cI

′
:= cI for all c ∈ NI \{b},
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– AI′(δ ) := AI(bI) and AI′(y) := AI(y) for all A ∈ NC, y ∈ ∆I ,
– sI

′
(x,y) := sI(x,y),sI

′
(δ ,y) := sI(bI ,y) for all s ∈ NR, x,y ∈ ∆I , and

sI
′
(x,δ ) :=


p if x = aI and s = r,
sI(bI ,bI) if x = δ ,
sI(x,bI) otherwise.

Clearly, I ′ is a model of {〈r(a,b) = p〉}. It can be shown by induction on the structure of
concept descriptions that, for every concept description C and every x ∈ ∆I , CI′(x) =CI(x)
and that CI′(δ ) =CI(bI). From this, it follows that I ′ is also a model of A and T . ut

We now describe a tableau-based algorithm for deciding consistency of an ABox. As done for
the crisp case in Section 2, we first study the case where the TBox is empty, and then extend
it to deal with GCIs. Afterwards, we show that, although this extension is sound, complete,
and terminating, it cannot provide a decision algorithm in general, since ABox consistency
w.r.t. TBoxes is undecidable for some fuzzy DLs.

5.1 Consistency without TBoxes

The main idea underlying the tableau algorithm for fuzzy DLs is the same used for the
crisp case: consistency-preserving transformation rules are used to decompose the ABox
into simpler parts, until the interpretations of the atomic concepts and roles are known. This
is then used to decide consistency of the input ABox. However, we cannot always specify
precise degrees to the interpretations: an assertion 〈C(a)≥ p〉 simply restricts a to belong
to the concept C with a degree at least p. Moreover, even if we know that the degree of, say
(CuD)(x) must be 0.5, we do not necessarily know the precise values for C(x) and D(x); the
only restriction is that C(x)⊗D(x) = 0.5 must hold. For example, we can choose (i) C(x) = 1
and D(x) = 0.5 or (ii) C(x) = 0.5,D(x) = 1 to satisfy this condition. In fact, regardless of
the t-norm chosen, there are always infinitely many pairs of degrees that would satisfy this
restriction. For this reason, the tableau algorithm constructs a system of constraints while
decomposing the ABox.

In the following, ξ (possibly with sub- or superindices) denotes a continuous variable
taking values from [0,1], p denotes a constant in [0,1], and ` denotes a literal, which is either
a continuous variable or a constant. Recall that the tableau-based algorithm for crisp ALC
produces a sequence of sets of ABoxes that describes the different possibilities for satisfying
the restrictions from the input ABox. To generalize this idea to the fuzzy setting, we introduce
the notion of constrained ABoxes.

Definition 5.3 A constraint is an expression of the form `1 ./ `, `1⊗ `2 ./ `, `1⊕ `2 ./ `, or
`1⇒ `2 ./ `, where `1, `2, ` are literals and ./ ∈ {≤,=,≥}.

A constrained ABox is a set A of assertions of the form 〈C(x) . `〉 or 〈r(x,y) = `〉, where
C is a concept description, r ∈ NR, . ∈ {≥,=}, ` is a literal, and x,y are individual names,
such that for every individual x appearing in A there is a set of constraints C(x).

A constrained ABox can be seen as a finite representation of a possibly infinite set of ABoxes,
described by the solutions of the overall constraint system C :=

⋃
x C(x). In the crisp case, we

said that a set of ABoxes was consistent if at least one of its elements was also consistent.
We generalize this idea to constrained ABoxes in the natural way: a constrained ABox A is
consistent if there is a valuation of all variables in A that satisfies C and such that the fuzzy
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Table 5.1 Transformation rules for ABox consistency. ξ ,ξ1,ξ2 are new variables.

(A) if 〈A(x) . `〉 ∈A and ξx:A . ` /∈ C(x), then add ξx:A . ` to C(x)
(r) if 〈r(x,y) = `〉 ∈A and ξ(x,y):r = ` /∈ C(y), then add ξ(x,y):r = ` to C(y)
(u) if 〈CuD(x) . `〉 ∈A and there are no 〈C(x) = χ1〉,〈D(x) = χ2〉 ∈A with χ1⊗χ2 . ` ∈ C(x), then

add 〈C(x) = ξ1〉,〈D(x) = ξ2〉 to A and ξ1⊗ξ2 . ` to C(x)
(t) if 〈CtD(x) . `〉 ∈A and there are no 〈C(x) = χ1〉,〈D(x) = χ2〉 ∈A with χ1⊕χ2 . ` ∈ C(x), then

add 〈C(x) = ξ1〉,〈D(x) = ξ2〉 to A and ξ1⊕ξ2 . ` to C(x)
(¬) if 〈¬C(x) . `〉 ∈A and there is no 〈C(x) = χ〉 ∈A with χ ⇒ 0 . ` ∈ C(x), then add 〈C = ξ 〉 to A

and ξ ⇒ 0 . ` to C(x)
(∃) if 〈∃r.C(x) . `〉 ∈A and there are no 〈r(x,z) = χ1〉,〈C(z) = χ2〉 ∈A with χ1⊗χ2 . ` ∈ C(z), then

add 〈r(x,y) = ξ1〉 and 〈C(y) = ξ2〉 to A and ξ1⊗ξ2 . ` to C(y), where y is a new individual

(∃′) if 〈∃r.C(x) = `1〉,〈r(x,y) = `2〉 ∈A and there is no 〈C(y) = χ〉 ∈A with `2⊗χ ≤ `1 ∈ C(y), then
add 〈C(y) = ξ 〉 to A and `2⊗ξ ≤ `1 to C(y)

(∀) if 〈∀r.C(x) . `1〉,〈r(x,y) = `2〉 ∈A and there is no 〈C(y) = χ〉 ∈A with `2⇒ χ ≥ `1 ∈ C(y), then
add 〈C(y) = ξ 〉 to A and `2⇒ ξ ≥ `1 to C(y)

(∀′) if 〈∀r.C(x) = `〉 ∈A and there are no 〈r(x,z) = χ1〉,〈C(z) = χ2〉 ∈A with χ1 ⇒ χ2 = ` ∈ C(z),
then add 〈r(x,y) = ξ1〉,〈C(y) = ξ2〉 to A and ξ1⇒ ξ2 = ` to C(y), where y is a new individual

ABox obtained from A by replacing all variables with their valuation is consistent. To avoid
an additional consistency test, we encode the latter condition into the system of constraints
using auxiliary variables ξx:A and ξ(x,y):r where x,y are individual names, A is a concept name,
and r is a role name, respectively appearing in A. Every valuation of these variables will
describe an interpretation.

The algorithm starts with the input ABox A0 where all sets of constraints C(x) are empty.
The transformation rules from Table 5.1 are then applied until a complete ABox is obtained;
that is, until no rules can be applied. The main idea of these rules is that they decompose
complex concepts into their subconcepts, while preserving the fuzzy semantics through the
restrictions in C. For example, if the assertion 〈(CuD)(x) = 0.5〉 appears in A, the (u)
rule will generate two new assertions 〈C(x) = ξ1〉 and 〈D(x) = ξ2〉 with the restriction that
ξ1⊗ξ2 = 0.5. The precise choice for the valuations of the variables ξ1,ξ2 will depend on the
other restrictions generated by the algorithm.

As mentioned before, the rule (A) and the variable ξx:A are used to ensure that every
individual x obtains exactly one membership degree to the concept name A. For example,
if an ABox contains the two assertions 〈(AtB)(x) = 0.1〉 and 〈(AuC)(x) = 0.9〉, then
after application of the (t) and the (u) rule, the algorithm will add, among others, the two
assertions 〈A(x) = ξ 〉 and 〈A(x) = χ〉, and constraints that restrict ξ ≤ 0.1 and χ ≥ 0.9.
Notice that both variables ξ and χ specify the membership degree of x to the concept name A,
and hence this ABox is consistent only if there is a valuation that maps both variables to the
same value. However, this restriction is not specified explicitly in the system of constraints.
Applying the (A) rule to these assertions adds the constraints ξ = ξx:A = χ , which make the
system unsatisfiable. The (r) rule fulfills a similar function for role names.

When no rules can be applied, i.e., the ABox is complete, the algorithm answers “consis-
tent” if the system C is satisfiable, and “inconsistent” otherwise. Soundness and completeness
of this method was shown in [9] using a slightly different syntax.

Theorem 5.4 The following two propositions hold:

1. if A′ is obtained from A by a rule application, then A is consistent if and only if A′ is
consistent;

2. if A is complete, then it is consistent iff its system of constraints C is satisfiable.
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The first part of the theorem states that the transformation rules preserve consistency of the
constrained ABoxes. If a sequence of rule applications reaches a complete ABox A, then A is
consistent iff the input ABox A0 is consistent. The second point of the theorem states that it
suffices to test satisfiability of the system of constraints C obtained to decide consistency of A.
For this method to be a decision procedure for ABox consistency, it remains to be shown that
a complete ABox is obtained after finitely many rule applications, and that satisfiability of
the resulting system of constraints is also decidable.

Termination holds for similar reasons as for the tableau for crisp ALC. Every rule
application adds either a new assertion or a new restriction, and removes nothing. A new
concept assertion 〈C(x) = `〉 is added only if C is a subconcept of some D appearing in
another concept assertion, to which no rule has been applied yet. Thus, the number of rule
applications at a given individual is bounded by the number of occurrences of subconcepts in
the input ABox A0. New individuals are generated by the rules (∃) and (∀′). Each application
of these rules generates only one new individual, and the number of such rule applications
is bounded by the number of occurrences of quantified concepts in A0; thus, the number of
successors for every individual is bounded linearly on the size of A0. Finally, the length of
successor chains of new individuals is bounded by the maximal size of concept descriptions
appearing in A0. This means that the ABox becomes complete after a finite number of rule
applications.

The precise properties of the system of constraints depend on the t-norm ⊗ used for the
semantics. If the Gödel t-norm is used, since the complete ABox obtained is finite, it suffices
to consider only valuations that map variables to a finite set of constants. The existence of such
a valuation can easily be decided e.g. by a brute-force approach testing all possibilities. Under
the Łukasiewicz semantics we obtain a system of mixed integer and linear constraints [32],
and under the product t-norm we get a set of (strict) quadratic constraints [7]. Satisfiability
of systems of (strict) polynomial inequations is decidable in time polynomial in the number
of inequations, but doubly exponential in the number of variables used [24]. This yields a
decision procedure for consistency of ABoxes when the TBox is empty.

5.2 Consistency w.r.t. TBoxes

To deal with the GCIs of a TBox T , we again extend the algorithm with the following rule:

(v) if 〈C v D≥ p〉 ∈ T , x is an individual name in A, and there are no 〈C(x) = ξ1〉,〈D(x) = ξ2〉 ∈A
with ξ1⇒ ξ2 ≥ p ∈ C(x), then add 〈C(x) = ξ1〉,〈D(x) = ξ2〉 to A and ξ1⇒ ξ2 ≥ p to C(x).

As in the case of crisp DLs, termination of the algorithm is not guaranteed if this rule is used.
Thus, we need to develop an appropriate blocking condition that ensures termination without
compromising completeness. One idea would be to directly generalize the blocking condition
from Section 2 as follows: a node x is blocked by a node y if

{C | 〈C(x) . `〉 ∈A}= {C | 〈C(y) . `〉 ∈A};

i.e., if the sets of concepts asserted for x and y in A coincide. This blocking condition
was proposed in [7]; however, the proof of correctness was based on the assumption that
⊗-ALC has the finite model property, which does not hold. The following example shows
this, correcting a small error from [6].
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Example 5.5 Under the product t-norm, consider the ABox A0 = {〈Human(chiron) = 0.5〉}
and the TBox

T0 := {〈> v ∃hasParent.>≥ 1〉, (5.1)

〈∃hasParent.Humanv HumanuHuman≥ 1〉, (5.2)

〈HumanuHumanv ∀hasParent.Human≥ 1〉}. (5.3)

We construct the interpretation J = (∆J , ·J ) over the domain ∆J := {xi | i ≥ 0} with
chironJ := x0, HumanJ (x0) := 0.5, HumanJ (xi+1) := (HumanJ (xi))

2 for i≥ 0, and

hasParentJ (xi,x j) :=

{
1 if i+1 = j
0 otherwise.

This interpretation is a model of A0. For every xi ∈ ∆I , hasParentI(xi,xi+1) = 1 holds, and
hence J satisfies the first axiom in T0. Additionally,

(∃hasParent.Human)J (xi) = (∀hasParent.Human)J (xi)

= HumanJ (xi+1)

= (HumanJ (xi))
2

= (HumanuHuman)J (xi),

which implies that J is also a model of the last two axioms in T0.
It is easy to prove by induction that for every witnessed model I of A0 and T0, there

must exist elements y0,y1, . . . ∈ ∆I such that HumanI(yi) = HumanJ (xi). Since we know
that HumanJ (xi) 6= HumanJ (x j) for all i 6= j, it follows that I must also have an infinite
domain. Thus there is no finite model of A0 and T0.

In fact, if this blocking condition is used, the algorithm might not detect some inconsistencies,
as shown in [3].

Example 5.6 Consider A0 from Example 5.5 and T1 := T0 ∪{〈> v Human ≥ 0.05〉}. It
follows from the arguments of Example 5.5 that A0 is inconsistent w.r.t. T1.

The tableau algorithm produces only two new individuals x1,x2 and restrictions that
enforce that the degrees of Human for x1 and x2 must be 0.25 and 0.0625, respectively. At
this point, the blocking condition is triggered, and no inconsistency has been found, hence
the algorithm answers that A0 is consistent w.r.t. T1.8

Despite the lack of the finite model property, it is still possible to define a blocking condition
that preserves correctness. The idea is that, rather than blocking a node if it considers the
same concept descriptions as a predecessor, we require the existence of an “isomorphism”, in
the following sense, between their systems of constraints.

Definition 5.7 For a set of constraints C, let var(C) denote the variables appearing in C. An
isomorphism between two sets of constraint C,C′ is a bijective function f : var(C)→ var(C′)
such that for every constraint c(`1, . . . , `n) it holds that

c(`1, . . . , `n) ∈ C iff c( f̂ (`1), . . . , f̂ (`n)) ∈ C′,

where `i, 1≤ i≤ n, are literals from C and

f̂ (`) =
{
` if ` is a constant,
f (`) otherwise.

8 For full details, see [3].



16 Franz Baader, Stefan Borgwardt, Rafael Peñaloza

The blocking condition is defined in terms of isomorphisms between the systems of constraints
C(x) and C(y) of the individuals x,y. Although this will not define a finite (cyclic) model, it
yields a finite description of the infinite system of constraints that would be produced by the
algorithm without blocking.

Definition 5.8 Two nodes x,y are equivalent, denoted as x≈ y, if there exists an isomorphism
f between C(x) and C(y) such that for every concept C and literal ` in C(x), we have
〈C(x) . `〉 ∈A iff 〈C(y) . f̂ (`)〉 ∈A.

A node x is directly blocked iff it is not a root node and it has an ancestor y that is not
a root node such that x≈ y; in this case we say that y is the blocking node of x. A non-root
node x is blocked if it is directly blocked or its (unique) predecessor is blocked. In the latter
case, we say that x is indirectly blocked.

When a node is (directly or indirectly) blocked, then none of the rules (∃) or (∀′) may be
applied, which disallows the creation of new individuals. Notice that none of the other rules
produce any new individuals or edges; they only decompose the information contained in the
respective node to simpler concepts. As the following lemma shows, this notion suffices for
obtaining a terminating procedure.

Lemma 5.9 The algorithm terminates if the rules (∃) and (∀′) are not applied to any
assertion 〈∃r.C(x) . `〉 (resp. 〈∀r.C(x) = `〉) where x is blocked.

Proof As for the case with empty TBoxes, the number of rule applications at any given node
and the number of successors of every node are bounded polynomially in the size of the input
ABox and TBox.

It only remains to show that a blocked node is found eventually on each branch and hence
there is no infinite chain of successor individuals. Once again, every node may contain at
most one assertion for each occurrence of a concept description in the input ABox and TBox.
A restriction is added to C only if an assertion has been added. This together implies that
every chain of successor nodes eventually contains a node that is blocked. Thus the algorithm
terminates. ut

When the algorithm terminates, the ABox it has produced can be seen as a finite forest, i.e. a
set of trees arbitrarily interconnected at their roots, where every leaf is blocked or contains no
quantified assertions. We can prune this forest in such a way that every leaf is directly blocked.
We call this the pruned forest. This forest has an associated finite system of constraints. We
can then “unravel” this system into an infinite one that characterizes ontology consistency.

Let A be a pruned forest with n leaves and block a function that maps every directly
blocked node to its blocking node, and all other leaves to themselves. Note that for every leaf x,
both it and block(x) belong to the same tree-like substructure of A since block(x) cannot be
a root node. For every leaf xi, 1≤ i≤ n, let A(i) be the sub-ABox of A that contains only
the individuals at the subtree with root block(xi) and C(i) the set of all restrictions appearing
in A(i). We define the binary relation 7→ ⊆ {1, . . . ,n}×{1, . . . ,n} where i 7→ j iff the leaf x j
is a successor of block(xi). Finally, we define the language Lt as the smallest set of words in
{1, . . . ,n}∗ that contains {ε,1, . . . ,n} and such that if η i ∈ Lt and i 7→ j, then also η i j ∈ Lt .

Definition 5.10 For every word η i ∈ Lt , let Aη i and Cη i be disjoint copies of A(i) and C(i),
respectively, where each individual x in A(i) is renamed to xη i and each variable ξ in C(i) is
renamed to ξ η i. We define AO as the (infinite) constrained ABox that contains Aε :=A with
constraints Cε := C, and for every η i∈ Lt contains the ABox Aη i with (block(xi))

η i renamed
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Fig. 5.1 Construction of AO .

to xη

i and the constraint system Cη i with the additional restriction ξ η = f (ξ )η i for each
variable ξ of C(xi), where f is the isomorphism between C(xi) and C(block(xi)) provided by
the blocking condition. The infinite system of constraints of AO is denoted by CO .

Intuitively, the infinite ABox AO is an abstract description of a model of the input ABox A0
and TBox T which is obtained by applying the tableau rules without the blocking condition.
Every (directly) blocked node xi stores information that is isomorphic to that appearing in
block(xi). If we were to apply the (∃) and (∀′) rules to it, we would obtain an isomorphic
copy of A(i) with its corresponding system of constraints C(i), as depicted in Figure 5.1. In
other words, the pruned forest A can be seen as a finite representation of the infinite ABox
AO , which is obtained by appending finite sub-trees at every leaf node.

To decide consistency, one still needs to check the system CO for satisfiability, i.e.,
whether we can instantiate the variables in AO in such a way that we obtain an actual model
of A0 and T . The correctness of this approach can be shown similarly to the correctness of
the tableau algorithm without GCIs. A model I of A0 and T can be used to find a solution of
the system of inequations CO, while a solution to this system informs the construction of a
model I. This is formalized in the following theorem.

Theorem 5.11 Let CO be the system of constraints obtained from the pruned output forest
of the algorithm applied to an ABox A0 and a TBox T . Then CO is satisfiable iff A0 is
consistent w.r.t. T .

Proof Let AO be the ABox from which the system CO was obtained. By construction, every
variable appearing in CO is either (i) of the form ξx:A or ξ(x,y):r, or (ii) corresponds to exactly
one assertion of the form 〈C(x) = ξ 〉 or 〈r(x,y) = ξ 〉 in AO .

Suppose that CO is satisfiable, and let V be a valuation that satisfies all the constraints.
We define the interpretation I = (∆I , ·I) where ∆I := {x | ξx:A is a variable in CO , A ∈ NC},
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xI := x for every individual name x, and

AI(x) :=

{
V(ξx:A) if ξx:A appears in CO

0 otherwise;

rI(x,y) :=

{
V(ξ(x,y):r) if ξ(x,y):r appears in CO

0 otherwise.

It is easy to show by induction on the structure of the concept descriptions that for every
individual x appearing in AO , if 〈C(x) = ξ 〉 ∈AO , then CI(x) = V(ξ ). Since V satisfies CO ,
for every 〈C(a) . p〉 ∈A it follows that CI(a) . p, and hence I is a model of A0 ⊆A. Let
now 〈C v D ≥ p〉 ∈ T . For every individual x ∈ ∆I , there are two assertions 〈C(x) = ξ1〉
and 〈C(x) = ξ2〉 in AO with the restriction ξ1 ⇒ ξ2 ≥ p in CO. From this, it follows that
CI(x)⇒ DI(x) = V(ξ1)⇒ V(ξ2)≥ p, and hence I is a model of T .

Conversely, let I be a model of A0 and T . We use this interpretation to build a valuation V
that satisfies CO and for which I satisfies all assertions in AO, i.e., we have CI(xI) . V(`)
whenever 〈C(x) . `〉 ∈AO , and similarly for role assertions. We proceed inductively on the
rule applications. Whenever a rule introduces a new individual, we have to appropriately
extend I while ensuring that it still satisfies T .

At the start of the tableau algorithm, for every concept assertion 〈C(a) . p〉 ∈ A0 we
have CI(aI) . p = V(p) since I is a model of A0; likewise for role assertions. Let now
〈C(x) . `〉 ∈AO be such that CI(xI) . V(`).

If C is of the form C1 uC2, we have 〈C1(x) = ξ1〉,〈C2(x) = ξ2〉 in AO and ξ1⊗ξ2 . `
in CO since AO was constructed from the complete ABox Aε . Setting V(ξ1) :=CI

1 (x
I) and

V(ξ2) :=CI
2 (x

I) satisfies the two assertions and the constraint.
If C is of the form ∃r.D, by assumption CI(xI) . V(`) and hence, there is a y0 ∈ ∆I such

that rI(xI ,y0)⊗DI(y0) . V(`). If x is not a copy of a blocked node in Aε , then completeness
of Aε ensures the existence of an individual name y such that 〈r(x,y) = ξ1〉,〈D(y) = ξ2〉 ∈Aε

and ξ1⊗ξ2 . ` ∈ CO. Setting yI := y0, V(ξ1) := rI(xI ,y0), and V(ξ2) := DI(y0) satisfies
the claim. If x is a copy of the blocked individual xi in the ABox Aη , then there is an
individual name y and variables ξ1,ξ2 with 〈r(x,yη i) = ξ

η i
1 〉,〈D(yη i) = ξ

η i
2 〉 ∈AO and CO

contains the restriction ξ
η i
1 ⊗ξ

η i
2 . `. Again, setting (yη i)I := y0, V(ξ η i

1 ) := rI(xI ,y0), and
V(ξ η i

2 ) = DI(y0) satisfies the claim.
All other rules can be treated analogously. This procedure inductively defines a valuation

satisfying all constraints in CO . ut

We thus have a terminating algorithm that produces a finite representation of an infinite
constraint system. The algorithm is sound and complete for deciding consistency in the
sense that the generated system is satisfiable iff the input ABox is consistent w.r.t. the TBox.
However, it is not known how to decide satisfiability of an infinite system of constraints, even
if it is finitely represented as Cε . As we show in the following section, this problem is in fact
undecidable for some t-norms.

The above construction is nevertheless useful since it illustrates that the cause of un-
decidability does not lie in the blocking condition, but rather in the inability to detect
inconsistencies in the infinite constraint systems described by Cε . If one could identify a
sublogic of ⊗-ALC for which satisfiability of the resulting constraints is decidable, our
tableau algorithm would immediately yield a decision procedure for consistency in this logic.



On the Decidability Status of Fuzzy ALC with General Concept Inclusions 19

(vε ,wε )

(v1,w1)

(v11,w11)

..
.

(v1n,w1n)
..
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. . .

(vn,wn)

(vn1,wn1)

..
.

(vnn,wnn)

..
.

. . .

. . .

Fig. 6.1 An instance of the PCP.

6 Undecidable Fuzzy DLs

The consistency problem w.r.t. general TBoxes has been recently shown to be undecidable
for several fuzzy DLs [3,4,13,15]. While these undecidability proofs differ in their details,
they are all based on the same general idea. In this section, we provide a prototypical proof
of undecidability by showing that witnessed consistency of Π-ALC ABoxes w.r.t. TBoxes
is undecidable. This proof is intended to highlight the core steps followed by most other
undecidability proofs for fuzzy DLs.

For this whole section, the t-norm is always assumed to be the product t-norm. To show
undecidability, we use a reduction from a slight variant of the Post correspondence problem,
which is well-known to be undecidable [27].

Definition 6.1 Let (v1,w1), . . . ,(vm,wm) be a finite list of pairs of words over an alphabet
Σ = {1, . . . ,s},s > 1. The Post correspondence problem (PCP) asks whether there is a se-
quence i1, i2, . . . , ik, 1≤ i j ≤ m, such that v1vi1 vi2 · · ·vik = w1wi1 wi2 · · ·wik . If such a sequence
exists, the word i1i2 · · · ik is called a solution of the problem.

For a word µ = i1i2 · · · ik ∈ {1, . . . ,m}∗, we will denote as vµ and wµ the words v1vi1 vi2 · · ·vik
and w1wi1 wi2 · · ·wik , respectively. Intuitively, we can see every instance of the PCP as an
m-ary infinite tree such that (i) the root node is labeled with (vε ,wε) = (v1,w1), and (ii) if a
node is labeled with the pair (v,w), then its i-th successor is labeled with the pair (vvi,wwi)
(see Figure 6.1). The PCP then consists in deciding whether there is a node in this tree whose
label (v,w) is such that v = w.

Recall that the alphabet Σ consists of the first s positive integers. We can thus view every
word in Σ ∗ as a natural number represented in base s+1 in which 0 never occurs. Slightly
abusing this intuition, we will express the empty word as the number 0. In the following
reductions, we encode the word u in Σ ∗ using the number 2−u ∈ [0,1].

The main idea of the reduction is to construct an ABox and a TBox whose models
encode an instance of the PCP, viewed as a tree. In other words, every model contains, for
each possible solution µ ∈ {1, . . . ,m}∗, a domain element at which the interpretation of
two designated concept names A and B will correspond to the words vµ ,wµ , respectively.
More formally, for a given instance P = ((v1,w1), . . . ,(vm,wm)) of the PCP, we define an
ABox AP and a TBox TP such that for every witnessed model I of AP and TP and every
µ ∈ {1, . . . ,m}∗ there is an element δµ ∈ ∆I with AI(δµ) = 2−vµ and BI(δµ) = 2−wµ .
Additionally, we will show that there is a witnessed model IP of AP and TP whose domain
has only these elements (see Figure 6.2). Then, P has a solution iff for every witnessed
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B = 2−w1

A = 2−v11

B = 2−w11

..
.
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A = 2−v1n

B = 2−w1n
..
.

rn = 1
. . .

r1 = 1

A = 2−vn
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B = 2−wn1

..
.
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A = 2−vnn
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. . .
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. . .

Fig. 6.2 The interpretation IP .

model I of AP and TP there exists a δ ∈ ∆I such that AI(δ ) = BI(δ ).
We first introduce some abbreviations that will be helpful in simplifying the construction.

We use the expression Cn to denote the n-ary conjunction of a concept description C with itself;
formally, C0 :=> and Cn+1 :=CuCn for every n≥ 0. Given two concept descriptions C,D
and a role name r, we use the expression 〈C r

 D〉 to denote the two axioms 〈C v ∀r.D≥ 1〉
and 〈∃r.DvC≥ 1〉. These axioms are used to transfer specific values along role connections.

Lemma 6.2 For every interpretation I and all x,y ∈ ∆I , we have

– (Cn)I(x) = (CI(x))n; and
– if I satisfies 〈C r

 D〉 and rI(x,y) = 1, then CI(x) = DI(y).

Proof The first equality is obvious from the definition of Cn and the fact that we are using
the product t-norm. For the second equality, since I satisfies 〈C v ∀r.D ≥ 1〉, we have
CI(x)≤ (∀r.D)I(x), and thus

CI(x) ≤ inf
δ∈∆I

(rI(x,δ )⇒ DI(δ ))≤ rI(x,y)⇒ DI(y) = DI(y).

Dually, since I satisfies 〈∃r.DvC ≥ 1〉, we know that (∃r.D)I(x)≤CI(x), and hence

CI(x) ≥ sup
δ∈∆I

(rI(x,δ )⊗DI(δ ))≥ rI(x,y)⊗DI(y) = DI(y).

These two facts together imply CI(x) = DI(y), as claimed. ut

We are now ready to construct the search space for a solution of P as depicted in Figure 6.2.
We do this step-wise through the following subsections. We first show how to enforce the
tree-like structure in every model. Afterwards, we add new axioms that allow us to detect
whether a solution exists or not.

6.1 Constructing the Successor Nodes

Assume first that we have already constructed a node δ ∈ ∆I in some interpretation that
encodes the words v,w ∈ Σ ∗, i.e., we have AI(δ ) = 2−v and BI(δ ) = 2−w. Our goal is
to ensure, for each i,1 ≤ i ≤ m, the existence of an ri-successor of δ that encodes the
concatenation of the words v,w with the i-th pair from P , i.e., vvi and wwi. We assume for
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now that we also have concept names Vi,Wi that encode vi and wi, respectively, i.e., we know
that VI

i (δ ) = 2−vi and WI
i (δ ) = 2−wi . We use the TBox

T i
P := {〈> v ∃ri.>≥ 1〉, 〈(ViuA(s+1)|vi |)

ri A〉, 〈(WiuB(s+1)|wi |)
ri B〉}.

Recall that we are viewing words in Σ ∗ as natural numbers in base s+1. Thus, the concate-
nation of two words u,u′ corresponds to the operation u · (s+1)|u

′|+u′ on natural numbers.
We thus have

(ViuA(s+1)|vi |)I(δ ) =VI
i (δ ) · (AI(δ ))(s+1)|vi | = 2−(v(s+1)|vi |+vi) = 2−vvi .

If I is a witnessed model of T i
P , then from the first axiom it follows that there must exist an

element γ ∈ ∆I with rI(δ ,γ) = 1. The last two axioms then ensure that AI(γ) = 2−vvi and
BI(γ) = 2−wwi ; thus, the concept names A and B encode, at node γ , the words vvi and wwi,
as desired.

If we want to use this construction to recursively produce all the pairs of concatenated
words defined by P , we need to ensure also that VI

j (γ) = 2−v j and WI
j (γ) = 2−w j hold for

every j,1≤ j ≤ m. This can be done through the axioms

T 0
P := {〈Vj

ri Vj〉,〈Wj
ri Wj〉 | 1≤ i, j ≤ m}.

6.2 Constructing the Root Node

We now need to ensure that there is a node δε with AI(δε) = 2−v1 and BI(δε) = 2−w1 (that
is, where A and B encode vε and wε , respectively) and where VI

j (δε) = 2−v j , WI
j (δε) = 2−w j

hold for every j,1≤ j ≤ m. This condition is easily enforced through the ABox9

A0
P := {〈A(a) = 2−v1〉,〈B(a) = 2−w1〉}∪

{〈Vi(a) = 2−vi〉,〈Wi(a) = 2−wi〉 | 1≤ i≤ m}.

Clearly, every model I of the ABox A0
P contains an element δε := aI that represents the

root of the tree.

6.3 Auxiliary Concept Names

In the previous two subsections, we have introduced a set of axioms that can only be satisfied
by models that encode the instance P of the PCP, as depicted in Figure 6.2. We now turn
our attention to deciding whether this instance has a solution; i.e., whether there is a node in
this tree that satisfies the concepts A and B to the same degree. To achieve this, we include
two auxiliary concept names H and X . The former will be interpreted as 0.5 in every domain
element, while the latter will be a crisp concept; that is, XI(x) ∈ {0,1} for every x ∈ ∆I .
These two properties are enforced by the following axioms:

A0 := {〈H(a) = 0.5〉},

T0 := {〈H ri H〉 | 1≤ i≤ m}∪{〈X v X uX ≥ 1〉}.

9 Notice that equality is necessary for this construction; it is not possible to express 〈X(a) = q〉 with q < 1
using only axioms of the form 〈Y (a)≥ q′〉.
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The last axiom expresses that XI(x)≤ XI(x) ·XI(x), and hence XI(x) ∈ {0,1} for every x.
These concept names will later be used to detect whether P has a solution (see Theorem 6.5),
but first we prove that the interpretation IP from Figure 6.2 is indeed a model of all these
axioms, and moreover, that every model must include IP as formalized next.

6.4 The Canonical Model

Let AP :=A0∪A0
P and TP := T0∪

⋃m
i=0 T i

P . We define the interpretation IP := (∆IP , ·IP )
as follows:

– ∆IP = {1, . . . ,m}∗,
– aIP = ε ,

for every µ ∈ ∆IP ,

– AIP (µ) = 2−vµ , BIP (µ) = 2−wµ ,
– HIP (µ) = 0.5,

– XIP (µ) =

{
1 if AIP (µ)≤ BIP (µ),
0 otherwise,

and for all j,1≤ j ≤ m

– VIP
j (µ) = 2−v j , WIP

j (µ) = 2−w j , and

– rIPj (µ,µ j) = 1 and rIPj (µ,µ ′) = 0 if µ ′ 6= µ j.

This interpretation is precisely the one depicted in Figure 6.2; the figure does not depict
interpretation of the concept H as it is always the constant 0.5. Notice that the concept X
is interpreted as the Boolean variable deciding whether A is smaller or equal to B or not,
at every node. It is easy to see that IP is in fact a witnessed model of AP and TP , since
every node has exactly one ri-successor with degree greater than 0, for every i,1 ≤ i ≤ m.
More interesting, however, is that for every witnessed model I of AP and TP , there is a
homomorphism from IP to I as described in the following lemma.

Lemma 6.3 Let I be a witnessed model of AP and TP . There is a function f : ∆IP → ∆I

such that, for every µ ∈ ∆IP and every concept name C appearing in AP or TP \ T0,
CIP (µ) =CI( f (µ)) holds.

Proof The function f is built inductively on the length of µ . For µ = ε , notice that AP fixes
the interpretation of all relevant concept names at aI and hence defining f (ε) := aI satisfies
the condition of the lemma.

Let now µ be such that f (µ) has already been defined. By induction, we assume
that AI( f (µ)) = 2−vµ , BI( f (µ)) = 2−wµ , HI( f (µ)) = 0.5, and for every j, 1 ≤ j ≤ m,
VI

j ( f (µ)) = 2−v j ,WI
j ( f (µ)) = 2−w j . Since I is a witnessed model of 〈> v ∃ri.>≥ 1〉, for

all i,1≤ i≤ m there exists a γ ∈ ∆I with rI( f (µ),γ) = 1, and as I satisfies all the axioms
of the form 〈C r

 D〉 ∈ TP , it follows that

AI(γ) = 2−vµ vi = 2−vµi , BI(γ) = 2−wµ wi = 2−wµi ,

HI(γ) = 0.5 and for all j,1≤ j ≤m, VI
j (γ) = 2−v j ,WI

j (γ) = 2−w j . Setting f (µi) := γ thus
satisfies the required property. ut
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6.5 Finding a Solution

From this lemma it follows that, if the PCP P has a solution µ ∈ {1, . . . ,m}∗, then every
witnessed model I of AP and TP contains a node δ = f (µ) such that AI(δ ) = BI(δ ); that
is, where A and B encode the same word. Conversely, if every witnessed model contains
such a node, then in particular IP does, and thus P has a solution. The question is how to
detect whether a node with this characteristics exists in every model. We will extend TP with
axioms that further restrict IP to satisfy AIP (µ) 6= BIP (µ) for every µ ∈ {1, . . . ,m}∗. This
will ensure that the extended ontology will have a model iff P has no solution.

Suppose for now that, for some µ ∈ {1, . . . ,m}∗, it holds that

2−vµ = AIP (µ)> BIP (µ) = 2−wµ .

We then have that vµ < wµ and hence wµ − vµ ≥ 1. It thus follows that

AIP (µ)⇒ BIP (µ) = 2−wµ /2−vµ = 2−(wµ−vµ ) ≤ 2−1 = 0.5.

Likewise, if AIP (µ)< BIP (µ), we get BIP (µ)⇒ AIP (µ)≤ 0.5. Additionally, if we have
AIP (µ) = BIP (µ), then it is easy to verify that

AIP (µ)⇒ BIP (µ) = BIP (µ)⇒ AIP (µ) = 1.

From all this it follows that, for every µ ∈ {1, . . . ,m}∗,

AIP (µ) 6= BIP (µ) iff either AIP (µ)⇒ BIP (µ)≤ 0.5

or BIP (µ)⇒ AIP (µ)≤ 0.5. (6.1)

Thus, the instance P has no solution iff for every µ ∈ {1, . . . ,m}∗ one of the two restrictions
AIP (µ)⇒ BIP (µ) ≤ 0.5 and BIP (µ)⇒ AIP (µ) ≤ 0.5 is satisfied. We now define the
TBox T ′P that ensures this behavior in every model. Let

T ′P := TP ∪{〈X uAv X uBuH ≥ 1〉, 〈¬X uBv ¬X uAuH ≥ 1〉}.

We finally have the desired result.

Lemma 6.4 The instance P of the PCP has a solution iff AP is not witnessed consistent
w.r.t. T ′P .

Proof Assume that P has a solution µ = i1 · · · ik and let u = vµ = wµ . Suppose there is a
witnessed model I of AP and T ′P . Since TP ⊆ T ′P , I is also a model of TP . From Lemma 6.3
it follows that there is a node δ ∈ ∆I where AI(δ ) = AIP (µ) = BIP (µ) = BI(δ ). Then,
AI(δ )⇒ BI(δ ) = 1 and BI(δ )⇒ AI(δ ) = 1. Since I is a model of 〈X v X uX ≥ 1〉, we
have that XI(δ )≤ (XI(δ ))2, and hence XI(δ ) ∈ {0,1}.

If XI(δ ) = 1, then (X uA)I(δ ) = AI(δ ) and

(X uBuH)I(δ ) = BI(δ ) ·0.5 = AI(δ )/2 < AI(δ ),

which violates the axiom 〈X uA v X uBuH ≥ 1〉. Alternatively, if XI(δ ) = 0, then the
axiom 〈¬X uBv ¬X uAuH ≥ 1〉 is violated. Thus I cannot be a model of T ′P .

For the converse, assume that AP is not witnessed consistent w.r.t. T ′P . Then IP is not
a model of AP and T ′P . Since it is a model of AP and TP , IP violates some axiom in
T ′P \TP . Thus, there is a node µ ∈ {1, . . . ,m}∗ where IP violates one axiom in T ′P \TP .
If it violates the first axiom, then XIP (µ) ·AIP (µ) > XIP (µ) ·BIP (µ) ·HIP (µ). Then
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we obtain the following two consequences: (i) XIP (µ) = 1 and AIP (µ) ≤ BIP (µ), and
(ii) AIP (µ) > BIP (µ)/2. From (i) we have that AIP (µ)⇒ BIP (µ) = 1 > 0.5. From (ii)
it follows that BIP (µ)⇒ AIP (µ) = AIP (µ)/BIP (µ) > 0.5. Thus, AIP (µ) = BIP (µ)
(see (6.1) above) and µ is a solution of P . Analogously, if the second axiom is violated, then
P has a solution. ut

This implies that we can reduce the PCP to ABox consistency in Π-ALC, and in particular,
that the latter problem is undecidable.

Theorem 6.5 Witnessed consistency of Π-ALC ABoxes w.r.t. TBoxes is undecidable.

6.6 Beyond Π-ALC

Using similar techniques to those presented above, it is possible to generalize the undecid-
ability result to fuzzy DLs using other continuous t-norms for their semantics. In fact, it
has been shown in [13,15] that for every continuous t-norm ⊗ that is not the Gödel t-norm,
consistency in ⊗-ALC w.r.t. TBoxes is undecidable. This yields the following theorem.

Theorem 6.6 Witnessed consistency of ⊗-ALC ABoxes w.r.t. TBoxes is undecidable if ⊗ is
not the Gödel t-norm.

Recall that the construction of the ABox AP used for proving Theorem 6.5 depends strongly
on the use of equality concept assertions. More precisely, we used axioms of the form
〈A(a) = 2−v1〉, among others, in our reduction from the PCP. It can be shown that if equality
concept assertions are disallowed, then the consistency problem of Π-ALC can be reduced in
linear time to consistency in crisp ALC, and hence can be decided in exponential time.

Definition 6.7 An ABox A is called equality-free if there are no assertions of the form
〈C(a) = p〉 or 〈r(a,b) = p〉 in A.

Theorem 6.8 ([11]) For the fuzzy DL Π-ALC, witnessed consistency of equality-free ABoxes
w.r.t. TBoxes is EXPTIME-complete.

The linear-time reduction to crisp ALC depends only on having a t-norm without zero-
divisors. This yields a decidability (in EXPTIME) result for the consistency problem in
⊗-ALC for any t-norm ⊗ that does not start with Łukasiewicz. Unfortunately, for all other
t-norms the problem is still undecidable, even if restricted to equality-free ABoxes. The
following theorem is a consequence of the results from [11,13].

Theorem 6.9 Witnessed consistency of equality-free ABoxes w.r.t. TBoxes in ⊗-ALC is
decidable (in exponential time) iff ⊗ has no zero-divisors.

Theorems 6.6 and 6.9 give a classification of the decidability status of consistency in fuzzy
ALC with general concept inclusions. These results partition this family of fuzzy DLs into
those that are undecidable, and those that can be reduced to crisp reasoning.
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7 Conclusions

Although the tableau algorithm presented in this paper does not provide a decision procedure,
we nevertheless think that it is interesting since it localizes the problem that may cause
undecidability: one can repair the problem of non-termination by blocking, but the system of
equations produced by a terminating run of the tableau algorithm is infinite, and thus it is
not clear how to solve it even though solvability of finite systems is decidable. Theorems 6.5
and 6.6 show that this problem is actually undecidable for most t-norms. The undecidability
proof of witnessed consistency in Π-ALC is basically the one first published in [4], though
there we considered a somewhat different DL (additionally containing an implication con-
structor, but neither disjunction nor negation) and the whole class of t-norms “starting with
product.”

In this paper we have considered only consistency of ontologies. In contrast to the crisp
case, other inference problems (such as subsumption and the instance problem) cannot
necessarily be reduced to consistency for the fuzzy case. Thus, (un)decidability results do not
necessarily transfer from consistency to these other problems. In fact, it was shown in [11]
that a reduction to crisp reasoning cannot be used for deciding subsumption, even in the cases
where this is possible for consistency. As future work, we plan to study the decidability status
of these problems as well.

Another open question is whether the (un)decidability results still hold if the restriction
to witnessed models is removed. First steps in this direction have been made, showing that
consistency is undecidable for every t-norm with zero-divisors [12], and decidable for t-norms
without zero-divisors if the ABox is equality-free and the constructor ∀ is not allowed [10].
We will try to fully characterize (un)decidability w.r.t. general models, as was done for
witnessed models.
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