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Abstract

The notion of grounding is usually conceived as an objective and explanatory
relation. It connects two relata if one—the ground—determines or explains the
other—the consequence. In the contemporary literature on grounding, much effort
has been devoted to logically characterize the formal aspects of grounding, but a
major hard problem remains: defining suitable grounding principles for universal and
existential formulae. Indeed, several grounding principles for quantified formulae
have been proposed, but all of them are exposed to paradoxes in some very natu-
ral contexts of application. We introduce in this paper a first-order formal system
that captures the notion of grounding and avoids the paradoxes in a novel and non-
trivial way. The system we present formally develops Bolzano’s ideas on grounding
by employing Hilbert’s e-terms and an adapted version of Fine’s theory of arbitrary
objects.
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1 Introduction

The notion of grounding has recently received increasing attention in different areas
of philosophy: from explanation, to metaphysical dependence and fundamentality, to
the analysis of logico-linguistic operators [3, 7, 8, 14, 21, 22, 25, 26, 28, 30, 32, 33].
Grounding is usually conceived as an objective and explanatory relation. It connects
two relata if one—the ground—determines or explains the other—the consequence.
Hence, the ground constitutes a reason why the consequence holds; the consequence,
in turn, holds in virtue of the ground.

A branch of the ancestry tree of the modern notion of grounding leads to Bernard
Bolzano’s analysis of the Abfolge relation [4]; in Bolzano’s terminology, Abfolge is
the relation between a ground and its consequence. Even though Bolzano’s Abfolge
differs from some modern conceptions of grounding, the connections between the
two are of great interest. As we will argue, Bolzano’s intuitions about grounding still
play a vital role in precisely describing the logical features of the grounding relation.

In the contemporary literature on grounding, much effort has been devoted to log-
ically characterize the formal aspects of grounding, and to provide formal systems
that capture the exact relation holding between a logically complex formula F and
the formulae in virtue of which F holds [7, 8, 14, 25, 26, 32]. This has been done by
formalizing the notion of grounding in one of three main ways:! as a connective (see
[7, 14, 32]), as a predicate (see [17]), or as a metalinguistic relation (see [26]).

However, regardless of how the grounding relation is captured, a major hard prob-
lem remains: characterizing the grounds of universal and existential formulae [21,
22,29, 36]. There exist several different attempts to formalize the relations between
quantifiers and their grounds [7, 13, 32], but, as it has been shown in [12, 18], each of
these attempts fails to enforce the irreflexivity of grounding in some very natural con-
texts of application. Indeed, even though cases of reflexive grounding are accepted
by some scholars (e.g. [20] and [24]), the received view is that grounding should be
irreflexive (e.g. [4, §204][6, 31, 32]), in the sense that nothing grounds itself. If we
require irreflexivity, the grounding principles for quantifiers presented in [12] and
[18] yield paradoxes of grounding. By studying the first-order logic counterexamples
to irreflexivity in [12] one can easily see that they are due to a failure of antisymme-
try in combination with transitivity. More precisely, antisymmetry requires that if G
is a ground of C, then C is not a ground of G (see e.g. [4, §209]). Hence, if antisym-
metry fails, there are H and F' such that H is a ground of F and F is a ground of H.
If, moreover, grounding is transitive, then H is a ground of H, F is a ground of F,
and irreflexivity fails too.

The aim of this paper is to present a first-order formal system that captures the
notion of grounding and avoids, in a novel and non-trivial way, both reflexivity and
symmetry paradoxes. To do so, we will formalize grounding as a meta-linguistic
predicate as well as a connective (see [26]), and we will mainly rely on Bolzano’s
ideas on grounding. The solutions adopted to solve the paradoxes will lead us to
define a notion of grounding which is complete and immediate [27].

I'See [27] for a detailed study of the logics of grounding.
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The paper is organized as follows. In Section 2, we will present the informal ideas
that motivate our approach. Whilst we will use Section 3 to introduce several prelim-
inary notions, Section 4 will serve to provide our theory of grounding proper, i.e. a
natural deduction calculus that includes grounding rules for quantifiers. In Section 5,
we will present the semantics that is behind our approach. In Section 6, we will out-
line how our approach avoids the paradoxes of grounding, and we will draw some
conclusions.

2 A Bolzanian Heuristics

We use this section to introduce informally the grounds for quantifiers that we
argue for in this paper. Let us focus on existential formulae first. The grounds of an
existential formula are usually defined by a rule of the following form [7, 32]:
F(c)
dx F(x)

Gr

or by an equivalent principle, such as F'(¢) < 3x F(x), where < formalizes the notion
of grounding as a connective [13]. According to this rule, a ground for a formula of
the form
dIx F(x)
(informally: “there exists an F”’) is a formula of the form
F(c)

(informally: “c is F”’), where c is a specific object. This rule is quite simple and
corresponds to a very liberal conception of grounding: the ground of an existentially
quantified formula can be any of its instances.

However, as Fine showed in [12], this rule quickly yields paradoxes of ground. We
present a simplified version of one of them. Suppose we have a unary predicate 7" in
the object-language, for “true”, and that, for each formula F', we have a closed term
T F7 that names it; informally, we can think of " F ' as a quotation of the formula
F. We can now state that F is true in the object-language, with the atomic formula
T("F7). In order to capture the fact that, in general, T (" F ) is true in virtue of
F being true, we must specify that F' is a ground of 7'(" F™). This is done by the
following rule:

_Fr s
T(CFT)

This is a simple apparatus to talk about the truth of formulae without introducing
higher-order quantifiers that directly range over formulae.” Nevertheless, it is enough
to give us a symmetric instance of the grounding relation. Indeed, according to the
rule Gr, the formula

T

T(3IxT(x)™)

2 A version of this counterexample for second-order quantifiers is presented by Kriamer [18].
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(informally: ““there exists a truth” is true”) is a ground of the formula

dxT(x)

(informally: “there exists a truth”), because 7'("3x7 (x) ") is the instance of Ix T (x)
provided by the term "3x7 (x)". According to Gr7, on the other hand, Ix7 (x) is
a ground of T("3AxT (x)™). If the grounding relation is transitive, moreover, we can
immediately conclude that 3x 7' (x) is a ground of itself, thus violating the irreflexivity
of ground.3

Clearly, it is the liberality of the rule Gr that exposes it to the paradox: since any
instance F(c) of 3x F(x) can be a ground of the latter, if we instantiate 3x F (x) with
a term that refers to that existential formula itself, we obtain two mutually dependent
formulae, which ground each other.

The notion of grounding on which Gr is based is quite widespread in the contem-
porary literature (see e.g. [6, 13, 32]), but it is not the only one. A rather different
conception of grounding is presented by Bolzano in [4]. Bolzano’s idea of ground-
ing is much less liberal than the one behind Gr. To start with, Bolzano requires the
uniqueness of the ground. As he puts it: “every distinct ground has a consequence
that is at least in some parts distinctly its own” [4, §206]. He therefore rejects the
possibility of having different grounds with the same consequence, thus directly
contradicting the basic idea behind the rule Gr.

But Bolzano’s requirements go even further. He claims that “there is not a vari-
ety of consequences belonging to the one given ground” [4, §206]. Here Bolzano
is not simply enforcing a uniqueness requirement for the grounding relation; he is
claiming that the relata of the grounding relation are uniquely determined in both
directions: the ground uniquely determines the consequence, and the consequence
uniquely determines the ground.* Bolzano’s requirement excludes the scenario where
a pair (F, H) is a consequence of the ground G only because G determines F. For
otherwise a distinct pair (F, H'), with H' # H, could also be a consequence of
G, since G determines F'; and the ground G would have two distinct consequences,
against Bolzano’s requirement.

Bolzano makes a similar point in [4, §210]:

Who does not feel that the connection between ground and consequence is
much more intimate than it would be if the mere fact that some of the grounds
and consequences are combined in thought were supposed to make only one
ground and one consequence out of them?

3Also T(TIxT(x) M isa ground of itself if the grounding relation is transitive, but one reflexive instance
of the grounding relation is enough to violate irreflexivity.
“#Notice that the uniqueness of the consequence does not imply that only one grounding rule should be
applicable for each ground. Indeed, the conclusion of a grounding rule specifies a partial consequence of
the premisses. That is to say, a rule of the form

r

c

indicates that C is one of the consequences of the ground I". Compare the notation for grounding trees
used by Bolzano in [4, §220].
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If one accepts Bolzano’s reasoning, and hence rejects that (G, G’) can ground (F, F’)
only because G grounds F and G’ grounds F’, then a fortiori one should reject that
G can ground (F, H) only because G determines F.

We now introduce rules for logical grounding that reflect Bolzano’s insights on
grounding, and block both symmetry and reflexivity. To define these rules, we pre-
serve the constraint that the logical ground of a quantified formula should be one of
its instances, but we also add the following condition:

(%)  the truth of the ground must completely determine that of the consequence.

Condition (), while necessary for a stricter, Bolzanian concept of grounding, is
not sufficient to ensure the uniqueness of ground. To obtain the latter, we also need
to include some ground-theoretic equivalences (see e.g. [6, 25, 26]), which enable us
to treat some formulae as equivalent from the ground-theoretic point of view. More
precisely, according to [25, 26], the idea behind ground-theoretic equivalence is that,
if A grounds C, and A’ results from A by applying commutativity and associativity to
the conjunctions and disjunctions appearing in it (any number of times, in any order),
then A’ is not a distinct ground of C. As far as the grounding relation is concerned,
A and A’ are completely indistinguishable. For instance, if A A B grounds C, then
also B A A grounds C, but this does not mean that C has two grounds: it just means
that there are two, completely equivalent ways to represent the unique ground of
C. Similar considerations go for consequences (in the grounding relations)—so, for
the “C” in the foregoing sentences. Condition (x) together with the ground-theoretic
equivalences enforces the uniqueness of the ground.

The requirement of ground uniqueness, in line with the spirit of Bolzano’s own
approach, entails that we develop a notion of grounding which is complete and imme-
diate. As for completeness, ground uniqueness does not, strictly speaking, imply that
every ground must be a complete ground. We could indeed introduce rules for partial
grounding® without violating the ground uniqueness requirement, but if we did so we
would have the undesirable consequence that certain truths cannot have a complete
ground just because they have a partial ground which is unique. Moreover, ground
uniqueness implies that every full ground is a complete ground.® Hence we present a
set of grounding rules that formalize a notion of complete grounding. As for imme-
diateness, if we defined the grounding relation as transitive, we would immediately
violate uniqueness: from the assumptions that A grounds B, and that B grounds C,
we would conclude that C has two grounds: A and B. Therefore, to comply with
the uniqueness requirement, we must formalize grounding as immediate, and thus as
anti-transitive.’

S A partial ground of a formula C is a multiset of formulae I" such that I" U A, for some multiset of
formulae A, is a full ground of C. The notion of full ground [12, 13] differs with respect to the notion of
complete ground in that if I" is a full ground of C, then C must follow from I" but =C does not have to
follow from the negation of the elements of I"; while if I" is a complete ground of C, then C must follow
from I and —=C must follow from the negation of the elements of I".

5Given a unique full ground I" of a formula C, —C must follow from the negation of the elements of I"
since the formulae of I are the only formulae in virtue of which C holds.

7 Notice that, nevertheless, our solution to the paradoxes does not rely on anti-transitivity: it is possible to
define a transitive grounding relation based on the anti-transitive one defined here and the resulting relation
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2.1 Indeterminate Objects and the Existential Quantifier

According to what has been said so far, in order to define a grounding rule for existen-
tial formulae, we just need to find a method that enables us to completely determine
the truth of an existential formula by the truth of one of its instances. Luckily, there
is a well-established device to solve this problem, going back to Hilbert’s times: the
e-calculus [15].8

The e-symbol enables us, for each formula F'(x), to form an expression ex F'(x)
which is a name for an indeterminate object satisfying F(x) [19, Introduction, §4].
For instance, if we suppose that some object satisfies F(x), then the formula

G(exF(x)) AN H(exF(x))

expresses “some indeterminate object that is F is G, and it is H”. Notice that, even if
ex F(x) is a name for an indeterminate object that satisfies F (x), and hence we never
specify which object we refer to, the object denoted by ex F(x) is fixed; therefore,
we can use the same name several times to refer to the same indeterminate object.
In other words, the e-symbol enables us to formulate statements about a generic
individual with a certain property.

The key use of the e-symbol is in formulae of the form F(exF(x)). A formula
of this form is true only in case an object satisfying F'(x) can be found and can be
shown to be F. Indeed, if no object satisfies F (x), then the term ex F'(x) denotes any
object: it does not matter which object, it only matters that the denoted object does not
satisfy F(x). It is therefore impossible to show that F'(x) holds for the term ex F (x)
or, equivalently, that F(ex F'(x)) is true. Hence, F(ex F(x)) is both an instance of
dx F (x) and equivalent to it. Indeed, quite obviously, there exists an object that is F
if and only if F (x) holds for some object that is F. Using &, we can therefore define
a grounding rule for existential formulae that satisfies condition (x):

F(exF(x))
dIx F(x)

The rule states that 3x F'(x) is true in virtue of the fact that F(x) holds for some
indeterminate object that satisfies F (x). Even though intuition might strongly suggest
that 3x F'(x) holds in virtue of its instances F'(¢1), F(t2), ..., an arbitrary instance
F(t) does not constitute a ground which completely determines 3x F'(x). An arbitrary
instance F () only provides one example of a term that satisfies F (x), but many more
could exist. The e-symbol, on the other hand, provides us with a name that abstracts
away from the specific terms #1, f; . .. that satisfy F(x), and can be used to talk in
general about a generic object that satisfies F'(x). To say that ex F'(x) is the ground

still does not incur in the reflexivity and symmetry paradoxes. Indeed, according to our calculus there
cannot be any list of formulae Ay, ..., A, such that (for 1 <i < n) A; grounds A;+; and A, grounds A
because, as shown in the proof of Theorem 1, the premisses of all grounding rules are logically simpler
than the respective conclusions. Hence, transitivity cannot generate any reflexive or symmetric instance of
grounding since no grounding loop is possible in the first place.

8Hilbert introduced the e-symbol in order to provide explicit definitions of the quantifiers V and 3, for-
malize arithmetic and analysis, and establish consistency results for them. See [1, 19, 37] for more details,
and [34] for applications of the e-calculus in philosophy of language.
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of Ix F(x), then, amounts to claiming that 3x F (x) is true in virtue of the fact that
F(x) holds for some indeterminate object, of which we only know that it satisfies
F(x). For instance, consider the sentence “there exists an even number”, in symbols
dn E (n). The rule 3G identifies the ground of this formula (correctly, in our view) as
E(ex E(x)), which states that an unspecified even number is, in fact, even.

Hence, unlike Gr, the rule 3G requires the ground to be a very specific instance of
the existential formula: one which completely determines it. Let us briefly consider
the paradox again. Even if we admit both 3G and GrT as grounding rules, now we
do not introduce any symmetric instance of the grounding relation. No ground for a
formula of the form F(ex F(x)) can be found by applying GrT'. Indeed, by using ¢,
we completely eliminate any reference to the existential quantifier (more on this in
Section 6).

2.2 Arbitrary Objects and the Universal Quantifier

We turn now to universal formulae. We first discuss the grounding rules for them that
are currently available in the literature. As for existential formulae, we can ground a
universal formula by using instances of the formula itself. A simple way to do so is
the following [32]:
A()
VxA(x)

where 7 is any term. Even though this rule correctly specifies that the instance A(z)
is part of the reason why Vx A(x) is true,” the truth of A(¢) alone does not determine
the truth of Vx A(x) since A(t) alone does not imply Vx A (x).

If one were to extend this rule to a classically sound one—that is, one in which the
conclusion is a logical consequence of the premisses—one would obtain a rule with
a possibly infinite list of premisses, because in order to guarantee that A(x) holds
for every object, we need a premiss for each possible instance of Vx A(x). But even
an infinite list of premisses would not be enough. As Rosen [28] and Correia [7]
point out, a list of formulae A(a;), A(az), ... about individuals, even if exhaustive,
does not entail a universal generalization. In order to define a classically sound rule,
one would need to include a premiss that guarantees that the list A(ay), A(a2), ... 1is
enough to show that all objects enjoy A(x). Fine [13] and Correia [7] adopt precisely
this solution. Such a premiss corresponds to what is called a fotality fact and has the
form

Vx(x=aiVx=ayV...)

By this formula we assert that the list aj, ap, ... contains a name for each object
of the domain. If we then assert that each object in the list aj, az, . .. satisfies F(x),
then Vx F (x) holds.

Even though this makes the rule classically sound, there are three problems with
this solution. First, it is widely recognized that a ground should be logically simpler
than its consequences [4, 7, 13], and the logical complexity of the formula Vx(x =

9 A grounding relation that holds between part of a ground and one of its its consequences is usually called
a relation of partial grounding.
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1424 F.A.Genco et al.

a; Vx = ayV...) is clearly greater than that of any finite universally quantified
statement. It is indeed a universal statement itself, and an infinite one. Second, the
formulation of the totality fact requires a radical change of logic: one must adopt
an infinitary logic [2]. But if the grounds of quantified statements are expressible
without resorting to infinitary extensions of classical logic, that would be preferable.
Third, each application of the above rule requires infinitely many premisses, and
hence to use infinite lists of formulae as grounds. But this conflicts with the fact that
grounding is regarded as an explanatory relation, as effectively argued by Bolzano
himself.!0: 11

A solution to the problem of defining a sound grounding rule for the univer-
sal quantifier only using finitely many premisses can be found by considering the
proof-theory of first-order logic and, in particular, the notion of eigenvariable. An
eigenvariable is a variable that represents an arbitrary object. The basic intuition can
be spelled out as follows: since an object can be considered arbitrary as long as we
make no particular assumption about it, if we show that a property holds for such an
assumption-free object, then we are showing that it holds for any object, and hence
that it holds universally. By exploiting this idea, we can ground a universal formula
by one of its instances about an individual a, as in the following rule:

F(a)
Vx F(x)

provided that a is a name for an arbitrary object. Technically, we need to make sure
that the derivation of F'(a) does not depend on any hypothesis on a. Under this
restriction, we are guaranteed that F (x) holds universally, because we could substi-
tute any term ¢ for a in the derivation of F'(a) and thus show that F(x) holds for
t.

In order to formalize the grounds of universal formulae, though, it is not enough
to apply eigenvariable conditions on the grounding rules:'?> we need to explicitly
introduce names for arbitrary objects, thus internalizing the notion of eigenvariable
in the object-language. Calculi employing names for arbitrary objects have been first
introduced by Fine [10, 11] in order to explicitly formalize the role of free variables
in logical systems. Our approach is based on similar intuitions but our framework is
much simpler than Fine’s, as we confine the use of arbitrary objects to the grounding
rules.'® While explicitly talking about arbitrary objects in the object-language might
not be entirely uncontroversial, we reckon that such an addition is less contentious, at

10As Rumberg reports [30], Bolzano clearly stated that conceptual grounding trees should be finite [4,
§221.3]. And if a grounding tree is finite, each grounding inference must certainly have only a finite
number of premisses.

A way to avoid the first of these problems is to introduce an infinite atomic predicate A(ay, az, ...)
defined as Vx(x = a; V x = az Vv ...) [7]. This solution seems quite artificial though, and still requires
a rule with infinitely many premisses and a change in the logical system, since the atom A(ay, a2, ...) is
possibly infinite.

12An eigenvariable, from a technical point of view, is just a normal variable. The eigenvariable condi-
tions, indeed, restrict the form of the derivations in which eigenvariables occur, but nothing in the logical
language explicitly indicates that a particular variable is meant as an eigenvariable.

13General treatments of arbitrary objects can be found in [9, 16].
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the logical as well as at the conceptual level, than adding totality facts and employing
infinitary logics to express the grounds of universal generalizations. We are now in
a position to say that F'(a), where a is a name for an arbitrary object, is the ground
of VxF(x). And a grounding rule for the universal quantifier devised along these
lines solves all the above problems: it has only one premiss, it does not involve any
infinitary language expressions, the logical complexity of its premiss is obviously
lower than that of its conclusion, and, finally, the truth of its premiss completely
determines the truth of its conclusion.

3 Technical Preliminaries

In this section, we briefly introduce some technical preliminaries (mostly based on
[25]), which will be required for our theory of grounding proper (both the calculus
and its semantics).

3.1 The Object-Language

In order to specify our object-language, we extend some standard definitions for the
language of first-order logic. The only unusual elements consist in the addition of

e-terms and of a class of constants to be used as names for arbitrary objects.

Definition 1 (Terms and Formulae of the Language £) Terms and formulae of the
logical language £ are inductively defined as follows.

— Any variable x, y, x1, y1, X2, ¥2, ..., constant c, ¢y, ¢z, ... or arbitrary object
name a, aj, da, ... s a term.

— If#y,...,t, are terms and f is an n-ary function symbol, then f(¢1,...,#,) isa
term.

- If#,...,t, are terms and P is an n-ary predicate symbol, then P(¢1,...,1,) is
a formula.

— If A is aformula and x is a free variable of A, then ex A is a term.
— If A, B and C are formulae and x is a variable, then AAB, AV B, A — B, —A,
VxA,3dxA,Gr(A: B),Gr(A, B :C),and Gr(A | B : C) are formulae.

The connectives A, vV, — and —, and the quantifiers V and 3 are standard. The
connective Gr represents the grounding relation. A formula of the form Gr(A : B)
expresses that A is the ground of B, one of the form Gr(A, B : C) that the ground
of C consists of A and B, and one of the form Gr(A | B : C) expresses that A is the
ground of C under the condition that B is true.

We will use capital Latin letters for formulae and capital Greek letters for lists of
formulae. Moreover, we will often use the notation Gr(I" : A) to represent a formula
of one of the following forms: Gr(B : A), Gr(B,C : A),Gr(B | C : A).

Definition 2 (Free Variables) Free variables of terms and formulae are inductively
defined as follows.
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1426 F.A.Genco et al.

— For any variable x, x is the only free variable of x.
— For any constant ¢, ¢ has no free variables. For any arbitrary object name a, a
has no free variables.

— The free variables of f(¢1, ..., t,) are all free variables of 71, ..., t,.
— The free variables of ex F are all free variables of F except for x.
—  The free variables of P(t1, ...,1t,) are all free variables of #{, ..., t,.

— The free variables of —A are all free variables of A.

—  The free variablesof AA B, AV B, A — B and Gr(A : B) are all free variables
of A and B.

—  The free variables of Gr(A | B : C), Gr(A, B : C) are all free variables of A, B
and C.

— The free variables of Vx A and Jx A are all free variables of A except for x.

Definition 3 (Uniform Substitution) For any formula F, variable x and term ¢, we
denote by F[t/x] the result of simultaneously replacing all free occurrences of x in
F by t. We adopt the usual renaming conventions to avoid the capture of variables.

We will write A(x) to highlight that x is one of the free variables of A. We say,
moreover that A(x) holds for ¢, or for the object denoted by ¢, if A[z/x] is true.

3.2 Preliminary Ground-Theoretic Notions

We provide now some definitions that will be used to define the formal notion of
grounding underlying our calculus. The first one is the definition of negation prefix,
which simply introduces some vocabulary to talk more conveniently about the num-
ber of negations that occur at the beginning of a formula. A formula A has an odd
negation prefix if it is of the form —2"*1 B and B does not have — as outermost con-
nective, and it has an even negation prefix otherwise. The formal definition is the
following.

Definition 4 (Negation Prefix np) For any formula A, the negation prefix np(A) of
A is inductively defined as follows:

— np(P(t1,..., 1)) =np(BAC) =np(BVC)=np(B - C) =np(Gx(I" : B))
=np(VxB) = np(3xB) = even

— np(—B) = odd if np(B) = even

— np(—B) =evenif np(B) = odd

In order to formalize the grounding relation as defined in [25], we need a notion
of simplification, in order to capture the fact that grounds are simpler than their con-
sequences. We will base this notion on the so-called “g-complexity” of formulae,
generalizing the definition in [25] to the case of quantified formulae.

Definition 5 (G-Complexity) The g-complexity gc(F) of a formula F is inductively
defined as follows:
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Grounding, Quantifiers, and Paradoxes 1427

- gc(P(t,...,ty)) =gc(—=P(t,...,ty)) = 0 for any atom P(t1,...,1t,)
- gc(AAB)=gc(AV B) =gc(A — B) =gc(A) +gc(B) + 1

— gc(—A) = gc(A) if np(A) = even

— gc(—A) =gc(A) + lifif np(A) = odd

— gc(VxA) = ge(FxA) = gc(A) + 1

— ge(Gr(A: B)) = gc(A) + ge(B) + 1

- ge(Gr(A,B:C)) =gc(Gr(A | B:C)) = ge(A) + ge(B) +ge(C) + 1

Forany I' = Ay, ..., A,, we define gc(I") as gc(A1) + ... + gc(Ay).

By the above definition, for each formula F of g-complexity n, we always have a
formula of the same g-complexity such that one outermost negation distinguishes it
from F. Some examples are: P and =P, =—— P and ———P, for any atomic formula
P,AABand —(A A B),VxA and —VxA.

We define now the converse relation, which associates formulae of the form F
with formulae of the form —F that have the same g-complexity. Intuitively, the con-
verse of A is built by adding a negation to A if this does not produce a formula of
higher g-complexity, and by removing a negation to A otherwise. Here is the formal
definition.

Definition 6 (Converse Formula) For any formula A, the converse Al of A is
defined as follows.

— if A has an even negation prefix, AL = —A
— if A has an odd negation prefix, then A = —B for some formula B and A+ = B

Examples of pairs of converse formulae are precisely those mentioned above: P
and =P, =—P and =———P, A A B and —(A A B), VxA and —VxA.

Since negation plays a special role with respect to g-complexity, we must adjust
the usual notion of immediate subformula accordingly. To this aim, we generalize the
notion of immediate g-subformula introduced in [25] to quantified formulae.

Definition 7 (Immediate G-Subformula) The immediate g-subformulae of a formula
F are:

— Aand Bif Fisoftheform AAB,AVB,A — B,—(AAB),—~(AVB),—~(A —
B)

— Aif F is of the form ——A

— A[t/x], for any term ¢, if F is of the form VxA, IxA, =VxA, —=3x A

4 The Grounding Calculus
We present now our grounding calculus, which adapts and extends the propositional
grounding calculus introduced in [26]. Grounding, in the calculus, will be both rep-

resented as a meta-linguistic relation—by the double inference line of grounding
rules—and as a linguistic relation—Dby the operator Gr. The calculus consists of five
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groups of rules: propositional logical rules, propositional grounding rules, the rules
for Gr, first-order logical rules, and first-order grounding rules. We introduce and
discuss them in turn.

4.1 Logical and Grounding Propositional Rules

The propositional logical rules are presented in Table 1. They constitute a standard
calculus for classical propositional logic. We indicate that a rule application dis-
charges a hypothesis by marking both the rule application and the hypothesis with
the same natural number.

The propositional grounding rules are presented in Table 2. They correspond to
the grounding rules in [26], but their presentation is different. Firstly, we do not use
a unique rule for negation, as in [26], but we use separate rules for negated conjunc-
tions, disjunctions, implications, and for double negations. This enables us to avoid
side conditions on the propositional rules. Secondly, we use the | separator instead of
square brackets to distinguish between a premiss representing a ground and a premiss
representing a condition:'* in a rule application of the form

A |B
C

A is the ground of C under the condition B. Notation aside, both the grounding rules
of the calculus in [26] and the grounding rules in Table 2 are defined according to the
following conditions (notation adapted):

Definition 8 (Rules for Logical Grounding) A rule of the form
A ... A, |B
C

is a grounding rule if, and only if, the following conditions are met:

An

— Positive Derivability: the rule Al is classically sound.

A ... DA,
. -C )
— Immediateness: gc(Aq, ..., Ay, B) + 1 = gc(C) and the list Ay, ..., A,;, B

contains exactly one element G or G for each immediate g-subformula G of C.

— Negative Derivability: the rule -~ B is classically sound.

4.2 Rules for the Grounding Operator

The propositional fragment of our logic does not only feature classical connectives,
but also a grounding operator Gr. This operator enables us to construct formulae
of the form Gr(I" : A) stating that the formulae in I" constitute the ground of the
formula A. The introduction rule for the Gr operator is in Table 3. This rule enables
us to introduce Gr only if we have a legitimate grounding rule application to justify
the resulting grounding formula. For instance, if we ground P A Q by the atoms P

14What we call condition here corresponds to what is called robust condition in [26].
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Table 1 Propositional rules for classical logic

A B AANB AANB

D
ANB Al 1 AE B AE
A" B"
A B . .
ave Yl avE Y Ave ¢ @
f \/Eil
An All
X A—->B A —A A
B o B — E i T —FE
A— B - -A
1 ——A
A 1lE 1 ——=E

where n € N and D does not contain any arbitrary object name

and Q, we can infer the formula Gr(P, Q : P A Q) stating that the atoms P and Q
constitute the ground of P A Q:

P 0
PAO NG
Gr
Gr(P,Q:PANOQO)

1

The elimination rules for the grounding operator Gr are presented in Table 4. The
first two rules are justified by the fact that the grounding relation holds between
truths. If, for instance, A grounds B, then both A and B must be true. This feature
is usually referred to as the factivity of ground. If the ground has a condition, the
condition must be obviously true as well. The last rule of Table 4 is needed to negate
grounding statements that violate the immediateness condition of Definition 8. By

Table 2 Propositional grounding rules

A B A B A | Bt B | At

a8 % ave Ve ave VO ave VO

B |A AL B At | Bt A
o8 9 a-857° Ao ¢ =i 7C
AL BL AL |B BL |A
~arp NS ZaAp NS Zaap NC

AL Bt G A Bt G

~avp 7 ~A->B
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Table 3 Introduction rule for the grounding operator Gr

If F | C is a derivation, then the following is a derivation:

B

| C
— B
Gr(I' | C: B)

(the condition C might not occur)

1

using it we can, for instance, formally show that the formula P A Q does not ground

the atom P:
Gr(PAQ:P)!

S S

—=Gr(PANQ:P)
since gc(P A Q) = 1, gc(P) = 0and 1 + 1 # 0. We can also formally show that,
for instance, the atoms P and Q do not ground the conjunction R A S:

Gr(P,0:RAS)!
£( QL ) GrEL

1
—Gr(P,0:RrS) !

GrE L
—J!

since the list “P, Q” does not consist of formulae among R, S, =R, —S.

The negation of inconsistent grounding statements can be derived by factivity. We
know, for instance, that =Gr(A, —A : B) is true for any formulae A and B, since we
can construct the following derivation:

Gr(A,—A: B)! E Gr(A,—A: B)!
——|A Gr —A
L 1
N
—Gr(A, —A: B)

GrE

—E

And this can be similarly derived for any grounding statement in which grounds,
condition, and consequence are inconsistent.
4.3 Ground-Theoretic Equivalences

We have now a propositional calculus that enables us to build grounding inferences
and derive grounding formulae accordingly. Nevertheless, the calculus that we just

Table 4 Elimination rules for the grounding operator

Gr(I' : A) £ Gr(I': A) £ Gr(A: A) £l
2 Gr G Gr 0 Gr

where G € I', and either gc(A) 4+ 1 # gc(A) or A does not contain exactly one element D or D for
each immediate g-subformula D of A
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introduced is too strict, and does not yet enable us to derive all the formulae we would
like to. Indeed, as anticipated in Section 2, if we transform a formula D according to
the laws of commutativity and associativity

BAA & AAB (AAB)AC <& AAN(BAC)
BVA < AVEHB (AVB)VC < AV (BVC)

we obtain a formula D’ which is logically equivalent to D and, as argued in [6, 25],
also equivalent to it as far as grounding is concerned. Therefore, we need some way
to account for these ground-theoretic equivalences in the calculus, and derive the cor-
responding grounding statements. In order to do so, we stipulate some equalities that
enable us to freely transform formulae inside derivations according to the commuta-
tivity and associativity laws. To simplify our presentation, we introduce the following
notation:

Definition 9 (Formula context) A formula context C[X] is a formula containing a
distinguished propositional atom X. For any formula A, by the notation C[A], we
denote the formula obtained by replacing X with A in C[X].

Definition 10 (Derivations with Formula Equalities) We admit the following equiv-
alences as equalities in the calculus:

CIBAA] = C[A A B] CI(AAB)AC] = C[AAN(BACQC)]
C[BVv A] = C[AV B] Cl[(AVvB)vC(C] = C[AV (BV ()]

To be more precise, we can define the rules of the calculus as rules acting on
equivalence classes with respect to =. For any list So, Si, ..., S, of such equivalence
classes, a rule application

S S
So
is legal if there is a list of formulae Ao, ..., A, such that A; € S; and
Al ... Ay
Ao

is an instance of a rule schemata.

For the sake of simplicity, inside derivations we will simply treat the equiva-
lence relation = as a syntactic equality, thus not distinguishing between =-equivalent
formulae. Therefore, for instance, the following is a legal derivation:

(BAA! (BAA) - C
A A B! C - E
(BANA)YANC
Gr(AAB,C:(BAAAC) C
BAA— Gr(AAB,C. (B/\A)/\C)_)I

/\G

where we use the equivalence A A B = B A A. As one can see, we can use a
formula as if it were an equivalent one. In particular, the grounding rule uses its left
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premiss as the formula B A Aj; the Gr introduction rule uses it as A A B; and the
— introduction rule uses it as B A A again. Another example, using the fact that
AV (BvVC)=(CV B)V A,is the following:
AVv((BvVvC) D
(CvB)YVAYAD
Gr(AV(BVC(C),D:(CvVvB)VvA)AD)

Notice that the ground-theoretic equivalences enforce the uniqueness of the
ground. Indeed, if G and G’ occur as the premiss of a grounding rule with conclu-
sion C, and G = G’, C does not have two distinct grounds, as the calculus treats G
as completely undistinguishable from G’.

4.4 Logical And Grounding Predicative Rules

We can now extend the propositional calculus with the logical and grounding rules
for quantifiers, arbitrary object names, and the e-symbol.

The predicative logical rules are presented in Table 5 and include natural deduction
rules for first-order quantifiers [35, Chapter 2, Section 1], a rule for arbitrary objects,
and a rule for ex A. Let us focus on the less common rules. The rule

Alx/y]
Ala/y]

enables us to introduce a name for an arbitrary object and, in particular, to infer
that a property A(x) holds for an arbitrary object a if A(x) can be derived without
using any hypothesis on the variable x. If we have no assumptions on x, indeed, the
derivation of A(x) shows us that A(x) holds for any object. We make this explicit by
introducing the name a for an arbitrary object.

The term ex A, briefly introduced in Section 2, denotes an indeterminate object for
which A(x) holds, if there is one. Technically, we can see ¢ as an operator that, when

Table 5 Predicative rules for classical logic

Alx VyA
[x/y] v A g
VyA Alr/y]
x does not occur free in any hypothesis on which A[x/y] depends
Alx/yI"
Al :
/y] 7 :
IyA IyA B _
B IE
x does not occur in B and in any hypothesis H # A[x/y] on which B depends
Alx/y] Alt/y]
al 5 €
Ala/y] AleyA/y]

x does not occur free in any hypothesis on which A[x/y] depends

where n € N, x and y are variables, ¢ is any term,

and a is a name for an arbitrary object
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given the formula A(x) as argument, chooses an element that satisfies A(x), if there
is one. For obvious technical reasons, if there is no object for which A(x) holds, then
ex A denotes an object for which A(x) does not hold. Hence, the behaviour of ex A is
formalized by the axiom

dxA < AlexA/x]
and, from a proof-theoretical perspective, by the following two rules:

AlexA/x] Alt/x]
dxA AlexA/x]

Indeed, if A(x) holds for the object picked by ¢, it is obvious that there exists one
object for which A(x) holds: the one picked by &¢! And hence we can infer Ax A. If,
on the other hand, there is a term ¢ for which A (x) holds, we know that ¢ will be able
to pick an object for which A(x) holds, and the rule above on the right guarantees us
that ¢ will do so. Since the rule above on the left is just an instance of the introduction
rule for 3, we do not need to add it to the calculus.

In Table 6 we present the grounding rules for quantifiers. The rules for the existen-
tial and universal quantifier have been explained in Section 2.'% As for the rules for
negated quantifiers, their justification is as follows. The reasoning captured by the
rule —VG is very similar to the one captured by 3G. Indeed, A+[ex A~ /x] implies
Jx AL because it guarantees that there is an object for which A+ (x) holds. But this
in turn implies that A(x) does not hold for all objects, and hence that =Vx A is true.
The rule —3G, on the other hand, relies on the same principles on which the rule VG
is based. If A*[a /x]1s true and a is a name for an arbitrary object, then AL (x) holds
for all objects. Therefore, there is no object for which A (x) holds and —3x A is true.

Now that we introduced and discussed all the required rules, we can formally
define the notion of derivation (which is a standard one), and the notion of formal
explanation.

Definition 11 (Derivations and Formal Explanations) Derivations are inductively
defined as follows:

— Any formula A that does not contain a is a derivation of A with hypothesis A.
- If

r
A
is a derivation of A with hypotheses I”, then

F/

o] |s N
~

15Note that we cannot define a grounding rule for the universal quantifier by using the s-symbol, since such
a rule would inevitably rely on reductio ad absurdum, but this principle is not admissible in a grounding
derivation since it would make the argument formalized by the derivation an indirect one: one which does
not prove the conclusion by a direct analysis of its components.
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is a derivation of B with hypotheses I'” if r is an application of one
of the rules in Tables 1, 3, 4 or 5, and I’ contains all hypotheses in I
which are not discharged by r.

A6
B

is a derivation of B with hypotheses I" if rG is an application of one of
the rules in Tables 2 or 6.

- If
r 4
A B
are derivations of A and B with hypotheses I" and A respectively, then
i roa
A B
C

is a derivation of C with hypotheses I" U A’ if r is an application of one
of the rules in Tables 1 or 5, and A’ contains all hypotheses in A which
are not discharged by r.

r a4

N
oy

?rG

is a derivation of C with hypotheses I" U A if rG is an application of
one of the rules in Table 2.

- If
Y Ry
A B B
are derivations of A and B with hypotheses I', Ag and A respectively,
then
LA A
A B B
C

is a derivation of C with hypotheses I' U A(, U A if r is an application of one of
the rules in Table 1, and A, A} contains all hypotheses in Ao, A} respectively
which are not discharged by r.

A formal explanation is a derivation that only contains grounding rule applica-
tions.

Before exemplifying how the grounding rules for quantifiers and negated quan-
tifiers are employed, we formally show that they comply with our conditions on
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Table 6 Grounding rules for quantifiers

Ala/x] AlexA/x] AllexAt/x] Alla/x]

via VO e —vxa O —aa 6

where x is a variable and « is an arbitrary object name

grounding rules. We do this by proving that these rules meet the criteria of positive
and negative derivability and the complexity restrictions adopted for propositional
grounding rules (Definition 8).

Theorem 1 All rules in Table 6 are rules for logical grounding (Definition 8).

Proof We start with positive derivability. We first prove that the rule
Ala/x]
VxA
is classically sound. We do this by showing that whenever we have a derivation of
Ala/x] from some hypotheses, we can derive Vx A from the same hypotheses. Since

a cannot occur in any open hypothesis, there must be a derivation § of A[a/x] in
which the name a has been introduced by some rule applications

Bily1/x] Bylyn/x]

Bila/x] “* " "Bila/x] ¢
where each y; does not occur in any hypothesis on which B;[y;/x] depends. We
construct a derivation §’ by applying the following three operations to §: first, we
rename the bound variables in such a way that no e-symbol binds a variable among
Y1, ..., yn; second, we replace all occurrences of a in § by a fresh variable y; third,
we replace all free occurrences of yi, ..., y, in § by the same variable y. After the
substitutions, the rule applications introducing a become trivial inferences of the

form
Bily/x]
Bily/x]

We construct a derivation §” by eliminating them from §’. Now, since a can-
not occur in open hypotheses and since the rule applications imposing eigenvariable
conditions on yi, ..., ¥, do not occur in §” anymore, the fresh variable y does not
violate any eigenvariable condition in §”. Since, moreover, we replaced a, yi, ..., y,
everywhere, all rule applications of one of the following forms

Alt/z] AlezA/z] Atlez—AtL)z)
AlezA/z) &1 Ja ¢ VA

(D

-

became inferences of the following forms, respectively:

(Alt/zD)T (AlezA/z])T (AtlezAt/zD7
(AlezA/zZDT (FzA)T (=VzA)T

where t is the substitution [y/al[y/y1]...[y/yx]. Since, by renaming, z ¢
{y, ¥1,..., yn}, we can permute the substitution 7 and obtain the following rule
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applications, respectively:

(AD[(17)/2] (ADlezAn)/d _ (AtD)[ez(A'1)/2]
(An)[ez(AD)/z] © 3z(At) —Vz(A1)
Therefore, 8” is a legal derivation of A[y/x]. Moreover, since a and yy, ..., y, do

not occur in any open hypothesis of §, y does not occur in any open hypothesis of
8”. Therefore, 8” is a derivation of A[y/x] that does not depend on any hypothesis
containing y, and we can derive Yx A by

Aly/x]
VxA

The rule
AlexA/x]

xA @)

is clearly sound since since A[exA/x] — 3JxA is one direction of the axiom that
characterizes the e-symbol.
Consider now the rule
AllexAt/x]
—VxA 3)

By Definition 6, from any derivation of At[ex At /x] we can obtain a derivation
of =A[ex—A/x]. Since the implication —A[ex—A/x] — Jx—A is one direction of
the axiom characterising ¢ and the implication 3x—A — —VxA is valid, we have
that the rule is sound.

Consider now the rule

Ata/x]
—3xA 4)

By Definition 6, from any derivation of Atla /x] we can obtain a derivation of
—Ala/x] with no new hypotheses. Hence, as shown for rule (1), we can derive Vx—A.
But since Vx—A — —3x A, we have that the rule is classically sound.

Let us now move to negative derivability. As for rule (1), we showed above that
we can derive Yx—A if we have a derivation of —A[a/x]. Negative derivability
follows because the implication Vy—A — —VyA is valid. As for rule (2), since
dxA — AlexA/x] is valid—it is one direction of the axiom characterising e—
we can obtain by contraposition that —A[exA/x] — —3xA is valid. Hence, we
can derive —3x A from —A[exA/x] and thus show that negative derivability holds.
As for rule (3). From —(A1[exAL/x]) we can derive A[ex—A/x]. Moreover, from
dx—A — —A[ex—A/x]—which is one direction of the axiom characterising e—we
can obtain by contraposition ——A[ex—A/x] — —3Ix—A. Therefore, we can derive
—3dx—A from A[ex—A/x] using the validity of A[ex—A/x] — ——A[ex—A/x].
Negative derivability holds because —3x—A implies —=—Vx A. We conclude with rule
(4), first notice that by Definition 6 we can derive A[a/x] from —(A+[a/x]). We can
then see that negative derivability holds because from A[a/x] we can derive 3x A and
from this, —=—3x A.

Finally, we check immediateness. First notice that, by Definition 5, it holds for
any formula A that gc(A) = gc(A[t/x]) for any term ¢. Moreover, by Definitions 6
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and 5, we have that for any formula A, gc(A) = gc(AL). Hence, by Definition 5,
we have that gc(VyA) = gc(IxA) = ge(—=VxA) = gc(—3IyA) = gc(A) + 1. By
concatenating all these equalities, we can see that immediateness holds for the rules
(1), (2), (3) and (4). O

Notice that, since the equivalence A[ex—A/x] <> Vx A holds, we can use the the
e-symbol also to define the behaviour of the universal quantifier. Since, moreover,
Alex—A/x] is logically simpler than Vx A, the former formula could also constitute
areasonable candidate for the ground of the latter. Nevertheless, the implication from
Alex—A/x] to Vx A essentially relies on an argument by double negation elimina-
tion,'® and the arguments of this kind are tantamount to arguments by reduction to
absurdity—also called apagogic proofs—which are generally not considered suitable
means for grounding truths. Proofs by reduction to absurdity, indeed, do not show in
a direct way that their conclusion is true, but they do it in a roundabout way which
does not match the idea that a ground should constitute a direct simplification or
clarification of its consequence. Bolzano, for instance, states in [4, §530] that “the
propositions by which an apagogic proof supports the propositions it is supposed to
prove can never represent its objective ground”. Therefore, we do not employ the &-
symbol to define the grounds of universal and negated existential formulae but we
employ names for arbitrary objects instead.

4.5 Examples

We now present some examples of derivations containing the new grounding rules
for quantifiers. The first one is the following:

— axi —————— axiom
n=n 8XOM 5, 4 1-2£Q

n=nAn+1#0 NG | m=n axiom
nEav=nrn+t1£0  C

Note that n + 1 # 0 and n = n are instances of arithmetical axioms. Hence, the
derivation does not depend on any hypothesis but starts with the assertion of these
two truths. We indicate this by the three inferences labeled “axiom” which have no
premisses.

In this derivation, we start from the truths n = n and n + 1 # 0 to ground their
conjunctionn =n An + 1 # 0. Then we have thatn = n An 4+ 1 # 0 is the ground
of the disjunction n # n vV (n = n An + 1 # 0) under the condition that the first
disjunct n # n does not hold, or, equivalently, that n = n holds. Technically, n = n
is the condition of the VG rule application since n # n is defined as —n = n and
thus (n # n)* is exactly n = n.

Since the derivation above depends on no hypothesis but only on axiom instances,
we can introduce an arbitrary object name a instead of the variable n and obtain

16 The formula A[ex—A/x] is true if and only if =3x—A is true, and —3x—A is equivalent to Vx——A
and, by double negation elimination, to Vx A.
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a#aV(a=ana+17#0). Thus, we can ground the universal closure Vn(n #
nvin=nAn+1#0)ofn#nvm=nAn+1#0):
7n=naxiom n+17éOaXi0m
n=nAn+1#0 NG | n=n axiom
n#ZnvVm=nAn+1#0) / VG
a#av@a=ana+1#£0) ¢
Vnn£Anv (n=nAn+1%#0)) VG

In the following example, we ground the universal formula Vx(x = x — x = x)
and we derive the statement expressing that its groundisa = a — a = a:

axiom
—- G

x=yx axiom |y=%

X=x—>x=x .,
a=a—a=a?
VG

Vx(x =x - x = x)

Gr(a=a—>a=a :Vx(x=x—>x=x)) Grl

The — G rule application corresponds to the fact that the true consequent x = x
of the implication x = x — x = x is the ground of this implication under the
condition that the antecedent, x = x again, is true.!7 Since we have grounded x =
x — x = x without using any hypothesis on x, we can derive thata =a — a = a
holds for an arbitrary object a. This implies that x = x — x = x holds universally,
and hence grounds Vx(x = x — x = x). After having grounded the universal
statement on the individual statement about the arbitrary object a, we can derive the
formula Gr(a = a — a =a : Vx(x = x — x = x)) which expresses that the
grounding relation holds between the two statements.

Let us consider now an example for the existential grounding rule. Suppose that
we want to ground the formula 3x(x = bV x = ¢), where b and ¢ are constants such
that b # c. Here is the resulting grounding derivation:

=0 axiom

| ~(b=0)
b=bvb=c /
ex(x=bVvx=c)=bVvVex(x=bvx=c)=c ;G

dx(x =bVvx=c)
Gr(ex(x=bvx=c)=bVvVex(x=bVvx=c)=c:Ix(x=bVvx=c)) Gr

I

The derivation moves from the truth of b = b, which is just the instance of an
axiom, to the truth of b = b v b = ¢ by a disjunction grounding rule. Since we can
verify x = b VvV x = c by substituting b for x, we know that there is some object
which has the property expressed by x = b v x = c, that is, the object denoted by b.
Hence, we can introduce a term that stands for an indeterminate object that verifies
x =bVx=c.Suchtermis ex(x = bV x = c). Notice that in spite of the fact that
the term ex(x = bV x = ¢) is introduced here by proving the instance b = bV b = ¢

17The truth of the antecedent is a condition and not part of the ground because an implication is true when
either the antecedent is false or the consequent is true.
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of the formula x = b VvV x = ¢, it does not specifically refer to b; indeed also ¢ has
the property expressed by x = b vV x = ¢ and the term ex(x = b V x = ¢), from a
logical point of view, expresses no preference between b and c. This provides us with
the generality required to completely determine the existential formula, and thus to
ground it. The derivation then ends with the introduction of the Gr operator.

Let us consider now an example for the negated universal rule:

0=0 axiom

— G
——~0=0)
e
en(=(n £0) £0
—Vn(n #£0)
Gr(en(=(n £0)) £0 : =Vn(n £0)) !

In this derivation, we first ground —=—(0 = 0) by the axiom instance 0 = 0. This
shows, in turn, that —=(0 # 0) is true, by definition of #. Now we have one n that
verifies =(n # 0) and we can introduce the e-term en(—(n # 0)) to denote an
indeterminate number which is not different from 0. Since we showed that if we look
for a number which is not different from 0, we can find a number which actually has
this property—that is, we showed that en(—(n # 0)) # 0 is true—we can finally use
it to ground —Vn(n # 0) and to introduce the Gr operator accordingly.

We finally provide an example concerning the negated existential rule. Suppose
that we want to ground the formula corresponding to the fact that there is no number
which is equal to its successor. We can use the following argument. We consider an
arbitrary number n. We assume that it is equal to its successor: n = n + 1. Then we
reason as follows: if n = n 4+ 1, then n + 0 = n 4 1, and, by the left cancellation law,
we can infer that 0 = 1, which is false. Hence n = n + 1 must be false. Therefore,
there is no number which is equal to its successor because the number n we started
with is an arbitrary number. The formal derivation has the following form:

n=n+1 !
0=1
R S
“n=n+1) /
—a=a+1) “
—Ix(x=x+1) —3G
Note that, from a technical point of view, n is arbitrary even though we assume

that n = n + 1, because this assumption is discharged before we introduce a and
ground the negated existential formula.

5 Semantics

A semantics for our theory of first-order, classical grounding is obtained by supple-
menting a semantics for classical logic with (i) an interpretation for the e-terms and
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names for arbitrary objects, (ii) semantic clauses for the grounding connective. These
two tasks are carried out in Sections 5.1 and 5.2, respectively.

5.1 A Semantics for the £-Term and the Grounding Quantifier Rules

In order to provide a semantics for the e-calculus-fragment of the theory of first-
order grounding, we follow [37], with a few modifications. Let us start with classical
(Tarskian) semantics, defining a the notion of L-structure.

Definition 12 (L-structure) An L-structure M is a set that contains:

— A non-empty set M # O as its support.

—  An object M € M for every individual constant of L.

— An n-ary function f M M" —> M for every n-ary function symbol of L.
—  An n-ary relation R™M C M" for every n-ary relation symbol of £.

We now define a choice function relative to an M-structure, in order to interpret
e-terms (we will omit the subscript M when no confusion arises).

Definition 13 (Choice function) For any L-structure M, an M-choice function F 4
is a function Fpq : P(M) — M s.t. forevery @ # X € M, Fapq(X) € X.

We then proceed to define varible assignments and their variants. Note that vari-
able assignments associate elements of the domain to variables as well as to constants
for arbitrary terms, thus treating the latter essentially as the former (this follows [10],
but our framework for arbitrary objects is much simpler).

Definition 14 (Variable assignments) For any L-structure M, an M-variable
assignment (or simply assignment, for short) o, is a function from the individual
variables and the names for arbitrary objects of £ to M.

Definition 15 (x;-variant variable assignments) For any L-structure M and M-
assignment o, an M-assignment ¢’ is an x-variant of o if it is identical to o with
the only possible exception of the value o’ assigns to x.

We now define the denotation of L-terms and the satisfaction relation for
L-formulae, relative to an L-structure M, an M-choice function F, and an M-
assignment o. In a standard Tarskian semantics, one would typically first define
denotation and then satisfiaction, where the former definition is incorporated and
employed in the latter. Due to the presence of e-terms, however, it is more conve-
nient to define denotation and satisfaction together, as a single simultaneous inductive
definition (see [23, Lemma 1C.1, pp. 12-13]).

Definition 16 (Denotation of L-terms, satisfaction for £-formulae) Let M be an
L-structure, F' be an M-choice function, and ¢ an M-assignment, aMFo — o(a)
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- xMFo = 5(x)
- M,F,oET,and M, F,o £ L
_ CM,F,J :CM

— (f(t1,... ty))yMFo = M (tlf‘/l’F"’,...,t,{\"’F"’)

- M,F,0 =s=riff sMFo = tMFo

— M,F,0l=R(,....1) iff(th’F’“, ...,t,}M’F’G> € RM.Fo
—  (exA)MI = F (A(x0)M-F7), where

A)MFT = (5'(x) € M| o' is an x-variant of o and M, F, o’ = A(x)}

- M, F,o | IxA(x) iff for a x-variant M-assignment ¢’, M, F, o’ = A(x)
- M, F,o | VxA(x) iff for all x-variant M-assignments ¢’, M, F, o’ &= A(x)

Note that, unlike the original definition in [37], Definition 16 is purely Tarskian,
in that it employs only variable assignments and x-variants, rather than adding new
names to the language, for elements of the support.!® Moreover, notice that the
choice function Fz4 of Definition 13 is defined on the whole powerset of M, includ-
ing @: it is only the condition that F(X) € X that is restricted to a non-empty
X.!9 Therefore, if a formula A is not satisfied by any object, then A(exA(x)) is
false (in (M, F, o)), and exA(x) denotes (in (M, F, o)) whatever element of M
is assigned to @ by F. To see this, assume that nothing satisfies A(x). By Defini-
tion 16, (exA(x))M-F-7 is the result of applying F to A(x)™-F- where the latter
is the set of values of o/(x) s.t. M, F, o’ satisfies A(x), for ¢’ an x-variant of o.
By assumption, however, nothing satisfies A(x), i.e. A(x)M’F 9 = &, and thus
(sxA(x))M’F ' = F (). This shows how the present semantics formally captures
the behaviour of e-terms applied to formulae which are not satisfied by any object,
that was informally sketched in Section 2.1.

With a semantics for the language £ at hand, we can proceed to define a notion of
logical consequence.

Definition 17 (Logical consequence) A formula ¢ is a logical consequence of a set
of formulae I", in symbols I" | ¢, if:

—  For every L-structure M and every M-choice function F' and M-assignment o,
if M, F,o =T",then M, F,o = ¢.

Zach [37] shows that the above notion of consequence yields soundness and com-
pleteness results for classical logic augmented with an extensional e-calculus, that is
a calculus featuring an extensionality axiom to the effect that the referent of ex A only
depends on the set of values of x which (under an assignment o for a structure M)
satisfy A(x). Zach’s proof covers our quantifier rules employing e-terms: our rules

18For an overview of Tarskian, substitutional, or hybrid semantics, see [5], §§1.3-1.8.
19The reader should not confuse the choice function adopted in this paper with those of set theory: indeed
the latter are only defined on sets of non-empty sets.
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3G and —VG (see Table 6) are instances of Zach’s rules Ax3 and AxV (see [37], p.
32). So, we can state the following result.

Theorem 2 (Soundness and Completeness) For every set of L-sentences I' U {A} :

I'Aifandonlyif I' = A

Proof See [37, Theorems 28 and 30]. O]
5.2 A Semantics for the Grounding Operator

Definition 18 (Satisfaction for grounding formulae) Let M be an L-structure, F
be an M-choice function, and o an M-assignment. |=; is the relation obtained by
closing the definition of |= under the following clause:

M, F,o =, Gr(I'|C : B) iff (letting I = {Ay, ..., An})

(i) ForeveryA; e ' M,F,o EA;jand M, F,o0 =C
i) M,F,0 =B
(iii) Ay,...,A, E Band
(iv) —Ai,...,—A,;, CE—-B,and
(v) gc(Ar,..., A, C) + 1 = gc(B) and the list Ay, ..., A,, C contains
exactly one element G or G for each immediate g-subformula G of C.

Writing it down in extenso, the definition of lzz, would look exactly like Definition
16, with every occurrence of = replaced by |=Z§ but, crucially, where = (and not |=;§)
is employed in (i)-(iv). This is because the rules for the grounding operator require
the logical soundness of the inferences codified by (i)-(iv).

Clauses (i) and (ii) are motivated by the factivity of ground—the idea that the
grounding relation holds between truths. In this construal, factivity restricts the sen-
tences that enter the grounding relation as interpreted by (M, F, o) to sentences
classically satisfied in it. Any given triple (M, F, o) adjudicates whether a ground-
ing claim follows from another grounding claim by looking at whether the grounds
and its consequence are satisfied by (M, F, o). Therefore, models can be used to
reason about arbitrary grounding claims only in a way which exactly mirrors the
calculus (this will be guaranteed by the Soundness and Completeness theorems that
follow), as the examples in Section 4.5 can be reproduced semantically (and this is
not surprising, given the clauses (i)-(v) above). Thanks to the soundness and com-
pleteness of the calculus, the semantics developed here can be employed to build
countermodels, and thus show the non-derivability of inferences and claims involving
the notion of grounding, just as it is the case in any logic with a sound and complete
axiomatization.?”

20We thank an anonymous referee for prompting us to clarify some features of the semantics presented
here.
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Clauses (iii)-(v) are easily seen to be the semantic counterpart of Definition 8, with
semantic consequence employed rather than derivability. Given the completeness of
the classical calculus, the two are extensionally equivalent.

The consequence relation =y is not quite the relation we need yet: as pointed out
in Sections 2 and 4.3, we need to include ground-theoretic equivalences which enable
us to treat syntactically distinct formulae as identical from the ground-theoretical
point of view. This is done in the next definition.

Definition 19 (Satisfaction for grounding formulae, with equivalences) Let For/= be
the quotient of the set of L-formulae under =. |=, is the satisfaction relation defined
exactly as in Definition 18, but on P(For/=) x For/=.

We now extend the satisfaction relation for grounding formulae to a full conse-
quence relation for the theory of grounding. As the calculus does not distinguish
between =-equivalent formulae, we will formulate the next results for For rather than
For/=, but no confusion will arise from this. Let I' I, A indicate that there is a
derivation of A from I' in the grounding calculus introduced in the previous section.
Finally, let I' |=, A indicate that for every L-structure M, M-choice function F,
and M-assignment o, if M, F,0 =, B forevery B € I', then M, F, 0 =4 A.

Theorem 3 (Soundness) For every set of L-sentences I’ U {A}:
ifI'=g A, thenI' = A

Proof 1t suffices to check that the rules governing the grounding operator are sound.
We argue by induction on the length of the derivation. We start with the introduction
rule for the grounding operator. Suppose we have introduced the grounding predicate
as a result of an application of the rule Gr/ applied to a derivation of length =,
concluding Gr(I" | C : B) from

|
B

where the latter is of length n. By hypothesis, the latter derivation ends with a ground-
ing rule, i.e. Positive Derivability, Negative Derivability, and Immediateness (from
Definition 8) hold. By the IH and Theorem 2, conditions (i)-(v) of Definition 18 hold
as well,ie. I', C =¢ B.

Consider now the elimination rules. Suppose there is a derivation of length n 4 1
ending with an application of GrE of GrE L (conditions as in Table 4):

X X )

Gr(I": A) ok ar(l": A) ok Gr(A: A)

1 r G r n GrE L
Consider GrE. By IH, ¥ =, Gr(I" : A), and letting ¥ = {51,..., Sy}, ' =
{G1, ..., Gy}, for every L-structure M, M-choice F, and M-assignment o'
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i IfM,F,oES,...M,F,o0 S, then M, F,o = A. This shows that
the first Gr E rule is sound with respect to |=,.

g IfM,F,eoE=S,...M,F,c =S,,then M,F,0c =Gy{,... M, F,o0 E
G . This shows that the second GrE rule is sound with respect to |=,.

Consider now GrE L. By IH, ¥ =, Gr(A : A). Let ¥ = {51,..., 8}, A =
{Dy, ..., Dy}, and assume that gc(Dq, ..., Dy) + 1 # gc(A), or A does not contain
exactly one element C or C* for each immediate g-subformula C of A. By Definition
18, however:

(v) gc(Dy,...,D,)+1 = gc(A) and A contains exactly one element C or C+ for
each immediate g-subformula C of A

Therefore, any L-structure M, M-choice function F, and M-assignment o that
satisfies X fails to satisfy Gr(A : A),ie. X =, L. O

We can finally prove a Completeness Theorem. Since the proof adapts the usual
Henkin-style argument, we will only highlight the less standard steps.

Theorem 4 (Completeness) For every set of L-sentences I' U {A}:
ifI' =g A, thenI' ¢ A

Proof The strategy of the proof is the usual Henkin strategy, adapted to the relation
=¢. More precisely:

1. Suppose that I" |=¢ A

2. Then, I' U {—A} is unsatisfiable.

3. Then, I" U {—A} is inconsistent, i.e. I', =A ¢ L.
4. Then, I' -, A.

Steps 1-2 and 3-4 are almost immediate, and require only rules and semantic clauses
for negation that are validated by the calculus and the semantics. The step from 2 to
3 requires a version of the Henkin construction.

—  Henkin Lemma. For every consistent set I" of £-formulae there is a consistent
and saturated I"" O I'. The proof proceeds as usual, by adding instances of
AxA(x) > A(t)to I'.

—  Lindenbaum Lemma. For every consistent set I" of L-formulae there is a consis-
tent and complete I'”" D I'. The proof proceeds as usual, i.e. for every formula
A, either A or —A is added to I".

—  Derivability entails elementhood. Let I" be a consistent, saturated, and complete
set of L-formulae. For every £-formula A,if I' =, A,then A € I'.

—  Canonical model construction. Following [37], let I" be a consistent set of L-
formulae. Let I'* be the saturated and complete extension of I" obtained by
applying the Henkin and then the Lindenbaum Lemma to it. For any two L-terms
s and ¢, let s & ¢ be the congruence defined by s =t € I'*,ie. I'" o 5 = 1.
Put (where Ter is the set of L£-terms):

[S]%I-* = {t € Ter|s ~ [}}
Ter/~p = {[s]~, . C Ter|s € Ter}
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Ter/~ .. is the quotient of Ter under ~r+. Let F be a choice function on Ter/~
and, for every T € Ter/~ ., define:

*

{s € Ter|s ~ exA(0)}, if T = {[1]~,. € Ter/~,. | A(t) € ['*)

Fr«(T) =
(1) F(T), otherwise

As [37] shows, Fr=+ is a well-defined choice function on Ter/~ .. The
(quotient) canonical model of I'* is the structure M p« defined as follows:

— Its support is Ter/~ ...

- M =[clap.
= (fstTrges s Indmy )T = 1 G 80T
— ([S1lx s oo [Snlrp) € RMPSAE R(s1, ..oy s0) € T

Finally, let o+ be an M +-assignment.
—  Canonical Model Lemma. Let I'*, M+, Fr«, and o+ be as above. For every
L-formula A:

Mps, Frs, o= '=g AiffAeTI™

Proof: By induction on the complexity of formulae. We only do the salient case,
ie. A = Gr(A : B) (where, for simplicity, A does not contain any condition).
Suppose M+, Fr«, ors =g Gr(A : B). Then, by Definition 18:

(i) Forevery D; € A, Mpx«, Fr+,or+ = D;
(11) M[‘*,F}"*,O'[‘* ':B
@iii) Dy,...,D, = Band
@iv) —-Di,...,—D, =—-B,and
(v) gc(Dy,...,Dy)+1=gc(B)and Dy,...,D,, B contain exactly one
element G or G+ for each immediate g-subformula G of B.

Conditions (i) and (ii) are well-defined, since M = is a classical structure,
even though the language includes the grounding operator. Formulae of the form
Gr(A : B) are treated as propositional atoms by [=. By (i) and IH, for every
D; € A, D; € I'. By (ii) and IH, B € I'* as well. Moreover, by (iii) and (iv),
pure logic, and the completeness of the logical calculus:

(iiy* I,Di,...,D, - B
(iv)* TI,=Dy,...,—D,F —B

By (iii)*, (iv)*, and (v), we can conclude I'* |+, Gr(A : A) and by
Derivability entails elementhood, Gr(A : A) € I'*, as desired. O

6 Conclusions
This paper proposes a formal theory of grounding in first-order classical logic. In
particular, we offered a solution to the problem of identifying the grounds for univer-

sally and existentially quantified statements, while remaining within the boundaries
of classical first-order logic, or minimal extensions thereof. The solutions we have
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developed can be traced back to Bolzano’s intuitions about grounding (in particu-
lar, concerning the strictness of the grounding relation). However, both conceptually
and technically, our theory employs tools that go beyond the original Bolzanian
concept—in particular, e-terms a la Hilbert, and arbitrary objects a la Fine. As we
have argued in Section 2, employing such notions can be convincingly justified in
the context of grounding for quantified statements, and using them allows us to avoid
the problems of competing accounts—notably, the use of controversial infinitary
resources. Moreover, as we have shown in Sections 4 and 5, our approach lends itself
to an intuitive natural deduction presentation, and provides a simple yet expressive
calculus, which is sound and complete with respect to a natural Tarskian semantics.

Finally, a few words on the paradoxes of ground. As we have seen in Section 1,
a “naive” approach to grounding for quantified statements, together with basic
extra-logical resources (such as a truth predicate), easily falls prey of paradoxes—
apparently unassailable pieces of reasoning which allegedly show that the grounding
relation can violate irreflexivity and antisymmetry, against common ground-theoretic
wisdom.

However, our framework can not only be shown to be paradox-free, but also to
constitute a suitable basis for a paradox-free theory of truth and ground. As the proof
of Theorem 1 shows, the premisses of all grounding rules of the calculus are logi-
cally simpler than their conclusions, and hence there cannot be any list of formulae
Ay, ..., Ay suchthat (for 1 <i < n) A; grounds A;4+1 and A, grounds Ay, because
otherwise each A; should be logically simpler than itself, which is absurd. This means
in particular that no reflexive or symmetric instance of grounding can be derived in
the calculus. Rigorously showing that also a theory of truth and ground based on our
framework is free from paradoxes would require developing a proper theory of truth
(or some other sufficiently expressive notion) within our approach. Because of the
complexity of this task, we leave it for future research; we however use the rest of
the section to quickly outline how this can be done.

Suppose we extend our grounding calculus with a truth predicate 7', and terms
to code formulae of the object-language, letting " F' be the code of F. As men-
tioned in Section 2, the grounding rule for the truth predicate that would be naturally
formulated in this context is the following:

_F
W GrT

Nevertheless, the rule Gr7T does not comply with the logical complexity criterion
stated in Definition 8 on which our calculus, and in particular the rule GrE L, is
based. This is not surprising since the rule GrT is not, strictly speaking, a logical
rule,?! but a rule that defines the behaviour of the predicate T according to a par-
ticular theory of truth. Technically, this complexity mismatch makes Gr7T and the
rule GrE L inconsistent. In order to solve this problem, we need to generalize the
complexity measure on which the calculus is based in such a way that it does not
only rely on logical complexity but also on a complexity measure extracted from the

21The rule GrT, indeed, does not capture the behaviour of one or more logical connectives.
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truth theory itself. By doing this, it will be possible to show that in any extension of
our framework along these lines, no reflexive or symmetric instance of grounding is
possibly validated.
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