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Editors: Pedro Larrañaga, Jose A. Lozano, Jose M. Peña and Iñaki Inza

Abstract. One of the simplest, and yet most consistently well-performing set of classifiers is the Naı̈ve
Bayes models. These models rely on two assumptions: (i) All the attributes used to describe an instance are
conditionally independent given the class of that instance, and (ii) all attributes follow a specific parametric
family of distributions. In this paper we propose a new set of models for classification in continuous domains,
termed latent classification models. The latent classification model can roughly be seen as combining the Naı̈ve
Bayes model with a mixture of factor analyzers, thereby relaxing the assumptions of the Naı̈ve Bayes classifier.
In the proposed model the continuous attributes are described by a mixture of multivariate Gaussians, where
the conditional dependencies among the attributes are encoded using latent variables. We present algorithms for
learning both the parameters and the structure of a latent classification model, and we demonstrate empirically
that the accuracy of the proposed model is significantly higher than the accuracy of other probabilistic classifiers.
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1. Introduction

Classification is the task of predicting the class of an instance from a set of attributes
describing that instance, i.e., to apply a mapping from the attribute space into a predefined
set of classes. When learning a classifier we seek to find such a mapping based on a database
of labelled instances. Classifier learning, which has been an active research field over the
last decades, can therefore be seen as a model selection process where the task is to find
the single model, from some set of models, with the highest classification accuracy.

Recently, research on classifier learning has primarily focused on domains where all
variables are either discrete or have been discretized during the preprocessing phase. How-
ever, several important classification tasks (such as the analysis of gene expressions, online
monitoring of process systems, etc.) are continuous by nature, and by discretizing the con-
tinuous attributes we risk to loose information which is relevant for the classification task
(Friedman et al., 2000).1

For both continuous and discrete domains, one of the simplest and yet most consistently
well-performing set of classifiers is the Naı̈ve Bayes models (Duda & Hart, 1973). Gener-
ally, in the Naı̈ve Bayes models all attributes are assumed to be conditionally independent
given the class variable. This assumption is clearly violated in many real world domains,
and this shortcoming has inspired several extensions of the model. One such extension is
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the tree augmented Naı̈ve Bayes model for continuous domains (Friedman, Goldszmidt, &
Lee, 1998); in this model, the conditional dependencies are modelled using a tree structure
among the attributes. Alternatively, instead of allowing a more general correlation structure
in the model, another approach is to transform the data s.t. the transformed data abides to
the independence assumption in the model. This approach has, e.g., been pursued by Bres-
san and Vitrià (2002), who consider applying a class conditional Independent Component
Analysis (Hyvärinen, Karhunen, & Oja, 2001) and then using a Naı̈ve Bayes model on the
transformed data.

In this paper we take the former approach and propose a new class of models for
continuous domains, termed latent classification models (LCMs). In the latent classification
model, the conditional dependencies among the attributes are encoded using latent variables,
which allows the model to be interpreted as a combination of a Naı̈ve Bayes model and
a mixture of factor analyzers. We propose an algorithm for learning both the parameters
and the structure of an LCM, and experimental results demonstrate that the accuracy of the
proposed model is significantly higher than the accuracy of other probabilistic classifiers.

2. Continuous Bayesian classifiers

In the context of classification, we shall use {X1, . . . , Xn} to denote the attributes describing
the instances to be classified; as we focus on continuous domains it follows that sp(Xi ) = R,
for all 1 ≤ i ≤ n. Furthermore, we shall use Y to denote the (discrete) class variable,
where sp (Y ) is the set of possible classes (for notational convenience we also assume that
sp (Y ) = {1, 2, . . . , |sp (Y ) |}).

When doing classification in a probabilistic framework, a Bayes optimal classifier will
classify a new instance x = (x1, . . . , xn) ∈ R

n to class y∗ according to:

y∗ = arg min
y∈sp(Y )

∑
y′∈sp(Y )

L(y, y′)P(y′ | x),

where L(·, ·) is the loss-function (see, e.g., Ripley, 1996; Mitchell, 1997; McLachlan, 2004).
An example of such a loss-function is the 0/1-loss, where L(·, ·) is defined s.t. L(y, y′) = 0
if y = y′ and 1 otherwise. When learning a probabilistic classifier, the task is therefore
to learn the probability distribution P(Y = y | X = x) from a set of N labelled training
samples DN = {D1, . . . , DN }, where Di = (xi

1, . . . , xi
n, yi ) is a configuration over the

attributes together with a class label.
An immediate approach for learning P(Y = y | x) is to use a standard algorithm

for learning Bayesian networks (BNs) over continuous domains, see, e.g., Geiger and
Heckerman (1994) and Monti and Cooper (1999b). These learning algorithms basically
give each BN (visited during structure search) a score based on how accurately it represents
the database. Examples of such scoring functions include the Bayesian metric for Gaussian
networks (Geiger & Heckerman, 1994) as well as score functions based on a penalized
log-likelihood, e.g., the Minimum Description Length principle (Rissanen, 1978; Lam &
Bacchus, 1994) and the Bayesian Information Criterion (Schwarz, 1978). However, such
global scoring functions are not necessarily well-suited for learning a classifier (Greiner,
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Figure 1. Plot of Width of the frontal lip vs. Rear width for each of the four classes in the crabs domain. The
conditional correlation between the two attributes given the class is evident.

Grove, & Schuurmans, 1997). One way around this problem is to estimate a classifier’s
accuracy on unseen data using the wrapper approach, i.e., by applying cross-validation
(over the training data) and using the estimated accuracy as the score of the classifier
(Kohavi & John, 1997). The use of the wrapper approach, however, comes at the cost of
higher computational complexity.

In order to relieve this potential complexity problem, one approach is to focus on a
particular sub-class of BNs instead of BNs in general; these sub-classes are usually defined
by the independence statements they encode. For example, the Naı̈ve Bayes models (Duda
& Hart, 1973) is a set of simple models that have shown to provide very good classification
accuracy in many domains. In a Naı̈ve Bayes model the attributes are assumed to be
conditionally independent given the class, however, as also shown in the following example,
this independence assumption is clearly violated in many domains.

Example 1. The crabs dataset origins from Campbell and Mahon (1974), where each
crab is characterized by the following five attributes: Width of the frontal lip, Rear width,
Length along the midline, Maximum width of the carapace and Body depth.

The goal of the classification task is to predict the correct sex and color of a crab. The
possible classes are: Blue male (BM), Blue female (BF), Orange male (OM) and Orange
female (OF). A plot of the Width of the frontal lip vs. Rear width for each of the four
classes is shown in Figure 1. From the figure it is evident that there is a strong conditional
correlation between the attributes given the class; similar results are also obtained when
considering other pairs of attributes. One implication of these conditional correlations is
that the Naı̈ve Bayes classifier will perform poorly in this domain. This is also confirmed by
our experimental study (Section 5), where the Naı̈ve Bayes classifier achieved an accuracy
of only 39.5%.

In general, existing techniques for handling conditional dependencies among the at-
tributes can roughly be characterized as either (i) using a set of models that admits a more
general correlation structure or (ii) relying on a preprocessing of the data. As an exam-
ple of the former, Friedman, Goldszmidt, and Lee (1998) propose an extension of the
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Figure 2. Plot of the expected values of the first two factors from a PCA of the crabs database. Note that the
conditional correlation between attributes given the class is reduced significantly. In the spirit of Bressan and
Vitrià (2002), one PCA model is fitted per class.

Tree Augmented Naı̈ve Bayes (TAN) model (Friedman, Geiger, & Goldszmidt, 1997) to
facilitate continuous domains. In the TAN framework, each attribute is allowed to have
at most one parent besides the class variable. Alternatively, Gama (2000) propose the so-
called linear Bayes model, where all continuous attributes are combined and associated
with a multivariate Gaussian to encode the conditional dependencies; discrete attributes are
treated as in the Naı̈ve Bayes model.

Instead of working with a more general correlation structure in the model, another
approach for handling the conditional dependencies is to preprocess the data before learning
the classifier. For example, if the attributes are transformed into a vector of variables that
are conditionally independent given the class variable, then a Naı̈ve Bayes classifier can be
learned based on the transformed data. One approach for doing this type of preprocessing is
to employ a Principal Component Analysis (PCA) on the database (see, e.g., Kendall 1980);
the factors in the PCA are by definition independent (assuming a multivariate Gaussian
distribution over the attributes). Thus, if we produce a database where the attributes,
describing a given object, are replaced by the expected values of the factors, then this
database would describe the objects consistent with the Naı̈ve Bayes classifier. Note that
one PCA must be made for each class in order to obtain conditional independence.2

Example 2. Consider again the crabs domain described in Example 1. By employing a
PCA (for each class) on the database, we can transform the attributes into a collection of
mutually independent factors; Figure 2 shows a plot of the expected values of the first two
factors. Observe that the conditional correlation between the attributes given the class is
reduced significantly. In fact, the Naı̈ve Bayes classifier achieved an accuracy of 94.0%
when working on the transformed data (Section 5).

The idea of transforming the data has been pursued by, e.g., Hinton, Dayan, and Revow
(1997) for the task of recognizing handwritten digits. More specifically, Hinton, Dayan,
and Revow (1997) employs a (class conditional) mixture of PCAs as well as a mixture of
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Figure 3. The Silicon contents in several samples from the “float-processed” class taken from the glass2 domain
is shown together with the maximum likelihood estimate of Gaussian (solid line) and the mixture of Gaussians
maximizing the BIC score (dashed).

factor analyzers (FAs) for transforming the data; one of the main differences between the
two methods is that PCA tries to model as much of the variance (among the attributes)
as possible with the least amount of components, whereas FA tries to explain as much of
the correlation with as few factors as possible. In general, the transformation of the data
relies on an a priori selection of the dimensionality of the transformed space. Minka (2000)
describes a method for selecting the dimensionality for PCA by treating it as a task of density
estimation, where the dimensionality is chosen according to a Bayesian scoring function.

Traditionally, the Naı̈ve Bayes classifier makes the assumptions that the continuous
attributes are generated by a specific parametric family of distributions (usually Gaussians).
Even though assuming Gaussians may provide an adequate approximation in some domains,
there are also domains where this assumption is not appropriate.

Example 3. Figure 3 shows a histogram of the Silicon contents in the samples from the
class of “float-processed” glass; the data have been taken from the glass2 domain, which
is available from the UCI repository (Blake & Merz, 1998). The maximum likelihood
Gaussian approximation (thick line) is given together with a mixture of two Gaussians
(dashed line). Although the fit of the Gaussian is rather poor, the mixture of Gaussians is
able to make a reasonable approximation using only two components. The accuracy of this
approximation also has an impact on classification accuracy: Whereas the Naı̈ve Bayes
classifier (assuming Gaussian distributions) performs rather poorly on this domain with
62.0% accuracy, the quality is improved to 78.0% when Mixtures of Gaussians are used.
(See also Section 5.)

To avoid having to make the Gaussian assumption, one possibility would be to discretize
the continuous attributes (see, e.g., Fayyad & Irani, 1993), however, this may also result
in a loss of information which can affect classification accuracy (Friedman et al., 2000).
Alternatively, John and Langley (1995) propose to substitute the Gaussian distribution with
a kernel density estimation using a Gaussian kernel. This approach can be seen as a special
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case of having a mixture of Gaussians associated with each attribute, where the mixture
components are given uniform weights and the number of mixture components corresponds
to the number of cases in the database. Along the same lines, Monti and Cooper (1999a)
propose the finite-mixture-augmented Naı̈ve Bayes that combines the Naı̈ve Bayes model
and the finite mixture model. The mixture variable in this model ensures a more general
probability distribution over the attributes (i.e., a mixture of Gaussians) and also accounts
for some of the dependencies among the attributes. In the same spirit, Vilalta and Rish
(2003) address the problem of having the classes distributed into multiple regions in the
attribute space. In particular, they propose to decompose each class into a collection of
clusters, where each cluster is considered a class on its own; thus, ensuring that a class
will not be distributed in multiple regions. Finally, Friedman, Goldszmidt, and Lee (1998)
suggest an approach to overcome the drawback of either discretizing a continuous attribute
or having a pure Gaussian distribution associated with it; specifically, they propose to have
a dual representation of an attribute by including both the continuous attribute as well as
its discretized version.

3. Latent classification models

As described in Section 2, one approach for handling the conditional dependencies between
the attributes is to make a transformation of the data before learning the classifier, e.g. by
applying either a (mixture of) PCAs or FAs. For example, by applying a FA we make a
dimensionality reduction of the covariance structure of the data. This reduction is performed
by modelling the attributes, X , using a q-dimensional vector of factor variables Z (with
q ≤ n) and by assuming the generative model:

X = L Z + ε,

where L is the regression matrix, Z ∼ N (0, I), and ε ∼ N (0,�) is an n-dimensional
random variable with diagonal covariance matrix �. In this model, the factor variables
model the dependencies among the attributes, and ε can be interpreted as the sensor noise
associated with the attributes.

Starting from this generative model, one can be tempted to try the following approach
for learning a Naı̈ve Bayes classifier: (i) Learn a factor analyzer from the data, (ii) for each
data-point Di = (xi , yi ) let the expectation E(Z | X = xi ) represent observation xi in the
database, and (iii) learn a Naı̈ve Bayes classifier using the transformed dataset generated
in step (ii). This approach produces latent variables that are unconditionally independent
(Zi⊥⊥Z j , i �= j), but (typically) conditionally dependent (Zi �⊥⊥Z j | Y ). That is, the
independence statements are not consistent with the Naı̈ve Bayes model. Moreover, when
we substitute the actual observations with the expected values of the factor variables in step
(ii), we disregard information about the uncertainty in the generative model.

3.1. The linear generative model

In order to avoid the shortcomings of the method described above, we propose a new set
of models, termed latent classification models (LCMs). Roughly, an LCM can be seen
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Figure 4. A graphical representation of an LCM with n = 5 attributes and q = 2 latent variables. Note that all
latent variables as well as the attributes are continuous (and thus drawn with double line).

as combining an FA with the Naı̈ve Bayes model. By relying on FA rather than PCA
we have an explicit generative model (that is amenable to statistical analysis), which
focuses on the correlation structure among the attributes instead of the variance in general.
As we shall see below, the latter property also ensures a natural coupling to the NB
model. More specifically, in the proposed model the factor variables appear as children
of the class variable in the graphical representation of the model (see Figure 4). This also
implies that an LCM is an instance of a conditional Gaussian network, where the variables
can be partitioned into three disjoint subsets: {Y } is the class variable, X is the set of
attributes, and Z is a set of latent variables (Z has the same role as the factor variables
in an FA). In an LCM the class variable appear as root, X constitute the leaves with
only latent variables as parents, and the latent variables are all internal having the class
variable as parent and the attributes as children. Note that not all of the independence
assumptions underlying the factor analysis model carry over to the LCM. In particular, the
latent variables in an LCM are conditionally independent given the class, but marginally
dependent.

For the quantitative part of the LCM, we assume that:
– The class variable, Y, follows a multinomial distribution, that is, P(Y = j) = p j , where

1 ≤ j ≤ |sp(Y ) |, p j ≥ 0 and
∑|sp(Y )|

j=1 p j = 1.
– Conditionally on Y = j , the latent variables, follow a Gaussian distribution with

E [Z | Y = j] = µ j and Cov(Z | Y = j) = � j . Moreover, it follows from the model
structure that � j has to be diagonal (meaning that Zk⊥⊥Zl | {Y = j} for all k �= l and
for all j = 1, . . . , | sp(Y ) |). Note that as opposed to the generative model underlying
factor analysis, we do not assume that E(Z | Y ) = 0 and Cov(Z | Y ) = I .

– Conditionally on Z = z, the variables X follow a Gaussian distribution with E(X | Z =
z) = Lz and Cov(X | Z = z) = �, where � must be diagonal to comply with the
model structure.

From the description above it follows that the model assumes a linear mapping L :
R

q 	→ R
n that takes a vector of (unobservable) variables and maps it to a vector of

(observable) attributes; � can be interpreted as the precision of the mapping from the latent
variables (corresponding to the factor space) to the attribute space.3 Moreover, analogously
to standard factor analysis we also assume that � is diagonal, meaning that Xi⊥⊥X j | Z,
for all i �= j .
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It is important to emphasize that an LCM does not encode a class-conditional factor
analysis in the spirit of, e.g., Bressan and Vitrià (2002). Instead the attributes are condition-
ally independent of the class variable given the factor variables (X⊥⊥Y | Z), and the factor
variables are directly dependent on the class variable. Moreover, the same mapping, L, from
the latent space to the attribute space is used for all classes. Thus, the relation between the
class variable and the attributes is conveyed by the latent variables, i.e., the latent variables
summarizes the information from the attributes which is relevant for classification.

When investigating the expressibility of LCMs, it follows that if the attributes (condi-
tioned on the class variable) follow a Gaussian distribution, then there exists an LCM which
can encode the joint distribution over (Y, X). More formally we have (the proof is given in
Appendix A):

Proposition 4. Assume that Y follows a multinomial distribution, and that X | {Y =
j} ∼ N (α j ,� j ) for a given set of parameters {α j ,� j }|sp(Y )|

j=1 . Assume that rank(� j ) = n
for at least one j. Then the joint distribution (Y, X) can be represented by an LCM with
q ≤ n · | sp(Y ) |.

Note that Proposition 4 only says that there is a q ≤ n · | sp(Y ) |, which ensures that we
can encode the joint distribution over (Y, X) by means of an LCM. However, it does not
state how to identify the minimal value of q for which this can be done. Finding a suitable
value for q is considered part of the classifier learning, and will be addressed in Section 4.4

3.2. The non-linear generative model

In the (linear) model presented above, one of the main assumptions is that there exists a
linear mapping, L, from the factor space to the attribute space.5 Consequently, conditionally
on Y = j , the attributes are assumed to follow a multivariate Gaussian distribution with
mean Lµ j and covariance matrix L� j LT + �. However, even though this provides a
sufficiently accurate approximation to the true probability distribution in many domains,
there are also domains where this does not hold.

Example 5. Consider again the dataset glass2, which was examined in Example 3. By
investigating the empirical probability distribution of the variables Silicon and Potassium
for the “float-processed” class, we get the empirical density function depicted in Figure 5.
From the contour lines it clearly follows that the process which has generated the data does
not follow a multivariate Gaussian distribution. Hence, the proposed linear LCM does not
provide a reasonable model for the domain; this was also confirmed by our experiments,
where the model achieved an accuracy of 66.9% (see also Section 5).

In order to extend the expressibility of the linear LCMs (see Proposition 4) we propose
a natural generalization, termed non-linear LCMs. Intuitively, to the extent that the linear
LCM can be seen as a combination of an FA and a Naı̈ve Bayes classifier, the non-linear
LCM can be seen as combining a mixture of FAs with a Naı̈ve Bayes classifier. More
formally, for a mixture of FAs we have (i) a mixture variable M governing the mixture
distribution, and (ii) a (generalized) FA for each mixture component M = m:
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Figure 5. The figure depicts the empirical distribution function for the variables Silicon (x-axis) and Potassium
(y-axis) conditioned on the class “float-processed” in the glass2 domain. From the plot it is evident that the
process, which has generated the data, does not follow a Gaussian distribution.

X | {M = m} = Lm Z + ηm + εm .

Thus, for a mixture of FAs the regression matrix, Lm , as well as the noise vector, εm ∼
N (0,�m), varies with the mixture components.6 Moreover, as opposed to standard factor
analysis, the data mean is modelled explicitly through ηm . Informally, by including ηm in
the model we can focus on different parts of the attribute space when learning the different
mixture components.

Based on the mixture of FAs, we define a non-linear LCM as a conditional Gaussian
network, where the variables can be partitioned into four disjoint subsets: {Y } is the class
variable, {M} is the mixture variable, X is the set of attributes and Z is a set of latent
variables. The structure of a non-linear LCM is identical to the structure of a linear LCM,
except that we also have the mixture variable M as an internal node having Y as parent and
with all variables in X as children (see Figure 6). For the quantitative part of the non-linear
LCM we assume that:

– The mixture variable, M, follows a multinomial distribution, i.e., P(M = m|Y = j) =
pm, j , where 1 ≤ m ≤ |sp(M) |, pm, j ≥ 0 and

∑|sp(M)|
m=1 pm, j = 1, for all 1 ≤ j ≤

|sp(Y ) |.
– Conditionally on {Z = z, M = m}, the variables X follow a Gaussian distribution with

moments E(X | z, m) = Lm z + ηm and Cov(X | z, m) = �m , where �m is assumed to
be diagonal for all 1 ≤ m ≤ | sp(M) |.

Analogously to the linear LCM, the class variable, Y, follows a multinomial distribution
and Z follows a conditional Gaussian distribution with E[Z | Y = j] = µ j and Cov(Z |
Y = j) = � j . Observe that a non-linear LCM is a proper generalization of a linear LCM in
the sense that with | sp(M) |= 1 the non-linear LCM reduces to a linear model. Thus, in the
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Figure 6. A graphical representation of a non-linear LCM with n = 5 attributes and q = 2 latent variables. Note
that if | sp(M) | = 1, then the model simply corresponds to a linear LCM.

remainder of this paper, when simply referring to an LCM we mean the general non-linear
model which include the linear model as a special case.

Another way to consider the non-linear LCM is provided by Ghahramani and Hinton
(1996) in the related context of learning mixtures of FAs. In particular, Ghahramani and
Hinton (1996) note that a mixture of FAs concurrently performs clustering (the Gaussian
mixture model) and, within each cluster, local dimensionality reduction (factor analysis).
This combination has the attractive property that it facilitates (among other things) dimen-
sionality reduction to be performed within each cluster, thereby taking into account that
different variables may be correlated within different clusters. Analogously, we can interpret
the non-linear LCM as concurrently performing clustering and, within each cluster, local
classification.7

Finally, as a generalization of Proposition 4 we have the following proposition which
formalizes the expressibility of the model (the proof is given in Appendix A):

Proposition 6. Assume that Y follows a multinomial distribution, and that X | {Y = j} ∼
P(� j ), where P(·) is a distribution function over R

n and {� j }|sp(Y )|
j=1 are the parameters.

Then the joint distribution for (Y, X) can be approximated arbitrarily well by an LCM
model.

Example 7. Once again, consider the glass2 domain, which was also examined in
Examples 3 and 5. As in Example 5, we restrict our attention to the variables Silicon and
Potassium, for which the data is shown in Figure 7(a). If we learn a Naı̈ve Bayes classifier
from this two-variable dataset, the decision boundary will be as in Figure 7(b). The shaded
area corresponds to pairs of attribute values that will be classified as “float-processed” by
this classifier. In Figure 7(c) and (d) the decision boundary of the linear LCM classifier is
shown with q = 1 and q = 4 respectively. Finally, Figure 7(e) and (f) give the same results
for the non-linear LCM models with (q = 4, | sp(M)| = 2) and (q = 2, | sp(M)| = 40)
respectively.

The plots clearly show how the expressive power differ between the model classes.
The Naı̈ve Bayes classifier is quite restricted, as is the LCM model with q = 1 in
Figure 7(c). Figure 7(d) shows the effect of setting q = 4, meaning that the decision rule
is fitted in R

4 before it is projected down into R
2. Introducing non-linearity to the LCM
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Figure 7. Decision boundaries for different classifiers working with a subset of the variables in the glass2
domain.

model enables the classifier to make more complex decision rules; Figure 7(f) indicates
the “unlimited” expressibility of the non-linear LCM models. In particular, if the number
of mixture components is the same as the number of instances in the data set, then the
non-linear LCM is strongly related to a k-NN with k = 1.
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4. Learning LCM models

In this section we describe a method for learning latent classification models from data.
The construction of the algorithm is characterized by the score function for evaluating the
quality of a model, and the search strategy for investigating the space of LCMs.

In the proposed algorithm we score a model based on its accuracy, which is estimated
using the wrapper approach of Kohavi and John (1997). That is, the score is given as
the average accuracy found by applying cross-validation over the training data (see also
Section 2).

Considering the search strategy, we first note that the space of LCMs is defined by (i)
the number of latent variables, (ii) the number of mixture components, (iii) the edge-set
and (iv) the parametrization of the probability distributions. Thus, we can characterize a
general learning algorithm by: (i) A systematic approach for selecting values for q and
| sp(M) |, and, given such a pair of values, (ii) algorithms for learning the edge-set and
the parameters in the model. More formally, a general LCM learning algorithm can be
formulated as follows:

Algorithm 1. Learn an LCM classifier with the wrapper approach.

4.1. Learning the structure

Generally, structural learning of an LCM is comprised of three subtasks: Finding the
number of latent variables, finding the number of mixture components, and determining
the edge-set of the model. As described above, the selection of appropriate values for q and
| sp(M) | is basically performed using the wrapper approach (we discuss a possible search
strategy in Section 5).8 Thus, in what follows we focus on learning the edge-set between
the latent variables, Z, and the attributes, X (the other parts of the model are fixed a priori).9

Furthermore, we insist that any edge between a latent variable Z j and an attribute Xi must
be directed from Z j to Xi .
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Figure 8. These plots show accuracy of the classifiers (y-axis) vs. the value of q (x-axis). The results are from
the glass2 domain, which consists of 9 attributes and has 2 classes. The results are averaged over 10 runs. Part
(a) shows the accuracy of our classifier with full structure (pa (Xi ) = Z for i = 1, . . . , n). Part (b) gives the same
plot for a classifier where the link structure (edges from Z j to Xi ) are learned from data.

Structural learning of this edge-set is primarily motivated by the fact, that even though
the number of parameters is only proportional to the number of arcs in the model, we still
risk the problem of overfitting when increasing the number of latent variables. This problem
is also illustrated in the following example.

Example 8. Consider again the glass2 dataset, taken from the UCI repository. Figure
8(a) shows the accuracy of a linear LCM vs. the number of latent variables included in the
model; when increasing q with 1 we introduce | sp(M) | (n + 2 | sp(Y ) |) = 13 additional
parameters in the model. It is evident that by introducing too many parameters we risk
reducing the classification accuracy of the model. On the other hand, Figure 8(b) shows the
accuracy of the learned model when structural learning is performed (using the algorithm
described below). Observe that the amount of overfitting is less apparent when structural
learning is introduced, although it is still present.

Structural learning for Bayesian networks containing both continuous and discrete vari-
ables has previously been examined by several authors, see, e.g., Geiger and Heckerman
(1994), Monti and Cooper (1999b), and Bo/ttcher (2001). Geiger and Heckerman (1994)
give a decomposable score function for Gaussian networks that can be extended to cer-
tain subsets of, but unfortunately not all, hybrid networks. More precisely, Geiger and
Heckerman (1994) require that if a discrete variable � is a parent of a continuous variable
which appear in a connected subgraph (consisting of only continuous variables), then �

should be a parent of all variables in that subgraph. Unfortunately, by considering the
simple LCM (n = q = 1) depicted in Figure 9(a), it is apparent that the LCM structure
do not fulfill this requirement.10 However, because of the strong syntactical constraints on
the model structure of an LCM, we are only interested in the parent set of X , i.e., the
edges from Z to X . Thus, we do not really require the score of structure (a), but rather
the score difference when structures (a) and (b) are compared. Moreover, since we have
complete data (or, as in our case, data “completed” by the SEM algorithm (Friedman,
1998)) we can change the parent sets of the other variables in the model and still compute
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Figure 9. The structure in part (a) cannot be evaluated directly; Z1 and X1 are continuous, whereas Y and M are
discrete. However, as we are only interested in the presence ofthe link from Z1 to X1 in structure (a), we do not
need the score of this structure, but rather the score difference between structures (a) and (b). Due to the factoring
of the score function, this is identical to the score difference for the structures(c) and (d). Since these structures
can be scored, we can draw conclusions about whether structure (a) or (b) scores highest.

the score difference correctly (by simply exploiting that the score function decomposes). In
particular, both of the structures in parts (c) and (d) of Figure 9 can be evaluated using the
score function of Geiger and Heckerman (1994), and the score difference between these
structures is the same as the score difference between structures (a) and (b). Thus, we can
use the framework of Geiger and Heckerman (1994) to learn the edge-set from the latent
variables Z to the attributes X .

4.2. Learning the parameters

When learning the parameters in an LCM, we consider two types of models, corresponding
to the situations where the parameters are either tied or untied. The difference being that
when the parameters are tied, we constrain the covariance matrices �m s.t. �m = �m ′ , for
all 1 ≤ m, m ′ ≤ | sp(M) |. Recall that this constraint allows �m to be interpreted as sensor
noise, thus contributing to the semantical interpretation of the model.

The actual learning of the parameters is performed by applying an EM-algorithm
(Dempster, Laird, & Rubin, 1977) for LCMs. In the following we shall use αk to de-
note the number of cases for which Y = k in the database. Furthermore, we let �Lm be
the matrix defined by [Lm, ηm], and let lT

m,i denote the i’th row of this matrix. In the same

way, we define �Z as the augmented column vector of factors, i.e., �Z = [ZT, 1]T.11 Finally,
we let θ̂m,k denote the k’th element on the diagonal of �̂m (in case of untied covariances);
alternatively use θ̂·,k to represent the k’th element on the diagonal of the tied covariance
matrix. Based on this notation, the updating rules (M-step) for the EM-algorithm are given
in the following.12

µ̂k ← 1

αk

∑
j :y j =k

∑
m

P(M = m | D j ) E(Z | M = m, D j )

�̂k ← 1

αk

∑
j :y j =k

∑
m

P(M = m | D j ) · E[(Z − µ̂k)(Z − µ̂k)T | M = m, D j ]
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l̂m,i ←
[

N∑
j=1

P(M = m | D j )E( �Z �ZT | D j , M = m)

]−1

[
N∑

j=1

xi, j P(M = m | D j )E( �Z | D j , M = m)

]

θ̂·,i ← 1

N

N∑
j=1

[
xi, j −

|sp(M)|∑
m=1

P(M = m | D j ) l̂
T

m,i E( �Z | D j , M = m)

]
xi, j

θ̂m,i ← 1

N

N∑
j=1

P(M = m | D j )
[
xi, j − l̂

T

m,i E( �Z | D j , M = m)
]
xi, j

The derivation of these rules can be found in Appendix B together with the E-step for
the algorithm. The computational complexity of one iteration of the EM algorithm is

O(| sp(M) | (N [q2(| sp(Y ) | + n) + q3] + | sp(Y ) | [n · q2 + q · n2 + n3]));

further details can be found in Appendix C together with a complexity analysis of the
overall algorithm.

5. Experimental results

In this section we investigate the classification accuracy of the proposed classifiers by
considering 15 different datasets. Table 1 summarizes relevant characteristics of the datasets
used in this experimental study, all of which are taken from the UCI Machine Learning
Repository (Blake & Merz, 1998).

For each classifier, and each dataset, we have estimated the accuracy as the percentage of
correctly classified instances through 5-fold cross-validation. We also give the theoretical
standard deviations of these estimates calculated according to Kohavi (1995). In order to
test whether a given classifier is better than another classifier we have used Nadeau and
Bengio (2003)’s corrected resampled t-test, which incorporates information about classifier
accuracy on each cross-validation fold; the same cross-validation folds were given to all
classification algorithms.

When working with linear LCMs, we use the wrapper approach (Kohavi & John, 1997) to
determine the number of latent variables, q, and following Proposition 4 we let n · | sp(Y ) |
be an upper bound. Specifically, we considered q = 1, 2, . . . , n · | sp(Y ) | and the q-value
resulting in the highest (estimated) classification accuracy was selected.

When considering non-linear LCMs, we look for a value for both q and the number of
mixture components, | sp(M) |. Again, we require that q ≤ n · | sp(Y ) |, and to avoid
(extreme) overfitting we also impose the constraints that q · | sp(M) | ≤ N . Unfortunately,
if no other restrictions are placed on the parametrization of the model, then an exhaustive
search over all parameter pairs will be computationally prohibitive for practical applications.
We solve this problem by applying a semi-greedy search strategy: More precisely, we
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Table 1. Description of datasets.

Database #Att #Cls Inst q | sp(M) |

balance-scale 4 3 625 (4 – 6 – 10) (2 – 20 – 25)

breast 10 2 683 (1 – 1 – 2) (1 – 1 – 30)

crabs 5 4 200 (3 – 4 – 18) (2 – 10 – 20)

diabetes 8 2 768 (3 – 6 – 14) (1 – 20 – 35)

glass 9 7 214 (2 – 4 – 20) (10 – 25 – 35)

glass2 9 2 163 (2 – 3 – 4) (15 – 30 – 40)

heart 13 2 270 (2 – 5 – 6) (1 – 1 – 2)

iris 4 3 150 (3 – 3 – 6) (2 – 4 – 25)

liver 6 2 345 (10 – 12 – 12) (4 – 15 – 40)

pima 8 2 768 (8 – 8 – 14) (1 – 1 – 30)

sonar 60 2 208 (12 – 40 – 100) (15 – 20 – 40)

tae 5 3 151 (6 – 8 – 14) (20 – 35 – 40)

thyroid 5 3 215 (6 – 6 – 14) (2 – 3 – 15)

vehicle 18 4 846 (35 – 40 – 40) (20 – 25 – 40)

wine 13 3 178 (6 – 14 – 18) (1 – 4 – 30)

The datasets which are used in the experimental study. For each dataset we have listed the number of attributes
(#Att), the number of classes (#Cls), and the number of instances in the dataset (Inst.). The complexity of learning
these domains is indicated by the number of latent variables used by the linear LCM classifier (q) and the number
of mixtures used by the non-linear LCM classifier (| sp(M) |). The minimum, median and maximum values (over
5 cross-validation folds) are given.

perform a greedy search for q by scoring each q with the maximum accuracy it achieves
when coupled with all the possible values of | sp(M) |. When the search terminates, the
parameter pair with the highest estimated accuracy is chosen.13

In order to learn the probabilities in the models we applied the EM algorithm with
standard parameter settings: The algorithm terminates when the relative increase in log-
likelihood falls below 10−3 or after a maximum of 100 iterations. The EM algorithms were
run with 100 restarts; this gives a number of different candidate models from which we
should select one. The standard solution is to choose the candidate model with the highest
log-likelihood on the training data, however, since our focus is classification we instead
pick the model that obtains the highest classification accuracy on the training-set.14

A series of different classification algorithms have been implemented and tested on the
datasets listed in Table 1. The classification algorithms have been selected with the goal
of (i) providing a comparison with the LCMs, and (ii) exploring the effect of relaxing the
two assumptions underlying the Naı̈ve Bayes classifier (i.e., the conditional independence
assumption and the assumption that all continuous variables follow a specific family of
distributions). Before we present the accuracy results (in Tables 2 and 3) we give a brief
description of each of the 16 different classifiers we consider:

NB: The NB classifier. Each attribute is assumed to be a realization from a Gaussian
distribution, where the parameters are conditioned on the class variable.
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NB/M: An NB classifier, where the distribution of the attributes are given as mixtures of
Gaussian distributions. The number of mixtures is (for each attribute) chosen according
to the BIC score (Schwarz, 1978).

NB/D: The NB classifier using discretized data. Specifically, the data was discretized prior
to learning by using the MLC++ (Kohavi et al., 1994) implementation of Fayyad and
Irani (1993)’s algorithm.

TAN/D: A TAN classifier (Friedman, Geiger, & Goldszmidt, 1997) using data that has
been discretized by the same method as NB/D.

TAN+/D: A TAN/D classifier with smoothing. We followed (Friedman, Geiger, &
Goldszmidt, 1997) and set the smoothing parameter equal to 5.

k-NN: The k-Nearest Neighbor classifier (Aha, Kibler, & Albert, 1991); k was determined
by leave-one-out cross-validation.15

FA/BIC: An NB classifier where the data is preprocessed to obtain approximately indepen-
dent factors. The preprocessing amounts to fitting a factor analysis through maximum
likelihood calculations (Rubin & Thayer, 1982). The number of latent variables was
chosen according to the BIC score.

PCA/λ: This classifier employs the same idea as FA/BIC, but the preprocessing is per-
formed using PCA. The number of latent variables were chosen such that an eigenvector
el with corresponding eigenvalue λl is included in the loading matrix if and only if
λl ≥ (

∑
j λ j )/n (see, e.g., Kendall, 1980 for details on this procedure).

PCA/n: This classifier is similar to PCA/λ, but with the exception that PCA/n uses all n
eigenvectors of the covariance matrix to build the loading matrix. There is therefore no
loss of information during preprocessing; the latent variables are defined by a rotation
of the attribute space.

CW/PCA/n: As noted by several authors, the preprocessing step should not aim at gen-
erating factors that are unconditionally independent, but rather independent given the
class. CW/PCA/n obtains this by fitting one PCA/n transformation for each class, and
then performs classification using Bayes rule. Gama (2000)’s linear-Bayes is equivalent
to CW/PCA/n when all attributes are continuous.

CG/PCA/n: The attribute space was clustered (using unsupervised clustering with soft
cluster assignments) by approximating the joint distribution over the attributes with a
mixture of n-dimensional Gaussians. Each mixture component is then seen as defining a
cluster. The number of clusters (that is, the number of mixtures) was chosen to maximize
the BIC score. Finally, one PCA/n was fitted for each cluster, and classification was
performed using Bayes rule.

LCM(q): The linear LCM model with full structure as described in Section 3.1; q was
found using the wrapper approach with 5 folds.

LCM(q)/S: This classifier is identical to LCM(q), except that structural learning is also
applied, see Section 4.1.

LCM(q, m; T): The full non-linear LCM model as defined in Section 3.2; both q and
| sp(M) | are found by the wrapper approach. The covariance matrices are tied, meaning
that Cov(X | Z = z, M = m) = Cov(X | Z = z, M = m ′) for all m, m ′ ∈ sp (M).

LCM(q, m; U): The same classifier as LCM(q, m; T), but with the covariance matrices
untied.
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Table 2. Summary of accuracy calculations.

Classifier Average acc. Winner Top 3 Poor, p < 10% Poor, p < 1%

NB 71.5 1 3 10 5

NB/M 72.8 0 2 9 5

NB/D 74.9 2 2 8 3

TAN/D 75.6 0 1 9 3

TAN+/D 76.0 0 4 8 3

k-NN 81.3 0 5 6 3

FA/BIC 68.7 0 0 13 10

PCA/λ 73.8 0 0 12 5

PCA/n 77.1 0 0 10 4

CW/PCA/n 78.2 0 1 7 4

CG/PCA/n 79.2 2 2 8 1

LCM(q) 81.3 4 5 2 1

LCM(q)/S 80.9 2 4 3 1

LCM(q; m; T) 83.8 4 7 0 0

LCM(q; m; U) 83.2 3 7 0 0

LCM(q; m; T)/S 81.7 1 2 3 0

LCM(q, m; T)/S: The LCM(q, m; T) classifier combined with structural learning. All
mixture components share the same structure.

Note that w.r.t. the second goal of this empirical study (mentioned above), we see that
NB/M and NB/D are related to the assumption that the attributes follow a specific family
of distributions, whereas FA/BIC, PCA/λ, PCA/n, CW/PCA/n, CG/PCA/n, LCM(q) and
LCM(q)/S relax the independence assumptions. TAN/D, TAN+/D, k-NN, LCM (q, m; T),
LCM(q, m; U) and LCM(q, m; T)/S try to relax both assumptions simultaneously.

The estimated classification accuracies are summarized in Table 2. For each classifier
we give the average accuracy (averaged over all datasets in Table 1), the number of times
each classifiers gives the best results for a particular dataset, and the number of datasets
where it is in the top three. The last two columns give the number of times the classifier
is significantly poorer than the best one for a specific dataset at 10% level and 1% level
respectively. The best results overall are given in boldface, results in top tree in italics.

Table 3 gives the estimated classification accuracies for a subset of the classifiers. A
classifier was included in Table 3 if it gave the best classification accuracy for at least one
dataset. Additionally, k-NN was included due to its good overall performance. The best
result for a given dataset is given in boldface. Classifiers that obtain results significantly
worse than the best classifier on a given dataset are marked with − (significant at 10% level)
or * (significant at the 1% level).

Our results indicate that the independence assumptions embedded in the Naı̈ve Bayes
model structure have a higher impact on the classification accuracy than the distributional
assumption: The average accuracy of NB/M is only marginally better than that of NB, and
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although NB/M is significantly better than NB in some cases (e.g., the glass domain), it is
also significantly worse in other domains (e.g., balance-scale). Our results point towards
discretization being slightly better than using mixtures of Gaussians in the Naı̈ve Bayes
model, but, on the other hand, even NB/D performs rather poorly on average.

Preprocessing the database can be quite beneficial, but the information loss incurred
by this procedure can also jeopardize classification quality. FA/BIC is the classifier with
the worst overall performance, and is only competitive (at the 10% level) in 2 of the 15
domains. On the other hand, PCA/n either as-is or combined with clustering (CW/PCA/n
and CG/PCA/n) can supply reasonable solutions in domains where we have a strong
correlation between the attributes (see, e.g., the crabs domain). LCM(q) and LCM(q)/S
work well overall, but have (significant) problems with highly non-Gaussian domains like
glass and glass2.

Structural learning does not appear to increase classifier accuracy on average, but can
improve classification quality for some datasets. LCM(q)/S is, for instance, the best classifier
overall on the diabetes dataset, but also significantly worse than LCM(q) in the vehicle
domain. This is also in accordance with the claims by Greiner, Grove, and Schuurmans
(1997), as our structural learning procedure focuses on the Bayesian metric for Gaussian
networks (Geiger & Heckerman, 1994) and not classification accuracy.

The main conclusion is that the two non-linear LCM models appear to be superior to the
other classification algorithms. Neither of these classifiers are significantly worse than any
of the other classifiers at any dataset (at 10% level), and they also come out as the two best
classifiers overall.

6. Conclusion

In this paper we have proposed a new class of models, termed Latent Classification Models
(LCMs), for probabilistic classification in continuous domains. An LCM can roughly be
seen as a mixture of factor analyzers integrated with a Naı̈ve Bayes model. This combination
enables concurrent clustering and, within each cluster, localized classification. LCMs extend
the basic Naı̈ve Bayes models in two ways: (i) The conditional independence assumptions
embedded in the Naı̈ve Bayes models are relaxed, and (ii) the distributional assumptions
on the attributes are lifted. LCMs therefore constitute a flexible class of models in the sense
that an LCM can approximate any continuous distribution over the attributes arbitrarily
well. This is also confirmed in our experimental study, where it is demonstrated that LCMs
provide good results in all the domains we investigate. Moreover, we find that LCMs are
significantly better than a wide range of other probabilistic classifiers.

Appendix A: Proofs

Proof of Proposition 4: By definition of an LCM we have a q-dimensional random vector
Z = (Z1, . . . , Zq ) of latent variables (Z | {Y = j} ∼ N (µ j ,� j ) for j = 1, . . . , | sp(Y ) |)
and a linear mapping L represented by a (n × q)-matrix such that X = L Z + ε; ε is white
noise, i.e., ε ∼ N (0,�) and � is assumed diagonal. Note that as Z | {Y = j} is Gaussian,
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it follows that L Z | {Y = j} is Gaussian as well, and X | {Y = j} is therefore fully
described by its two first moments.

We must show that for a given {α j ,� j }|sp(Y )|
j=1 we can define L, �, {µ j }|sp(Y )|

j=1 and

{� j }|sp(Y )|
j=1 such that X | {Y = j} ∼ N (α j ,� j ), for all j = 1, . . . , | sp(Y ) |. The proof is

constructive, and we shall choose q = n · | sp(Y ) | and � = 0 throughout. First, assume
that L is a fixed (n × q)-matrix with rank(L) = n. Then, for any given α ∈ R

n , we can find
at least one µ ∈ R

q such that Lµ = α. Repeat this | sp(Y ) | times, and let µ j be defined
as a solution of Lµ j = α j for j = 1, . . . , | sp(Y ) |. By this construction we have that
E[X | Y = j] = Lµ j = α j ; as long as rank(L) = n we can therefore always choose µ j

so that the first moment of X | {Y = j} “fits”.
To define L and {� j }|sp(Y )|

j=1 we proceed by fixing a value of j, j = j0, say. As � j0 is
positive semi-definite and symmetric matrix we can create the singular value decomposition
of � j0 as � j0 = L j0� j0 LT

j0 ; L j0 contains the eigenvectors of � j0 and � j0 is the diagonal
matrix holding the corresponding eigenvalues, see, e.g., Kendall (1980). We do this for
j = 1, . . . , | sp(Y ) |. Now, we define L as the (n × n· | sp(Y ) |)-matrix made up by these
L j matrices, L = [

L1 | . . . | L|sp(Y )|
]
, and let � j be the block diagonal matrix with blocks

made up by j − 1 (n × n) 0-matrices, followed by � j and then | sp(Y ) | − j (n × n)
0-matrices,

� j =




0( j−1)n×( j−1)n 0( j−1)n×n 0( j−1)n×(|sp(Y )|− j)n

0n×( j−1)n � j 0n×(|sp(Y )|− j)n

0(|sp(Y )|− j)n×( j−1)n 0(|sp(Y )|− j)n×n 0(|sp(Y )|− j)n×(|sp(Y )|− j)n


 .

By this construction we get

Cov(X | Y = j) = L� j LT + �

= L� j LT

= L j� j LT
j

= � j .

Finally, we note that L will have rank n. This follows because there exists an � where
rank(��) = n, and therefore rank(L�) = n.

Proof of Proposition 6: Let us fix a q ≥ 1, and for simplicity assume that Lm is a
matrix where all elements are 0 for all m = 1, . . . , | sp(M) |. Now, X | {Y = k, M =
m} ∼ N (ηm,�m), and X | {Y = k} is therefore a mixture of (multivariate) Gaussians,
where each mixture component is parameterized independently of the others. The result
now follows trivially as any distribution over continuous variables can be approximated
arbitrarily well by such a mixture of multivariate Gaussians (Bishop, 1995).
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Appendix B: The EM algorithm for LCMs

In this section we describe the EM algorithm for learning the parameters in an LCM. First
of all, observe that the joint probability distribution over (X, Z, M, Y ) can be expressed
as:

f (x, z, m, y) = f (y) f (m | y) f (z | y)
n∏

i=1

f (xi | m, z),

where

f (y) = P(Y = y);

f (m | y) = P(M = m | Y = y);

f (z | y) = N (µy,�y);

= (2π )−q/2 | �y |−1/2 exp

(
− 1

2
(z − µy)T�−1

y (z − µy)

)
;

f (xi | m, z) = N
(
lT

m,i z + ηm,i , θm,i
)

= (2π )−1/2θ
−1/2
m,i exp

(
− 1

2

((
xi − (

lT
m,i z + ηm,i

))
θ

−1/2
m,i

)2
)

;

lT
m,i is the i’th row of Lm and θm,i is the i’th element on the diagonal of �m . That is, both

the regression vector and the offset for f (xi | m, z) depend on the state of the mixture
variable M.

First, define the augmented column vector of factors (�z = [zT, 1]T) and the augmented
regression vector (�lm,i = [lT

m,i , ηm,i ]T). By using that (z −µy)T�−1
y (z −µy) can be rewritten

as

(z − µy)T�−1
y (z − µy) = tr

(
�−1

y zzT
) − 2µT

y�
−1
y z + µT

y�
−1
y µy,

we get:

log f (x, z, m, y) = log P(y) + log P(m | y) − n + q

2
log(2π )

− 1

2
log | �y | −1

2

n∑
i=1

log θm,i

−1

2
tr
(
�−1

y zzT
) + µT

y�
−1
y z − 1

2
µT

y�
−1
y µy

−1

2

n∑
i=1

[(
xi − �lT

m,i �z
)
θ

−1/2
m,i

]2
.
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The expected log-likelihood of the database DN = (D1, D2, . . . , DN ) can now be ex-
pressed as:

Q = E log

(
N∏

j=1

f (· | D j )

)
= E

(
N∑

j=1

log f (· | D j )

)

=
N∑

j=1

log P(y j ) +
N∑

j=1

E log P(M | y j ) − N
n + q

2
log(2π )

−
|sp(Y )|∑

h=1

αh

2
log | �h | −1

2

n∑
i=1

N∑
j=1

E(log θM,i | D j )

−1

2

N∑
j=1

tr
(
�−1

y j
E[ZZT | D j ]

) +
N∑

j=1

µT
y j

�−1
y j

E[Z | D j ]

−
|sp(Y )|∑

h=1

αh

2
µT

h�
−1
h µh

−
n∑

i=1

N∑
j=1

[
1

2
xi, j

2
E

(
θ−1

M,i | D j
) + 1

2
E

( �ZT�l M,i
�lT

M,i
�Zθ−1

M,i | D j
)

− xi, j E
(�lT

M,i
�Zθ−1

M,i | D j
)]

.

Based on the above expression for the expected log-likelihood, we can derive the updating
rules which are used in the M-step of the algorithm. First of all, for �lm,i = [lT

m,i , ηm,i ]T we
have:

∂Q
∂�lm,i

= θ−1
m,i

N∑
j=1

[P(M = m | D j )E( �Z �ZT | D j , M = m)�lm,i

−xi, j P(M = m | D j )E( �Z | D j , M = m)].

Thus, we get the following update rule for �lm,i :

�̂lm,i ←
[

N∑
j=1

P(M = m | D j )E( �Z �ZT | D j , M = m)

]−1

[
N∑

j=1

xi, j P(M = m | D j )E( �Z | D j , M = m)

]
.
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Analogously, for θm,i we get:

∂Q
∂θm,i

= −1

2

N∑
j=1

P(M = m | D j )θ
−1
m,i + θ−2

m,i	m,i ,

where

	m,i = 1

2

N∑
j=1

x2
i, j P(M = m | D j )

+ 1

2

N∑
j=1

P(M = m | D j )�lT

m,iE( �Z �ZT | D j , M = m)�lm,i

−
N∑

j=1

xi, j P(M = m | D j )�lT

m,iE( �Z | D j , M = m).

Now substitute �lm,i with �̂lm,i , and we get:

	m,i = 1

2

N∑
j=1

[
xi, j − �̂l

T

m,iE( �Z | D j , M = m)
]
P(M = m | D j ) · xi, j .

Thus, we get the following update rule for θm,i :

θ̂m,i ← 1

N

N∑
j=1

[
xi, j − �̂l

T

m,i E( �Z | D j , M = m)
]
P(M = m | D j ) · xi, j .

In the special case where �m is constant over m ∈ sp (M) (�m is interpreted as sensor
noise) we have:

θ̂·,i ← 1

N

N∑
j=1

[
xi, j −

∑
m∈sp(M)

P(m | D j ) �̂l
T

m,i E( �Z | D j , M = m)

]
xi, j .

For µy we have:

∂Q
∂µy

=
∑

j :y j =y

�−1
y E(Z | D j ) − 1

2

∑
j :y j =y

(
�−1

y + �−1T

y

)
µy

= �−1
y

∑
j :y j =y

E(Z | D j ) − αy�
−1
y µy,
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where αy = |{D : D ∈ DN , D↓Y = y}| is the number of observations from class y. Thus
we get the following updating rule:

µ̂y ← 1

αy

∑
j :y j =y

E(Z | D j )

= 1

αy

∑
j :y j =y

∑
m

P(M = m | D j )E(Z | M = m, D j ).

For �y we have that (recall that �y = �T
y):

∂Q
∂�y

= −αy

2
�−1

y

(
I − 1

αy

∑
j :y j =y

E(ZZT | D j )�
−1
y

+ 2

αy

∑
j :y j =y

µyE(Z | D j )
T �−1

y − µyµ
T
y �−1

y

)
,

which gives the following update rule:

�y ← 1

αy

∑
j :y j =y

∑
m

P(M = m | D j ) ·

E[(Z − µ̂y)(Z − µ̂y)T | D j , M = m].

Finally, in order to obtain the probabilities for the mixture variable we use (see also
Ghahramani & Hinton, 1996; Murphy, 1998):

P(M = m | Y = y) =
∫

P(M = m | Y = y, X)P(X | Y = y)d X .

To estimate this integral we use the empirical distribution of the data as an estimate for
P(X | Y = y):

P(M = m | Y = y) ← 1

αy

∑
j :y j =y

P(M = m | D j ).

In order to perform the expectation step we first note that given Y = y and M = m, the
joint (X, Z) has a Gaussian distribution:

(X, Z) | {Y = y, M = m} ∼ N
([

Lmµy

µy

]
,

[
Lm�y LT

m + �m Lm�y

�y LT
m �y

])
.
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Thus, we get:

Z | {Y = y, X = x, M = m} ∼ N (βm,y x + (I − βm,y Lm)µy, (I − βm,y Lm)�y),

where βm,y = (Lm�y)T(Lm�y LT
m + �m)−1. More specifically,

E(Z | D j , M = m) = βm,y D↓x
j + (I − βm,y Lm)µy

and

E(ZZT | D j , M = m)

= (I − βm,y Lm)�y + E(Z | D j , M = m)E(Z | D j , M = m)T.

Appendix C: Complexity analysis

For fixed values for q and | sp(M) |, the time complexity of the individual M-steps are
given by: µ̂k ∼ O(N · | sp(M) | · q), �̂k ∼ O(N · | sp(M) | · q2), l̂m,i ∼ O(N · q2 + n3),
θ̂ ·,i ∼ O(N · | sp(M) | · q) and θ̂m,i ∼ O(N · q); for simplicity we let inversion of an
n × n matrix have time complexity O(n3). Note that, e.g., �̂k must be calculated for each
possible value of 1 ≤ k ≤| sp(Y ) | hence, we get:

µ̂ ∼ O(N · | sp(M) | · q · | sp(Y ) |); �̂tied ∼ O(N · | sp(M) | · q · n);

�̂ ∼ O(N · | sp(M) | · q2 · | sp(Y ) |); �̂untied ∼ O(N · q · n | sp(M) |);
L̂ ∼ O((N · q2 · n + n3) · | sp(M) |).

For the E-step, the time complexity is determined by the complexity of calculating E(Z |
D j , M = m) and E(ZZT | D j , M = m), which both depend on βm,y (see Appendix B).
Specifically, when also incorporating the iterations over the conditioning sets, we get:

{βm,y : 1 ≤ m ≤ | sp(M) |, 1 ≤ y ≤ | sp(Y ) |}
∼ O(| sp(M) | · | sp(Y ) | · (n · q2 + q · n2 + n3));

{E(Z | D j , M = m) : 1 ≤ j ≤ N , 1 ≤ m ≤ | sp(M) |}
∼ O(| sp(M) | · (N · n · q + n · q2));

{E(ZZT | D j , M = m) : 1 ≤ j ≤ N , 1 ≤ m ≤ | sp(M) |}
∼ O(| sp(M) | · (n · q2 + N · q3)).

Thus, the overall time complexity of (one iteration of) the EM-algorithm is:

O(| sp(M) | (N [q2(| sp(Y ) | +n) + q3]+ | sp(Y ) | [n · q2 + q · n2 + n3])).

The time complexity of the inference procedure is determined by the complexity of the
initialization phase and the updating phase. During initialization we calculate E(X | Y =
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y, M = m) = �Lm �µy , Cov(X | Y = y, M = m) = �Lm ��y �LT

m + �m), Cov(X | Y =
y, M = m)−1, and det(Cov(X | Y = y, M = m)), where we have defined �µy = E( �Z |
Y = y) and ��y = Cov( �Z | Y = y). It follows that initialization has time complexity
O(| sp(Y ) | · | sp(M) | · (n2 · q + q2 · n + n3)). The time complexity of performing
one propagation in an LCM (after initialization) is O(n2 · | sp(Y ) | · | sp(M) |), hence
the complexity of performing both initialization and N propagations is O(| sp(Y ) | ·
| sp(M) | · (n2 · q + q2 · n + n3 + N · n2)).

Generally, the time complexity of Algorithm 1 (without learning the edge-set of the
classifier) is defined as above together with the time complexity of the search procedure
being applied w.r.t. q and | sp(M) | (we propose a semi-greedy search procedure in
Section 5). Note that when structural learning is also performed, the time complexity also
depends on the SEM algorithm (Friedman, 1998). However, as opposed to standard learning
problems we have a tight upper bound on the number of different structures to investigate,
i.e., we only need to focus on the q · n possible edges from the latent variables to the
attributes.
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Notes

1. The potential information loss should be compared to the situation where the distribution is modelled by
some appropriate parametric family of continuous probability distributions.

2. As separate PCAs are used for each class, the generated factors are not necessarily comparable. A similar
approach was nevertheless pursued by Bressan and Vitrià (2002), and they reported promising results regarding
classification accuracies.

3. Note that L determines the graphical structure between Z and X , i.e., if li, j = 0, then there is no arc from Z j

to Xi and consequently Xi ⊥⊥Z j | Y .
4. Observe that the assumption q ≤ n (common in FA) does not apply here.
5. In what follows, we will refer to the model described in Section 3.1 as a linear LCM because of the linear

mapping, L, from Z to X .
6. Note that if �i �= � j , for some 1 ≤ i �= j ≤ m, then we no longer have an immediate interpretation of �i

as being sensor noise (we shall return to this discussion in Section 4).
7. Fokoué and Titterington (2003) consider learning mixture of FAs by Markov Chain Monte Carlo methods.
8. Minka (2000) describes a global method for learning the dimensionality for PCA. Unfortunately, such methods

are not necessarily suitable within the proposed classification context; this is also illustrated in Section 5 in
the form of the PCA/λ classifier.

9. Recall that the structure between Z and X is determined by the zero elements in the regression matrices.
10. In an LCM, the class variable Y is a parent of the latent variables, but not the attributes. This violates Geiger

and Heckerman (1994)’s structural constraint, since the latent variables and the attributes are connected.
Similarly, M causes problems as it is a parent of all the attributes, but it is not a parent of the latent variables.
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11. For linear LCMs we simply use �Lm = Lm and �Z = Z.
12. Observe that, except for the difference between θ̂ ·,k and θ̂m,k , we have the same updating rules for the tied

and the untied models.
13. Note that for the tests reported in Table 3, the possible values for | sp(M) | was restricted to the set

{1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40}.
14. This is motivated by Vapnik’s bound (see, e.g., Burges, 1998, Section 2) and the fact that all candidate models

per definition have the same VC-dimension.
15. We used the k-NN implementation in Weka 3.4 (Witten & Frank, 2000).
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