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Abstract. We present an algorithm for learning from unlabeled text, based on the Vector Space Model (VSM) of
information retrieval, that can solve verbal analogy questions of the kind found in the SAT college entrance exam. A
verbal analogy has the form A:B::C:D, meaning “A is to B as C is to D”’; for example, mason:stone::carpenter:wood.
SAT analogy questions provide a word pair, A:B, and the problem is to select the most analogous word pair, C:D,
from a set of five choices. The VSM algorithm correctly answers 47% of a collection of 374 college-level analogy
questions (random guessing would yield 20% correct; the average college-bound senior high school student
answers about 57% correctly). We motivate this research by applying it to a difficult problem in natural language
processing, determining semantic relations in noun-modifier pairs. The problem is to classify a noun-modifier
pair, such as “laser printer”, according to the semantic relation between the noun (printer) and the modifier (laser).
We use a supervised nearest-neighbour algorithm that assigns a class to a given noun-modifier pair by finding the
most analogous noun-modifier pair in the training data. With 30 classes of semantic relations, on a collection of
600 labeled noun-modifier pairs, the learning algorithm attains an F value of 26.5% (random guessing: 3.3%).
With 5 classes of semantic relations, the F value is 43.2% (random: 20%). The performance is state-of-the-art for
both verbal analogies and noun-modifier relations.
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1. Introduction

Computational approaches to analogy-making typically involve hand-coded knowledge
bases (French, 2002). In this paper, we take a different approach, based on the idea that
analogical reasoning can be approximated to some extent by a cosine measure of vector
similarity, where the vectors are derived from statistical analysis of a large corpus of text.
We demonstrate this approach with two real-world problems, answering multiple-choice
verbal analogy questions and classifying noun-modifier semantic relations. This work is
only a first step, and analogical reasoning is still very far from being a solved problem,
but we believe that our results are encouraging. A vector-based approach to analogies
and semantic relations may be able to overcome some of the limitations (such as the
knowledge-engineering bottleneck) that have impeded progress with the knowledge-based
approach.
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Table 1. A sample SAT question.

Stem mason:stone

Choices (a) teacher:chalk
(b) carpenter:wood
(c) soldier:gun
(d) photograph:camera
(e) book:word

Solution (b) carpenter:wood

A verbal analogy has the form A:B::C:D, meaning “A is to B as C is to D”’; for example,
“mason is to stone as carpenter is to wood”. (A mason is an artisan who works with stone; a
carpenter is an artisan who works with wood.) Analogies of this kind are sometimes called
proportional analogies, and they have been studied at least since 350 BC (Aristotle, 2001). In
spite of their long history, they are still not well understood; their subjective character resists
quantitative analysis. In our research, we have used multiple-choice questions, developed
for educational testing, as a tool for objective analysis of verbal analogies.

The SAT college entrance exam contains multiple-choice verbal analogy questions, in
which there is a word pair, A:B, and five choices'. The task is to select the most analogous
word pair, C:D, from the set of five word pairs. Table 1 gives an example. In the terminology
of educational testing, the first pair, A:B, is called the stem of the analogy.

For multiple-choice analogy questions, the best choice is the word pair with the semantic
relation that is most similar to the relation of the stem pair. Although there has been much
research on measuring the similarity of individual concepts (Lesk, 1969; Church & Hanks,
1989; Dunning, 1993; Smadja, 1993; Resnik, 1995; Landauer & Dumais, 1997; Turney,
2001; Pantel & Lin, 2002), there has been relatively little work on measuring the similarity
of semantic relationships between concepts (Vanderwende, 1994; Rosario & Hearst, 2001;
Rosario, Hearst & Fillmore, 2002; Nastase & Szpakowicz, 2003).

Our approach to verbal analogies is inspired by the Vector Space Model (VSM) of
information retrieval (Salton & McGill, 1983; Salton, 1989). We use a vector of numbers
to represent the semantic relation between a pair of words. The similarity between two
word pairs, A:B and C:D, is measured by the cosine of the angle between the vector that
represents A:B and the vector that represents C:D.

As we discuss in Section 2.2, the VSM was originally developed for use in information
retrieval. Given a query, a set of documents can be ranked by the cosines of the angles
between the query vector and each document vector. The VSM is the basis for most modern
search engines (Baeza-Yates & Ribeiro-Neto, 1999).

Section 2 also covers related work on analogy, metaphor, and classifying semantic
relations. Most of the related work has used manually constructed lexicons and knowledge
bases. Our approach uses learning from unlabeled text, with a very large corpus of web
pages (about one hundred billion words); we do not use a lexicon or knowledge base.

We present the details of our learning algorithm in Section 3, including an experimental
evaluation of the algorithm on 374 college-level SAT-style verbal analogy questions. The
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algorithm correctly answers 47% of the questions. Since there are five choices per analogy
question, random guessing would be expected to result in 20% correctly answered. We also
discuss how the algorithm might be extended from recognizing analogies to generating
analogies.

To motivate research on verbal analogies, we give an example of a practical application,
the task of classifying the semantic relations of noun-modifier pairs. Given a noun-modifier
pair such as “laser printer”, the problem is to classify the semantic relation between the noun
(printer) and the modifier (laser). In Section 4.1, we argue that an algorithm for classification
of noun-modifier relations would be useful in machine translation, information extraction,
and word sense disambiguation.

An algorithm for solving SAT-style verbal analogies can be applied to classification of
noun-modifier semantic relations, as we demonstrate in Section 4. Given an unclassified
noun-modifier pair, we can search through a set of labeled training data for the most
analogous noun-modifier pair. The idea is that the class of the nearest neighbour in the
training data will predict the class of the given noun-modifier pair. We apply a supervised
nearest-neighbour learning algorithm, where the measure of distance (similarity) is the
cosine of the vector angles.

The data set for the experiments in Section 4 consists of 600 labeled noun-modifier pairs,
from Nastase and Szpakowicz (2003). The learning algorithm attains an F value of 26.5%
when given 30 different classes of semantic relations. Random guessing would be expected
to result in an F value of 3.3%. We also consider a simpler form of the data, in which the 30
classes have been collapsed to 5 classes. The algorithm achieves an F value of 43.2% with
the 5-class version of the data, where random guessing would be expected to yield 20%.

Limitations and future work are covered in Section 5. The conclusion follows in
Section 6.

2. Related work

In this section, we consider related work on metaphorical and analogical reasoning (Section
2.1), applications of the Vector Space Model (Section 2.2), and research on classifying noun-
modifier pairs according to their semantic relations (Section 2.3). We also discuss related
work on web mining for natural language processing applications (Section 2.4).

2.1. Metaphor and analogy

Turney et al. (2003) presented an ensemble approach to solving verbal analogies. Thirteen
independent modules were combined using three different merging rules. One of the thirteen
modules was the VSM module, exactly as presented here in Section 3.2. However, the focus
of Turney et al. (2003) was on the merging rules; the individual modules were only briefly
outlined. Therefore it is worthwhile to focus here on the VSM module alone, especially
since it is the most accurate of the thirteen modules. Table 2 shows the impact of the VSM
module on the accuracy of the ensemble. These figures suggest that the VSM module made
the largest contribution to the accuracy of the ensemble. The present paper goes beyond
Turney et al. (2003) by giving a more detailed description of the VSM module, by showing



254 P.D. TURNEY AND M. L. LITTMAN

Table 2.  Impact of the VSM module on ensemble accuracy.

With VSM Without VSM
Ensemble accuracy 45.0% 37.0%
Best individual module VSM Wordsmyth Similarity
Best individual accuracy 38.2% 29.4%

how to adjust the balance of precision and recall, and by examining the application of the
VSM to the classification of noun-modifier relations.

French (2002) surveyed the literature on computational modeling of analogy-making.
The earliest work was a system called Argus, which could solve a few simple verbal analogy
problems (Reitman, 1965). Argus used a small hand-built semantic network and could only
solve the limited set of analogy questions that its programmer had anticipated. All of the
systems surveyed by French used hand-coded knowledge-bases; none of them can learn
from data, such as a corpus of text.

French (2002) cited Structure Mapping Theory (SMT) (Gentner, 1983) and its implemen-
tation in the Structure Mapping Engine (SME) (Falkenhainer, Forbus, & Gentner, 1989) as
the most influential work on modeling of analogy-making. SME takes representations of a
source domain and a target domain, and produces an analogical mapping between the source
and target. The domains are given structured propositional representations, using predicate
logic. These descriptions include attributes (unary predicates indicating features), relations
(expressing connnections between entities), and higher-order relations (expressing con-
nections between relations). The analogical mapping connects source domain relations to
target domain relations. Originally, only identical relations were mapped, but later versions
of SME allowed similar, non-identical relations to match (Falkenhainer, 1990).

With proportional analogies of the form A:B::C:D, the target and source domains are
reduced to a minimum. Each domain consists of two attributes (explicitly given) and one
relation (implicit), R; (A, B) and R, (C, D). The focus in our work is on the similarity
measure that is used to compare the relations, rather than the analogical mapping process.
We believe it is a good research strategy to focus on one aspect of the problem at a time,
mapping between complex predicate logic structures (Falkenhainer, Forbus, & Gentner,
1989) or measuring similarity of relations (as we do here), but eventually researchers
will need to address both problems together. Real-world analogies involve domains with
complex internal structures and complicated relational similarities.

Dolan (1995) described a system for extracting semantic information from machine-
readable dictionaries. Parsing and semantic analysis were used to convert the Longman
Dictionary of Contemporary English (LDOCE) into a large Lexical Knowledge Base
(LKB). The semantic analysis recognized twenty-five different classes of semantic re-
lations, such as hypernym (is-a), part-of, typical-object, means-of, and location-of. Dolan
(1995) outlined an algorithm for identifying “conventional” metaphors in the LKB. A con-
ventional metaphor is a metaphor that is familiar to a native speaker and has become part
of the standard meaning of the words involved (Lakoff & Johnson, 1980). For example,
English speakers are familiar with the metaphorical links between (sporting) games and
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(verbal) arguments. Dolan’s algorithm can identify this metaphorical connection between
“game” and “argument” by observing the similarity in the LKB of the graph structure in the
neighbourhood of “game” to the graph structure in the neighbourhood of “argument”. The
examples of metaphors identified by the algorithm look promising, but the performance of
the algorithm has not been objectively measured in any way (e.g., by SAT questions). Un-
fortunately, the LKB and the algorithms for parsing and semantic analysis are proprietary,
and are therefore not evaluated in the present paper.

The VSM algorithm is not limited to conventional metaphors. For example, the analogy
tourniquet:bleeding::antidote:poisoning was discovered by the VSM approach (see Section
3.3.2).

Veale (2003) presented an algorithm for automatically enhancing WordNet (Fellbaum,
1998) to facilitate analogical reasoning. The algorithm adds new links to the WordNet graph
structure by analyzing the glosses (definitions). The algorithm was designed with a focus
on analogies of the form adjective:noun::adjective:noun, such as:

— Christian:church::Muslim:mosque
— Greek:Zeus::Roman:Jove
— Greek:alpha::Hebrew:aleph.

Veale (2003) reported a recall of 61% and a precision of 93.5% for the task of creating
analogical mappings between the gods of five different cultures (Greek, Roman, Hindu,
Norse, and Celtic). It would be interesting to see whether this approach can be extended to
handle SAT questions, which are not limited to adjective:noun pairs.>

Marx et al. (2002) developed an unsupervised algorithm for discovering analogies by
clustering words from two different corpora. Each cluster of words in one corpus is coupled
one-to-one with a cluster in the other corpus. With conventional clustering, the quality of
the clustering of a set of words is typically measured by considering all possible pairs of
words. The clustering is good when pairwise similarity is high for words that are in the
same cluster and low for words that are in different clusters. With coupled clustering, the
quality of the clustering is measured by considering all pairs of words in which one member
of the pair is from the first corpus and the other member of the pair is from the second
corpus. The clustering is good when pairwise similarity is high for words that are in the
same coupled clusters and low for words that are in different coupled clusters. For example,
one experiment used a corpus of Buddhist documents and a corpus of Christian documents.
A cluster of words such as {Hindu, Mahayana, Zen,. ..} from the Buddhist corpus was
coupled with a cluster of words such as {Catholic, Protestant, ...} from the Christian
corpus. Thus the algorithm appears to have discovered an analogical mapping between
Buddhist schools and traditions and Christian schools and traditions. Dagan, Marx, and
Shamir (2002) extend this approach from two different corpora to any number of different
corpora. This is interesting work, but it is not directly applicable to SAT analogies, because
it discovers analogies between clusters of words, rather than individual words.

Lapata and Lascaries (2003) described a corpus-based algorithm for logical metonymy.
Metonymy and metaphor are distinct but closely related (Lakoff & Johnson, 1980).
Metonymy is referring to something by mentioning an attribute or feature of the thing.
In logical metonymy, an event is referred to by mentioning a noun that is involved in
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the event. For example, in the sentence “Mary finished the cigarette”, the implicit event is
smoking the cigarette, which is metonymically referred to by explicitly mentioning only the
cigarette, omitting reference to smoking. Given a logical metonymy as input, the algorithm
of Lapata and Lascaries (2003) can produce a list of non-metonymical paraphrases of the
input sentence, sorted in order of decreasing probability. Given “John began the cigarette”,
the system would produce “John began smoking the cigarette”, “John began rolling the
cigarette”, “John began lighting the cigarette”, and so on. This work is related to our work
in the use of a corpus-based approach, but the details of the algorithms and the tasks are
quite different.

2.2. Vector space model

In information retrieval, it is common to measure the similarity between a query and a
document using the cosine of the angle between their vectors (Salton & McGill, 1983;
Salton, 1989). Almost all modern search engines use the VSM to rank documents by
relevance for a given query.

The VSM approach has also been used to measure the semantic similarity of words
(Lesk, 1969; Ruge, 1992; Pantel & Lin, 2002). Pantel and Lin (2002) clustered words
according to their similarity, as measured by a VSM. Their algorithm is able to discover the
different senses of a word using unsupervised learning. They achieved impressive results
on this ambitious task.

The novelty in our work is the application of the VSM approach to measuring the
similarity of semantic relationships. The vectors characterize the semantic relationship
between a pair of words, rather than the meaning of a single word (Lesk, 1969) or the topic
of a document (Salton & McGill, 1983).

2.3.  Noun-modifier semantic relations

Nastase and Szpakowicz (2003) used supervised learning to classify noun-modifier rela-
tions. To evaluate their approach, they created a set of 600 noun-modifier pairs, which they
hand-labeled with 30 different classes of semantic relations. (We use this data set in our
own experiments, in Section 4.) Each noun-modifier word pair was represented by a feature
vector, where the features were derived from the ontological hierarchy in a lexicon (Word-
Net or Roget’s Thesaurus). Standard machine learning tools (MBL, C5.0, RIPPER, and
FOIL) were used to induce a classification model from the labeled feature vectors. Nastase
and Szpakowicz (2003) described their work as exploratory; the results they presented were
qualitative, rather than quantitative. Their approach seems promising, but it is not yet ready
for a full quantitative evaluation.

Rosario and Hearst (2001) used supervised learning to classify noun-modifier relations in
the medical domain, using MeSH (Medical Subject Headings) and UMLS (Unified Medical
Language System) as lexical resources for representing each noun-modifier relation with a
feature vector. They achieved good results using a neural network model to distinguish 13
classes of semantic relations. In an extension of this work, Rosario, Hearst, and Fillmore
(2002) used hand-crafted rules and features derived from MeSH to classify noun-modifier
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pairs that were extracted from biomedical journal articles. Our work differs from Rosario
and Hearst (2001) and Rosario, Hearst and Fillmore (2002), in that we do not use a lexicon
and we do not restrict the domain of the noun-modifier pairs.

In work that is related to Dolan (1995) (see Section 2.1), Vanderwende (1994) used
hand-built rules, together with the LKB derived from LDOCE, to classify noun-modifier
pairs. Tested with 97 pairs extracted from the Brown corpus, the rules had an accuracy of
52%.

Barker and Szpakowicz (1998) used memory based learning (MBL) for classifying
semantic relations. The memory base stored triples, consisting of a noun, its modifier, and
(if available) a marker. The marker was either a preposition or an appositive marker when
the noun-modifier pair was found in text next to a preposition or an apposition. A new
noun-modifier pair was classified by looking for the nearest neighbours in the memory
base. The distance (similarity) measure was based on literal matches between the elements
in the triples, which constrained the algorithm’s ability to generalize from past examples.

Some research has concentrated on learning particular semantic relations, such as part-of
(Berland & Charniak, 1999) or type-of (Hearst, 1992) These are specific instances of the
more general problem considered here (see Table 11).

The algorithm of Lapata and Lascarides (2003) for paraphrasing logical metonymy can be
viewed as a method for making semantic relations explicit. Some of the logical metonymies
they consider take the form of noun-modifier pairs, such as “difficult language”, which can
be non-metonymically paraphrased as “language that is difficult to learn”. However, most
noun-modifier pairs are not logical metonymies, and the two tasks seem different, since it
is difficult to cast logical metonymy as a classification problem.

In this paper, we apply a measure of analogical similarity to classifying noun-modifier
relations, but, in principle, this could work the other way around; an algorithm for classifying
noun-modifier relations could be used to solve SAT-style verbal analogy problems. The stem
pair and each of the choice pairs could be classified according to their semantic relations.
Ideally, the stem and the correct choice would be classified as having the same semantic
relation, whereas the incorrect choices would have different semantic relations. We have
done some preliminary experiments with this approach, but have not yet had any success.

2.4. Web mining

Our learning algorithm relies on a very large corpus of web pages. We obtain informa-
tion about the frequency of various patterns of words by querying a web search engine
(AltaVista). Other researchers have used web search engines to acquire data for natural
language processing applications. For example, Resnik (1999a) used AltaVista to find
bilingual text. Our approach is different in that it only needs frequency information and not
the text itself; the only information we use from AltaVista is the hit count (the number of
web pages that match the given query).

The use of hit counts from web search engines to obtain lexical statistical information
was introduced by Turney (2001), who used hit counts from AltaVista to estimate Pointwise
Mutual Information (PMI). This approach to estimating PMI resulted in a good measure of
semantic similarity between pairs of words. When evaluated with multiple-choice synonym
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questions, taken from the Test of English as a Foreign Language (TOEFL), the PMI estimate
achieved a score of 73.75% (Turney, 2001). In comparison, the average human TOEFL score
was 64.5%.

Turney and Littman (2003) used AltaVista hit counts to determine the semantic ori-
entation of words. A word has a positive semantic orientation when it conveys praise
(honest, cute) and a negative orientation when it indicates criticism (horrible, cruel). Se-
mantic orientation varies in both direction (positive or negative) and degree (mild to strong).
The algorithm was experimentally tested with 3,596 words (including adjectives, adverbs,
nouns, and verbs) that were manually labeled positive (1,614 words) and negative (1,982
words). It attained an accuracy of 82.8% on the full test set, but the accuracy was greater
than 95% when the algorithm was allowed to abstain from classifying mild words.

In this paper, we use hit counts to measure the similarity between semantic relations,
rather than the similarity between individual concepts (Turney, 2001). The above papers
share the idea of using web search engines to exploit a huge corpus for natural language
processing applications, but the details of the applications are quite different.

3. Solving verbal analogy problems

In Section 3.1, we examine the task of solving verbal analogies. Section 3.2 outlines the
application of the Vector Space Model to this task. The experimental results are presented
in Section 3.3 and discussed in Section 3.4.

3.1. Analogy problems

The semantic relation between a pair of words may have no direct, obvious connection
to the individual words themselves. In an analogy A:B::C:D, there is not necessarily
much in common between A and C or between B and D. Consider the analogy “traf-
fic:street::water:riverbed” (one of our SAT questions). Traffic flows down a street; water
flows down a riverbed. A street carries traffic; a riverbed carries water. This analogy is not
superficial; there is a relatively large body of work on the mathematics of hydrodynamics
applied to modeling automobile traffic flow (Daganzo, 1994; Zhang, 2003; Yi et al., 2003).
Yet, if we look at the positions of these four words in the WordNet hierarchy (Fellbaum,
1998), it appears that they have little in common (see Table 3). “Traffic” and “water” belong
to different hierarchies (the former is a “group’ and the latter is a “physical thing”). “Street”
and “riverbed” are both “physical objects”, but it takes several steps up the hierarchy to
find the abstract class to which they both belong.

This example illustrates that the similarity of semantic relations between words is not
directly reducible to the semantic similarity of individual words. Algorithms that have been
successful for individual words (Lesk, 1969; Church & Hanks, 1989; Dunnings, 1993;
Smadja, 1993; Resnik, 1995; Landauer & Dumais, 1997; Turney, 2001; Pantel & Lin,
2002) will not work for semantic relations without significant modification.
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Table 3. Location of the four words in the WordNet hierarchy.

traffic = collection = group, grouping
water = liquid = fluid = substance, matter = entity, physical thing
street = thoroughfare = road, route = way = artifact =

physical object = entity, physical thing
riverbed = bed, bottom => natural depression = geological formation =

natural object = physical object = entity, physical thing

3.2. VSM approach

Given candidate analogies of the form A:B::C:D, we wish to assign scores to the candidates
and select the highest scoring candidate. The quality of a candidate analogy depends on
the similarity of the semantic relation R; between A and B to the semantic relation R;
between C and D. The relations R and R, are not given to us; the task is to infer these
relations automatically. Our approach to this task, inspired by the Vector Space Model of
information retrieval (Salton & McGill, 1983; Salton, 1989), is to create vectors, | and 7,
that represent features of R; and R,, and then measure the similarity of R, and R, by the
cosine of the angle 6 between | and r;:

r = (rl,l, ---,"1,n>,
"2 = <r2,la ce 7r2,n>7
2?21 ISWIRN PN ry -1 ry -1

B TR
\/ZLl(’”l,i)z'Z?=1(”2,i)2 ST ra e el - ezl

cosine (0) =

We create a vector, r, to characterize the relationship between two words, X and Y, by
counting the frequencies of various short phrases containing X and Y. We use a list of 64
joining terms (see Table 4), such as “of”, “for”, and “to”, to form 128 phrases that contain
X and Y, such as “X of Y, “Y of X7, “X for Y, “Y for X, “X to Y, and “Y to X”’. We then
use these phrases as queries for a search engine and record the number of hits (matching
documents) for each query. This process yields a vector of 128 numbers.

We have found that the accuracy of this approach to scoring analogies improves when
we use the logarithm of the frequency. That is, if x is the number of hits for a query, then
the corresponding element in the vector 7 is log(x+1).* Ruge (1992) found that using the
logarithm of the frequency also yields better results when measuring the semantic similarity
of individual words, and log-based measures for similarity are used in Lin (1998) and Resnik
(1999b). Logarithms are also commonly used in the VSM for information retrieval (Salton
& Buckley, 1988).

We used the AltaVista search engine (http://www.altavista.com/) in the following experi-
ments. At the time our experiments were done, we estimate that AltaVista’s index contained
about 350 million English web pages (about 10!" words). We chose AltaVista for its “*”
operator, which serves two functions:
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Table 4.  The 64 joining terms.

1 “ro 17 “get’ 7 33 “likethe” 49 “then ”

2 “*not” 18 “ give* ” 34 “ make* 50 “ this ”

3 “*very ” 19 “go” 35 “need* ” 51 “to”

4 “ after ” 20 “ goes ” 36 “not” 52 “tothe ”

5 “and not ” 21 “has” 37 “not the ” 53 “turn*

6 “are” 22 “have ” 38 “of” 54 “use*”

7 “at” 23 “in” 39 “ of the ” 55 “when ”

8 “at the ” 24 “in the” 40 “on” 56 “ which ”

9 “ become™ ” 25 “instead of 7 41 “onto” 57 “will 7
10 “ but not ” 26 “into ” 42 “or” 58 “with ”
11 “ contain® ”’ 27 “is” 43 “rather than” 59 “ with the ”
12 “for” 28 “is*” 44 “suchas” 60 “ within ”
13 “ for example 7 29 “1is the ” 45 “than ” 61 “ without ”
14 “ for the ” 30 “lack* ” 46 “that ” 62 “yet”
15 “ from ” 31 “like ” 47 “the ” 63 g7
16 “ from the ” 32 “like * 48 “ their ” 64 g x

1. Whole word matching: In a quoted phrase, an asterisk can match any whole word. The
asterisk must not be the first or last character in the quoted phrase. The asterisk must

have a blank space immediately before and after it. For example, the query “immaculate

* 9 <

very clean” will match “immaculate and very clean”, “immaculate is very clean”,
“immaculate but very clean”, and so on.

2. Substring matching: Embedded in a word, an asterisk can match zero to five charac-
ters. The asterisk must be preceded by at least three regular alphabetic characters. For
example, “colo*r”” matches “color” and “colour”.

Some of the joining terms in Table 4 contain an asterisk, and we also use the asterisk for
stemming, as specified in Table 5. For instance, consider the pair “restrained:limit” and the
joining term ““ * very ”. Since “restrained” is ten characters long, it is stemmed to “restrai*”.
Since “limit” is five characters long, it is stemmed to “limit*”. Joining these stemmed
words, we have the two queries “restrai* * very limit*” and “limit* * very restrai*”. The first
query would match “restrained and very limited”, “restraints are very limiting”, and so on.
The second query would match “limit is very restraining”, “limiting and very restraining”,
and so on.

The vector r is a kind of signature of the semantic relationship between X and Y. Consider
the analogy traffic:street::water:riverbed. The words “traffic” and “street” tend to appear
together in phrases such as “traffic in the street” (544 hits on AltaVista) and “street with
traffic” (460 hits), but not in phrases such as “street on traffic” (7 hits) or “street is traffic”
(15 hits). Similarly, “water” and “riverbed” may appear together as “water in the riverbed”

(77 hits), but “riverbed on water” (0 hits) would be unlikely. Therefore the angle 6 between
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Table 5.  Stemming rules.

Stemming rule Example

If 10 < length, then replace the last 4 characters advertisement — advertise®
with “*7”.

If 8 < length < 10, then replace the last 3 compliance — complia*
characters with “*”.

If 2 < length < 8, then append “*” to the end. rhythm — rhythm*

If length < 2, then do nothing. up — up

the vector r| for traffic:street and the vector r, for water:riverbed tends to be relatively
small, and hence cosine(f) is relatively large.

To answer an SAT analogy question, we calculate the cosines of the angles between the
vector for the stem pair and each of the vectors for the choice pairs. The algorithm guesses
that the answer is the choice pair with the highest cosine. This learning algorithm makes
no use of labeled training data.

The joining terms in Table 4 are similar to the patterns used by Hearst (1992) and
(Berland and Charniak (1999). Hearst (1992) used various patterns to discover hyponyms
in a large corpus. For example, the pattern “NP, such as NP;” provides evidence that NP,
is a hyponym of NP. Thus the phrase “the bow lute, such as the Bambara ndang” suggests
that the Bambara ndang is a type of (hyponym of) bow lute (Hearst, 1992). The joining
term “such as” is item 44 in Table 4.

Berland and Charniak (1999) used patterns to discover meronyms in a large corpus. The
pattern “NPg of the NP;” suggests that NPy may be a part of (meronym of) NP (“the
basement of the building”) (Berland and Charniak, 1999). The joining term “of the” is item
39 in Table 4.

Our work is different from Hearst (1992) and Berland and Charniak (1999) in that they
only consider a single semantic relation, rather than multiple classes of semantic relations.
Also, we are using these patterns to generate features in a high-dimensional vector, rather
than using them to search for particular instances of a specific semantic relationship.

3.3. Experiments

In the following experiments, we evaluate the VSM approach to solving analogies using
a set of 374 SAT-style verbal analogy problems. This is the same set of questions as was
used in Turney et al. (2003), but the experimental setup is different. The ensemble merging
rules of Turney et al. (2003) use supervised learning, so the 374 questions were separated
there into 274 training questions and 100 testing questions. However, the VSM approach
by itself needs no labeled training data, so we are able to test it here on the full set of 374
questions.

Section 3.3.1 considers the task of recognizing analogies and Section 3.3.2 takes a step
towards generating analogies.
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Table 6.  Results of experiments with the 374 analogy questions.

Number Percent
Correct 176 47.1
Incorrect 193 51.6
Skipped 5 1.3
Total 374 100.0
Precision 176/369 47.7
Recall 176/374 47.1
F 474

3.3.1. Recognizing analogies. Following standard practice in information retrieval (van
Rijsbergen, 1979), we define precision, recall, and F as follows:

number of correct guesses

precision =
total number of guesses made
number of correct guesses
recall = - -
maximum possible number correct
F 2 x precision x recall

precision + recall

When any of the denominators are zero, we define the result to be zero. All three of these
performance measures range from 0O to 1, and larger values are better than smaller values.

Table 6 shows the experimental results for our set of 374 analogy questions. Five questions
were skipped because the vector for the stem pair was entirely zeros. Since there are five
choices for each question, random guessing would yield a recall of 20%. The algorithm is
clearly performing much better than random guessing (p < 0.0001 according to Fisher’s
Exact test).

Our analogy question set (Turney et al., 2003) was constructed from books and web sites
intended for students preparing for the SAT college entrance exam, including 90 questions
from unofficial SAT preparation web sites, 14 questions from the Educational Testing
Service (ETS) web site (http://www.ets.org/), 190 questions scanned in from a book with
actual SAT exams (Claman, 2000), and 80 questions typed from SAT guidebooks.

The SAT I test consists of 78 verbal questions and 60 math questions (there is also
an SAT II test, covering specific subjects, such as chemistry). The questions are multiple
choice, with five choices per question. The verbal and math scores are reported separately.
The raw SAT I score is calculated by giving one point for each correct answer, zero points
for skipped questions, and subtracting one quarter point for each incorrect answer. The
quarter point penalty for incorrect answers is chosen so that the expected raw score for
random guessing is zero points. The raw score is then converted to a scaled score that ranges
from 200 to 800.* The College Board publishes information about the percentile rank of
college-bound senior high school students for the SAT I verbal and math questions.’ On
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Table 7. Verbal SAT scores.

Percent correct

(no skipping) SAT I raw SAT I scaled
Note (%) score verbal score verbal Percentile rank
100 78 800 £ 10 100.0 £0.5
92 70 740 £ 20 98.0£ 1.0
82 60 645 + 15 88.5+25
71 50 580 & 10 74.0£3.0
College-bound mean — 57 36 504 £ 10 48.0£3.5
VSM algorithm — 47 26 445 £ 10 29.0 £3.0
41 20 410 £ 10 185£25
30 10 335+ 15 55+15
Random guessing — 20 0 225 £25 0.5+0.5

the verbal SAT test, the mean scaled score for 2002 was 504. We used information from
the College Board to make Table 7.

Analogy questions are only a subset of the 78 verbal SAT questions. If we assume that
the difficulty of our 374 analogy questions is comparable to the difficulty of other verbal
SAT questions, then we can estimate that the average college-bound senior would correctly
answer about 57% of the 374 analogy questions. We can also estimate that the performance
of the VSM approach corresponds to a percentile rank of 29 + 3. Claman (2000) suggests
that the analogy questions may be somewhat harder than other verbal SAT questions, so
we may be slightly overestimating the mean human score on the analogy questions.

There is a well-known trade-off between precision and recall: By skipping hard questions,
we can increase precision at the cost of decreased recall. By making multiple guesses for
each question, we can increase recall at the cost of decreased precision. The F measure is
the harmonic mean of precision and recall. It tends to be largest when precision and recall
are balanced.

For some applications, precision may be more important than recall, or vice versa. Thus
it is useful to have a way of adjusting the balance between precision and recall. We observed
that the difference between the cosine of the best choice and the cosine of the second best
choice (the largest cosine minus the second largest) seems to be a good indicator of whether
the guess is correct. We call this difference the margin. By setting a threshold on the margin,
we can trade off precision and recall.

When the threshold on the margin is a positive number, we skip every question for which
the margin is less than the threshold. This tends to increase precision and decrease recall.
On the other hand, when the threshold on the margin is negative, we make two guesses
(both the best and the second best choices) for every question for which the margin is less
than the absolute value of the threshold. Ties are unlikely, but if they happen, we break
them randomly.

Consider the example in Table 8. The best choice is (e) and the second best choice is (c).
(In this case, the best choice is correct.) The margin is 0.00508 (0.69265 minus 0.68757).
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Table 8. An example of an analogy question, taken from the set of 374 questions.

Stem pair Traffic:street Cosine
Choices (a) ship:gangplank 0.31874
(b) crop:harvest 0.57234
(c) car:garage 0.68757
(d) pedestrians:feet 0.49725
(e) water:riverbed 0.69265
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Figure 1.  Precision and recall for 374 SAT-style analogy questions.

If the threshold is between —0.00508 and +-0.00508, then the output is choice (e) alone. If
the threshold is greater than 4+-0.00508, then the question is skipped. If the threshold is less
than —0.00508, then the output is both (e) and (c).

Figure 1 shows precision, recall, and F' as the threshold on the margin varies from —0.11
to +0.11. The vertical line at the threshold zero corresponds to the situation in Table 6.
With a threshold of +0.11, precision reaches 59.2% and recall drops to 11.2%. With a
threshold of —0.11, recall reaches 61.5% and precision drops to 34.5%. These precision-
recall results compare favourably with typical results in information retrieval (Voorhees &
Harman, 1997.

In Figure 1, we see that the F value reaches its maximum when the threshold on the
margin is near zero. This is expected, since F is intended to favour a balance between
precision and recall.

The experiments presented here required 287,232 queries to AltaVista (374 analogy
questions x 6 word pairs per question x 128 queries per word pair). Although AltaVista is
willing to support automated queries of the kind described here, as a courtesy, we inserted
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a five second delay between each query. Thus processing the 287,232 queries took about
seventeen days.

3.3.2. Generating analogies. The results so far suggest that our algorithm is capable of
recognizing analogies with some degree of success, but an interesting question is whether it
might be capable of generating analogies. That is, given a stem pair, the algorithm can often
pick out the correct choice pair from a set of five choices, but generating a verbal analogy
from scratch is a more difficult problem. One approach to the generation problem is to try
to reduce it to the recognition problem, by randomly generating candidate analogies and
then trying to recognize good analogies among the candidates.

As a first step towards generating analogies, we expanded the number of choices for each
stem pair. We dropped the five questions for which the stem vector was all zeros, leaving
369 questions. For each of the remaining questions, we combined the 369 correct choice
pairs. For each of the 369 stem pairs, the algorithm had to choose the correct word pair
from among the 369 possible answers.

For each of the 369 stem pairs, the 369 choice pairs were sorted in order of decreasing
cosine. We then examined the top ten most highly ranked choices to see whether the correct
choice was among them. Table 9 shows the result of this experiment. The first row in the
table shows that the first choice was correct for 31 of the 369 stems (8.4%). The last row
shows that the correct choice appears somewhere among the top ten choices 29.5% of the
time. With random guessing, the correct choice would appear among the top ten 2.7% of
the time (10/369 = 0.027).

This experiment actually underestimates the quality of the output. Table 10 shows the
top ten choices for two stem pairs. For the first stem pair, barley:grain, the correct choice,
according to the original formulation of the test, is pine:tree, which is the third choice
here. The semantic relation between barley and grain is type-of (hyponym), so the first two
choices, aluminum:metal and beagle:dog, are perfectly acceptable alternatives. In fact, it
could be argued that aluminum:metal is a better choice, because aluminum and barley are

Table 9.  Selecting the correct word pair from a set of 369 choices.

Rank # Matches # Matches % Cumulative # Cumulative %
1 31 8.4 31 8.4
2 19 5.1 50 13.6
3 13 35 63 17.1
4 11 3.0 74 20.1
5 6 1.6 80 21.7
6 7 1.9 87 23.6
7 9 24 96 26.0
8 5 14 101 274
9 5 1.4 106 28.7
10 3 0.8 109 29.5
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Table 10.  Two examples of stem pairs and the top ten choices.

Rank Word pair Cosine Question number
Stem barley:grain 33

1 aluminum:metal 0.8928 198
2 beagle:dog 0.8458 190
3 pine:tree 0.8451 33
4 emerald:gem 0.8424 215
5 sugar:sweet 0.8240 327
6 pseudonym:name 0.8151 240
7 mile:distance 0.8142 21
8 oil:lubricate 0.8133 313
9 novel:book 0.8117 182
10 minnow:fish 0.8111 193
Stem tourniquet:bleeding 46

1 antidote:poisoning 0.7540 308
2 belligerent:fight 0.7482 84
3 chair:furniture 0.7481 107
4 mural:wall 0.7430 302
5 reciprocate:favor 0.7429 151
6 menu:diner 0.7421 284
7 assurance:uncertainty 0.7287 8

8 beagle:dog 0.7210 19
9 canvas:painting 0.7205 5
10 ewe:sheep 0.7148 261

mass nouns (i.e., they do not form plurals), but pine is a count noun (e.g., “I have two pines
in my yard.”).

For the second stem pair in Table 10, tourniquet:bleeding, the original correct choice,
splint:movement, is not among the top ten choices. (A tourniquet prevents or reduces bleed-
ing; a splint prevents or reduces movement.) However, the first choice, antidote:poisoning,
is a good alternative. (A tourniquet is used to treat bleeding; an antidote is used to treat
poisoning.) The seventh choice, assurance:uncertainty, also seems reasonable. (Assurance
puts an end to uncertainty; a tourniquet puts an end to bleeding.)®

34. Discussion

As mentioned in Section 2.1, the VSM algorithm performs as well as an ensemble of twelve
other modules (Turney et al., 2003). All of the other modules employed various lexical
resources (WordNet, Dictionary.com, and Wordsmyth.net), whereas the VSM module learns
from a large corpus of unlabeled text, without a lexicon. The VSM performance of 47.1%
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correct is well above the 20% correct that would be expected for random guessing, but it is
also less than the 57% correct that would be expected for the average college-bound senior
high school student.

When the number of choices for each stem is expanded from five to 369, the correct
choice is among the top ten choices 29.5% of the time, where random guessing would give
2.7%. There is certainly much room for improvement, but there is also good evidence that
verbal analogies can be solved algorithmically.

The list of joining terms in Table 4 is somewhat arbitrary. This list was based on
preliminary experiments with a development set of analogy questions. The terms in the
list were selected by intuition and there is no reason to believe they are optimal. It might
be possible to automatically learn joining terms, perhaps by extending the algorithm of
Ravichandran and Hovy (2002).

We attempted to take a more principled approach to the joining terms, by creating
a larger list of 142 joining terms, and then using feature selection algorithms (forward
selection, backward elimination, genetic algorithm selection) to select an optimal subset
of the features. None of the selected subsets were able to achieve statistically significantly
better performance in cross-validation testing compared to the original set in Table 4. The
subsets seemed to overfit the training questions. We believe that this problem can be fixed
with a larger set of questions.

The idea of using the margin to trade off precision and recall was inspired by Support
Vector Machines, which use a somewhat related concept of margin (Cristianini & Shawe-
Taylor, 2000). This suggests the possibility of using a supervised learning approach, in
which a training set would be used to tune parameters to maximize the margin. We believe
that this is a good approach, but so far we have not been successful with it.

The execution time (seventeen days) would be much less if we had a local copy of the
AltaVista database. Progress in hardware will soon make it practical for a standard desktop
computer to search in a local copy of a corpus of this size (about 10'" words).

4. Noun-modifier relations

In Section 4.1, we discuss applications for an algorithm for classifying noun-modifier
relations. Section 4.2 presents the classes of noun-modifier relations that are used in our
experiments (Nastase & Szpakowicz, 2003). The classification algorithm is described in
Section 4.3. The experiments are in Section 4.4, followed by discussion of the results in
Section 4.5.

4.1. Applications

Noun-modifier word pairs are common in English and other languages. An algorithm for
classification of noun-modifier relations would be useful in machine translation, information
extraction, and word sense disambiguation. We illustrate this with examples taken from the
collection of 600 labeled noun-modifier pairs used in our experiments (see Table 11).
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Machine translation: A noun-modifier pair such as “electron microscope” might not have
a direct translation into an equivalent noun-modifier pair in another language. In the
translation process, it may be necessary to expand the noun-modifier pair into a longer
phrase, explicitly stating the implicit semantic relation. Is the semantic relation purpose
(a microscope for electrons; e.g., for viewing electrons), instrument (a microscope that
uses electrons), or material (a microscope made out of electrons)? The answer to this
question may be used in translation. (The terms purpose, instrument, and material are
explained in Table 11.)

Information extraction: A typical information extraction task would be to process news
stories for information about wars. The task may require finding information about the
parties involved in the conflict. It would be important to know that the semantic relation
in the noun-modifier pair “cigarette war” is fopic (a war about cigarettes), not agent (a
war by cigarettes; i.e., cigarettes are fighting the war).

Word sense disambiguation: The word “plant” might refer to an industrial plant or a
living organism. If a document contains the noun-modifier pair “plant food”, a word
sense disambiguation algorithm can take advantage of the information that the semantic
relation involved is beneficiary (the plant benefits from the food), rather than source (the
plant is the source of the food).

4.2. Classes of relations

The following experiments use the 600 labeled noun-modifier pairs of Nastase and
Szpakowicz (2003). This data set includes information about the part of speech and Word-
Net synset (synonym set; i.e., word sense tag) of each word, but our algorithm does not use
this information.

Table 11 lists the 30 classes of semantic relations. The table is based on Appendix A
of Nastase and Szpakowicz (2003), with some simplifications. The original table listed
several semantic relations for which there were no instances in the data set. These were
relations that are typically expressed with longer phrases (three or more words), rather than
noun-modifier word pairs. For clarity, we decided not to include these relations in Table 11.

In this table, H represents the head noun and M represents the modifier. For example, in
“flu virus”, the head noun (H) is “virus” and the modifier (M) is “flu” (*). In English, the
modifier (typically a noun or adjective) usually precedes the head noun. In the description of
purpose, V represents an arbitrary verb. In “concert hall”, the hall is for presenting concerts
(V is “present”) or holding concerts (V is “hold”) (}).

Nastase and Szpakowicz (2003) organized the relations into groups. The five non-
indented terms in the ‘“Relation” column of Table 11 are the names of five groups of
semantic relations. (The original table had a sixth group, but there are no examples of this
group in the data set.) We make use of this grouping in Section 4.4.2.

4.3. Nearest-neighbour approach

The following experiments use single nearest-neighbour classification with leave-one-out
cross-validation. A vector of 128 numbers is calculated for each noun-modifier pair, as
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Table 11.  Classes of semantic relations (Nastase & Szpakowicz, 2003).
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Relation Abbr Example phrase Description
Causality
Cause cs Flu virus (*) M makes M occur or exist, M is necessary and
sufficient
Effect eff Exam anxiety M makes M occur or exist, M is necessary and
sufficient
Purpose prp Concert hall (}) M is for V-ing M, M does not necessarily occur or
exist
Detraction detr Headache pill M opposes M, M is not sufficient to prevent M
Temporality
Frequency freq Daily exercise M occurs every time M occurs
Time at tat Morning exercise M occurs when M occurs
Time through tthr Six-hour meeting M existed while M existed, M is an interval of time
Spatial
Direction dir Outgoing mail M is directed towards M, M is not the final point
Location loc Home town M is the location of M
Location at lat Desert storm M is located at M
Location from Ifr Foreign capital M originates at M
Participant
Agent ag Student protest M performs M, M is animate or natural phenomenon
Beneficiary ben Student discount M benefits from M
Instrument inst Laser printer M uses M
Object obj Metal separator M is acted upon by M
Object property obj-prop Sunken ship M underwent M
Part part Printer tray M is part of M
Possessor posr National debt M has M
Property prop Blue book MisM
Product prod Plum tree M produces M
Source src Olive oil M is the source of M
Stative st Sleeping dog M is in a state of M
Whole whl Daisy chain M is part of M
Quality
Container cntr Film music M contains M
Content cont Apple cake M is contained in M
Equative eq Player coach M is also M
Material mat Brick house M is made of M
Measure meas Expensive book M is a measure of M
Topic top Weather report M is concerned with M
Type type Oak tree M is a type of M
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described in Section 3.2. The similarity of two vectors is measured by the cosine of their
angle. For leave-one-out cross-validation, the testing set consists of a single vector and the
training set consists of the 599 remaining vectors. The data set is split 600 times, so that
each vector gets a turn as the testing vector. The predicted class of the testing vector is the
class of the single nearest neighbour (the vector with the largest cosine) in the training set.

4.4. Experiments

Section 4.4.1 looks at the problem of assigning the 600 noun-modifier pairs to thirty
different classes. Section 4.4.2 considers the easier problem of assigning them to five
different classes.

4.4.1. Thirty classes. Table 12 gives the precision, recall, and F values for each of the
30 classes. The column labeled “class percent” corresponds to the expected precision,
recall, and F for the simple strategy of guessing each class randomly, with a probability
proportional to the class size. The actual average F of 26.5% is much larger than the
average F of 3.3% that would be expected for random guessing. The difference (23.2%) is
significant with 99% confidence (p < 0.0001, according to the paired ¢-test). The accuracy
is 27.8% (167/600).

The average precision, recall, and F values in Table 12 are calculated using macroav-
eraging, rather than microaveraging (Lewis, 1991). Microaveraging combines the true
positive, false positive, and false negative counts for all of the classes, and then calcu-
lates precision, recall, and F' from the combined counts. Macroaveraging calculates the
precision, recall, and F for each class separately, and then calculates the averages across
all classes. Macroaveraging gives equal weight to all classes, but microaveraging gives
more weight to larger classes. We use macroaveraging (giving equal weight to all classes),
because we have no reason to believe that the class sizes in the data set reflect the actual
distribution of the classes in a real corpus. (Microaveraging would give a slight boost to
our results.)

We can adjust the balance between precision and recall, using a method similar to the
approach in Section 3.3.1. For each noun-modifier pair that is to be classified, we find the
two nearest neighbours. If the two nearest neighbours belong to the same class, then we
output that class as our guess for the noun-modifier pair that is to be classified. Otherwise,
we calculate the margin (the cosine of the first nearest neighbour minus the cosine of the
second nearest neighbour). Let m be the margin and let ¢ be the threshold. If —m < ¢ < +m,
then we output the class of the first nearest neighbour as our guess for the given noun-
modifier pair. If # > m, then we abstain from classifying the given noun-modifier pair (we
output no guess). If t < —m, then we output two guesses for the given noun-modifier pair,
the classes of both the first and second nearest neighbours.

Figure 2 shows the trade-off between precision and recall as the threshold on the margin
varies from —0.03 to +0.03. The precision, recall, and F values that are plotted here are
the averages across the 30 classes. The vertical line at zero corresponds to the bottom row
in Table 12. With a threshold of 0.03, precision rises to 35.5% and recall falls to 11.7%.
With a threshold of —0.03, recall rises to 36.2% and precision falls to 23.4%.
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Table 12.  The precision, recall, and F for each of the 30 classes of semantic relations.

Class Precision

Class name Class size percent (%) Recall (%)  F (%)
ag 36 6.0 40.7 30.6 349
ben 9 1.5 20.0 22.2 21.1

cntr 3 0.5 40.0 66.7 50.0
cont 15 2.5 23.5 26.7 25.0
cs 17 2.8 18.2 11.8 14.3
detr 4 0.7 50.0 50.0 50.0
dir 8 1.3 333 12.5 18.2
eff 34 5.7 13.5 14.7 14.1

eq 5 0.8 0.0 0.0 0.0

freq 16 2.7 47.1 50.0 48.5
inst 35 5.8 15.6 14.3 14.9
lat 22 37 14.3 13.6 14.0
Ifr 21 35 8.0 9.5 8.7

loc 5 0.8 0.0 0.0 0.0

mat 32 53 34.3 375 35.8
meas 30 5.0 69.2 60.0 64.3
obj 33 5.5 21.6 24.2 229
obj-prop 15 2.5 714 333 45.5
part 9 1.5 16.7 222 19.0
posr 30 5.0 23.5 26.7 25.0
prod 16 2.7 14.7 31.3 20.0
prop 49 8.2 55.2 32.7 41.0
prp 31 52 14.9 22.6 17.9
src 12 2.0 333 25.0 28.6
st 9 1.5 0.0 0.0 0.0

tat 30 5.0 64.3 60.0 62.1

top 45 7.5 20.0 20.0 20.0
tthr 6 1.0 40.0 333 36.4
type 16 2.7 26.1 37.5 30.8
whl 7 1.2 8.3 14.3 10.5
Average 20 33 27.9 26.8 26.5

In Figure 2, F is higher for negative thresholds on the margin. We do not have an
explanation for this. We believe it is due to noise.

4.4.2. Five classes. Classification with 30 distinct classes is a hard problem. To make the
task easier, we can collapse the 30 classes to 5 classes, using the grouping that is given
in Table 11. For example, agent and beneficiary both collapse to participant. Table 13
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Table 13.  The precision, recall, and F for each of the 5 groups of classes of semantic relations.

Class name Class size Class percent Precision (%) Recall (%) F (%)
Causality 86 14.3 21.2 24.4 22.7
Participant 260 433 55.3 51.9 53.6
Quality 146 24.3 454 47.3 46.3
Spatial 56 9.3 29.1 28.6 28.8
Temporality 52 8.7 66.0 63.5 64.7
Average 120 20.0 434 43.1 43.2
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Figure 2. Precision, recall, and F with varying thresholds on the margin, for 30 classes.

gives the results for the 5 class problem. Random guessing would yield an average F value
of 20.0%, but the actual average F value is 43.2%. The difference (23.2%) is significant
with 95% confidence (p < 0.05, according to the paired t-test). The accuracy is 45.7%
(274/600).

As before, we can adjust the balance between precision and recall by varying a threshold
on the margin. Figure 3 shows precision and recall as the threshold varies from —0.03 to
+0.03. The precision, recall, and F values are averages across the 5 classes (macroaverages).
The vertical line at zero corresponds to the bottom row in Table 13. With a threshold of
+0.03, precision rises to 51.6% and recall falls to 23.9%. With a threshold of —0.03, recall
rises to 56.9% and precision falls to 37.2%.
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Figure 3.  Precision, recall, and F with varying thresholds on the margin, for 5 classes.

These experiments required 76,800 queries to AltaVista (600 word pairs x 128 queries
per word pair). With a five second delay between each query, processing the queries took
about five days.

5. Discussion

The performance of the nearest-neighbour VSM algorithm is well above random chance.
With 30 classes, the average F' is 26.5%, where random guessing would give an expected
average F of 3.3%. With 5 classes, the average F is 43.2%, where random guessing would
give an expected average F of 20.0%. As far as we know, this is the first attempt to classify
semantic relations without a lexicon. Research with the same data (Nastase & Szpakowicz,
2003), but using a lexicon, is still in the exploratory phase.

However, there is clearly much opportunity for improvement. Most practical tasks would
likely require higher accuracy than we have obtained here. One place to look for improve-
ment is in the joining terms. For the experiments in this section, we used the same joining
terms as with the analogy questions (Table 4). It seems possible that the joining terms that
work best for analogy questions are not necessarily the same as the terms that work best
for classifying semantic relations. The kinds of semantic relations that are typically tested
in SAT questions are not necessarily the kinds of semantic relations that typically appear
in noun-modifier pairs.

We also expect better results with more data. Although 600 noun-modifier pairs may
seem like a lot, there are 30 classes, so the average class has only 20 examples. We would
like to have at least 100 examples of each class, but manually labeling 3000 examples
would require a substantial amount of painstaking effort.
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The classification scheme given in Table 11 is only one of many possible ways of
classifying semantic relations. Each of the papers discussed in Section 2.3 has a different
classification of semantic relations (Vanderwende, 1994; Barker & Szpakowicz, 1998;
Rosario & Hearst, 2001; Rosario et al., 2002; Nastase & Szpakowicz, 2003). Madsen,
Pedersen, and Thomsen (2001) give a carefully constructed hierarchy of semantic relations,
but this classification scheme has not yet been applied to labeling noun-modifier pairs.
None of these classification schemes have been validated by determining the level of
inter-annotator agreement.

Another limitation is the assumption that each noun-modifier pair can only belong to one
class. For example, “concert hall” might be classified as purpose (Table 11), but it could
equally well be classified as location. A more flexible approach would allow multiple labels
for each noun-modifier pair.

It is reasonable to doubt that any classification scheme for semantic relations can be
complete. Each domain has its own special types of semantic relations. For example,
Stephens et al. (2001) provide a classification scheme for relationships between genes,
including classes such as “NP, phosphorylates NP;”. However, it is plausible that a
general-purpose scheme like Table 11 can capture the majority of semantic relations in
general text at a reasonable level of granularity.

6. Limitations and future work

Perhaps the biggest limitation of this work is the accuracy that we have achieved so far.
Although it is state-of-the-art for SAT analogy questions and unrestricted-domain noun-
modifier semantic relations, it is lower than we would like. However, both of these tasks are
ambitious and research on them is relatively new. We believe that the results are promising
and we expect significant improvements in the near future.

The VSM has been extensively explored in information retrieval. There are many ideas
in the IR literature that might be used to enhance the performance of VSM applied to
analogies and semantic relations. We have begun some preliminary exploration of various
term weighting schemes (Salton & Buckley, 1988) and extensions of the VSM such as the
GVSM (Wrong et al., 1985) and LSA (Landauer & Dumais, 1997).

An area for future work is exploring the sensitivity of the VSM to the size of the corpus.
It seems plausible that our (limited) success with the VSM is due (to a large extent) to the
huge corpus indexed by AltaVista. It is possible that the data we need, regarding relations
between words, is highly sparse. Our approach might fail with a typical corpus, such as the
British National Corpus (BNC). We estimate that AltaVista indexes about 10'! words, but
BNC only contains about 10® words.

However, more sophisticated algorithms, such as LSA, may be able to extract the nec-
essary information from a much smaller corpus. For the task of measuring similarity
between individual words, Landauer and Dumais (1997) compared the cosine measure
using vectors generated directly from a corpus versus vectors generated by applying LSA
to the corpus. On the TOEFL multiple-choice synonym questions, the cosine measure with
directly-generated vectors achieved a score of only 36.8%, but the cosine measure with
LSA-generated vectors achieved a score of 64.4%.”
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We believe that our set of joining terms (Table 4) is far from ideal. It seems likely
that much larger vectors, with thousands of elements instead of 128, would improve the
performance of the VSM algorithm. With the current state of technology, experiments with
alternative sets of joining terms are very time consuming.

The joining terms raise some interesting questions, which we have not yet addressed.
Which terms are most important? Many of them are prepositions. Does this work have any
significant implications for research in the semantics of prepositions (Regier, 1996)? Many
of them are verbs. What are the implications for research in the semantics of verbs (Gildea
& Jurafsky, 2002)? Can we use any ideas from research on prepositions and verbs to guide
the search for an improved set of joining terms? These are questions for future work.

In this paper, we have focused on the VSM algorithm, but we believe that ensemble
methods will ultimately prove to yield the highest accuracy (Turney et al., 2003). Language
is a complex, heterogeneous phenomenon, and it seems unlikely that any single, pure
approach will be best. The best approach to analogies and semantic relations will likely
combine statistical and lexical resources. However, as a research strategy, it seems wise
to attempt to push the performance of each individual module as far as possible before
combining the modules.

7. Conclusion

We believe that analogy and metaphor play a central role in human cognition and language
(Lakoff & Johnson, 1980; Hofstadter et al., 1995; French, 2002). SAT-style analogy ques-
tions are a simple but powerful and objective tool for investigating these phenomena. Much
of our everyday language is metaphorical, so progress in this area is important for computer
processing of natural language.

A more direct application of SAT question answering technology is classifying noun-
modifier relations, which has potential applications in machine translation, information
extraction, and word sense disambiguation. Contrariwise, a good algorithm for classifying
semantic relations should also help to solve verbal analogies, which argues for a strong
connection between recognizing analogies and classifying semantic relations.

In this paper, we have shown how the cosine metric in the Vector Space Model can be
used to solve analogy questions and to classify semantic relations. The VSM performs
much better than random chance, but below human levels. However, the results indicate
that these challenging tasks are tractable and we expect further improvements. We believe
that the VSM can play a useful role in an ensemble of algorithms for learning analogies
and semantic relations.
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Notes

1. The College Board has announced that analogies will be eliminated from the SAT in 2005
(http://www.collegeboard.com/about/newsat/newsat.html), as part of a shift in the exam to reflect changes
in the curriculum. The SAT was introduced as the Scholastic Aptitude Test in 1926, its name was changed to
Scholastic Assessment Test in 1993, then changed to simply SAT in 1997.

2. All nine possible combinations of noun, verb, and adjective can be found in the word pairs in our 374 SAT
questions. In an SAT analogy A:B::C:D, A and C have the same part of speech and B and D have the same part
of speech.

3. We add 1 to x because the logarithm of zero is undefined. The base of the logarithm does not matter, since all
logarithms are equivalent up to a constant multiplicative factor. Any constant factor drops out when calculating
the cosine.

4. See http://www.collegeboard.com/prod_downloads/about/news_info/cbsenior/yr2002/pdf/two.pdf.

5. See http://www.collegeboard.com/prod_downloads/about/news_info/cbsenior/yr2002/pdf/threeA.pdf.

6. Even if the reader does not agree with our judgments about what “seems reasonable”, the performance of
29.5% remains valid as a lower bound on the quality of the output; we only disagree on how far the quality is
from this lower bound.

7. Landauer and Dumais (1997) report scores that were corrected for guessing by subtracting a penalty of 1/3 for
each incorrect answer. The performance of 64.4% translates to 52.5% when corrected for guessing, and 36.8%
translates to 15.8%.
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