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Abstract. A linear model tree is a decision tree with a linear functional model in each leaf. Previous model
tree induction algorithms have been batch techniques that operate on the entire training set. However there are
many situations when an incremental learner is advantageous. In this article a new batch model tree learner is
described with two alternative splitting rules and a stopping rule. An incremental algorithm is then developed that
has many similarities with the batch version but is able to process examples one at a time. An online pruning rule
is also developed. The incremental training time for an example is shown to only depend on the height of the
tree induced so far, and not on the number of previous examples. The algorithms are evaluated empirically on a
number of standard datasets, a simple test function and three dynamic domains ranging from a simple pendulum
to a complex 13 dimensional flight simulator. The new batch algorithm is compared with the most recent batch
model tree algorithms and is seen to perform favourably overall. The new incremental model tree learner compares
well with an alternative online function approximator. In addition it can sometimes perform almost as well as the
batch model tree algorithms, highlighting the effectiveness of the incremental implementation.
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1. Introduction

There are many situations when incremental learning is more suitable than a batch process-
ing technique. If the input is a continuous stream of data it may not be tractable to record all
of its history and execute a batch algorithm each time an output is required. For example an
agent operating in a real-time environment may need to constantly process the latest sensor
information to determine the next action. A large processing delay may be unacceptable,
and some form of incremental learning algorithm is required that scales linearly with the
incoming data.

This article focuses on the problem of inducing a model of the environment to be used
for control, however the methods developed have a potentially much wider applicability.
In order to control an agent it is necessary to understand how the world evolves, and how
the agent’s actions affect this evolution. This knowledge is often obtained by constructing
a model of the environment that can be analysed to make predictions. In control theory the
model (or a parameterised family of models in adaptive control) is generally specified in
advance. However we are interested in developing an entirely autonomous technique that
requires minimal prior knowledge.
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Linear models have been intensively studied in both control theory and regression anal-
ysis, and many stability proofs and convergence theorems exist for these systems. However
most interesting real-world domains exhibit some degree of non-linearity, and both learn-
ing and control become significantly harder. A non-linear model of a continuous dynamic
environment can be formulated in continuous time as

ż = f (z, u) (1)

where z is an n dimensional state vector, u is an m dimensional input, ż is the rate of
change of z with respect to time, and the model f is assumed to be time-invariant (Slotine
& Li, 1991). For example the dynamics of an aircraft can be formulated in this manner.
The learning problem is to incrementally induce a model of these dynamics using real-time
observations of the measured state variables and the actions taken by the pilot.

Common classical methods of system identification include analysing either the fre-
quency response of the system to sine waves of different frequencies or the time-domain
response to impulse or step inputs. These techniques only apply to linear systems and are
not suited to the multiple-input multiple-output (MIMO) domains in which we are inter-
ested. The identification of non-linear MIMO models usually involves a transformation of
the inputs such that the model f is linear in the new feature space, and standard online
learning techniques can be applied (Ljung, 1987). This transformation, however, requires
detailed prior knowledge of the types of non-linearity present.

Instance-based methods that store all training examples and form predictions when re-
quired can be effective. Nearest neighbour, kernel regression (Hastie & Loader, 1993) and
locally weighted regression (LWR) (Atkeson, Moore, & Schaal, 1997) are increasingly so-
phisticated methods for making the predictions. Recently Šuc, Vladušič, and Bratko (2004)
have applied LWR at the leaves of a tree of qualitative constraints to give qualitatively
faithful quantitative predictions. With all these techniques, as more examples arrive making
predictions becomes slower or examples must be selectively discarded. This article concen-
trates on alternative algorithms that maintain some type of internal model instead of storing
examples, and can therefore always make fast predictions.

Standard parametric machine learning methods for incrementally inducing an unknown
function f include neural networks and locally or globally optimised radial basis functions
(RBFs) (Nelles, 2001). The training of neural networks can be slow, is prone to local
minima, and convergence is not guaranteed. It is also difficult to estimate in advance the
required network structure to achieve a pre-specified degree of accuracy. RBFs comprise a
set of models that are spatially localised in the input space by fixed weighting functions.
Global optimisation takes place over all local models while local optimisation divides up
the problem by optimising each model separately, thus avoiding a very high-dimensional
minimisation problem. If the number of receptive fields are distributed uniformly over the
input domain then the number of RBFs scales exponentially with the number of dimensions,
and even covering a 4-dimensional space becomes difficult. In addition the input range and
approximate curvature of the function being approximated must be known in advance to
specify how many receptive fields are required and how large they should be.

When there is little prior knowledge it may be more beneficial to consider non-parametric
alternatives where the number of learning parameters is adjusted by the algorithm. Schaal
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and Atkeson (1998) have developed an RBF-based algorithm that not only dynamically
allocates models as required, but also adjusts the shape of each local weighting function.
Enhanced dimensionality reduction has also been incorporated (Vijayakumar & Schaal,
2000). These algorithms perform well for data with a low intrinsic dimensionality, even if
the input data itself has a high number of dimensions. However there are several parameters
that are hard to specify without trial and error, and the range of inputs and a metric over the
input space must be defined in advance.

A decision tree with a linear model in each leaf (a linear model tree) can also approx-
imate a non-linear function. The induction of such trees in a batch manner has received
significant attention in the literature, however the incremental induction of model trees has
only recently been addressed (Potts, 2004a, b). This article expands and builds upon this
work, bringing together the batch and incremental versions of the two splitting rules under
a unified framework, and extending the empirical evaluation. In the framework model trees
are build from the top down, using one of two statistical tests to determine both the split
point and whether to carry on splitting. One statistical test compares the error in the leaf to
the sum of errors on each side of a candidate split, and the other analyses the distributions of
positive and negative errors. Both test the hypothesis that all the examples observed in the
leaf were generated from a single linear model, and splitting occurs when this hypothesis
is rejected. A stopping rule is used to limit the asymptotic tree size, and in the incremental
algorithms the tree can be pruned back if an early split point is deemed to be incorrect later.

Section 2 gives a brief overview of linear model trees and the online linear regression
techniques used in this article. Section 3 surveys related work on both the incremental
induction of classification trees and the batch induction of linear model trees. Sections 4
and 5 describe the batch and incremental versions of the algorithm, and Section 6 details
the method for smoothing predictions. Section 7 presents the experimental results, the
implications are discussed in Section 8 and finally we conclude and suggest areas for future
work.

2. Linear model trees

The problem of learning the n dimensional function in (1) can be divided into the n smaller
problems of separately learning each dimension, or component, of ż. Each of these tasks
can be formulated as a regression problem

y = f (z, u) + ε

where f (z, u) is the corresponding component of ż. The observed values y are corrupted
by zero-mean noise ε with unknown variance σ 2. The aim of a regression analysis is to find
an approximation f̂ to f that minimises some cost function (e.g. sum of squared errors)
over a set of training examples.

For a linear model tree the estimate f̂ is a binary decision tree with a linear model in
each leaf (see Figure 1). Each internal node in the tree contains a splitting decision based
on the regressor variables that partitions the data into two subsets corresponding to the left
and right sub-trees. Often the splits are restricted to being axis-parallel and the decision tree
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Figure 1. Example of a simple linear model tree with one regressor x .

partitions the input space into multi-dimensional rectangles. In these rectangles the estimate
is linear with respect to the regressors and standard linear optimisation techniques can be
applied. Within each leaf

f̂ (z, u) = f̂ (x) = xT θ̂ (2)

where x is a d dimensional column vector constructed from the d − 1 numeric predictors
and a constant (included to simplify the notation), and θ̂ is a column vector of d parameters.
For each example i the difference between the observed value and the model prediction is

ei = yi − f̂ (xi ) (3)

and the linear least squares estimate θ̂LS of the function f is the value of θ̂ that minimises
the sum of these squared errors

J =
N∑

i=1

e2
i

over the N training examples 〈xi , yi 〉 in the leaf. An analytical solution to this minimisation
can be obtained by stacking the N equations on top of each other. If we define the N × 1
vector y, the N × d matrix X and the N × 1 vector e

y =




y1
...

yN



 X =





xT
1
...

xT
N



 e =




e1
...

eN





then (3) becomes

e = y − Xθ̂
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Table 1. Recursive least squares (RLS) algorithm.

Initialise PN = [XT X]−1, θ̂N and RSSN from an initial collection of N examples using (4) and (5).

For each subsequent example 〈xi , yi 〉 compute

θ̂i = θ̂i−1 + Pi−1xi
(
yi − xT

i θ̂i−1
)

1 + xT
i Pi−1xi

Pi = Pi−1 − Pi−1xi xT
i Pi−1

1 + xT
i Pi−1xi

RSSi = RSSi−1 + (
yi − xT

i θ̂i−1
)(

yi − xT
i θ̂i

)

and the quadratic J = eT e can be minimised with respect to θ̂. This gives the linear least
squares estimate

θ̂LS = [XT X]−1XT y (4)

The residual for each example is the difference between the value yi and the least squares
prediction xT

i θ̂LS, and the residual sum of squares (RSS) is the minimum value of J

RSS =
N∑

i=1

(
yi − xT

i θ̂LS
)2

(5)

If the true function f is indeed linear over the area approximated by the decision tree leaf
and the noise is assumed to be independent and Gaussian, then it can be shown that RSS/σ 2

is χ2-distributed with N −d degrees of freedom (Ljung, 1987).
The great advantage of the least squares estimate in an incremental setting is that a simple

online update can calculate each successive estimate and RSS value. Given the previous
estimate and RSS value at time i − 1 and the next example at time i , the recursive least
squares (RLS) algorithm shown in Table 1 determines the next estimate and RSS value
(Haykin, 2002; Ljung, 1987)

θ̂i−1, RSSi−1, 〈xi , yi 〉 RLS−→ θ̂i , RSSi (6)

The algorithm can be started by collecting d or more examples and solving (4) and (5) to
obtain initial values for θ̂ and RSS. Each online update takes time O(d2).

It is therefore straightforward to maintain the linear least squares estimate in each leaf
of a model tree in an incremental manner. The difficulty lies in defining the tree structure
itself.

3. Related work

In this section we survey previous work on the incremental induction of trees and show
that existing techniques do not fulfil our requirement of a fully online algorithm that is
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guaranteed to be fast. The literature on constructing linear model trees in a batch setting is
also examined, giving insights into how an incremental method can be developed.

3.1. Incremental classification tree induction

Schlimmer and Fisher (1986) proposed an incremental version of Quinlan’s ID3 classifica-
tion tree learner that maintains summary statistics at each node. The information measure
that determines splits is re-calculated from these statistics after every example. This may
lead to a leaf node being split, or a revision of a splitting rule higher up the tree and
the discarding of the sub-tree below the new rule. Although the algorithm may require
more examples to learn a given concept, no examples are stored in the tree and a strict
upper bound can be placed on the processing time for a single example. The same princi-
ples of incremental tree induction and pruning (but no restructuring) are followed in this
paper.

Utgoff, Berkman, and Clouse (1997) also consider the incremental induction of classi-
fication trees. One of their aims is that the online algorithm generates an identical tree to
one built in a batch manner, and therefore that the resultant tree is invariant to the order in
which the examples are processed. It is quite possible that a particular order of training data
may result in an incorrect tree initially which must later be restructured, and unfortunately
it proves necessary to store all training examples to guarantee that the restructuring meets
their aims. Although the average incremental update is fast, in some cases it can take longer
than re-building the entire tree.

The parti-game algorithm (Moore & Atkeson, 1995) uses an incrementally grown deci-
sion tree to form a variable resolution partition of the state space. However a leaf is split
on the basis of how well the control policy can be expressed, and not on the characteristics
of the examples within the leaf. This technique and later work (Munos & Moore, 2002)
therefore finds a good solution to the problem at hand, but does not seek to learn a general
model that can be re-used for alternative tasks.

Last (2002) periodically re-learns the classifier with a batch algorithm from a moving
window of training examples. The size of the window is dynamically adjusted according
to how much concept drift is observed in a non-stationary environment. Here, however, the
target concept is assumed to be stationary and the internal model is updated incrementally
after every training example.

Statistical tests are well suited to incremental algorithms because the test statistics can
often be easily updated. Such a test is used by Gama, Rocha, and Medas (2003) to de-
cide whether to split a classification tree leaf, although they do not consider the possible
restructuring required due to a shifting input distribution.

3.2. Batch induction of linear model trees

The most common approach to building trees from a training set is to start at the root and
perform top down induction. At each node the training set is recursively partitioned using a
splitting rule until the tree is sufficiently accurate. A number of alternative rules have been
proposed for the induction of linear model trees. Denote the N examples at a particular
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Figure 2. Splitting the data into two subsets.

node as 〈xi , yi 〉. A potential split divides these examples into two subsets. Denote the Nl

examples in the subset to the left of the split 〈xil , yil〉, and the Nr in the right subset 〈xir , yir 〉.
Figure 2(a) illustrates the situation when a constant is assigned to each leaf. The total error

(sum of the distances from each example to the constant leaf value) is clearly minimised
when the leaves are assigned the means ȳl and ȳr . The original work by Breiman et al.
(1984) chooses the split that minimises either a measure of the variance or the absolute
deviation of the y values. M5 (Quinlan, 1993b) and M5′ (Frank et al., 1998; Wang &
Witten, 1997) choose the split that minimises a measure of the standard deviation and
HTL (Torgo, 1997) also minimises the variance. All these techniques measure error from
the average y value, even though linear models will be fitted each side of the split. This
discrepancy, or incoherence (Malerba et al., 2004), between the split evaluation function
and the model tree may result in poor splits.

Figure 2(b) on the other hand shows fitted linear models f̂ l and f̂ r constructed from
the examples on either side of the candidate split. If the leaf is to contain a linear model
then clearly distance to the mean value is an inappropriate measure of error, and distance
to the linear regression plane should be used instead. This more suitable measure is used
by RETIS (Karalič, 1992) which selects the split that minimises the total RSS over the two
subsets

RSSl + RSSr =
Nl∑

i=1

(yil − f̂ l(xil))
2 +

Nr∑

i=1

(yir − f̂ r (xir ))2 (7)

The minimisation of (7) requires the calculation of the linear least squares estimate θ̂LS

using (4) for the two subsets of examples on each side of every candidate split. The number
of potential split points increases with the number of examples (assuming the regressors are
drawn from a continuous set), and it quickly becomes intractable to test all possible splits,
even using the computationally efficient method of Torgo (2002).

Alexander and Grimshaw (1996) reduce the complexity by only considering simple linear
models (with a single regressor) in each leaf, but this limits the representation to surfaces
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with axis-orthogonal slopes. Malerba et al. (2004) build up a multivariate linear model
using a sequence of simple linear regressions hence simplifying the split selection. This
introduces a bias towards models containing both global and local contributions, and the
split values near the root are only selected on the basis of a few regressors. Empirically their
algorithm works well on real-world datasets that do contain both global and local effects.
SECRET (Dobra & Gehrke, 2002) separates the data into two Gaussian clusters with the
EM algorithm and forms a split between them, enabling oblique splits to be found. Although
the EM technique is fast, it cannot be implemented online. Li, Lue, and Chen (2000) find
oblique splits using principal Hessian directions, however the procedure is also iterative
and requires interaction from the user. A unified framework is proposed by Gama (2004)
that covers classification and regression trees, and both axis-orthogonal and oblique splits.
The intractability of selecting from all possible split points for large datasets, however, is
not addressed.

The above methods are effective in a batch setting where typically an overly large tree
is grown initially, and a pruning process is later applied to try and optimise the prediction
capability on unseen examples. In an online algorithm, however, it is desirable to limit the
growth of the tree in the first place and avoid any complex post-pruning procedure. The
algorithm must therefore determine not only where to make a split but also when, and the
splitting rules considered so far do not help.

Fortunately this problem has also received attention in the statistics community, and
the splitting rules in the next section allow us to determine the likelihood of the examples
occurring under the hypothesis that they were generated from a single linear model. The best
split is the one with the lowest probability under this hypothesis. However if this probability
is not small enough, then no splitting should occur until further evidence is accumulated.

4. Batch induction algorithm

This section describes a new batch algorithm upon which the incremental algorithm detailed
in Section 5 is based. The batch algorithm performs top-down induction starting at the root,
and uses a statistical test at each leaf to determine both whether a split should be made and
the position of the split. The tree size can also be limited by an optional stopping rule. The
rest of the algorithm is very simple; there is no post-pruning stage and the predictions are
obtained by fitting a least squares multivariate linear model to the examples in each leaf
using Eq. (4). There is no attribute selection, therefore all numeric attributes are used in this
regression. Only axis-orthogonal splits are considered. Table 2 defines the high level steps
in the algorithm.

Two types of statistical test are considered. The first is based on the difference in residual
sums of squares (RD), and the second analyses the distributions of positive and negative
residuals (RA).

4.1. RD splitting rule (Batch-RD)

The question of whether the two linear models on each side of a potential split give a better
estimation of the underlying function f (x) than a single linear model can be tested as a
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Table 2. Batch induction algorithm.

function BatchInduction(Dataset ds)
1 perform statistical test on ds to determine whether to split
2 if probability of a linear model < αsplit and stopping parameter > δ0

3 partition the data according to the split into dsleft and dsright

4 leftChild = BatchInduction(dsleft)
5 rightChild = BatchInduction(dsright)
6 return an internal node with children leftChild and rightChild
7 else
8 return a leaf node with a linear model constructed from ds using (4)
9 end if

end function

hypothesis. The null hypothesis is that the underlying function is linear over the entire node
(H0 : f (x) = xT θ) while the alternative hypothesis is that it is not. Three linear models
are fitted to the examples in the node as in Figure 2(b); f̂ (x) using all N examples, f̂ l(x)
using the Nl examples lying to the left of the split, and f̂ r (x) using the Nr examples on the
right. The residual sums of squares are also calculated for each linear model, and denoted
RSS, RSSl and RSSr respectively. The two smaller linear models will always fit the data
at least as well, and RSSl +RSSr ≤ RSS. However if the alternative hypothesis is true
RSSl +RSSr will be significantly less than RSS and this can be tested using the Chow test,
a standard statistical test for homogeneity amongst sub-samples (Chow, 1960). Under the
null hypothesis it can be shown that the statistic

Fbatch = (RSS − RSSl − RSSr ) × (N − 2d)

(RSSl + RSSr ) × d
(8)

is distributed according to Fisher’s F distribution with d and N −2d degrees of freedom
(d is the dimensionality as defined in Section 2). The candidate split least likely to occur
under H0 should make the best choice, and this corresponds to the Fbatch statistic with the
smallest associated p-value (probability in the tail of the distribution). Note that because N
and RSS are constant over all candidate splits the p-value is minimised when RSSl +RSSr

is minimised and this splitting rule is therefore equivalent to that of RETIS (Karalič, 1992).
In addition the statistic can determine whether or not to split. Denote the smallest p-value
as α. A split should only be made if α is small enough to discount H0 with the desired
degree of confidence. This method was introduced by Sicilano and Mola (1994) to grow
linear model trees, although they combine it with attribute selection and only give empirical
results for an extremely small domain.

For larger numbers of examples it becomes intractable to test every axis-orthogonal split
because a linear model must be built on each side of every split to calculate (8). Therefore
a constant number κ of potential splits are defined in advance for each of the d−1 numeric
regressors to give a total of κ(d−1) candidate splits at each leaf node. The split values are
chosen to uniformly partition the observed range of each regressor into κ+1 intervals. In the
experimental evaluation κ = 5. Smaller values start to degrade the accuracy of the induced
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trees, while larger values require more computation and tend not to reduce the prediction
error.

It is necessary to introduce a multiple-comparison correction when testing the same
hypothesis many times simultaneously. Therefore the Bonferroni correction is applied by
dividing the desired maximum error by the number of tests. If the desired rate of falsely
rejecting the null hypothesis is αsplit, then the leaf should only be split if

α <
αsplit

κ(d − 1)
(9)

The splitting rule can clearly be applied to any split that partitions the data into two parts,
and can therefore also be applied to categorical attributes. For a categorical attribute that can
take C values, there are 2C−1−1 distinct ways of partitioning these values into two sets, each
of which forms a potential split. Unfortunately the greedy strategies discussed in Breiman
et al. (1984) and Mehta, Agrawal, and Rissanen (1996) do not extend to the incremental
framework presented in Section 5 where all potential splits must be fixed when a node
is initialised. The number of categorical splits can be reduced if necessary by randomly
numbering the categories and treating the attribute as numeric. The categorical attributes
cannot contribute to the linear regression in each node and the residual sums of squares are
calculated using only the numeric predictors. It is also possible to constrain the numeric
attributes so that they only contribute to either the splitting process or the linear regressions
as in Loh (2002).

4.2. RA splitting rule (Batch-RA)

SUPPORT (Chaudhuri et al., 1994) and GUIDE (Loh, 2002) are batch algorithms that use
an alternative approach to splitting. The residuals from a linear model are computed and the
distributions of the regressor values from the two sub-samples associated with the positive
and negative residuals are compared. The RA splitting rule comes from SUPPORT, and is
analysed here to show how the degree of confidence in the split is obtained.

Assume that f̂ (x) is the linear model constructed from all N examples at the node. Each
example has an associated residual which is the difference between the actual observed
value and the prediction of the linear model. The N+ examples with non-negative residuals
are put into subset S+, and the N− with negative residuals are put into subset S−. Label
the regressor j for each example i in each subset as x+

i j or x−
i j . Let x̄+

j and x̄−
j denote the

mean of regressor j over the examples in each subset, and let s2
j denote the pooled variance

estimate of regressor j over both subsets. The statistic

T (1)
j = x̄+

j − x̄−
j

s j

√
1

N+ + 1
N−

(10)

tests for a difference in means. Define z+
i j = |x+

i j − x̄+
j | and z−

i j = |x−
i j − x̄−

j |, let z̄+
j and z̄−

j

denote the mean of the z values in each subset, and let w2
j denote the pooled variance of the



INCREMENTAL LEARNING OF LINEAR MODEL TREES 15

z values over both subsets. The statistic

T (2)
j = z̄+

j − z̄−
j

w j

√
1

N+ + 1
N−

(11)

tests for a difference in variances. If the function being approximated is almost linear in
the region of the node then the positive and negative residuals should be distributed evenly.
However any curvature will result in different distributions of positive and negative residuals,
and this can be tested using the above statistics. Under the null hypothesis that the residuals
are distributed evenly, both statistics are distributed according to the Student’s t distribution
with N −2 degrees of freedom. The largest in absolute size T = max j,n |T (n)

j | is used to
select the best split attribute j , and the corresponding split value is the average of the class
means x̄+

j and x̄−
j . Denote the probability under the Student’s t distribution where |t | > T

as α. As for the RD splitting rule the Bonferroni correction is applied because two tests are
being performed simultaneously along each of the d−1 numeric dimensions. Therefore a
split is only made when

α <
αsplit

2(d−1)

where αsplit is the desired rate of falsely rejecting the null hypothesis.
This statistic cannot be applied to splits on categorical attributes, which are therefore

ignored when using the RA splitting rule.

4.3. Stopping rule

It is often desirable to limit the growth of the tree, especially for very large datasets. This
can be achieved by estimating the contribution of a split to the overall tree accuracy, and
only splitting if this contribution is large enough. The parameter

δ = 1

s2
y

(
RSS

N − d
− RSSl + RSSr

Nl + Nr − 2d

)
(12)

is the scaled difference between the variance estimate using a single linear model and
the pooled variance estimate using separate linear models on each side of a candidate split.
Dividing by the estimated y variance over all training examples observed by the entire model
tree ensures that the stopping rule is invariant to scaling in the y values. This parameter
therefore gives the estimated reduction in variance if a leaf node is split. As the model tree
grows and forms a more accurate approximation, δ decreases. Splitting is halted if δ falls
below a certain threshold δ0 (step 2 in Table 2). In addition a split is only made when the
number of examples in each new leaf is at least three times the number of linear model
parameters d .

When splitting with the RD rule RSSl and RSSr will have already been calculated when
choosing the split, however when using the RA rule it is necessary to fit a linear model on
each side of the candidate split in order to calculate (12).
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5. Incremental induction algorithm

This section describes how the batch algorithm described above can be implemented in-
crementally. The resulting algorithm maintains a linear model tree, and performs updates
to this tree with each new example. No examples are stored, and the memory usage and
processing time per example are only dependent on the size of the tree, and not on the
number of previous examples. Therefore the algorithm can operate on a sequential data
stream and quickly provide an up-to-date model tree at any instant. In addition it can induce
model trees on extremely large datasets.

Many aspects of the algorithm are the same as the batch version. The algorithm performs
top-down induction starting at the root, and uses similar statistical tests and a similar stopping
rule at each leaf to determine both whether a split should be made and the position of the
split. Only axis-orthogonal splits are considered and the predictions are obtained by fitting
a least squares multivariate linear model in each leaf using all numeric attributes. An online
pruning technique is introduced to try and mitigate the effects of a misleading input data
distribution.

At each time step i the incremental induction algorithm in Table 3 is called with the
root node and the new example 〈xi , yi 〉 as parameters. Although multiple statistical tests are
performed over time, the tests are highly dependent and any multiple-comparison correction
should not be too large. Without knowing the eventual number of tests the only solution is
to use a small value for αsplit.

5.1. RD splitting rule (Online-RD)

The residual sums of squares are needed to calculate the RD splitting statistic (8). These are
obtained by maintaining a fitted linear sub-model and associated RSS value on each side

Table 3. Incremental induction algorithm.

function IncrementalInduction(Node n, Example 〈x, y〉)
1 update the linear model in node n with 〈x, y〉 using RLS (see Table 1)
2 if n is an internal node
3 if x is on the left of the split
4 IncrementalInduction(n.leftChild, 〈x, y〉)
5 else
6 IncrementalInduction(n.rightChild, 〈x, y〉)
7 end if
8 perform pruning test, and prune if required
9 else

10 (RD rule only) update the appropriate sub-models using RLS
11 perform statistical test returning a probability and a split
12 if probability of linear model < αsplit and stopping parameter > δ0

13 split the node along the split and initialise the two children
14 end if
15 end if

end function
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Figure 3. Labelling of the sub-models required for calculating the RD statistic.

of every candidate split using the RLS algorithm. The candidate split points are positioned
uniformly over the observed range of each regressor when the node is initialised.

At each leaf node label the potential split values s jk with j iterating over the d − 1
regressors and k iterating over the κ potential splits along each regressor (see Figure 3).
Step 10 in Table 3 steps through all these potential splits and updates either the left or right
sub-model m jkl or m jkr according to whether the j th component of x lies to the left or right
of s jk .

It is possible to calculate Fbatch as before, however in an online setting it is possible to
take into account more information. When a split jk is made, the new leaf to the left of
s jk can be initialised with the model m jkl , and the new right leaf can be initialised with
m jkr . For example if leaf L2 in Figure 3 is split using the rule x1 < s12 then L2 becomes
an internal node and two new leaves are created. The models m12l and m12r were created
from examples that lay either side of this new split value, therefore these models can form
the main models m in each of the two new leaves. In each new leaf the new candidate
split values are determined (by partitioning each regressor range in the leaf uniformly) and
new empty sub-models are created on each side.1 This means that the leaf model m is
constructed from more examples than the sub-models in the leaf, and this invalidates the
derivation of (8) which requires that f̂ l(x) and f̂ r (x) are built from the same examples
as f̂ (x).

Assume that the model m in a particular leaf node has been constructed from a total of
N examples, and the sub-models on the left and right of the candidate split jk have been
constructed from a total of Nl and Nr examples, where N ≥ Nl + Nr . Therefore m has
been formed from N0 = N − Nl − Nr more examples than the two sub-models. Under
these more general conditions it can be shown (Eq. (A.1) in the Appendix with p = 1 and



18 D. POTTS AND C. SAMMUT

q = 2) that the statistic

Fonline = (RSS − RSSl − RSSr ) × (Nl + Nr − 2d)

(RSSl + RSSr ) × (N0 + d)
(13)

is distributed according to the F distribution with N0 + d and Nl + Nr − 2d degrees of
freedom. This statistic is used in the incremental algorithm because it takes into account
the additional information collected before the parent node was split. The p-values corre-
sponding to each Fonline statistic are calculated, and if the smallest one α conforms to Eq. (9)
then the leaf is split. Categorical attributes are treated in the same manner as in the batch
algorithm.

5.2. RA splitting rule (Online-RA)

The RA splitting rule only requires a single linear model to be maintained in each leaf.
Unfortunately it is not possible to calculate either T statistic exactly online without storing
all previous examples. This is because the classification of a residual as positive or negative
requires the exact regression plane, which at any intermediate stage in a sequence of incre-
mental calculations is an approximation to its final value. Similarly an exact calculation of
z (defined in Section 4.2) requires an exact regressor mean x̄ jk which is also unavailable
at intermediate stages. The incremental implementation forms an approximation to the T
statistics by using the latest regression plane to classify a residual as positive or negative.
Once classified the x j components are used to update either x̄+

j or x̄−
j , and s2

j . The z values
can then be determined and used to update either z̄+

j or z̄−
j , and w2

j .
When using the RA splitting rule, the stopping parameter δ cannot be calculated for each

candidate split because RSSl and RSSr are not available in the leaf. Instead δ is calculated
in the parent node, and passed down to the leaf as a parameter.

5.3. Stopping rule

The batch stopping rule is used online, the only difference being that the estimated y variance
is incrementally updated using all examples observed so far at the root.

5.4. Incremental pruning

In the incremental algorithm, splits are made before the algorithm has processed all of the
data. Therefore later examples may contradict the initial examples used to identify a split,
and may suggest that it is more worthwhile to remove that part of the tree and replace it
with a single linear model. This ‘incremental’ pruning should take place if the prediction
accuracy of an internal node is deemed to be no worse than its corresponding sub-tree. An
alternative minimum description length approach could also be taken (Robnik-Šikonja &
Kononenko, 1998), but this has not been investigated. In the literature there are three major
ways to estimate the prediction accuracy of a sub-tree on unseen examples: use a separate
pruning set, use cross-validation on the training set, or estimate the accuracy directly from
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the observed error rate on the training set. The first two methods require a set of examples
to be stored and re-classified by the tree every time a pruning decision is made, and are
therefore not feasible in an online algorithm. However the third method is suitable because
the sum of squared errors RSS is known in each leaf (and can also be easily maintained in
each internal node).

The original methods of pruning in this manner used a heuristic function to obtain the esti-
mated prediction accuracy from the observed error rate (Cestnik & Bratko, 1991; Quinlan,
1993a). However the probabilistic framework developed above for splitting allows for a
more rigorous approach that can determine the probability that pruning will be beneficial.
Both the RA and RD splitting rules calculate the probability that all the examples in a node
could have been generated by the null hypothesis that the true process is linear over the
domain of the node. When this probability falls to a low enough value, the node is split.
However if it then rises again to a high enough value αprune the null hypothesis should again
be accepted and the node’s entire sub-tree pruned.

Both statistics require that a linear model is maintained at each internal node, and this
model is updated using the RLS algorithm in step 1 of Table 3. The pruning decisions
described below are made in step 8.

5.4.1. Pruning with the RD statistic. A superior RD statistic can be used that does not
simply compare the internal node’s model with the two models in the node’s children, but
with the entire piecewise linear approximation constructed by all the leaves in the node’s
sub-tree. The more general RD statistic (derived in the Appendix)

Fprune = (RSS − RSSL) × (NL − qd)

RSSL × (N − NL + (q − 1)d)
(14)

is distributed according to the F distribution with N − NL + (q − 1)d and NL − qd degrees
of freedom, where RSS is calculated from all N examples observed at the node, RSSL is
the sum of the residual sums of squares in the leaves of the sub-tree, NL is the total number
of examples observed at the leaves and q is the number of leaves.

The node’s entire sub-tree should be pruned if the p-value associated with this statistic is
less than αprune. No multiple-comparison correction is required because only a single Fprune

statistic is calculated in each internal node.

5.4.2. Pruning with the RA statistic. If the same statistics used to determine splits are
maintained in each internal node after splitting, then they can provide an α value at every
internal node. With the Bonferroni correction, pruning should take place if

α >
αprune

2(d − 1)

5.5. Training complexity

When the tree receives a training example it is passed down the path from the root to the
corresponding leaf. At each internal node a single linear model is updated. Each RLS update
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takes O(d2) and therefore it takes O(hd2) to pass the example to the leaf, where h is the
maximum height of the tree. For the RD splitting rule O(κd) models are updated in the
leaf, hence the overall training complexity is O(N (h + κd)d2) where N is the total number
of examples. For the RA splitting rule only a single model is updated in the leaf, and the
overall training complexity is O(Nhd2).

If the tree size is limited (because of the particular input data or the stopping rule) then the
algorithm fulfils our goal of scaling linearly with the number of examples. Also pleasing is
the polynomial increase with dimensionality, and the fact that a strict bound can be placed
on the worst case processing time for a training example when the tree has stopped growing.

Although incremental algorithms can be sensitive to the order in which the training
examples are presented, results in Section 7.3 show that the tree size, and therefore the
training complexity, does not vary a large amount with a shifting input distribution.

6. Smoothing

Although we have focussed on learning an approximation to the function f , what we are
really interested in for control purposes is the derivative of f with respect to the state z and
input u (using the notation in Eq. (1)). A popular method of non-linear control is to linearise
the system about a certain operating point (z = z0, u = u0) using the Taylor series expansion

ż = f (z0, u0) + ∂ f

∂z
(z − z0) + ∂ f

∂u
(u − u0) + . . . (higher order terms) (15)

where the derivatives are evaluated at the operating point. Ignoring the higher order terms
gives the standard equations for a linear system

ż = Fz + Gu + c (16)

which have been intensively studied in control theory. From these equations the local sta-
bility of the system and control policies to follow all possible local trajectories can be
determined.

Comparing (15) and (16) shows that F and G correspond to the derivatives of f . When f
(Figure 4(a)) is approximated by a linear model tree (Figure 4(b)) the gradient is constant
within each leaf, and changes abruptly at the boundaries between leaves (Figure 4(c)).
These discontinuities result in poor gradient estimates when the actual function is smooth.
Smoothing removes the discontinuities and results in a better estimate (Figure 4(d)).

It is not the purpose of this paper to evaluate smoothing techniques, therefore a simple
strategy of ‘soft’ splits is adopted as detailed in Murray-Smith (1994). Every leaf makes
a prediction, and these are repeatedly combined at each internal node from the bottom up
until the final prediction is produced at the root. At each internal node i the predictions from
the children are weighted according to how far the data point being predicted lies from the
split value si . If it lies on the split each child will contribute equally, whereas when it lies
to one side the corresponding child will contribute more to the overall prediction. Figure 5
shows the left and right sub-tree weighting functions ρi,l(x j ) and ρi,r (x j ). The weighting
functions are formed by two normalised Gaussian basis functions with standard deviation
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Figure 4. Smoothing the discontinuities in the gradient.

Figure 5. The left and right sub-tree weighting functions.

σi centred a distance σi each side of the split, and therefore

ρi,l(x j ) = 1

1 + exp
( 2(x j −si )

σi

) ρi,r (x j ) = 1

1 + exp
( − 2(x j −si )

σi

)

The value of σi is chosen to be c times the width of the internal node i , where c is a user-
defined constant. For all experiments c = 1

40 , which is seen to give good results empirically.
The smoothing process is applied to both function and gradient estimates. It is clear for

the linear model in Eq. (2) that the gradient estimate in each leaf k is simply the parameter
vector θ̂k , hence the smoothed gradient estimate over all q leaves is

∂ f̂ (x)

∂x
= ∇ f̂ (x) =

q∑

k=1

ρcum,k(x)θ̂k
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where ρcum,k is the cumulative weight function for leaf k

ρcum,k(x) =
root∏

i=parent(k)

ρi,subtree(i,k)(x)

In this equation i iterates over the internal nodes in the path from the parent of k up to the
root, and the function subtree(i, k) determines whether leaf k is in the left or right sub-tree
of internal node i .

7. Empirical evaluation

Firstly the algorithms are evaluated on a number of standard regression datasets from the
Weka2 machine learning repository. Comparisons are drawn with a linear model updated
with the online RLS update (6), the Weka implementation of M5′ (Wang & Witten, 1997),
Loh’s (2002) implementation of GUIDE and Dobra and Gehrke’s (2002) implementation
of SECRET. Secondly the effect of the stopping rule is demonstrated when learning a 2D
test function. Thirdly the ability of the incremental algorithms to withstand a shifting input
distribution is examined. Finally all algorithms are demonstrated on a number of domains
in which a very large number of examples can be generated. This enables the incremental
algorithms to be tested on sequential data streams of one million or more examples. In these
domains the incremental algorithms are compared with receptive field-weighted regression
(RFWR) (Schaal & Atkeson, 1998). RFWR has since been adapted to improve its dimen-
sionality reduction capability (Vijayakumar & Schaal, 2000), however the domains do not
contain redundant dimensions and the original algorithm is more competitive. The effect of
incremental pruning and the ability to predict the true model parameters are also investigated.

For all experiments the RD/RA splitting and pruning parameters are αsplit = 0.01% and
αprune = 0.1%. M5′ and GUIDE use their default parameters. 40% of the training data for
SECRET is used for pruning, and the minimum node size considered for splitting is 1% of
the number of training examples. SECRET is tested with both axis-orthogonal and oblique
splits and results show the better of the two.

7.1. Standard Weka datasets

The algorithms are designed for large datasets where processing time and memory become
practical limitations, therefore comparisons are only performed on the 19 Weka regression
datasets with more than 1000 instances (listed in Appendix B). The number of instances
varies from 4177 to 40768, and the number of attributes varies from 5 to 48.

7.1.1. Experimental methodology. The prediction capability of each algorithm is mea-
sured using 10-fold cross validation, and this process is repeated 10 times, each with a
different permutation of the examples in the dataset. All algorithms use the same permu-
tations so that they learn and test with identical partitions of data. The final estimate is
the mean over all runs of the cross validation. Prediction errors are measured in terms of
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normalised root mean square error (nRMSE) where the root mean square error over the nt

examples in the test set is normalised by the estimated standard deviation over the entire
data set sy

nRMSE = 1

sy

√√√√ 1

nt

nt∑

i=1

(yi − f̂ (xi ))2

An error of 100% corresponds to always predicting the class mean. Confidence limits show
one unbiased estimate of the standard deviation.

Batch/Online-RD/RA are used with no stopping rule. The incremental versions are trained
on the same data as the batch versions, using their final models to make predictions.

7.1.2. Results. The detailed results are presented in Tables B.1 and B.2 in Appendix B. The
reference algorithm in Table B.1 is Batch-RD, while the reference algorithm for the pruned
online algorithms is the unpruned version. Algorithms are compared against the reference
algorithm using the Wilcoxon signed ranked paired test. A ± sign indicates that for this
dataset the prediction error of the algorithm is greater/less than the reference algorithm with
a two-tailed p-value less than 5%. These results are summarised in Tables 4 and 5 which
also show the number of wins/losses and significant wins/losses for the reference algorithm,
and the p-value when the algorithm is compared against the reference algorithm using the
Wilcoxon signed ranked paired test across all datasets. Each pair of data points consists
of the average prediction error for the two algorithms on one dataset. The final two lines
show the geometric means of the tree size and construction time for each algorithm over all
datasets.

Batch-RD produces more accurate trees than all the other algorithms at a significance
level of 97.7%. It is also faster than M5′ and GUIDE, although GUIDE does build smaller
trees. Batch-RA is not nearly as effective, however it is exceptionally fast and produces
trees that are much better than a linear model. SECRET is also very fast, although it fails
on three of the datasets and can produce inconsistent results with a high variance across
different trials. The effectiveness of Batch-RD may be partly due to the size of the datasets.
More examples leads to more reliable statistical tests which may then be just as effective
as the computationally expensive post-pruning techniques in M5′, GUIDE and SECRET.

Table 4. Summary of batch algorithm results for the Weka datasets.

Batch-RD Batch-RA M5′ GUIDE SECRET

Average error (nRMSE) 38.1% 46.3% 40.0% 39.1% 52.7%

Wins/losses (for Batch-RD) – 18/1 13/6 15/4 16/0

Significant wins/losses – 18/1 13/5 14/4 16/0

Wilcoxon two-tailed p-value – 0.0000 0.0071 0.0230 0.0000

Number of tree leaves 27.8 9.5 35.9 11.6 8.3

Build time (seconds) 26.7 0.8 60.8 62.6 3.0
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Table 5. Summary of incremental algorithm results for the Weka datasets.

Online-RD Online-RA

Unpruned Pruned Unpruned Pruned Linear

Average error (nRMSE) 41.5% 43.7% 48.2% 49.2% 61.9%

Wins/losses (for unpruned) – 15/3 – 11/8 –

Significant wins/losses – 12/2 – 7/3 –

Wilcoxon two-tailed p-value – 0.0090 – 0.0874 –

Number of tree leaves 16.5 7.4 7.1 6.1 –

Build time (seconds) 64.0 61.9 3.0 2.9 0.2

As expected the incremental algorithms are slower and less accurate than their batch
equivalents. However the differences in prediction error are not large, highlighting the ef-
fectiveness of the online implementations. Incremental pruning substantially reduces the tree
size, in particular for Online-RD. However the pruned trees have a greater prediction error.

7.2. Stopping rule

In this section the effect of the stopping rule described in Section 4.3 is demonstrated when
learning the same 2D test function as Schaal and Atkeson (1998) (see Figure 6)

y = max
{
e−10x2

1 , e−50x2
2 , 1.25e−5(x2

1 +x2
2 )
} + ε

where ε is independent zero-mean Gaussian noise with variance σ 2 and σ = 0.1. Training
examples are drawn uniformly from the square −1 ≤ x1 ≤ +1, −1 ≤ x2 ≤ +1. Prediction

Figure 6. 2D test function.
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Figure 7. Effect of stopping parameter δ0 when learning the 2D test function with Online-RD.

Figure 8. Model tree induced by Online-RD when learning the 2D test function.

errors are measured on a test set consisting of 2000 examples drawn in a similar manner, but
without noise. Errors are measured in terms of nRMSE and results show the mean over 20
independent trials, while error bars indicate one unbiased estimate of the standard deviation.

Figure 7(a) shows the decrease in prediction error as the number of training examples
presented to Online-RD is increased. Figure 7(b) shows the corresponding increase in tree
size. Similar results are obtained for the RA splitting rule and the batch versions of the
algorithms. It can be seen that the stopping parameter δ0 controls a trade-off between the
asymptotic prediction error and the size of the model tree. A smaller δ0 results in a larger
tree and more accurate predictions. If the stopping parameter is zero the size of the tree
grows without bound, and the predictions become more and more accurate. The partitioning
of the input space by the decision tree and the unsmoothed model tree predictions can be
seen in Figure 8 for δ0 = 0.005.
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Figure 9. Performance of the incremental algorithms on a shifting input distribution.

7.3. Shifting input distribution

To test the resilience of the new incremental algorithms to a shifting input distribution we
repeat the experiment in Schaal and Atkeson (1998) using the 2D test function defined above.
The training data are presented in three distinct slightly overlapping batches. For the first
50,000 examples the training data and test data are uniformly drawn from −1≤ x1 ≤−0.2
(with x2 ranging as before from −1 to +1). The second 50,000 training examples are drawn
from −0.4≤ x1 ≤+0.4 while testing is performed with test data drawn from −1≤ x1 ≤+0.4.
The next 50,000 examples are drawn from +0.2≤ x1 ≤+1 and the predictions tested over
the entire function −1 ≤ x1 ≤ +1. Subsequent training data is drawn uniformly from
−1≤ x1 ≤+1.

Figure 9 compares the behaviour of the new incremental algorithms (with pruning),
both with a uniform input distribution as before and with a shifting input distribution as
described above. An increase in prediction error can clearly be observed when the shifting
input distribution changes after 50,000 and 100,000 examples. Online-RD is able to quickly
learn an accurate approximation to the new distribution while retaining the model associated
with the old distribution. Online-RA, however, fails in this regard and cannot adjust to the
new distribution. Figure 9(b) shows that the shifting distribution results in a small increase
in model complexity for the Online-RD algorithm.

7.4. Dynamic domains

In this section the algorithms are tested in three dynamic domains where the task is to learn
a model of the environment. The domains are:

1. A basic pendulum driven by a torque at its pivot, in both continuous and discrete time.
2. A cart and pole (also known as a pole-balancer).
3. A complex flight simulator in which 9 state variables and 4 actions form a 13 dimensional

system identification problem.
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Figure 10. Simple dynamic domains.

Results are also given for the 2D test function described in Section 7.2 and for a similar
function rotated 45◦ about the origin (with the training and test examples obtained in an
identical manner). The rotated test function removes any advantage the model tree learners
may have by being restricted to axis-orthogonal splits. A brief description of the dynamic
domains is now given.

7.4.1. Pendulum in continuous time. A pendulum rotating 360◦ around a pivot P (see
Figure 10(a)) is a simple non-linear dynamic environment. The dynamic model of the
pendulum is

ml2θ̈ = u − mgl sin θ − µθ̇ (17)

where θ is the pendulum angle, g is gravity, m = l = 1 are the mass and length of the
pendulum, µ= 0.1 is a drag coefficient and u is the torque applied to the pendulum. This
can be written in the form of Eq. (1) if z = [θ θ̇ ]T . Define x = [zT u]T and y = ż+ε where ε
is a vector of independent zero-mean Gaussian noise with variance σ 2 and σ = 0.1. Training
examples of 〈x, y〉 are drawn uniformly from the input domain −π ≤θ ≤+π, −5≤ θ̇ ≤+5
and −5≤u ≤+5. The algorithms are tested using 5000 examples drawn in a similar manner,
but without noise.

7.4.2. Pendulum in discrete time. The pendulum model can also be formulated in discrete
time as

zk+1 = f (zk, uk) (18)

where k is the time step index. The observed state vector yk = zk+1 + ε where ε has the
same characteristics as above, and the regressors for yk are the previous state zk and action
uk . Examples of xk = [zT

k uk]T are drawn uniformly from the same input domain as for
the continuous time case. It is not possible to determine a closed form for f and therefore
the next state of the system is calculated using 5 successive Euler integrations with a time
step of 0.01 seconds to give an overall sampling rate of 20 times per second. The system
identification task is to learn an approximation to the model f given examples of 〈xk, yk〉.
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The algorithms are tested using 5000 examples drawn in the same manner as the training
data, but without noise.

7.4.3. Cart and pole. The problem of swinging up a pendulum on a cart demonstrates
the behaviour of the algorithms in a more complex domain (see Figure 10(b)). The system
is highly non-linear when the pendulum is allowed to rotate through 360◦. The simplified
dynamic model (not taking into account frictional effects) is

0 = ẍ cos θ − l θ̈ − g sin θ

u = (m + M)ẍ − ml θ̈ cos θ + ml θ̇2 sin θ

where x is the position of the cart (limited to ±2), θ is the angle of the pendulum, l = 1 is the
length of the pendulum, g is gravity, M = m = 1 are the masses of the cart and pendulum
respectively, and u is the lateral force applied to the cart (limited to ±7). The discrete time
model (18) is formulated with zk = [xk ẋk θk θ̇k]T , and the next state is calculated in the
same manner as for the discrete pendulum.

Instead of sampling randomly across the state space, the system is initialised at rest
with the pendulum hanging vertically downward. A simple hand-coded control strategy
repeatedly swings up the pendulum and balances it for a short period using the observed
state vector yk = zk+1 + ε, where ε is a vector of independent zero-mean Gaussian noise
with variance σ 2 and σ = 0.1. The regressors for yk are the previous state zk and action
uk . The sequence of states generated is given directly to the learner without changing the
order, so that consecutive regressors are highly correlated. The algorithms are tested using
10,000 examples randomly drawn from a similar sequence, but without noise.

7.4.4. Flight simulator. Learning to fly an aeroplane is a complex high-dimensional task.
These experiments use a flight simulator (see Figure 11) based on a high-fidelity flight
model of a Pilatus PC-9 aerobatic aircraft, an extremely fast and manoeuvrable propeller
plane used by the Royal Australian Air Force as a ‘lead in fighter’ for training pilots before

Figure 11. Flight simulator.
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they progress to jet fighters. The model was provided by the Australian Defence Science
and Technology Organisation and is based on wind tunnel and in-flight performance data.
The same simulator has also been used in previous work (Isaac & Sammut, 2003).

The system is sampled 4 times per second, and 9 state variables are recorded (altitude, roll,
pitch, yaw rate, roll rate, pitch rate, climb rate, air speed and a Boolean variable indicating
whether the plane is on the ground) along with 4 action variables (ailerons, elevator, throttle
and the categorical flaps setting which can take the values ‘normal’, ‘take off’ and ‘landing’).
These state variables were selected so that a dynamic model of the plane could be learnt, and
therefore the absolute position and heading were disregarded. The combination of states
and actions results in a 13 dimensional regressor vector x. The learning task is to predict
the 8 continuous values of the next state.

As for the pendulum on a cart the training examples are taken directly from a trace of the
aircraft flying so that successive regressors are highly correlated. The trace involves repeat-
edly taking off, flying a loop and landing back on the same runway. Simulated turbulence
is set to a high level resulting in complex noise characteristics that deviate substantially
from the independent Gaussian assumption, and additional noise was added to the inputs
to excite the system and provide a richer source of training examples. The algorithms are
tested using 10,000 examples randomly drawn from a similar trace.

7.4.5. Experimental methodology. Given a stream of examples labelled from 1 to N , the
performance of a batch algorithm on n examples is estimated by training the learner with
the examples labelled from 1 to n. As n is increased up to N the prediction capability of
the learned model on an independent test set should improve. The test set consists of nt

examples drawn uniformly from a similar but independent stream of data.
In practise a sliding window approach is often used where at time n the learner is trained

with examples in the window from n − w to n where w is the window size. This is very
good for tracking concept drift, however in this work the environments are assumed to be
time-invariant, and therefore re-training the learner with the same number of examples at
a later time does not improve the estimate of the overall dynamic model. This can be seen
in Figure 12 which shows the Batch-RD prediction errors and tree sizes for the cartpole
domain with various window sizes. The window places a limit on the prediction accuracy
and tree size. In the remaining experiments windows are not used and the batch learners are
trained with all n examples. Due to time and memory limitations the maximum number of
examples N for the batch learners is set to either 30 or 100 thousand.

Training the incremental learners on the N examples is straightforward, although there
are two alternative testing strategies. If the prediction capability on the next example is
critical (e.g. when predicting financial time series) then these ‘training set’ errors can be
collected and averaged. However if the overall model quality is important then it is better to
test on a large independent test set. When used for planning the overall model needs to be
accurate so that future trajectories can be simulated, and even controllers are more dependent
on the local function gradient than the quality of the next prediction. For these reasons
testing is performed with the same sets of nt examples used to test the batch algorithms.
This also allows comparisons between the incremental and batch learners. In fact the two
testing strategies are very similar as shown by Figure 13 which compares the error when
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Figure 12. Effect of batch window sizes on the cart and pole with Batch-RD.

Figure 13. Difference between testing strategies with Online-RD.

predicting the next state and the error on an independent test set for both the cartpole and
flight simulator. In the other domains the examples are uncorrelated and the strategies are
equivalent. The incremental learners are trained with either 1 or 10 million examples.

RFWR requires normalised data, therefore its regressors and y values are scaled to the
range (−1, +1). Gradients are extracted from RFWR by applying the same weighting ker-
nels to the gradients of each local model that are applied to the predictions themselves.
Gradients could not be obtained from M5′. Gradient errors are measured using the nor-
malised root mean square gradient error (Potts, 2004b) over the nt examples in the test set

nRMSE(Grad) =
√∑nt

i=1 |∇( f (xi ) − f̂ (xi ))|2∑nt
i=1 |∇ f (xi )|2

so that when the gradient estimate is correct everywhere nRMSE(Grad) is 0%, and when
the gradient estimate is zero everywhere nRMSE(Grad) is 100%. Gradient errors can only
be measured for the 2D test function and the continuous pendulum because they can be
differentiated exactly.
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For each domain, 25 independent streams of examples are generated. Five are used to
set the stopping parameter δ0 in the Batch/Online-RD/RA algorithms, and optimise the
parameters in RFWR. For the 2D test function RFWR uses the parameters published in
Schaal and Atkeson (1998) and the default learning rates in their software distribution. The
stopping parameter δ0 is set so that the Batch/Online-RD/RA prediction errors match those
of RFWR. In the dynamic domains δ0 is reduced until the prediction errors stop improving
significantly. The RFWR parameters are then varied to approximately match the number of
receptive fields with the number of leaves in the model tree algorithms. This enables a fair
comparison of the final prediction errors and learning effectiveness. The final parameters
are specified in Tables C.1 and C.2 in Appendix C. The remaining 20 streams are used for
training and testing.

7.4.6. Results. The detailed results in Appendix C show the means over 20 trials, while
error bars and numerical errors in tables indicate one unbiased estimate of the standard
deviations. For each domain the graphs show how the errors, number of leaves/receptive
fields and training times vary with respect to the number of training examples presented to
the algorithms. Tables 6 to 13 give the final values for each algorithm in each domain after
training with the maximum number of examples N .

Surprisingly in these domains there is not a significant difference in prediction accuracy
between when GUIDE selects from all split points and when it uses a faster split point

Table 6. Summary of batch algorithm errors (nRMSE %) for the dynamic domains.

Batch-RD Batch-RA M5′ GUIDE SECRET†

2D test 5.1 ± 0.4 6.6 ± 0.4 5.5 ± 0.2 7.2 ± 0.3 7.8 ± 0.4

2D rotated 5.5 ± 0.4 6.9 ± 0.3 9.2 ± 0.2 17.7 ± 0.9 12.1 ± 3.9∗

Pend. cont. 0.20 ± 0.00 0.20 ± 0.00 1.7 ± 0.1 1.3 ± 0.0 1.0 ± 2.4

Pend. disc. 0.21 ± 0.00 0.20 ± 0.00 2.5 ± 0.0 5.3 ± 0.1 0.36 ± 0.22∗

Cartpole 1.9 ± 0.1 5.5 ± 0.1 3.6 ± 0.2 3.7 ± 0.1 4.1 ± 0.3∗

Flight 15.2 ± 0.2 16.2 ± 0.4 15.4 ± 0.1 15.2 ± 0.1 15.8 ± 0.4

†Shows results for the algorithm with the best predictions between SECRET with axis-
orthogonal splits and SECRET with oblique splits (∗).

Table 7. Summary of incremental algorithm errors (nRMSE %) for the dynamic domains.

Online-RD Online-RA

Unpruned Pruned Unpruned Pruned RFWR Linear

2D test 5.1 ± 0.5 5.2 ± 0.5 4.9 ± 1.2 4.8 ± 1.0 6.4 ± 1.8 100.0 ± 0.1

2D rotated 5.3 ± 0.4 5.3 ± 0.3 4.6 ± 0.5 4.6 ± 0.5 6.8 ± 0.2 100.0 ± 0.0

Pend. cont. 0.20 ± 0.01 0.20 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.37 ± 0.06 40.9 ± 0.4

Pend. disc. 0.17 ± 0.03 0.17 ± 0.03 0.18 ± 0.00 0.18 ± 0.00 0.50 ± 0.44 5.3 ± 0.1

Cartpole 1.7 ± 0.2 1.8 ± 0.1 4.0 ± 3.3 3.3 ± 2.0 3.8 ± 0.2 12.6 ± 0.1

Flight 15.5 ± 0.1 15.7 ± 0.1 19.2 ± 1.9 19.1 ± 1.9 16.8 ± 0.7 21.2 ± 0.1
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Table 8. Summary of batch algorithm model sizes (number of tree leaves) for the dynamic domains.

Batch-RD Batch-RA M5′ GUIDE SECRET†

2D test 64.0 ± 2.6 67.8 ± 2.6 116.8 ± 6.7 45.8 ± 1.3 57.6 ± 2.4

2D rotated 177.6 ± 5.3 117.4 ± 4.4 198.8 ± 11.4 60.9 ± 1.8 64.6 ± 3.3∗

Pend. cont. 25.0 ± 0.0 25.0 ± 0.0 143.2 ± 13.5 9.0 ± 0.0 59.2 ± 9.7

Pend. disc. 13.9 ± 0.8 14.0 ± 0.8 534.8 ± 15.8 2.0 ± 0.0 57.0 ± 10.9∗

Cartpole 71.3 ± 4.4 77.0 ± 3.4 793.2 ± 36.1 42.6 ± 2.2 181.0 ± 9.5∗

Flight 51.7 ± 5.2 51.6 ± 5.7 371.6 ± 14.5 70.9 ± 6.1 298.4 ± 22.8

†Shows results for the algorithm with the best predictions between SECRET with axis-
orthogonal splits and SECRET with oblique splits (∗).

Table 9. Summary of incremental algorithm model sizes (number of tree leaves/receptive fields) for the dynamic
domains.

Online-RD Online-RA

Unpruned Pruned Unpruned Pruned RFWR

2D test 58.0 ± 4.4 58.4 ± 5.2 85.8 ± 10.9 87.0 ± 10.1 92.2 ± 4.3

2D rotated 186.8 ± 5.9 185.7 ± 5.8 234.5 ± 7.5 232.4 ± 8.9 100.0 ± 2.7

Pend. cont. 26.3 ± 1.6 26.2 ± 1.6 26.4 ± 1.1 26.4 ± 1.1 19.2 ± 3.3

Pend. disc. 15.8 ± 1.1 15.7 ± 1.1 17.0 ± 0.0 17.0 ± 0.0 15.9 ± 4.0

Cartpole 233.0 ± 127.4 107.8 ± 46.6 127.9 ± 58.8 119.2 ± 35.6 140.4 ± 6.0

Flight 110.9 ± 21.8 55.0 ± 14.7 41.2 ± 23.9 35.4 ± 19.4 26.2 ± 4.9

Table 10. Summary of batch algorithm gradient errors (nRMSE(Grad) %) for the dynamic domains.

Batch-RD Batch-RA GUIDE SECRET†

2D test 29.4 ± 1.7 33.8 ± 1.6 41.8 ± 1.9 47.6 ± 1.4

2D rotated 33.4 ± 1.4 39.6 ± 1.2 67.9 ± 1.6 50.4 ± 7.6∗

Pend. cont. 3.6 ± 0.1 3.7 ± 0.0 14.5 ± 0.2 6.7 ± 5.6

†Shows results for the algorithm with the best predictions between
SECRET with axis-orthogonal splits and SECRET with oblique splits
(∗).

Table 11. Summary of incremental algorithm gradient errors (nRMSE(Grad) %) for the dynamic domains.

Online-RD Online-RA

Unpruned Pruned Unpruned Pruned RFWR Linear

2D test 30.2 ± 1.8 30.5 ± 1.9 31.1 ± 2.7 30.5 ± 2.1 28.3 ± 2.5 100.0 ± 0.0

2D rotated 29.8 ± 1.0 29.6 ± 0.9 29.9 ± 1.8 30.3 ± 1.6 25.5 ± 1.1 100.0 ± 0.0

Pend. cont. 3.6 ± 0.2 3.6 ± 0.2 3.6 ± 0.1 3.6 ± 0.1 4.8 ± 0.8 76.1 ± 0.4
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Table 12. Summary of batch algorithm training times (ms per example) for the dynamic domains.

Batch-RD Batch-RA M5′ GUIDE GUIDE∗ SECRET†

2D test 0.29 ± 0.00 0.04 ± 0.00 21.6 ± 0.3 20.3 ± 0.5 0.48 ± 0.00 0.14 ± 0.00

2D rotated 0.35 ± 0.01 0.05 ± 0.00 25.9 ± 0.3 32.0 ± 0.3 0.48 ± 0.01 0.15 ± 0.00∗

Pend. cont. 0.44 ± 0.01 0.05 ± 0.00 28.3 ± 0.2 19.9 ± 0.1 0.21 ± 0.01 0.33 ± 0.00

Pend. disc. 0.39 ± 0.01 0.04 ± 0.00 29.2 ± 0.2 0.05 ± 0.01 0.05 ± 0.01 0.33 ± 0.00∗

Cartpole 1.8 ± 0.1 0.09 ± 0.00 67.7 ± 0.6 73.8 ± 4.5 1.3 ± 0.0 0.91 ± 0.02∗

Flight 6.9 ± 0.1 0.24 ± 0.01 90.7 ± 0.6 31.7 ± 2.4 5.7 ± 0.2 2.8 ± 0.2

†Shows results for the algorithm with the best predictions between SECRET with axis-orthogonal splits
and SECRET with oblique splits (∗).

Table 13. Summary of incremental algorithm training times (ms per example) for the dynamic domains.

Online-RD Online-RA

Unpruned Pruned Unpruned Pruned RFWR Linear

2D test 0.19 ± 0.00 0.19 ± 0.00 0.08 ± 0.00 0.10 ± 0.01 0.63 ± 0.03 0.01 ± 0.00

2D rotated 0.23 ± 0.00 0.23 ± 0.00 0.10 ± 0.00 0.12 ± 0.00 0.68 ± 0.02 0.01 ± 0.00

Pend. cont. 0.59 ± 0.01 0.60 ± 0.01 0.10 ± 0.00 0.11 ± 0.00 0.31 ± 0.04 0.01 ± 0.00

Pend. disc. 0.53 ± 0.02 0.53 ± 0.02 0.09 ± 0.00 0.09 ± 0.00 0.41 ± 0.08 0.01 ± 0.00

Cartpole 2.7 ± 0.1 2.7 ± 0.1 0.30 ± 0.05 0.31 ± 0.04 3.6 ± 0.1 0.02 ± 0.00

Flight 41.2 ± 2.2 39.8 ± 1.1 1.1 ± 0.2 1.1 ± 0.1 5.0 ± 0.5 0.06 ± 0.00

selection based on sample quantiles. The training times for this faster method are shown as
GUIDE∗.

The main points to note from these results are:

– Batch-RD builds an accurate model for all domains and while not as fast as SECRET,
is as fast as GUIDE∗ and faster than GUIDE and M5′. Batch-RA is much faster than all
other algorithms and although it fails to find a very good model for the cartpole, it is very
effective in the other domains. Again it is thought that the reason for the competitiveness
of Batch-RD/RA is the large sizes of the datasets which allow the statistical stopping
tests to be as effective as post-pruning.

– For an equal number of training examples Online-RD/RA are not quite as effective
as their batch equivalents. However the difference is often small and the incremental
algorithms are able to scale up to many more examples. Comparison with RFWR shows
the incremental algorithms to be very competitive. Online-RD is more computationally
demanding, however it forms a more accurate approximation from fewer examples than
either RFWR or Online-RA. As observed previously Online-RA is less effective when
presented with a shifting input distribution, and this explains its poor performance at the
cartpole and flight simulator.
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– Batch/Online-RD/RA all have the luxury of a parameter to control the trade-off between
tree size and model accuracy. Although parameters are undesirable, it is seen that M5′,
SECRET and GUIDE are unable to form a reasonable trade-off in all domains. M5′

always constructs unnecessarily large trees and SECRET can also fail to recognise when
a tree is too big. On the other hand GUIDE often builds trees that are too small. The
Batch/Online-RD/RA stopping parameter is related to the prediction error, and therefore
allows the algorithms to adapt well to the rotated test function by building larger trees.

– Both RFWR and SECRET can represent the rotated test function more efficiently than
the other algorithms. This is because the receptive fields in RFWR are free to extend in
any direction and SECRET is using oblique splits.

– As discussed in Section 6 it is the function gradient that relates to the dynamic model.
GUIDE and SECRET are poor at predicting gradients because they do not use smoothing.
RFWR forms its predictions from a sum of Gaussians, and is therefore well suited to rep-
resenting the 2D test function and its gradient. The smoothing technique of Batch/Online-
RD/RA is seen to be very effective and gives the best gradient predictions for the con-
tinuous pendulum.

– Online pruning has little effect in the smaller domains, but for the cartpole and flight
simulator significantly reduces the tree size with little or no impact on prediction accuracy.

8. Discussion

This article introduces two new incremental learners, Online-RD and Online-RA, that can
form prediction models from a stream of data. The prior knowledge required is minimal
as the stopping parameter δ0 can simply be set to zero (as in Section 7.1). However the
alternative incremental learner RFWR requires more initial knowledge. The range of each
regressor and predictor variable y are needed to normalise the data, and three learning
parameters must be defined; the initial distance metric D0, the penalty γ and the learning
rates. In fact there are two learning rates, one for standard gradient descent and one for
meta-learning, but these are taken to be the same. The initial distance metric affects how
many linear models are allocated initially, the penalty affects the final number of local
models, and the learning rates affect how quickly the size and shape of the local models
change. In practice it proved hard to balance the effects of these parameters and obtain good
learning performance. If the learning rates are too high the algorithm becomes unstable,
and if too low no perceptible change in the size and shape of the local models is observed.

Assuming that the number of local models in their piecewise linear approximations has
stabilised, both Online-RD/RA and RFWR scale linearly with the number of examples and
their memory usage is capped. This enables them to operate on an unlimited stream of
data. When processing a training example Online-RD updates κ(d −1) more models than
Online-RA, and is therefore significantly slower. As expected the difference between the
RD and RA splitting rules becomes more pronounced in higher dimensional domains. There
is clearly a trade-off between the more complex RD rule that learns from fewer examples
and the simpler RA rule that requires more training data to form an accurate approximation.
If processing power is not a concern or the input distribution is known to be non-stationary
then the RD rule is preferred, otherwise the RA rule may be more suitable.
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When representing dynamic models the model tree algorithms induce a separate tree for
each state component. For example for the continuous pendulum (17), one model tree is
built for θ̇ and one for θ̈ . With regressors θ , θ̇ and u, clearly θ̇ can be represented by a single
linear model, but θ̈ contains a sine wave component in the θ direction. A single linear model
is therefore induced for θ̇ , and a piecewise linear approximation constructed from multiple
linear models for θ̈ . On the other hand the local RFWR models predict all components
simultaneously and are not able to efficiently represent this function. It is possible to build
a separate RFWR model for each component (in the same way that separate model trees
are induced for each component), however this does not improve predictions and uses a lot
more computation. A significant reduction in the number of models can only be achieved by
setting different RFWR parameters for the two components, but this would be providing the
algorithm with additional prior knowledge. The ability to efficiently approximate functions
containing large variations in curvature may be one reason why model trees learn from
fewer examples in these domains.

9. Conclusions and future work

This article describes and evaluates two versions of an algorithm that induces linear model
trees in both batch and online settings. Batch-RD is seen to be more effective than M5′,
GUIDE and SECRET over a number of larger standard datasets and some non-standard
system identification tasks. Batch-RA has worse prediction power and takes more exam-
ples to learn, but is computationally a lot less demanding. The incremental versions are
competitive with the alternative online learner RFWR, and require less prior knowledge
and fewer parameters to be tuned. Indeed Online-RD consistently learns a more accurate
approximation from fewer examples than RFWR. Online-RA may require more examples
initially to form a good approximation and is unable to adapt to a shifting input distribution,
although its final approximations are often good and it is very fast.

The trade-off between the asymptotic tree size and the final approximation error can
easily be controlled using the single stopping parameter δ0, which in the absence of any
prior knowledge can simply be set to zero. In addition there are no learning rates to be tuned,
thus avoiding a major cause of instability in many gradient descent systems. Moreover no
initial knowledge regarding the size of the input domain is required. Categorical attributes
can be easily incorporated into the trees when using the RD splitting rule. Incremental
pruning has little impact in the smaller domains, but significantly reduces the tree sizes in
the larger domains, with only a small effect on prediction error.

Having developed a method for rapidly learning non-linear models of dynamic envi-
ronments, future work will concentrate on applications in control. Nakanishi, Farrell, and
Schaal (2004) have developed a provably stable adaptive controller based on the represen-
tation learnt by RFWR, and perhaps a similar approach can be applied to incrementally
induced linear model trees. The interplay of control and system identification may also
be mutually beneficial. Poorly modelled regions of the state-space can be deliberately ex-
plored, and the full complexities of the dynamic model can be exposed by stimulating
the system enough to satisfy the system identification persistence of excitation conditions
(Ljung, 1987). A more accurate model will then enable better control within these regions.
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Appendix A

This appendix derives the residual difference (RD) statistical test used in both splitting
and pruning when inducing a tree T incrementally. Label the internal nodes of a particular
sub-tree of T rooted at I1 as I1 . . . Ip, and the leaves as L1 . . . Lq (see Figure A.1).

The sub-tree was grown incrementally, and initially only consisted of the sub-tree root
node I1. Therefore there are a number of examples N0,I1 that were observed at I1 but not
at any lower node. Similarly at each internal node j there are N0,I j examples that were
observed before the node had any children. A linear model is constructed at each internal
node j from the N0,I j examples observed before splitting, and the corresponding residual
sums of squares RSS0,I j are calculated. In each leaf i a linear model is formed from the NLi

examples that reached the leaf, and the residual sums of squares RSSLi are also calculated.
If the sum of NLi over all leaves is denoted as NL and the sum of N0,I j over all internal

nodes is denoted N0,I then the sub-tree has observed a total of N = NL+N0,I examples. A
single linear model is constructed at the root I1 from all N examples and the corresponding
residual sum of squares RSS is calculated. Also denote the sum of RSSLi over all leaves as
RSSL and the sum of RSS0,I j over all internal nodes as RSS0,I.

Making the assumptions that the observation noise is independent, zero-mean and Gaus-
sian with variance σ 2, and that the regressor matrix in each regression defined above has
full rank d , then we can form the null hypothesis H0 that all the observed examples were
generated by a single linear model. The alternative hypothesis is that the data is better
explained by the linear models in the leaves of the tree.

Using standard analysis of covariance techniques generalised to multiple regressions
(Kullback & Rosenblatt, 1957) it can be shown that the three expressions on the right-hand
side of the identity

RSS ≡ RSSL + RSS0,I + (RSS − RSSL − RSS0,I)

are distributed independently as χ2(NL −qd)σ 2, χ2(N0,I − pd)σ 2 and χ2((p +q −1)d)σ 2.
To obtain a better comparison between the null and alternative hypotheses, the effect of
the internal nodes is removed. Adding the last two expressions above gives (RSS − RSSL)
which is distributed as χ2(N0,I + (q − 1)d)σ 2 by the summation of two independent χ2-
distributed variables. This distribution is clearly affected if H0 does not hold, whereas RSSL

has the same distribution regardless. Following Chow (1960) H0 can therefore be tested by

Ip

Lq

I3

I1

I2

L2L1

Figure A.1. Labelling of tree nodes.
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the statistic

FRD = (RSS − RSSL) × (NL − qd)

RSSL × (N0,I + (q − 1)d)
(A.1)

which is distributed according to Fisher’s F distribution with N0,I+(q −1)d and NL−qd
degrees of freedom by the definition of the F distribution as the ratio of two independent
χ2-distributed variables.

Appendix B

This appendix gives the prediction errors for each algorithm on each Weka dataset, as
discussed in Section 7.1.

Table B.1. Batch algorithm prediction errors (nRMSE%) for the Weka datasets.

Dataset Batch-RD Batch-RA M5′ GUIDE SECRET†

2dplanes 22.7 ± 0.2 +54.3 ± 0.5 −22.7 ± 0.2 −22.7 ± 0.2 +53.7 ± 4.2∗

abalone 65.3 ± 3.9 +67.2 ± 4.1 +65.8 ± 4.1 +66.4 ± 4.2 +66.8 ± 5.1∗

ailerons 40.0 ± 1.2 +41.6 ± 1.2 −39.7 ± 1.1 40.0 ± 1.1 –

bank32nh 67.0 ± 2.6 −66.2 ± 2.7 +67.3 ± 2.6 −66.6 ± 2.7 +67.3 ± 2.7∗

bank8FM 19.2 ± 0.6 +20.9 ± 0.7 +20.0 ± 0.7 +19.8 ± 0.6 +20.0 ± 0.7∗

cal housing 47.0 ± 1.4 +51.5 ± 1.5 +48.4 ± 2.1 −45.9 ± 1.4 +54.2 ± 5.3∗

cpu act 12.6 ± 0.6 +12.9 ± 0.5 +14.8 ± 1.7 +13.0 ± 1.7 +51.8 ± 6.9∗

cpu small 15.3 ± 0.6 +16.4 ± 0.5 +17.3 ± 2.0 +15.9 ± 0.6 +27.1 ± 14.9∗

delta ailerons 53.5 ± 2.2 +54.4 ± 2.4 +54.4 ± 2.3 +54.2 ± 2.3 +55.6 ± 2.5∗

delta elevators 59.8 ± 1.7 +60.2 ± 1.7 +60.0 ± 1.7 +59.9 ± 1.7 +60.8 ± 1.7

elevators 31.1 ± 1.0 +35.4 ± 1.3 +32.2 ± 1.1 +33.1 ± 1.1 –

fried 20.6 ± 0.2 +21.5 ± 0.4 +27.8 ± 0.5 +20.7 ± 0.2 +21.4 ± 0.5

house 16H 68.6 ± 3.7 +71.6 ± 3.8 −67.7 ± 4.2 −66.7 ± 3.7 +85.3 ± 5.2∗

house 8L 59.8 ± 3.2 +62.5 ± 3.1 59.8 ± 5.0 +60.2 ± 3.3 +77.7 ± 5.1∗

kin8nm 46.6 ± 1.4 +69.0 ± 2.6 +60.9 ± 2.0 +52.8 ± 2.1 +47.5 ± 2.5∗

mv 0.2 ± 0.0 +5.2 ± 1.5 +1.4 ± 0.6 +0.8 ± 0.1 +13.4 ± 15.0∗

pol 15.6 ± 1.2 +26.0 ± 1.7 −15.1 ± 1.3 +20.1 ± 1.6 –

puma32H 21.8 ± 0.5 +84.6 ± 15.0 +27.1 ± 0.6 +27.0 ± 5.4 +83.0 ± 12.4

puma8NH 57.0 ± 1.2 +57.5 ± 1.5 −56.9 ± 1.3 +57.2 ± 1.2 +57.7 ± 1.4

Average error 38.1% 46.3% 40.0% 39.1% 52.7%

Tree size 27.8 9.5 35.9 11.6 8.3

Build time (s) 26.7 0.8 60.8 62.6 3.0

†Shows the best result between SECRET with axis-orthogonal splits and SECRET with oblique splits (∗). SECRET
fails for the datasets ailerons, elevators and pol.
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Table B.2. Incremental algorithm prediction errors (nRMSE%) for the Weka datasets.

Online-RD Online-RA

Dataset Unpruned Pruned Unpruned Pruned Linear

2dplanes 22.7 ± 0.3 22.7 ± 0.3 54.3 ± 0.5 −54.3 ± 0.5 54.3 ± 0.5

abalone 66.8 ± 4.3 +67.8 ± 4.8 69.3 ± 5.8 +70.0 ± 6.2 69.3 ± 4.6

ailerons 40.4 ± 1.1 +41.6 ± 1.9 41.6 ± 1.3 −41.2 ± 1.4 42.9 ± 1.4

bank32nh 67.5 ± 2.8 67.3 ± 2.6 68.2 ± 2.7 68.1 ± 2.6 68.5 ± 2.5

bank8FM 19.9 ± 0.7 +20.7 ± 0.8 21.4 ± 0.8 21.3 ± 0.7 25.5 ± 1.3

cal housing 52.8 ± 2.3 +59.9 ± 6.2 61.9 ± 9.3 +76.5 ± 13.8 60.3 ± 1.6

cpu act 26.4 ± 7.1 −21.8 ± 7.7 15.2 ± 3.2 −14.6 ± 1.8 52.4 ± 4.1

cpu small 18.2 ± 3.9 −17.4 ± 3.0 17.2 ± 0.8 17.1 ± 0.7 53.5 ± 4.0

delta ailerons 55.2 ± 2.4 +56.7 ± 2.3 55.9 ± 2.7 56.1 ± 2.8 56.8 ± 2.3

delta elevators 60.6 ± 1.8 +60.7 ± 1.7 60.1 ± 1.8 +60.9 ± 2.0 61.0 ± 1.7

elevators 33.6 ± 1.3 +34.7 ± 1.6 35.2 ± 1.4 +37.1 ± 3.2 43.2 ± 2.1

fried 20.9 ± 0.2 20.9 ± 0.2 22.0 ± 0.5 +22.2 ± 0.5 52.6 ± 0.6

house 16H 72.0 ± 3.7 +81.0 ± 5.6 75.2 ± 4.1 +75.7 ± 3.9 86.1 ± 4.1

house 8L 63.3 ± 3.5 +72.6 ± 5.7 63.4 ± 3.3 +64.0 ± 3.5 78.7 ± 3.6

kin8nm 59.5 ± 4.8 +61.6 ± 5.2 72.5 ± 1.8 72.6 ± 1.8 76.6 ± 1.8

mv 1.5 ± 1.2 +1.8 ± 1.8 7.9 ± 2.2 7.6 ± 1.9 53.7 ± 0.8

pol 25.0 ± 3.2 +38.6 ± 14.6 33.4 ± 5.5 33.9 ± 6.2 73.1 ± 0.8

puma32H 24.6 ± 0.9 24.6 ± 0.9 82.3 ± 15.7 82.7 ± 15.4 88.5 ± 2.2

puma8NH 57.8 ± 1.2 57.9 ± 1.2 58.5 ± 1.5 58.5 ± 1.5 79.4 ± 1.6

Average error 41.5% 43.7% 48.2% 49.2% 61.9%

Tree size 16.5 7.4 7.1 6.1 –

Build time (s) 64.0 61.9 3.0 2.9 0.2

Appendix C

This appendix gives the detailed results for each algorithm in the dynamic domains, as
discussed in Section 7.4.

C.1. Parameter values

Table C.1. Stopping parameter values for the batch and incremental model tree learners.

Domain Batch-RD Batch-RA Online-RD Online-RA

2D test 3 × 10−3 5 × 10−3 5 × 10−3 10−2

2D rotated 3 × 10−3 5 × 10−3 5 × 10−3 10−2

Pend. cont. 2 × 10−5 5 × 10−4 2 × 10−5 2 × 10−4

Pend. disc. 5 × 10−6 5 × 10−5 5 × 10−6 5 × 10−5

Cartpole 5 × 10−4 10−4 10−3 10−3

Flight 2 × 10−3 5 × 10−3 10−2 5 × 10−3
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Table C.2. RFWR parameter values.

Domain Initial distance metric D0 Penalty γ Learning rates

2D test 25I (I is the identity matrix) 10−7 250

2D rotated 25I 10−7 250

Pend. cont. 5I 10−9 1000

Pend. disc. 5I 10−9 5000

Cartpole 10I 10−7 1000

Flight 2.5I 10−5 1000

C.2. 2D test function detailed results
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Figure C.1. Prediction errors on the 2D test function.
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Figure C.2. Number of leaves/receptive fields on the 2D test function.
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Figure C.3. Gradient errors on the 2D test function.
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Figure C.4. Performance on the 2D test function.

C.3. Rotated 2D test function detailed results
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Figure C.5. Prediction errors on the rotated 2D test function.
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Figure C.6. Number of leaves/receptive fields on the rotated 2D test function.
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Figure C.7. Gradient errors on the rotated 2D test function.
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Figure C.8. Performance on the rotated 2D test function.
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C.4. Continuous pendulum detailed results
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Figure C.9. Prediction errors on the continuous pendulum.
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Figure C.10. Number of leaves/receptive fields on the continuous pendulum.
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Figure C.11. Gradient errors on the continuous pendulum.
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Figure C.12. Performance on the continuous pendulum.

C.5. Discrete pendulum detailed results
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Figure C.13. Prediction errors on the discrete pendulum.
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Figure C.14. Number of leaves/receptive fields on the discrete pendulum.
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Figure C.15. Performance on the discrete pendulum.

C.6. Cart and pole detailed results
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Figure C.16. Prediction errors on the cart and pole.
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Figure C.17. Number of leaves/receptive fields on the cart and pole.
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Figure C.18. Performance on the cart and pole.
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Figure C.19. Unpruned model trees on the cart and pole.

C.7. Flight simulator detailed results
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Figure C.20. Prediction errors on the flight simulator.
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Figure C.21. Number of leaves/receptive fields on the flight simulator.
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Figure C.22. Performance on the flight simulator.
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Figure C.23. Unpruned model trees on the flight simulator.
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Notes

1. In some cases it is possible to initialise some of the new sub-models using the parent’s sub-models, but this
does not affect the discussion.

2. See http://www.cs.waikato.ac.nz/∼ml/
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