
Machine Learning, 61, 49–69, 2005
2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s10994-005-1122-7

Single-Class Classification with Mapping
Convergence∗

HWANJO YU hwanjoyu@cs.uiowa.edu
Department of Computer Science, University of Iowa, Iowa City, IA 52242, USA

Editor: Philip M. Long
Published online: 09 June 2005

Abstract. Single-Class Classification (SCC) seeks to distinguish one class of data from universal set of multiple
classes. We call the target class positive and the complement set of samples negative. In SCC problems, it is
assumed that a reasonable sample of the negative data is not available. SCC problems are prevalent in the real
world where positive and unlabeled data are widely available but negative data are hard or expensive to acquire.
We present an SCC algorithm called Mapping Convergence (MC) that computes an accurate boundary of the target
class from positive and unlabeled data (without labeled negative data). The basic idea of MC is to exploit the natural
“gap” between positive and negative data by incrementally labeling negative data from the unlabeled data using
the margin maximization property of SVM. We also present Support Vector Mapping Convergence (SVMC) which
optimizes the MC algorithm for fast training. Our analyses show that MC and SVMC without labeled negative
data significantly outperform other SCC methods. They generate as accurate boundaries as standard SVM with
fully labeled data when the positive data is not very under-sampled and there exist gaps between positive and
negative classes in the feature space. Our results also show that SVMC trains much faster than MC with very close
accuracy.
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1. Introduction

Single-Class Classification (SCC) seeks to distinguish one class of data from universal set
of multiple classes (e.g., distinguishing apples from fruits, identifying waterfall pictures
from image databases, or classifying personal homepages from the Web). Throughout the
paper, we call the target class positive and the complement set of samples negative.

In SCC problems, it is assumed that a reasonable sample of the negative data is hard
to acquire. Since it is not natural to collect the “non-interesting” objects (i.e., negative
data) to train the concept of the “interesting” objects (i.e., positive data), SCC problems are
prevalent in real-world applications where positive and unlabeled data are widely available
but negative data are hard or expensive to acquire (Yu, Han, & Chang, 2002; Letouzey,
Denis, & Gilleron, 2000; DeComite, Denis, & Gilleron, 1999). For example, in text or Web
page classification (e.g., personal homepage classification), collecting negative training data
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(e.g., a sample of “non-homepages”) is delicate and arduous because manually collected
negative data could be easily biased because of a person’s unintentional prejudice, which
could be detrimental to classification accuracy. For another example, consider the automatic
diagnosis of diseases: unlabeled data are easy to collect (all patients in the database), and
positive data are also readily available (the patients who have the disease). However, negative
data can be expensive to acquire; not all patients in the database can be assumed to be
negative if they have not been tested for the disease, and such tests can be expensive. Other
applications can be found in pattern recognition, image retrieval, classification for data
mining, rare class classification, etc. In this paper, we focus on SCC problem with positive
and unlabeled data and without labeled negative data.

1.1. Previous approaches for SCC

Traditional (semi-)supervised learning schemes are not suitable for SCC without labeled
negative data because: (1) the portions of positive and negative spaces are seriously unbal-
anced (i.e., Pr (P) � Pr (P̄)) and hard to estimate, and (2) the absence of negative samples
in the labeled data set makes unfair the initial parameters of the model and leads to unfair
guesses for the unlabeled data.

Active learning methods try to minimize the labeling labor to construct an accurate
classification function by a different approach that involves an interactive process between
the learning system and a user (Tong & Koller, 2000).

Valiant in 1984 (Valiant, 1984) pioneered learning theory from positive examples based
on rule learning. In 1998, F. Denis defined the Probably Approximately Correct (PAC)
learning model for positive and unlabeled examples, and showed that k-DNF (Disjunctive
Normal Form) is learnable from positive and unlabeled examples (Denis, 1998). After that,
attempts to learn using positive and unlabeled data have tried k-DNF or C4.5 (Letouzey,
Denis, & Gilleron, 2000; DeComite, Denis, & Gilleron, 1999). Such rule learning methods
are simple and efficient for learning nominal features but are tricky to use for problems of
continuous features, high dimensions, or sparse instance spaces.

The Positive Example-Based Learning (PEBL) framework was proposed for Web page
classification (Yu, Han, & Chang, 2002). Their method is limited to the Web domain with
binary features, and its training efficiency is poor as it uses SVM iteratively whose training
time is already at least quadratic to the size of training data set. This problem becomes
critical when the size of unlabeled data set is large.

Recently, a probabilistic method built upon the EM algorithm for the SCC problem,
called S-EM, was proposed for the text domain (Liu et al., 2002). The method has several
fundamental limitations: the generative model assumption, the attribute independence as-
sumption which results in linear separation, and the requirement of good estimation of prior
probabilities. Our method does not require the prior probability of each class, and it can
draw nonlinear boundaries using the SVM kernel trick.

The pattern recognition and verification fields have also explored various SCC methods,
including neural network models (Frosini, Gori, & Priami, 1996; Gori, Lastrucci, & Soda,
1995) and the SVMs (Manevitz & Yousef, 2001; Bileschi & Heisele, 2003) (with increasing
popularity). Some of these techniques tend to be domain specific: For instance, Bileschi &
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Heisele (2003) use SVM with only positive examples for face detection—However, it relies
on using the face features of other non-target classes as negative examples, and thus is not
generally applicable to other domains.

For document classification, Manevitz (Manevitz & Yousef, 2001) compared various
SCC methods including neural network method, one-class SVM, nearest neighbor, naive
Bayes, and Rocchio, and concluded that One-class SVM and neural network method were
superior to all the other methods, and the two are comparable.

OSVM (One-Class SVM), based on the strong mathematical foundation of SVM, dis-
tinguishes one class of data from the rest of the feature space given only a positive data set
(Scholkopf et al., 2001; Tax and Duin, 2001; Manevitz & Yousef, 2001). OSVM draws a
nonlinear boundary of the positive data set in the feature space using two parameters—ν (to
control the noise in the training data) and γ (to control the “smoothness” of the boundary).
They have the same advantages of SVM, such as efficient handling of high dimensional
spaces and systematic nonlinear classification using the kernel trick. However, given no
negative examples available, OSVM requires a much larger amount of positive training
data to induce an accurate class boundary especially in high dimensional spaces because
its support vectors (SVs) of the boundary only comes from the positive data set and thus
the relatively small number of SVs can hardly cover the major directions of the boundary
in high dimensional spaces. Due to the SVs coming only from positive data, OSVM also
tends to overfit and underfit easily. Tax proposed a sophisticated method which uses artifi-
cally generated unlabeled data to optimize the OSVM’s parameters that “balance” between
overfitting and underfitting (Tax and Duin, 2001). However, their optimization method is
infeasibly inefficient in high dimensional spaces, and even with the best parameter setting,
its performance still lags far behind the SVM with negative data due to the shortage of
SVs which makes “incomplete” the boundary description. Figures 1(a) and (b) show the
boundaries of SVM trained from positives and negatives and OSVM trained from only
positives on a synthetic data set in a two-dimensional space. (We used LIBSVM version
2.331 for SVM implementation. The RBF kernel parameter is optimized on training data.)
In this low-dimensional space with “enough” data, the obstensibly “smooth” boundary of
OSVM is not the result of the good generalization but instead is from the “incomplete” SVs
due to not using the negatives for SVs, which will become much worse in high-dimensional
spaces where more SVs around the boundary are needed to cover major directions in the
high-dimensional spaces. When we increase the number of SVs in OSVM, it overfits rather
than being more accurate as shown in Figures 1(c) and (d).

However, such OSVM boundary might be the best achievable one when only positive
data are available. In this paper, under the assumption that unlabeled data are abundant and
readily available, we present a systematic method that additionally uses the unlabeled data
for support vectors to get more concrete boundary descriptions.

1.2. Contributions and paper layout

We present an SCC algorithm called Mapping Convergence (MC) that computes an accurate
boundary of the target class from positive and unlabeled data (without labeled negative data)
(Yu, 2003). The basic idea of MC is to exploit the natural “gap” between positive and negative
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Figure 1. Boundaries of SVM and OSVM on a synthetic data set. big dots: positive data, small dots: negative
data.

data by incrementally labeling negative data from the unlabeled data using the margin
maximization property of SVM. We also present Support Vector Mapping Convergence
(SVMC) which optimizes the MC algorithm for fast training. Our analyses show that MC
and SVMC without labeled negative data significantly outperform other SCC methods.
They generate as accurate boundaries as standard SVM with fully labeled data when the
positive data is not very under-sampled and there exist gaps between positive and negative
classes in the feature space. Our results also show that SVMC trains much faster than MC
with very close accuracy.

In Section 2, we first discuss the optimal SCC boundary, which motivates our SCC
method, MC, and present the MC algorithm which generates the boundary close to the
optimum under certain conditions. We motivate and describe the SVMC algorithm in Section
3. In Section 4, we empirically verify our analysis of SVMC by extensive experiments on
various domains of real data sets such as text classification, letter recognition, diagnosis of
breast cancer, which shows the outstanding performance of SVMC in a wide spectrum of
SCC problems (with linear or nonlinear separation, and low or high dimensions).
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2. Mapping Convergence (MC) algorithm

In this section, we present the basic idea of the Mapping-Convergence (MC) algorithm,
which is the basis of the SVMC algorithm. For convenience of presentation, we use the
following notations throughout this paper.

– U is the feature space for the universal set such that U ⊆ �m where m is the number of
dimensions.

– U (unlabeled data set) is an iid (independently and identically distributed) sample of the
universal set.

– x is a data instance such that x ∈ U .
– P is a space for positive class within U , from which positive data set P is sampled.

For an example of Web page classification, the universal set is the entire Web, U is a
sample of the Web, P is a collection of Web pages of interest, and x ∈ �m is an instance of
Web page.

2.1. Motivation

In machine learning theory, the optimal class boundary function (or hypothesis) h(x), given
a limited number of training data {(x, l)} (l is the label of x), is the one that gives the best
generalization performance which is the performance on “unseen” examples rather than on
the training data. The performance on the training data is not regarded as a good evaluation
measure for a hypothesis because the hypothesis may end up overfitting when it tries too
hard to fit the training data. When a problem is easy (to classify) and the boundary function
is more complicated than it needs to be, the boundary is likely overfitting. When a problem
is hard and the classifier is not powerful enough, the boundary is likely underfitting. SVM
is an excellent example of supervised learning that tries to maximize the generalization
by maximizing the margin and also supports nonlinear separation using the kernel trick,
by which SVM tries to avoid overfitting and underfitting (Vapnik, 1998; Christianini &
Shawe-Taylor, 2000; Burges, 1998).

To find the optimal SCC classifier without labeled negative data, we also needs to maxi-
mize the generalization performance so that we do not overfit nor underfit the training data.
The optimal SCC boundary is much harder to find than one with complete labels for all the
training data. To illustrate an example of desirable SCC boundary when no labeled negative
data is available, consider the synthetic data set (Figure 2) which simulates a real situation
where (1)U is the universal set consisting of multiple groups of data, (2) the positive classP
is one of them (say the data group in the center), and (3) the positive data set P (represented
by the big dots) is a sample from P . OSVM draws a very conservative tight boundary
around P as shown in Figure 2(a), clearly overfitting the data due to its inability of using
any knowledge about the distribution of U . Intuitively, the desirable boundary should be
located between positive class P and the unlabeled data U outside P . The MC algorithm
exploits U systematically to obtain a reasonable set of negative data, which allows us to
reach such a desirable boundary shown in Figure 2(b).
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Figure 2. Synthetic data set simulating a real situation. P: big dots, U: all dots (big and small dots).

2.2. Strong negative

Here we introduce the notion of “strong negative”, which is key to the MC algorithm.
Let h(x) be the boundary function of the positive class in U , which outputs the distance

from the boundary to the instance x in U such that

h(x) > 0 if x is a positive instance,

h(x) < 0 if x is a negative instance,

|h(x)| > |h(x ′)| if x is located farther than x′

from the boundary in U .

Definition 1 (Strong negative). For two negative instances x and x ′ such that h(x) < 0
and h(x ′) < 0, if |h(x)| > |h(x ′)|, then x is stronger than x ′.

Example 1. Consider a resume page classification function h(x) from the Web (U). Sup-
pose there are two negative data objects x and x ′ (non-resume pages) inU such that h(x) < 0
and h(x ′) < 0: x is “how to write a resume” page, and x ′ is “how to write an article” page.
In U , x ′ is considered a stronger negative (or more distant from the boundary of the resume
class) because x has more features relevant to the resume class (e.g., the word “resume” in
text) though it is not a true resume page.

2.3. MC algorithm

The MC algorithm is composed of two stages: the mapping stage and the convergence
stage. In the mapping stage, the algorithm uses a weak classifier �1 (e.g., Rocchio or
OSVM), to draw an initial approximation of “strong negatives”—the negative data located
far away from the boundary of the positive class in U (Steps 1 and 2 in Figure 3). Based
on this initial approximation, the convergence stage runs iteratively using a second base
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Figure 3. MC algorithm.

classifier �2 (e.g., SVM), to maximize the margin in order to make a progressively better
approximation of negative data (steps 3 through 5 in Figure 3). As a result, the class boundary
eventually converges to the boundary around the positive data set in the feature space. The
MC algorithm is described in Figure 3.

To illustrate the MC process, consider an example of data distribution in a one-dimensio-
nal feature space in Figure 4. The unlabeled data U is composed of eight data clusters.
The fifth one from left is positive and the rest are negative. If U is completely labeled, a
margin-maximization algorithm such as SVM trained from U would generate the optimal
boundary (bd , b′

d ) in Figure 4, where bd maximizes the margin—the gap between the two
points gn and g f —between positive and negative clusters. Unfortunately, under the common
scenarios of SCC, the only labeled data are the dark center within the positive cluster, which
is a subset of the positive class, and the rest are unlabeled.

Figure 5(a) illustrates the MC process given the labeled positive data P (i.e., the dark
center) with the unlabeled U . First, algorithm �1 identifies strong negatives; in Figure 5(a),
let strong negatives be the data to the left and right sides of b1 and b′

1 respectively, i.e., the dark
area at the edges. They are located far from the positive data cluster in the feature space. We
will justify the validity of algorithm �1 later in this section. For convenience of explanation,
consider only the left side of the positive cluster in Figure 4(a). After we identified the strong
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Figure 4. Example of data distribution in one dimensional feature space. The fifth data cluster from left is positive
and the rest are negative.

negatives, at the first iteration of Step 4 in Figure 3, algorithm �2 computes, from P and
the strong negatives N , an classification boundary h1 (i.e., b2 in Figure 5(a)). Then, the
data classified as negative by h1 (i.e., the data within D1 in Figure 5(a)) is merged into N .
With the revised N and the original P , �2 computes another boundary h2 (i.e., b3 in the
figure) and negatively classified data (i.e., the data within D2) is merged again into N . As
the iteration goes, N progressively includes the unlabeled data as negative data, and the
boundary hi approaches to the optimal boundary.

Assume for now that �2 be a hard-margin SVM. Let Di be the margin for the negatively
classified data after ith iteration. Since �2 at each iteration computes a boundary that
maximizes the margin, Di+1 will have half the margin of Di in Figure 5(a) except one case:

Figure 5. Example of the MC algorithm in the one dimensional feature space.
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Suppose bi is the starting point of Di that is merged into N at i th iteration, and let bt be the
boundary of the positive data P , as Figure 5(a) illustrates. If there exists no data around the
boundary bi+1 after i th iteration, bi+1 will retract to a point where there exists data within
Di , because the data within Di merged into N will be the nearest negative data points of the
next boundary, and �2 maximized the margin between the nearest data points (i.e., support
vectors). For instance, in Figure 5(a), b4 retracts a little from the boundary after the 3rd
iteration, as there exists no data around the boundary after the 3rd iteration.

If there exists no data at all within Di , the convergence will stop because nothing will
be added to N and thus more iterations after that will not affect the boundary. For instance,
in Figure 5(a), bmc will be the final boundary of MC to the left side because there exists no
data within D4 and thus nothing will be included into N from that point. As we see from
Step 4.5 in Figure 3, the MC algorithm will stop the convergence when nothing is included
into N . The final boundary of MC to the right side in Figure 5 tightly fits around P (i.e., b′

t )
because there is no gap between the positive and negative clusters and thus the convergence
will not stop until MC includes every unlabeled data beyond P into N .

From the above example, we see that MC will stop the convergence and locate the
boundary close to the optimum if there exists a large gap between positive and negative
data clusters. (e.g., The MC boundary bmc is close to the optimal boundary bd in Figure
5(b).) The optimal boundary bd equally divides the margin between the points g f and gn

in Figure 5(b), i.e., the margin between the positive and negative data clusters, while bmc

does between two points g f and bt , as only the data in the dark center is labeled. However,
if there is no wide gap between those (e.g., the right side of Figure 5(a)) or the positive
labeled data is very few, the MC boundary will “over-iterate” and end up converging into
the tight boundary (e.g., b′

t in Figure 5(b)).
How wide gaps or how many positive labeled data are needed to avoid the “over-iteration”

problem? To provide an intuitive answer, we assume that the feature space has only one
dimension and negative data exist only to one side (e.g., the left side of Figure 5(a)). We
denote |x − y| for the margin between two points x and y. Let Dg be a gap between gn and
g f , where gn and g f are the two ending points of the gap respectively near and far from the
positive class as illustrated in Figure 5(b). Then we have the following lemma.

Lemma 1. Suppose g f is the starting point at i th iteration. If MC stop converging at i th
iteration, there must exists a gap Dg such that |g f − gn| > |gn − bt |.

Proof:
If MC stops the convergence at i th iteration, there must exists a gap at least from g f

to the half point to bt because �2 equally divides the margin between g f and bt , i.e.,
|g f − gn| >

|g f −bt |
2 = |g f −gn |+|gn−bt |

2 . Thus |g f − gn| > |gn − bt |.

Theorem 1. MC locates the boundary within the first gap Dg it confronts during the
iterations, such that |g f − gn| > |gn − bt |.

Proof: From Lemma 1, we know that if MC do not see a gap Dg such that |g f −gn| > |gn−
bt | during the iterations, it will not stop the convergence. Let us assume that MC confronts
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a gap of Dg such that |g f − gn| > |gn − bt | at i th iteration. Then, MC tries to include the
margin of |g f −bt |

2 from g f . Since |g f −gn| > |gn −bt |, |g f −bt |
2 = |g f −gn |+|gn−bt |

2 < |g f −gn|.
Thus, nothing will be added to N at i th iteration, and the iteration will stop then.

Note that our algorithm analyses so far assume that data is noiseless and �2 is a hard-
margin SVM. In practice, we use a soft-margin SVM for �2 to deal with noise in the training
data. With soft-margin SVMs, Di+1 may not exactly have the half margin of Di . However,
a small soft-margin parameter (e.g., ν = 0.01 or 0.1 in ν-SVM) usually performs well
in SCC, as our experiments in Section 4 also verify, because in SCC, P is likely to be a
carefully collected subset of positive data and thus likely to be noise-free.

Theorem 1 can be interpreted as carrying the following messages.

1. MC is not likely to locate the boundary exorbitantly far from the boundary of P unless
U is extremely sparse, because a larger gap (|g f −gn|) is needed to stop the convergence
as gn (i.e., the nearer ending point of the gap) is becoming farther from bt (or |gn − bt |
increases).

2. The more P is under-sampled, the larger the gaps between positive and negative classes
are needed to avoid the “over-iteration” problem, because |gn − bt | would increase if P
is under-sampled.

The above observations imply that MC is likely to generate the boundary close to the
optimum when P is not seriously under-sampled and wide gaps exist between P and N
in the feature space. Data sets in practice are likely to have natural gaps between different
classes than within a class in the feature space. From the first observation, gaps far from P in
the feature space are less likely to influence MC. By exploiting such gaps, MC significantly
outperforms other SCC methods when P is not too much under-sampled. Our experiments
on common data sets in Section 4 show consistent results.

What are the conditions that the component algorithms �1 and �2 must meet, in order
for MC to perform well?

1. �1 excludes false negatives while including as many strong negatives. First, if�1 includes
false negatives, they are likely to stay as false negatives during the iterations which will
deteriorate the boundary accuracy. Second, an insufficient amount of strong negatives
might not cover all the directions in the feature space, which could generate “incomplete”
set of negative SVs especially in a high-dimensional feature space. Thus, more negatives
�1 includes, MC will generate the more stable boundary convergence.

We can use any reasonable classifier for �1, such as Rocchio or OSVM, and adjust
the threshold so that it makes near 100% recall with a minimal sacrifice of precision.
We use OSVM for �1 in our research, and adjust the bias b to achieve a high recall.
Figure 6 shows an example of the boundary after each iteration of SVMC: �1 identifies
strong negatives by covering a wide area around the positives (Figure 6(a)). Although
the precision quality of the mapping is poor, the boundary at each iteration converges
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Figure 6. Intermediate results of SVMC.

(Figures 6(b) and (c)), and the final boundary is close to the ideal boundary drawn by
SVM on P and true N . (Compare Figures 1(a) and 6(d)). We used the same kernel
parameter for both SVMC (Figure 6) and the ideal SVM (Figure 1(a)), as the boundaries
of both are likely to have similar number of SVs. (We will discuss tuning parameters
and also compare the number of SVs generated by different methods in Section 4.) Our
experiments in Section 4 also show that the final boundary becomes accurate although
the initial boundary of the mapping stage is relatively rough by the “loose” setting of the
threshold for �1.

2. �2 maximizes the margin. Without the margin maximization of �2, the boundary conver-
gence could stop in an arbitrary gap in the feature space. In other words, the convergence
behavior would be inconsistent to the type of data distribution if �2 does not provide
the margin maximization property, because Theorem 1 becomes invalid without the
property.

SVM and Boosting are currently the most popular supervised learning algorithms that
maximize margin. We use SVM for �2 in our research. With a strong mathematical
foundation, SVM automatically finds the optimal boundary without a validation process



60 H. YU

and without many parameters to tune. The small numbers of theoretically motivated
parameters also work well with an intuitive setting. In practice, the soft constraint of
SVM is necessary to cope with noise or outliers; however, in the SCC problem domains,
P is unlikely to have a lot of noise since it is usually carefully labeled by users. Thus
we can use a very low value for the soft margin parameter ν. In our experiments, a
low setting (i.e., ν = 0.01 or 0.1) of ν (the parameter to control the rate of noise in
the training data) performed well for this reason. (When ν = 0, it becomes the hard
margin). (We used ν-SVM for the semantically meaningful parameter (Scholkopf et al.,
2000; Chang and Lin, 2001)).

3. Support Vector Mapping Convergence (SVMC)

In this section, we present Support Vector Mapping Convergence (SVMC) which optimizes
the MC algorithm for fast training.

3.1. Motivation

The classification time of the final boundary of MC with �2 = SV M is equal to that
of SVM because the final boundary is a boundary function of �2. However, the training
time of MC can be very long if |U | is very large because the training time of SVM highly
depends on the size of data set n (≈ |U |), and MC runs iteratively. Indeed, tMC = O(|U |2 ∗
log|U |) assuming the number of iterations ≈ log|U | and tSV M = O(|U |2) where t� is
the training time of a classifier �. (tSV M is known to be at least quadratic to n and linear
to the number of dimensions; More discussion on the complexity of SVM can be found
in Chang and Lin (2001)). However, decreasing the sampling density of U to reduce the
training time could hurt the accuracy of the final boundary because the density of U will
directly affect the quality of the SVs of the final boundary. Here we introduce a trick in the
SVMC algorithm, to significantly reduce the training time while keeping the accuracy from
degrading.

3.2. SVMC algorithm

The basic idea of SVMC is to remove the data, from the training set at each iteration, that
are unlikely to be the SVs. To illustrate, consider the point of starting the third iteration
(when i = 2) in MC (Step 4.1 in Figure 3) illustrated in Figure 7. After we merge N̂2 into
N , in order to construct h3, we may not need all the data from N since the data far from
h3 is unlikely to be the SVs. The negative SVs of h2 fairly represent the data within N̂0

and N̂1. Thus, we only keep the negative SVs of h2 and the newly induced data set N̂2 to
support the negative side of h3.

The SVMC algorithm is described in Figure 8. Surprisingly, adding only Step 4.5 to the
original MC algorithm completes SVMC. Our experiments in Section 4 show that SVMC
trains much faster than MC and its accuracy is almost as high as that of MC.
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Figure 7. Minimally required negative data for h3.

Figure 8. SVMC algorithm.

Note that, while this heuristics significantly reduces the training time (See Table 1 for
comparing the training time.), it could marginally deteriorate the quality of the final bound-
ary, because the negative SVs of hi cannot entirely represent the negative data accumulated
in the previous iterations. Depending on the data distribution and the boundary, any negative
data from previous iterations could be SVs for hi . From Table 1, we see the SVMC’s final
boundary is slightly less accurate than that of MC for most datasets.
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Table 1. Performance results (α = β = 1.0). t-time: training time.

F1 (1st row), accuracy (2nd row), No. of SVs (3rd row) t-time (sec.)

Class MC SVMC OSVM SVM NN S-EM NB NN ISVM MC SVMC

Earn 0.9653 0.9632 0.8267 0.0092 0.8327 0.8327 0.9893 963.87 119.62
0.9923 0.9918 0.9578 0.8921 0.9475 0.9475 0.9977
(1209) (1058) (374) (1948) − − (1264)

Grain 0.8239 0.8211 0.6962 0.1250 0.4307 0.4307 0.8905 178.30 40.12
0.9960 0.9959 0.9929 0.9888 0.9720 0.9720 0.9976
(636) (493) (143) (788) − − (642)

Wheat 0.7737 0.7571 0.6621 0.1519 0.2190 0.2190 0.8413 87.75 22.45
0.9976 0.9973 0.9961 0.9947 0.9623 0.9623 0.9984
(349) (259) (63) (441) − − (370)

Corn 0.7692 0.7521 0.4923 0.2162 0.1571 0.1571 0.8119 78.02 22.19
0.9979 0.9977 0.9948 0.9961 0.9595 0.9595 0.9985
(400) (313) (68) (463) − − (397)

Crude 0.7308 0.7111 0.6685 0.0309 0.6119 0.6119 0.8724 319.17 54.06
0.9922 0.9917 0.9904 0.9850 0.9834 0.9834 0.9966
(689) (527) (121) (851) − − (656)

Letter ‘A’ 0.9840 0.9840 0.8457 0.0811 0.4757 0.4757 0.9929 171.77 45.37
0.9991 0.9991 0.9922 0.9726 0.9467 0.9467 0.9996
(1385) (1048) (150) (891) − − (1407)

Letter ‘B’ 0.9046 0.9204 0.7207 0.0834 0.1725 0.1725 0.9651 75.61 14.34
0.9950 0.9959 0.9869 0.9758 0.8489 0.8489 0.9983
(619) (529) (193) (905) − − (618)

Letter ‘C’ 0.9641 0.9641 0.7354 0.0758 0.1229 0.1229 0.9860 155.70 29.93
0.9982 0.9982 0.9882 0.9755 0.7293 0.7293 0.9923
(1202) (733) (207) (908) − − (1205)

Letter ‘D’ 0.9300 0.9300 0.6921 0.0902 0.1610 0.1610 0.9820 80.47 16.06
0.9963 0.9963 0.9860 0.9752 0.8881 0.8881 0.9991
(651) (554) (207) (930) − − (715)

Letter ‘E’ 0.9419 0.9396 0.7112 0.1333 0.1861 0.1861 0.9798 98.13 21.57
0.9970 0.9969 0.9878 0.9764 0.8617 0.8617 0.9990
(698) (567) (186) (885) − − (709)

b-cancer 0.9470 0.8444 0.6315 0.1872 0.4741 0.4741 0.9521 0.131 0.025
0.9841 0.9658 0.8332 0.2664 0.6659 0.6659 0.9858

(56) (23) (12) (116) − − (55)

4. Experimental evaluation

In this section, we provide the empirical evaluations on MC and SVMC by performing
extensive experiments on various domains of real data sets—text classification, letter recog-
nition, and diagnosis of breast cancer—which show the outstanding performance of SVMC
in a wide spectrum of SCC problems (with linear or nonlinear separation, and low or high
dimensions). Our evaluations show that MC and SVMC without labeled negative data signif-
icantly outperform other SCC methods and in most cases generate as accurate boundaries
as standard SVM with fully labeled data, except when the positive data set is seriously
under-sampled. Our results also show that SVMC trains much faster than MC with very
close accuracy.
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4.1. Performance measures

To evaluate a SCC method, we use the F1 measure, which is a commonly used performance
measure for SCC and also used (Liu et al., 2002)—one of the most recent works on SCC
for text classification. This measure combines precision and recall in the following way:

precision = No. of correct positive predictions

No. of positive preditions

recall = No. of correct positive predictions

No. of positive examples

F1 = 2 * precision * recall

precision + recall

We also report the classification accuracy, even though it is not a good measure for the SCC
problem because always predicting negative would give a high accuracy.

4.2. Experiment methodology

To fully test the effectiveness and efficiency of SVMC, we compare seven methods—MC,
SVMC, OSVM, SVM NN, S-EM, NB NN, ISVM.

– OSVM is described in Section 1.1.
– SVM NN is standard SVM trained using positive data, with unlabeled data as a subsititute

for negative data. This is not unreasonable, as the unlabeled data can be thought of as
a good approximation of negative data. However, the small number of false negatives
are likely to affect the support vectors (SVs) of the boundary, which hurts the recall
performance, as shown in our experiments.

– S-EM is described in Section 1.1.
– NB NN (Naive Bayes with Noisy Negatives) also uses the unlabeled data as negative

data.
– ISVM is the Ideal SVM trained from completely labeled data (P , with true N which

is manually classified from U ). ISVM shows the ideal performance when the unlabeled
data are labeled.

We used LIBSVM version 2.362 for SVM implementation of SVMC, MC, SVM NN,
OSVM, and ISVM. For the Reuters and breast cancer data sets, we used linear kernels
for which are simple and accurate enough. (Text classification tasks are generally linearly
separable (Joachims, 2001)). For the letter recognition data set, we use Gaussian kernels
which usually perform the best for pattern recognition problems.

For S-EM and NB NN, we used the recent implementation released by the author of
S-EM.3

Note that for a conventional SCC method, one cannot perform a validation process to
optimize the parameters because no negative data is available. For SVMC, MC, SVM NN,
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and ISVM, we used a theoretically motivated fixed parameter (e.g., ν = 0.01 or 0.1). As
discussed at the end of Section 2.3, a low setting (i.e., ν = 0.01 or 0.1) of ν (the parameter
to control the rate of noise in the training data) performed well since P is not likely noisy.
(We used ν-SVM for the semantically meaningful parameter (Scholkopf et al., 2000; Chang
and Lin, 2001)). For the Gaussian kernel parameter γ , we used the default value γ = 1/m
where m is the number of dimensions. The default γ performed very well on the letter
recognition data set. However, kernel parameters such as γ usually affects the performance
very much and thus need a careful optimization. Optimizing the kernel parameters for MC
with only positive and unlabeled data is an important further work.

We also used the default parameter for S-EM, as it is impossible to optimize the parameter
without negative data (Refer to Liu et al. (2002) for details.).

For OSVM, Tax proposed a sophisticated method to optimize the parameters without neg-
ative data (Tax and Duin, 2001). However, their method is infeasibly inefficient especially
in high dimensional spaces. As OSVM performs very poorly with default parameters, we
linearly searched for the best parameter for OSVM based on the testing data set in order to
simulate the results after the optimization. Note that the true performance of OSVM in prac-
tice would be poorer than those reported in our experiments since we unfairly performed the
optimization only for OSVM. Even with the unfairly optimized parameter, OSVM performs
poorer in our experiments than MC or SVMC with the intuitively set parameters.

4.3. Data sets

We used three data sets from three different domains: Reuters-21578.4 for text classification,
and for pattern recognition and bioinformatics, the letter recognition and breast cancer data
sets from the UCI machine learning repository5

We used the ModApte version of the Reuters corpus, which has 9603 training docu-
ments and 3299 testing documents. Each document was represented as a stemmed, TFIDF
weighted word frequency vector.6 Each vector had unit modulus. A list of stop words
were removed, and words occurring in less than three documents were also ignored. Us-
ing this representation, the document vectors had around 10000 dimensions. We choose
five frequently occurring categories for our experiments—earn, grain, wheat, corn, crude.
Experiment on each category is performed independently.

The letter recognition data set includes 20000 samples of 26 capital letters, with each
letter having about 800 samples. Each sample is represented by 16 numerical features of
statistical moments and edge counts. We choose the first five letters for our experiments—A,
B, C, D, E.

The breast cancer data set has 569 samples—357 benign and 212 malignant. Each sample
is represented by 30 real-valued features that are the descriptions of each cell. We classify
the malignant cells as positive class.

For each experiment, we divided the full positive set into two disjoint subsets p1 and p2.
p1 is to generate a set of positive examples P , while p2 is to provide positive examples that
can be added to U as unlabeled data. For instance, the ModApte split of the Reuters divides
the entire set into two subsets—9603 training and 3299 test documents. We set p1 and p2

to the positive data from the training and testing set respectively. For the letter recognition
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and breast cancer data sets, we set p1 to two third of the full positive set and p2 to the other
one third.

We vary the amount of positive examples (controlled by α) as well as the amount of
unlabeled positive examples (controlled by β). Specifically, the positive example set P is
composed of α fraction of p1, and the unlabeled data U is composed of β fraction of p2

and all the negative data. For example, if α = 1.0 and β = 0.5, then 100% of p1 are
used as positive examples, and 50% of p2 are added to U. Performance is measured on U ;
we are essentially testing each method’s ability of identifying the positive examples in U .
Our experiment setup is very similar to that in Liu et al. (2002), except our setup is more
realistic: In Liu et al. (2002), U is composed of β% of positives (e.g., class ‘A’) and samples
from another class (e.g., class ‘B’). Our U is β% of positives and the remainder is from
all other classes. Note that ISVM trains from P , with true N manually classified from U ,
which implies that the same negative data are used for both the training and testing set in
ISVM.

4.4. Results and discussion

4.4.1. Overall results. Table 1 shows the performance results in realistic situations (α =
β = 1.0) where:

– for the Reuters, P is all the positive data in the training set, and U is all the negative data
in the training set, with all data in the testing set.

– for the letter recognition data set, P is a randomly sampled two third of the full positive
set, and U is the other one third, with a randomly sampled half of the full negative set.
The results are averaged from five runs.

– for the breast cancer data set, P is a randomly sampled two third of the full positive set,
and U is all others. The results are averaged from five runs.

We have the following observations from Table 1.

– MC and SVMC have the highest performance among all the methods trained from positive
and unlabeled data. Although MC and SVMC show very similar performance, MC mostly
performed a little better than SVMC as discussed in Section 3.2. The number of SVs of
MC is also very close to that of ISVM while that of SVMC is a little smaller.

– SVMC always trained much faster than MC.7 The difference of the training time between
them could vary depending on the number of iterations they undergo.

– The optimized OSVM still performs worse than MC or SVMC due to the inability of
using the unlabeled data for SVs. The number of SVs of OSVM is much smaller than
others since they use only positives for SVs.

– SVM NN gives very low F1 scores due to the low recall. The small number of false
positives in SVM NN are likely to affect the SVs of the boundary, which hurts the recall
performance badly.
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– S-EM shows the same performance as NB NN. As noted in Liu et al. (2002), S-EM out-
performs NB NN only when the positive data form a significant fraction of the universal
set (i.e., when |PU | is significantly large compared to |U |).

4.4.2. Results for different settings. Here we vary α and β to create different environments.
Several observations can be made from Table 2:

– The performance of MC and SVMC drops abruptly when α is set very low. (In Table 2,
the F1 values are dropped significantly at α = 0.3 for class “earn” in Reuters and α = 0.1
for class “A” in the letter recognition.) The reason that the performance of MC and SVMC
is susceptible to a low α is that, as we explicated via Theorem 1 in Section 2.3, when the

Table 2. Performance results for different settings. |PU |: No. of positives in U .

F1 (1st row), accuracy (2nd row)

Settings MC SVMC OSVM SVM NN S-EM NB NN ISVM

“Earn” in Reuters

α = 1.0, β = 0.7 0.9513 0.9500 0.7768 0.0109 0.8120 0.8120 0.9931
0.9923 0.9921 0.9595 0.9250 0.9709 0.9709 0.9990

α = 1.0, β = 0.5 0.9427 0.9381 0.7432 0.0069 0.8033 0.8033 0.9877
0.9927 0.9921 0.9605 0.9398 0.9747 0.9747 0.9985

α = 1.0, β = 0.3 0.9017 0.9065 0.6426 0.0113 0.7491 0.7491 0.9914
0.9919 0.9924 0.9656 0.9624 0.9779 0.9779 0.9994

α = 0.7, β = 1.0 0.9646 0.9625 0.8412 0.0073 0.8146 0.8146 0.9855
0.9922 0.9917 0.9626 0.8920 0.9621 0.9621 0.9969

α = 0.5, β = 1.0 0.9639 0.9621 0.8468 0.0073 0.7900 0.7900 0.9822
0.9921 0.9917 0.9674 0.8920 0.9583 0.9583 0.9962

α = 0.3, β = 1.0 0.3667 0.2836 0.8763 0.0037 0.7664 0.7664 0.9774
0.9149 0.9012 0.9736 0.8918 0.9559 0.9559 0.9768

Letter “A”

α = 1.0, β = 0.7 0.9879 0.9679 0.0558 0.0826 0.6348 0.6348 0.9976
0.9995 0.9987 0.9792 0.9795 0.9789 0.9789 0.9999

α = 1.0, β = 0.5 0.9721 0.9295 0.0305 0.0889 0.2828 0.2828 0.9922
0.9923 0.9983 0.9871 0.9875 0.9428 0.9428 0.9998

α = 1.0, β = 0.3 0.9747 0.9342 0.0714 0.0200 0.1988 0.1988 0.9875
0.9996 0.9990 0.9920 0.9926 0.9438 0.9438 0.9998

α = 0.7, β = 1.0 0.9627 0.9685 0.0833 0.0632 0.4612 0.4612 0.9721
0.9980 0.9983 0.9732 0.9729 0.9436 0.9436 0.9985

α = 0.5, β = 1.0 0.9714 0.9577 0.0242 0.0811 0.6181 0.6181 0.9929
0.9987 0.9981 0.9755 0.9726 0.9782 0.9782 0.9996

α = 0.3, β = 1.0 0.9278 0.9507 0.0242 0.0242 0.6615 0.6615 0.9394
0.9967 0.9977 0.9755 0.9755 0.9823 0.9823 0.9972

α = 0.1, β = 1.0 0.3253 0.6065 0.0072 0.0072 0.6290 0.6290 0.8270
0.9775 0.9842 0.9722 0.9722 0.9815 0.9815 0.9918
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Figure 9. SVMC performance convergence on the “earn” class.

positive training data are seriously under-sampled, the final boundary of MC and SVMC
would trespass the true boundary and result in fitting around the under-sampled data. In
this case, the intermediate boundaries of MC or SVMC generated in the middle of the
iterations give better results (see Figure 9(b)). We discuss this in more details in Section
4.4.3.

– β does not seem to influence the performance of MC and SVMC much as long as the
positive data is not under-sampled, because the false negatives in U will be excluded
in the training of the final boundary. Note that, since a different β essentially defines
a different test set, the performance for different β is not really comparable. Thus, a
slightly low F1 score of MC and SVMC for low β does not necessarily mean an inferior
performance; it can be a result of an “easier” classification task due to lower amount of
noise. The classification accuracy is very stable but not informative, since it is dominated
by the large number of true negative examples in our test set (U ).

– OSVM shows stable performance less affected by α or β. The stable performance is
achieved by the unfairly performed optimization which is very hard to perform in high
dimensional spaces. However, for low dimensional spaces, with the optimization method
of Tax and Duin (2001), OSVM could give more stable performance that others when α

is very low.
– As expected, SVM NN suffers from very low recall performance, and almost always

gives a nearly zero F1 score.
– S-EM still shows the same performance as NB NN, which implies that S-EM might not

be useful for common positive classes as in our experiments. (Liu et al. (2002) gives an
example of “the class of movies we may enjoy watching” as a dominant positive class
where S-EM might outperform NB NN.)

4.4.3. Performance convergence of SVMC. Figure 9(a) shows the SVMC performance
convergence on the “earn” class when the positive data is not seriously under-sampled.
After the first iteration, the recall was very high, but the precision was very low because
the initial class boundary covers a wide area including many false positives in the feature
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space. As it iterates, the precision and the overall performance increases rapidly with a little
decrement of the recall. Our experiments on all other classes in Table 1 also show similar
shapes of the convergence graph.

Figure 9(b) shows the SVMC performance convergence when the positive data are
too much under-sampled. The convergence happens after 30 iterations, but the highest
performance is actually achieved at 5th iteration. As discussed in Section 2.3, MC
obviously “over-iterated” in this case. Determining the best number of iterations is a
hard problem because an SCC method is assumed to have no labeled negative data
available for training or optimization, which makes impossible to use existing validation
methods to determine the performance dropping point. How to improve SVMC’s perfor-
mance with very few positive data is clearly an important direction for future research.

5. Conclusions and further work

We study Single-Class Classification (SCC) with positive and unlabeled data, which is a
fundamental problem in various domains, such as text classification or pattern recogni-
tion. We present the MC algorithm which computes an accurate classification boundary of
the positive data without relying on labeled negative data by iteratively applying a margin
maximization classifier, such as SVM, to progressively obtain negative data from the un-
labeled data. We also present the SVMC algorithm that optimizes the MC algorithm for
fast training by removing the data, from the training set at each iteration, that are unlikely
to be the support vectors. We evaluate MC and SVMC using various domains of real data
sets. Experiment results show that with a reasonable amount of positive data, the MC and
SVMC algorithm give the best performance among all the existing SCC methods that we
compared with, and SVMC trains much faster than MC. When the positive training data
is seriously under-sampled or no wide gaps exist between positive and negative classes,
the boundary of MC or SVMC tend to be over-conservative and much tighter than the true
optimal boundary; in such a case, the intermediate boundaries of them before converging
give much better results. It would be interesting to investigate an optimization technique to
uncover the best number of iterations of SVMC given positive and unlabeled data.

Notes

1. http://www.csie.ntu.edu.tw/∼cjlin/libsvm
2. http://www.csie.ntu.edu.tw/∼cjlin/libsvm
3. http://www.cs.uic.edu/∼liub/S-EM/readme.html
4. http://www.daviddlewis.com/resources/testcollections/reuters21578
5. http://www.ics.uci.edu/mlearn/MLRepository.html
6. We used Rainbow (www-2.cs.cmu.edu/∼mccallum/bow/rainbow/) for text processing.
7. We ran our experiments on a linux machine of Pentium III 800 MHz with 384 MB memory.
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