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Abstract. This article addresses the problem of identifying multiple linear and nonlinear patterns from multi-
variate noisy data represented by an additive model. Following the proposed nonlinear model, the blind source
separation (BSS) criterion, as a function of high-order cumulants, is shown to produce a block-structured joint
cumulant matrix by an orthogonal rotation. An intuitive interpretation of this criterion is to rotate the elements of
whitened principal component analysis (PCA) scores such that they are as independent as possible. The resulting
optimal joint cumulant matrix contains diagonal “blocks” that correspond to the linear and nonlinear patterns
caused by independent sources, from which linear patterns are recognized as in linear BSS. The nonlinear patterns
are identified by extracting their lower-dimensional manifolds via the principal curves method and then transform-
ing back to the original data space. As illustrated in the experimental study, the estimated linear and nonlinear
patterns will provide more accurate diagnosing of the root causes that contribute to the observed variability in
multivariate manufacturing.
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1. Introduction

Blind source separation is a widely used method that has been intensively studied and applied
over recent decades for identifying independent sources from their linear effects on the
observed data (Hyvarinen, Karhunen, & Oja, 2001). In real industrial applications, however,
the collected measurement data do not always fit the assumed linear BSS model, in which
the data are observed as a collection of linear or nonlinear effects from multiple potential
independent sources, possibly with additive noise. Therefore, as a natural extension of linear
BSS, an appropriate nonlinear model and its corresponding source separation method will
have broader applicability in multivariate process analysis and pattern identification. Few
previous studies have been dedicated to the problem of nonlinear blind source separation
and its applications in engineering fields. On the other hand, as a nonlinear method, principal
curves were proposed to generalize linear PCA for nonlinear feature extraction (Hastie &
Stuetzle, 1989; Chang & Ghosh, 1998). The drawback of principal curves and other related
nonlinear PCA approaches is that they can only recognize the nonlinear pattern when it
is caused by a single random source. Therefore, it is worth investigating a more general
technique that might separate and identify multiple nonlinear patterns present in the data.
We have called this the nonlinear BSS problem.
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Among the contributions to nonlinear blind source separation, Burel (1992) proposed a
neural network algorithm to estimate unknown parameters when the patterns are modeled
as fixed nonlinear functions of some random variables. Krob and Benidir (1994) discussed
the problem of polynomial mixtures and identified the nonlinear patterns using high-order
moments. Self-organizing maps (SOM) were applied to quantify the nonlinear effects in
observations in which the local probability density function can be factored to approxi-
mate source independence (Pajunen, Hyvarinen, & Karhunen, 1996). However, it required
a huge number of neurons for good accuracy and was limited to source density functions
with bounded support. To relax this limitation, Pajunen and Karhunen (1997) introduced
generative topographic mapping (GTM) by imposing output distributions to match some
predefined densities. In another class of nonlinear BSS problems, the volume conserva-
tion condition was assumed on restrictive nonlinear functions (Deco & Brauer, 1995).
Taleb and Jutten (1999) advocated the separation of a particular nonlinear BSS problem
called post-nonlinear mixtures, in which data were assumed to be a component-wise non-
linear function of a linear instantaneous mixture of sources. In the algorithm developed
in Yang et al. (1998) the nonlinearities were defined to be invertible by a two-layer per-
ceptron. Recently, Valpola et al. (2003) adopted multilayer perceptrons to parameterize
the nonlinear patterns and applied Bayesian variational treatment to identify independent
sources.

These analyses of the nonlinear BSS problem lack a solid theoretical background, and
were solved on a model-by-model basis (Taleb, 2002). Most approaches share a common
property of conditioning the nonlinear functions in the model to simplify the nonlinear
effects observed in the data (Jutten & Karhunen, 2003). The intention of this article is to
introduce a nonlinear BSS model and present the corresponding source separation algorithm
for multiple pattern identification. We will deal with the abovementioned drawbacks in the
proposed algorithm, which: (1) automatically selects the number of unknown independent
sources; (2) provides theoretical analysis of the separability of multiple linear and nonlinear
patterns; and (3) avoids requirements on derivatives of nonlinear functions or predefined
densities of sources.

This article is organized into six sections. Following this introduction, a nonlinear BSS
model is introduced to represent multiple linear and nonlinear patterns present in multi-
variate data, where each nonlinear pattern is assumed to lie in a lower-dimensional feature
space. Section 3 first presents a brief review of linear BSS results, and proposes a high-order
cumulants-based source separation criterion. The optimal joint cumulant matrix produced
by the criterion has a diagonal structure and forms the basis of the nonlinear BSS algorithm.
A statistical testing method is developed in Section 4 to separate diagonal blocks auto-
matically and to identify multiple patterns from the sample estimate of the joint cumulant
matrix. Applications of the proposed algorithm are illustrated in Section 5. Finally, some
discussion and ideas for future work concludes the article.

2. Nonlinear BSS model

Let x = [x1, x2, . . . , xd ]T be the observed data from sensors and v = [v1, v2, . . . , vp]T the
p independent sources. Consider an instantaneous nonlinear BSS problem in which x is a
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general function of p unknown sources, i.e.,

xi = fi (v1, v2, . . . , vp), i = 1, 2, . . . , d, (1)

where xi is the i th coordinate of x. Recall that for linear BSS the source separation consists of
finding a separating matrix such that the outputs are independent up to a permutation. Unlike
the linear case, however, the assumption of source independence alone is not sufficient to
recover v and the corresponding nonlinear functions fi in model (1) (Taleb & Jutten, 1999;
Hyvarinen & Pajunen, 1999). In other words, it is not possible to restore vi and fi in the
general model (1) without imposing more constraints.

2.1. Post-nonlinear mixture model

Taleb and Jutten (1999) proposed a nonlinear BSS algorithm for the post-nonlinear mixture
model as below:

xi = fi
(
cT

i v
)
, i = 1, 2, . . . , d, (2)

where the functions fi are required to be differentiable and invertible, and matrix C =
[c1c2 . . . cd ] should be regular such that there are at least two nonzero entries in each row
or column. Moreover, for simplicity, the noiseless model (2) is restricted to the square case
when d = p.

In real engineering applications, however, the number of sensors, d, may be much greater
than that of the underlying sources, i.e., d � p. Another possible difficulty for the implemen-
tation of the above method arises from the differentiability requirement on fi . As discussed
later in Section 5, nonlinear patterns fi are not always differentiable (e.g., piecewise linear
curves). To relax these restrictions on the nonlinear BSS problem, a new model is proposed
in this article with weaker assumptions on functions fi and matrix C, which also takes into
consideration the effects of measurement noise.

2.2. An additive nonlinear BSS nodel

In the proposed nonlinear BSS model (3), vi is the i th unit-variance random source, which
has a linear effect on x characterized by a vector ci (i = 1, 2, . . . , p), and f j (t j ) ( j =
1, 2, . . . , q) is a zero-mean nonlinear pattern caused by sources t j . All the sources vi and
t j are assumed to be statistically independent, and independent of noise vector ε,

x = v1c1 + v2c2 + · · · + vpcp + f 1(t1) + f 2(t2) + · · · + f q (tq ) + ε

= [c1c2 . . . cp][v1 v2 · · · vp]T +
q∑

j=1

f j (t j ) + ε

≡ Cv +
q∑

j=1

f j (t j ) + ε. (3)
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Figure 1. The nonlinear pattern f j can be recognized by the principal curves method when it exhibits a lower-
dimensional feature embedded in the d-dimensional data space.

Noise ε is a d × 1 zero-mean random vector, representing the aggregated effects of
measurement noise and any inherent unmodeled variation. Throughout this article, it is
assumed that the covariance matrix of ε is Σε = σ 2I. The goal of the nonlinear BSS
algorithm proposed subsequently is to separate the linear and nonlinear effects in x by
identifying every linear pattern vector ci and nonlinear pattern f j .

In advanced modern manufacturing, for example, it is not uncommon to have multiple
independent root causes or sources that contribute to the observed variability in measurement
data. Each source will result in a distinct spatial pattern across some of the measured
variables in x, indicating how the source causes them to interact through a linear or nonlinear
relationship. Often such effects from unknown sources are applied to data x in an additive
manner. Therefore, model (3) is an appropriate way to represent the potential linear and
nonlinear effects by ci and f j respectively.

As demonstrated in a real example in Section 5, the multivariate nonlinear pattern f j

always exhibits a lower-dimensional feature embedded in the d-dimensional data space.
The implication that the signal components of fi lie in a lower-dimensional feature space
allows us to extract the nonlinear features of fi by the principal curves method, as shown in
Figure 1.

By definition, a principal curve g ∈ �m is a one-dimensional smooth curve that passes
through the middle of the m-dimensional data y, i.e.,

g(t) = [g1(t) g2(t) . . . gm(t)]T = E[y | tg(y) = t],

where the projection index tg(y) = supu{t : ‖y − g(u)‖ = infv ‖y − g(v)‖}. That is, each
point on the principal curve is the average of all points projecting onto it. As an extension
of PCA, the principal curve g characterizes the nonlinearities in data y.

Note that principal curves are free of parametric forms and are defined by an ordered (via
t) list of points in �m . Thus, the nonparametric form of f j in model (3) is flexible enough
to model a variety of nonlinear patterns that may not be differentiable.
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Given model (3), the proposed nonlinear BSS algorithm starts with a whiten step that
transforms x ∈ �d to uncorrelated PCA scores. The PCA scores are then rotated by an
orthogonal matrix such that they are partitioned into independent groups. The final step of
the algorithm is to separate the groups and identify their corresponding linear or nonlinear
patterns individually.

2.3. Principal curves classification model

The form of model (3) is similar to what is assumed in the principal curves classification
method (Chang & Ghosh, 1998). Given x and its covariance matrix Σx , PCA decomposes
x into a linear combination of eigenvectors ei in descending order of PCA scores si {i =
1, 2, . . . , d}, i.e.,

x = [s1e1 + s2e2 + · · · skek] + · · · + [sd−k+1ed−k+1 + · · · + sded ]

≈ [ f1,1(t1)e1 + f1,2(t1)e2 + · · · + f1,k(t1)ek] + · · · + [ fl,1(tl)ed−k+1

+ · · · + fl,k(tl)ed ]

= f 1(t1) + · · · + f l(tl), (4)

where t j is the projection index for the j th principal curve f j and f j,m is the mth coordinate
element (1 ≤ j ≤ · · · ≤ l = d/k). If d is not a multiple of k, the dimension of the last
principal curve is set to be the remainder of d/k.

One obvious disadvantage of this method for nonlinear pattern recognition is that it
does not account for the independence between different ti ’s. Although model (4) seeks to
discover the nonlinearities in x by extracting multiple principal curves, it yields a somewhat
artificial interpretation by predefining the dimension of every principal curve such that the
dimensions of all principal curves are the same.

To accommodate these drawbacks, we introduce the nonlinear model (3) and provide
a generic and black-box (i.e., requiring less prior knowledge and restrictions) means of
uniquely identifying the nonlinear features present in the measurement data.

3. Nonlinear blind source separation algorithm

3.1. Review on linear BSS

To derive our nonlinear BSS algorithm, we first present a brief review of higher-order
cumulants-based linear BSS methods. For the linear model xd×1 = Cd×pv p×1 + ε with the
same assumptions as in model (3), PCA is applied as a whitening step to x for dimension
reduction. Let {zk, λx,k}d

k=1 be the eigenvectors and eigenvalues of Σx , arranged in the order

λx,1 ≥ λx,2 ≥ · · · ≥ λx,p > σ 2 = λx,p+1 = · · · = λx,d .

Denote Zp = [z1, z2, . . . , z p] and Λp = Diag{λx,1, λx,2, . . . , λx,p}. Then the reduced
p-dimensional PCA score vector y = W−1x is transformed by the whitening matrix W−1
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(Λp − σ 2I)−1/2 ZT
p. Working on the reduced y rather than on x, linear BSS methods utilize

the properties of high-order cumulants to estimate the matrix C.
For an arbitrary zero-mean random vector s = [s1, . . . , sm]T with finite fourth-order mo-

ments, its fourth-order cumulant is

Cumi, j,k,l(s) = E[si s j sksl] − E[si s j ]E[sksl] − E[si sk]E[s j sl]

− E[si sl]E[s j sk] (1 ≤ i, j, k, l ≤ m).

In particular, the kurtosis of si is the fourth-order autocumulant, i.e., k(si ) ≡
Cumi,i,i,i (s) = E[s4

i ] − 3E2[s2
i ]. A cumulant involving different variables is called a

cross-cumulant. Note that cross-cumulants Cumi, j,k,l(s) (i, j, k, l 	= i, i, i, i) are zero if
the elements of s are mutually independent. The m × m cumulant matrix Qs(M) of s is
defined component-wise (Cardoso, 1998)

[Qs(M)]i j =
m∑

k,l=1

Cumi, j,k,l(s)Mkl ,

where M is an arbitrary m × m matrix.
For the linear BSS model, it is straightforward to establish the following structure of

QX(M) by cumulant properties (Cardoso, 1998):

QX(M) = C∆(M)CT, (5)

where ∆(M) = Diag(k(v1)cT
1 Mc1, . . . k(vp)cT

pMcp). In the factorization of QX(M) in
Eq. (5), the (generally unknown) kurtosis k(vi ) enters only in the diagonal matrix ∆(M).
Recall that PCA decomposition of Σx leads to C = Zp(Λp − σ 2I)1/2Q where Q =
[q1q2 . . . q p] is a p × p orthogonal matrix (Apley & Lee, 2002). The cumulant matrix
for the reduced vector y = W−1x = W−1[Cv + ε] = Qv + W−1ε, can be written as

QY(M) = Q�̃(M)QT, where �̃(M) = Diag
(
k(v1)qT

1 Mq1, . . . k(vp)qT
pMq p

)
. (6)

As an eigen-decomposition, Eq. (6) transforms the problem of estimating C into the
problem of finding the diagonalizer Q of QY(M). However, the eigenvectors q i of cumulant
matrix QY(M) are uniquely determined if and only if the eigenvalues are all distinct. If M
is randomly chosen, then the eigenvalues are distinct with probability 1 (Cardoso, 1998).
An appropriate selection of M requires prior knowledge about the unknown linear mixture,
which is impossible in practice. A reasonable way to alleviate this problem is to process
multiple cumulant matrices jointly. Denote Off(F) = ∑

i 	= j ( fi j )2 as the sum of the squares
of the off-diagonal elements of F. Let M = {M1, . . . Mp2} be a set of p2 p × p matrices.
The optimal Q for the linear BSS model is determined by minimizing the nonnegative joint
diagonality criterion,

�M (V) ≡
∑

Mi ∈M

Off(VTQY(Mi )V), (7)
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which measures how close to diagonality an orthonormal matrix V can simultaneously
bring the cumulant matrices generated by M . The optimal matrix V resulting from Eq. (7)
is taken as a robust estimate of Q.

3.2. The diagonal block-structured joint cumulant matrix

As assumed in model (3), nonlinear patterns f j (t j ) always lie in lower-dimensional subspaces
of �d . Suppose f j (t j ) lies in an r j -dimensional (r j < d) linear variety (a translated linear
subspace) for all t , and no other linear variety in which f j (t j ) lies has dimension smaller
than r j , then the eigenvalues of the covariance matrix Σ f j for f j , will have

λ j,1 ≥ λ j,2 ≥ · · · ≥ λ j,r j > 0 = λ j,r j +1 = λ j,r j +2 · · · = λ j,d , (8)

Thus, each nonlinear pattern f j can be represented by its PCA decomposition, that is,

f j (t j ) = s j,1e j,1 + · · · + s j,r j e j,r j = E j sT
j , j = 1, 2, . . . , q, (9)

where the d × p matrix E j = [e j,1e j,2 · · · e j,r j ] corresponds to nonzero eigenvalues in
Eq. (8), and s j = [s j,1s j,2 . . . s j,r j ]

T is given by s j,k = f T
j e j,k (1 ≤ k ≤ r j ).

PCA decompositions in Eq. (9) produce a linear form for model (3) as below:

x = Cv + s1,1e1,1 + · · · + s1,r1 e1,r1 + · · · + sq,1eq,1 + · · · + sq,rq eq,rq + ε

= [CE1 · · · Eq ]
[
vTsT

1 · · · sT
1

]T + ε ≡ As + ε. (10)

Theorem. Suppose that f j (t j ) lies in an r j -dimensional linear variety and that matrix
C is of full rank p. Suppose also that the sets of eigenvectors from � f j and � fl ( j 	= l)
are orthogonal to each other. Denote r = p + ∑q

j=1 r j . Then given the joint diagonality
criterion (7) and its optimal orthonormal matrix V, the rotated joint cumulant matrix∑

Mi ∈M VTQY(Mi )V for the r-length whitened vector y will have a diagonal block structure.

Proof: Given the assumptions on C and the eigenvector sets of � f j ( j = 1, 2, . . . , q),
the length of s = [vTsT

1 . . . sT
q ]T in Eq. (10) is equal to r = p + ∑q

j=1 r j , which is also
the number of dominant eigenvalues that are greater than σ 2. It follows from the source
assumption that v and s j in Eq. (10) are independent. The elements s j,k in s j , however, are
uncorrelated PCA scores and are not necessarily independent.

The covariance matrix Σx for x in Eq. (10) is

Σx = CCT +
r1∑

k=1

e1,keT
1,kvar(s1,k) + · · · +

rq∑

k=1

eq,keT
q,kvar(sq,k) + σ 2I

= CCT + E1(Λ f,1 − σ 2I)ET
1 + · · · + Eq (Λ f,q − σ 2I)ET

q + σ 2I , (11)
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where Λ f, j = Diag{λ j,1, . . . , λ j,r j }. PCA decomposition provides another form of Σx ,
i.e.,

Σx = Zp(Λp − σ 2I)ZT
p + Zr1

(
Λr1 − σ 2I

)
ZT

r1
+ · · · + Zrq

(
Λrq − σ 2I

)
ZT

rq
+ σ 2I ,

(12)

where Zp and Zr j consist of p and r j eigenvectors of Σx respectively, corresponding to the
dominant eigenvalues lying in the diagonal matrices Λp and Λr j ( j = 1, 2, . . . , q).

To make Eqs. (11) and (12) consistent, we have

C = Zp(Λp − σ 2I)1/2Q, (13)

and

E j = Zr j and Λ f, j = Λr j . (14)

Following Eqs. (13) and (14), the whitened vector y is

y = W−1x = (Λr − σ 2I)−1/2ZT
r (Cv + E1s1 + · · · + Eqsq + ε)

=






(Λp − σ 2I)−1/2

(Λr1 − σ 2I)−1/2

. . .
(
Λrq − σ 2I

)−1/2











ZT
p

ZT
r1

...

ZT
rq






× (Cv + E1s1 + · · · + Eqsq + ε)

=









Qv
(
Λr1 − σ 2I

)−1/2
s1

(
Λr2 − σ 2I

)−1/2
s2

...
(
Λrq − σ 2I

)−1/2
sq








+ W−1ε ≡









Qv

0

0
...

0








+








0

s̃1

0
...

0









+ · · · +









0

0

0
...

s̃q








+ w

≡ yv + ys,1 + · · · + ys,q + w, (15)

where Λr = Diag{Diag{Λp}, Diag{Λr1}, . . . , Diag{Λrq }} and Zr = [ZpZr1 . . . Zrq ]. The
elements of the r j×1 vector s̃ j in Eq. (15) are scaled random variables with unit variance.
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Thus, QY(M) is a sum of r × r cumulant matrices for independent yv and ys,m (m =
1, . . . , q):

QY(M) = QYv (M) +
q∑

m=1

QYs,m (M), (16)

For notation simplicity, define

Mv
i j = Mi j 1 ≤ i, j ≤ p and

Ms,m
i j = Mp+∑m−1

n=1 rn+i,p+∑m−1
n=1 rn+ j 1 ≤ i, j ≤ rm,

as a p × p and an rm × rm matrix, respectively. The first term in Eq. (16) has the same
structure as Eq. (6) in that C and v obey the same assumptions as in the linear BSS model,

QYv
(M) = Diag

(
Q∆v(Mv)QT, 0r1×r1 , . . . , 0rq×rq

)
, (17)

where ∆v(Mv) = Diag(k(v1)qT
1 Mvq1, . . . k(vp)qT

pMvq p).
For each term QYs,m (M) in Eq. (16), the zero elements in ys,m cause it to be a zero matrix

except for the rm × rm nonzero submatrix lying in the diagonal position, i.e.,

QYs,m (M) = Diag
(
0p×p, 0r1×r1 , . . . , Qs̃m (Ms,m), . . . , 0rq×rq

)
,

where [Qs̃m (Ms,m)]i, j = ∑rm
k,l=1 Cumi, j,k,l(s̃m)Ms,m

kl is an rm × rm cumulant matrix of the
scaled random vector s̃m . The square matrix Qs̃m (Ms,m) is by definition a symmetric matrix,
and decomposed by its eigenvectors as

Qs̃m (Ms,m) = Pm∆s̃m PT
m, m = 1, 2, . . . , q. (18)

Therefore, it is straightforward to establish the diagonal block structure for QY(M) using
Eqs. (16)–(18):

QY(M) =






Q∆v(Mv)QT

P1∆s̃1 PT
1

. . .

Pq∆s̃q PT
q








r×r

. (19)

The joint diagonality criterion (7) that aims to diagonalize each cumulant matrix
VTQY(Mi )V will produce an r × r optimal orthogonal matrix with the same structure
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Figure 2. The diagonal block structure of joint cumulant matrix given the optimal rotation matrix V.

as QY(M) in Eq. (19), that is,

V =






Vp
p×p

Vs,1
r1×r1

. . .

Vs,q
rq×rq






r×r

.

This diagonal matrix structure minimizes the sum of squares of the off-diagonal elements
of VTQY(Mi )V.

Because Q is independent of the choice of matrix Mi , we can always find Vp = Q to
achieve the diagonality of the p× p submatrix∆v(Mv) in Eq. (19). The eigenvector matrices
Pm , however, depend on Ms,m

i and Mi . Thus, each rm×rm matrix Vs,m sought to diagonalize
Qs̃m (Ms,m

i ) in Eq. (18) is different concerning the distinct matrices Mi in M. In other words,
for the matrix set M, no matrix Vs,mor V can achieve joint diagonality for all VTQs̃m (Mi )
V or VTQY(Mi )V.

Under criterion (7), each rotated cumulant matrix VTQY(Mi )V is not necessarily a stan-
dard diagonal matrix for the optimal matrix V. Consequently, the sum of these rotated
cumulant matrices, i.e.,

∑
Mi ∈MVTQY(Mi )V, will have a block diagonal structure, as illus-

trated in Figure 2.
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3.3. Multivariate pattern identification

3.3.1. Linear pattern identification. For convenience, denote the upper p × p diagonal
matrix in Figure 2 as a “linear block”, and the r j × r j matrices along the diagonal position
as “nonlinear blocks”. As implied by the theoretical result in Section 3.2, these q +1 blocks
then correspond to the linear and nonlinear patterns in model (3). For linear patterns, the
joint diagonality criterion (7) is shown to produce Q = Vp. Thus, following Equation (13)
we can obtain estimates of vectors ci (i = 1, 2, . . . , p):

ci = Zp(Λp − σ 2I)1/2q i . (20)

In the same fashion as in linear BSS, the independent source v is recovered by

v = Vp,T[y1, . . . , yp]T , (21)

where y1, . . . , yp are the first p elements of y corresponding to the linear block in Figure 2.

3.3.2. Nonlinear pattern identification. Nonlinear pattern identification is more com-
plicated than the case above because we cannot directly estimate f j using Eq. (20). Let
y j = [yp+∑ j−1

n=1 rn+1 yp+∑ j−1
n=1 rn+2 · · · yp+∑ j−1

n=1 rn+r j
]T be an r j × 1 subvector in y that corre-

sponds to the j th nonlinear block.

Corollary. Consider the j th nonlinear block and its associated r j × r j diagonal eigen-
value matrix Λr j and d ×r j eigenvector matrix Zr j of

∑
x . The estimate of the j th nonlinear

pattern f j is Zr j (Λr j − σ 2I)1/2 y j ( j = 1, 2, . . . , q).

Proof: Equation (15) implies that the r j×1 PCA score vector corresponding to the j th
nonlinear block is y j = (Λr j − σ 2I)−1/2s j + w j , where w j = (Λr j − σ 2I)−1/2ZT

r jε.

Then, f̂ j , the estimate of nonlinear pattern f j , can be obtained from y j , because

f̂ j = Zr j

(
Λr j − σ 2I

)1/2
y j = Zr j

(
Λr j − σ 2I

)1/2(Λr j − σ 2I
)−1/2

s j + ε

= E j s j + ε = f j + ε. (22)

The third equation holds in that E j = Zr j in Eq. (14).

3.4. Some implementation issues

Some issues are considered here to make the proposed nonlinear BSS algorithm performs
well for multiple patterns identification. In the case when only sample data is available, the
estimate of r is equal to the number of dominant eigenvalues for sample covariance, and
the average of the d − r smallest eigenvalues is taken as a robust estimate of σ 2.
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As discussed in the theoretical results in Section 3.2, the optimal matrix V is the minimizer
(over all p × p orthogonal matrices) of the sum of the squares of the entire set of cumu-
lant matrices VTQY(Mi )V. The advantage of diagonality criterion (7), which is referred to
as the joint approximate diagonalization of eigenmatrices (JADE) criterion (Cardoso and
Souloumiac, 1994), is that there exists a computationally efficient Jacobi rotation algo-
rithm for finding its minimizer V. Details of the algorithm can be found in Cardoso and
Souloumiac (1994). Because of its excellent performance, the JADE algorithm is often used
as a benchmark for evaluating other algorithms (Wax and Sheinvald, 1997). Matlab code
for the JADE algorithm is available upon request.

The “approximate” term in the acronym comes from the fact that with sample data, no
orthogonal transformation will result in the sample joint cumulant matrix exactly the same
as in Figure 2. The sample cumulant matrices can only be approximately diagonalized in
the sense that Eq. (7) is minimized. The sample cumulants are defined in the obvious way,
where the expectations of the quantities are replaced by their sample averages.

4. A sample testing method for clustering diagonal blocks

As shown in Figure 2, all the off-block elements in the optimal joint cumulant matrix∑
i VTQY(Mi )V should be zero. In practice, however, the proposed nonlinear BSS algorithm

is applied over sample data, and no matrix V can produce the ideal result of Figure 2. In other
words, the sample cumulant matrices are jointly diagonalized in the sense that criterion (7)
is minimized, even though many off-block elements are not equal to zero. The nonzero off-
block elements present a problem of correctly identifying the linear and nonlinear blocks
from the sample joint cumulant matrix. Accurate clustering of multiple blocks plays a crucial
role in linear and nonlinear pattern identification. To improve the separation accuracy and
identify each block automatically from the sample result, we propose a statistical testing
method for determining the values of p and r j ( j = 1, 2, . . . , q), as well as clustering the
elements of whitened vector y into distinct blocks.

Define the rotated whitened vector as y∗ = VT y. The diagonal structure of the optimal
matrix implies that y∗ = [vT, s∗,T

1 , . . . s∗,T
q ]T, where s∗

j is a linear transformation of s j

( j = 1, 2, . . . , q) and is independent of v and s∗
i (i 	= j). In linear BSS, the optimal matrix

V is shown to rotate the elements y∗
i of y∗ to be independent (i = 1, 2, . . . , r ) such that all the

fourth-order cross-cumulants Cumi,i,i, j (y∗
i ) are zero. This cumulant property is adopted as

an independence measure in the proposed block clustering approach: if Cumi,i,i, j (y∗) = 0,
then y∗

i and y∗
j are caused by two independent sources; otherwise, they are from a single

source t j and correspond to the same nonlinear block in Figure 2. In this way, the proposed
statistical testing method will assign all the elements of y to multiple non-overlapped blocks.
The values of p and r j are determined subsequently.

Define an r × r sample testing matrix D on y∗ component-wise as

Di j = Ĉumi,i,i, j (y∗) + Ĉumi,i, j, j (y∗) + Ĉumi, j, j, j (y∗) ≡ D(1)
i, j + D(2)

i, j + D(3)
i, j

= 1

N

N∑

n=1

y∗
i,n(y∗

j,n)3 − 3

N 2

N∑

n=1

y∗
i,n y∗

j,n

N∑

n=1

(y∗
j,n)2 + 1

N

N∑

n=1

(y∗
i,n)2(y∗

j,n)2
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− 1

N 2

N∑

n=1

(y∗
i,n)2

N∑

n=1

(y∗
j,n)2 − 2

(
1

N

N∑

n=1

y∗
i,n y∗

j,n

)2

+ 1

N

N∑

n=1

(y∗
i,n)3 y∗

j,n

− 3

N 2

N∑

n=1

y∗
i,n y∗

j,n

N∑

n=1

(y∗
i,n)2, (23)

where Di j is the ijth entry of D and symbol “∧” denotes the estimate of a quantity. The
matrix D is introduced to investigate the independence of a pair of elements in y∗. Under
the null hypothesis that y∗

i and y∗
j are independent, the variance of Di j is:

Var(Di j ) = Var
(
D(1)

i, j

) + Var
(
D(2)

i, j

) + Var
(
D(3)

i, j

) + 2Cov
(
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i, j , D(2)
i, j

)
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= N 2 − 6N + 9

N 3
E[(y∗

j )6] + (N − 1)(18 − 6N )

N 3
E[(y∗

j )4]

+ 9(N − 1)(N − 2)

N 3
+ N 2 − N + 4

N 3
E[(y∗

i )4]E[(y∗
j )4]

+ (N − 1)(5N + 12)

N 3
+ (N − 1)(4 − N )

N 3
{E[(y∗

j )4] + E[(y∗
i )4]}

+ N 2 − 6N + 9

N 3
E[(y∗

i )6] + (N − 1)(18 − 6N )

N 3
E[(y∗

i )4]

+ 9(N − 1)(N − 2)

N 3
+ 2(N 2 − 3N + 6)

N 3
E[(y∗

i )5]E[(y∗
j )3]

− 8(N − 1)(N − 3)

N 3
E[(y∗

i )3]E[(y∗
j )3] + 2(9 − 5N )

N 3
E[(y∗

i )4]E[(y∗
j )4]

+ 6(N − 1)(3 − N )

N 3
{E[(y∗

j )4] + E[(y∗
i )4]} + 12(N − 1)(N − 2)

N 3

+ 2(N 2 − 3N + 6)

N 3
E[(y∗

i )3]E[(y∗
j )5]

− 8(N − 1)(N − 3)

N 3
E[(y∗

i )3]E[(y∗
j )3]. (24)

Multiplied by the orthogonal matrix V, y∗ is still a whitened vector, that is, E[(y∗
i )2] = 1 in

Eq. (24). Under the null hypothesis, when N is large enough Di j is asymptotically normally

distributed with zero mean and sample standard deviation
√

V̂ar(Di j ). The quantity V̂ar(Di j )
is estimated by substituting E(•) with appropriate sample means. Therefore, for an α-level
test (usually α = 0.05) of

H0: y∗
i and y∗

j are independent
H1: y∗

i and y∗
j are dependent and from the same nonlinear block,

we reject H0 if |Di j | > zα/2

√
V̂ar(Di j ). Here, zα/2 is the upper α/2 percentage points

of a normal distribution. Thus, for any Di j falling outside the confidence interval [−zα/2√
V̂ar(Di j ), zα/2

√
V̂ar(Di j )], we have 100(1 − α)% confidence that y∗

i and y∗
j are caused by

the same source and should be clustered into a single nonlinear block.
Thus far we have presented the results for clustering blocks in Figure 2 and identifying

the linear and nonlinear patterns in model (3). The proposed nonlinear BSS algorithm can
be summarized as below:

(1) Identify r , the number of dominant eigenvalues of Σx , and set σ 2 equal to the average
of the d − r smallest eigenvalues.

(2) Transform x into whitened vector y using Eq. (15).
(3) Calculate the optimal orthogonal matrix V under criterion (7) using the Jacobi rotation

algorithm introduced in Section 3.3.
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(4) Define matrix D for y∗ = VT y via Eq. (23). Determine p and r j for the linear and
nonlinear blocks in Figure 2 using the hypothesis testing method.

(5) Identify the linear pattern vectors ci (i = 1, 2, . . . , p) and recover source v via Eqs. (20)
and (21), respectively.

(6) Identify the nonlinear patterns f j ( j = 1, 2, . . . , q) via Eq. (22).

5. Experimental results

5.1. A synthetic data example

We investigate the performance of proposed nonlinear BSS algorithm on a multivariate data
set with varying sample size N and noise variance σ 2 using simulation. The sample data x
was generated by the model x = c1v1 + c2v2 + f 1(t1) + f 2(t2) + ε, where the independent
sources v1, v2 are a rectangle and cosine wave.

The nonlinear patterns in this example are assumed to lie in a two-dimensional (i.e.,
r1 = r2 = 2) feature space. Therefore, the number of dominant eigenvalues of x is
r = 6. As shown in Figure 3, the original sources v1, v2 were recovered by their esti-

Figure 3. The original and estimated sources by proposed nonlinear BSS algorithm when noise variance σ 2 = 0.
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Figure 4. Scatter plots of sources v1, v2 versus their estimates with fixed sample size N = 600 and varying noise
variance σ 2.

mates v̂1 and v̂2. The performance of linear source identification was first illustrated by
the scatter plots in Figure 4, which were arranged in the order of increasing noise stan-
dard deviations from 0 to 0.2. As expected, the estimation accuracy deteriorated as σ

increased.
Quantitative comparison between matrix C and the estimate Ĉ also demonstrates that the

proposed nonlinear BSS algorithm is capable of producing accurate linear pattern estimates
in multivariate data:

CT =
[
−.568 −.369 .245 −.108 −.203 .381 −.119 −.197 −.458

−.239 .406 −.063 .235 .591 .098 −.283 .347 −.399

]

,

ĈT =
[
−.542 −.381 .228 −.099 −.201 .375 −.132 −.197 −.446

−.221 .415 −.072 .236 .595 .091 −.277 .355 −.387

]

.

As discussed in Section 4, the off-block elements in the sample joint cumulant matrix are
not necessarily equal to zero. For example, for sample size N = 600, d = 9 and σ = 0.1,
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Figure 5. The projection of the original and estimated curves onto the 2D subspace, denoted by “.” and “+”,
respectively. Left: f E1 and f̂ E1; Right: f E2 and f̂ E2.

the joint cumulant matrix is

In the block-structured matrix above, it is evident that there are a linear block and two 2 × 2
nonlinear blocks denoted by dashed lines. The sample testing method proposed in Section
4 verified this observation on block separation.

After clustering the multiple blocks in the sample joint cumulant matrix, the nonlinear
patterns were identified using Eq. (22). As assumed in the generative data model, both
original curves f 1 and f 2 and their estimates f̂ 1 and f̂ 2 lie in a 2D subspace. The projections
of these curves onto this feature space are illustrated in Figure 5.

To quantify the estimation accuracy of nonlinear pattern identification, we introduce a
Euclidean distance as follows. Let f Ei and f̂ Ei be the projection of f i (ti ) and f̂ i onto the
ri -dimensional subspace (i = 1, 2 in this case). Define the squared distance function

D f i =
N∑

n=1

min
ti

‖ f̂ Ei,n − f Ei (ti )‖2, (25)

as a performance measure for patterns f i . Table 1 summarizes the evaluation results with
varying d , N , and σ 2, in which the sum of distances measure (25) was averaged over 10,000
Monte Carlo replicates.
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Table 1. Performance measure on the closeness between original curve fi and its estimate f̂ i that were projected
onto the 2D subspace (i = 1, 2).

d N σ D f 1 D f 2

6 300 0 0.031 0.046

6 300 0.1 0.056 0.073

6 300 0.2 0.102 0.122

6 600 0 0.049 0.058

6 600 0.1 0.087 0.097

6 600 0.2 0.168 0.186

9 300 0 0.038 0.049

9 300 0.1 0.061 0.081

9 300 0.2 0.117 0.136

9 600 0 0.056 0.075

9 600 0.1 0.091 0.106

9 600 0.2 0.159 0.204

18 300 0 0.042 0.051

18 300 0.1 0.066 0.085

18 300 0.2 0.124 0.141

18 600 0 0.063 0.084

18 600 0.1 0.101 0.118

18 600 0.2 0.169 0.214

As Table 1 shows, the identified curves can characterize the nonlinear features of the
original patterns when they lie in a lower-dimensional feature space. Again, estimation
accuracy deteriorated with increasing noise variance.

5.2. A real manufacturing example

We now consider the automotive crankshaft manufacturing process, which consists of a
number of steps, including forging, rough cutting, finish cutting, drilling, grinding, and
polishing. Figure 6 shows the geometry of a crankshaft. In one of the many inspections
during manufacturing, stylus traces around the circumference at a number of locations on
the main bearings and pin bearings are obtained automatically near the end of production.
The difference between the maximum diameter at each location and the target diameter is
then logged. The bullet “•” symbols in Figure 6 indicate the locations at which the sensor
measurements are taken (Apley & Lee, 2002). The sensors are measured along each of the
five main bearings (Mains 1 through 5) and the four pin bearings (Pins 1 through 4).The
measurement signal x for each crankshaft consists of d = 17 diameter measurements.

Based on a sample of N = 250 crankshafts, the proposed nonlinear BSS algorithm
revealed that one linear (p = 1) and one nonlinear pattern (q = 1) are present in x.
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Figure 6. Geometry of a crankshaft with 17 measurement locations, which are denoted by “•”.

Figure 7. The estimated signal (top) and histogram (bottom) of source v1.

Estimates of the linear pattern vector c1 and the corresponding source v1 are shown in
Figures 6 and 7, respectively. Each element of ĉ1 was plotted by a directed arrow at the
corresponding measurement point. The length of the arrow is proportional to the magnitude
of the element and the direction represents the sign.

The root cause of linear pattern c1v1 is some locating elements that failed to constrain the
crankshaft properly when it was placed in the subassembly line. The geometry of the part and
the position of the locating elements are such that the part is free to deviate by small amounts
from its nominal position. The source v1 is then a random variable that is proportional to
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Figure 8. The projection of the identified nonlinear pattern onto a 3D subspace (denoted by “+”), summarized
by a principal curve (denoted by “.”).

the deviation occurring at the measurement locations. The 17-dimensional vector c1 is
determined by the fixture design and measurement deployment, which characterize the
spatial nature of the linear effect from source v1, as shown in Figure 6.

The nonlinear pattern f 1 was identified by the proposed algorithm as a piecewise linear
curve and its projection onto the 3-D feature space (i.e., r1 = 3) is shown in Figure 8. The
presence of nonlinearities in measurement data x can be illustrated by the 4 × 4 sample
joint cumulant matrix as below (r = r1 + 1 = 4):

where the lower right 3×3 submatrix is the nonlinear block corresponding to f 1, and
the upper left element 0.095 corresponds to c1v1. The sample testing method proposed in
Section 4 also justified the above clustering result by assigning rotated PCA score elements
into a linear and nonlinear block.

The presence of a nonlinear pattern in the measurement data means that it is not proper to
apply linear BSS algorithms for pattern analysis, as they may produce erroneous diagnostic
information for product quality monitoring and control, as discussed in the introduction.
Because the number of dominant eigenvalues of Σx is r = 4, a high-order cumulants-based
linear BSS method identified four independent sources contributing to the variability in
x (Cardoso, 1998). The first vector c1 found by the linear analysis was the same as that
shown in Figure 6; the estimates of the other vectors c2, c3, and c4are shown in Figure 9. As
in any process quality control applications, proper identification of statistical patterns and
their sources is necessary in order to eliminate the physical root causes, thereby reducing
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Figure 9. The estimates of c2, c3, and c4 by the linear BSS method for the crankshaft example are plotted by
directed arrows.

process variability. In the present example, the identified ĉ2 to ĉ4 by linear BSS do not
actually correspond to three independent root causes. Unlike the plot of ĉ1 in Figure 6,
the visualization of these three pattern vectors does not provide intuitive and reasonable
explanation of their underlying physical causes. Consequently, the estimated sources v̂2 to v̂4

would present incorrect process diagnosing and monitoring if they were assumed to be single
independent sources. On the other hand, because of the complicated physical characteristics,
it is not uncommon to have multiple nonlinear patterns in multivariate manufacturing. In
this sense, by precisely identifying all the patterns simultaneously present in measurement
data, the proposed nonlinear BSS method will serve as a diagnostic aid in facilitating the
goal of reducing product variability.

6. Discussion

Although the general problem of blind source separation in nonlinear domains is not solv-
able, multiple linear and nonlinear pattern separation and identification in a specific and
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realistic-enough model, as proposed in this article, is shown to be possible given the same
source assumptions as in linear instantaneous BSS. A promising high-order cumulants-
based independence criterion is introduced to retrieve the source signals and reveal the
nonlinear features embedded in the original data space. When each nonlinear pattern lies in
a lower feature space, the joint diagonality criterion is shown to produce a block-structured
joint cumulant matrix. The linear and nonlinear patterns are then identified given the op-
timal rotation matrix. Experimental studies of the performance of the proposed nonlinear
BSS algorithm, including a real example from crankshaft manufacturing, demonstrate its
potential use in multivariate data analysis.

In the proposed nonlinear model, f j are assumed to be one-dimensional curves (i.e.,
principal curves). This applies to the situations when each nonlinear pattern is a function
of single variation source t j , and may lead to erroneous identification results when f j are
higher-dimensional manifolds (e.g., f j is a principal surface of multiple sources). Such a
more generic model requires the estimation of the intrinsic dimension of the manifolds, as
well as the visualization of identified patterns, which is a challenging problem for future
research.

The proposed nonlinear source separation method will be extended in several ways in the
future. An obvious extension is the inclusion of time delays into the nonlinear BSS model,
which will take advantage of temporal information often present in the source signals and
is expected to help in describing the nonlinear patterns more precisely.

Another possible development involves the extension of nonlinear models with locally
varying measurement noise, i.e., where the parameters of the noise covariance matrix may
depend on different spatial measurement features. This is desirable because using a fixed
isotropic noise covariance does not fit the data well in some applications.
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