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Abstract We investigate explicit segment duration models in addressing the problem

of fragmentation in musical audio segmentation. The resulting probabilistic models

are optimised using Markov Chain Monte Carlo methods; in particular, we introduce

a modification to Wolff’s algorithm to make it applicable to a segment classification

model with an arbitrary duration prior. We apply this to a collection of pop songs,

and show experimentally that the generated segmentations suffer much less from

fragmentation than those produced by segmentation algorithms based on clustering,

and are closer to an expert listener’s annotations, as evaluated by two different

performance measures.

Keywords Segmentation . Duration prior . MCMC . Gibbs sampling . Wolff

algorithm

1 Introduction

In this paper, we will chiefly be discussing segmentation of musical audio signals (such

as commercial music recordings), where the segments to be generated correspond to
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Fig. 1 Example segmentations of a hypothetical fragment of a piece of twelve-bar blues. Each of these

represents the structure of different aspects of the piece. See text for further discussion

musical structures at a granularity coarser than individual notes. By ‘a segmentation’,

we mean a system of time intervals, possibly augmented by some auxiliary data

for each interval, which correspond to significant physical, sonic, or musical events

and structures inferred from the signal. Note that this is more than a collection of

boundaries: a segmentation determines a set of boundaries but not the reverse, because,

given the possibility of overlapping or nested segments, such a set of boundaries does

not indicate which pairs of boundaries should be taken to delimit each segment, and

also because a set of boundaries does not contain any extra data that might be associated

with each segment.

Musical structures can be found at many levels of detail, some arranged hierarchi-

cally and some not. For example, consider Fig. 1, which is a schematic representation

of part of a piece in twelve-bar blues form. Metrical structure tends to be strictly hierar-

chical, with intervals delimited by a regular succession of strong and weak boundaries.

Segments at a lower level, e.g. beats, are contained entirely within those at the next

level up, in this case, bars. The harmonic structure in this piece is better represented as

a succession of (time) intervals labelled by chords. In this example, the chords adhere

closely to the basic blues progression, and consequently, the harmonic boundaries

align with the metrical boundaries.

Turning to the phrase structure, blues singers and soloists often play ahead of or

behind the beat and make use of syncopation, so the phrases might cross metrical and

harmonic boundaries, even the boundary of the twelve-bar unit itself, and structures

built on phrases (such as perhaps verse or refrain) will likewise not align with harmonic

boundaries.

An application of simple signal processing techniques—for example, measuring

spectral differences between frames for onset detection, as in Hainsworth and Macleod

(2003)—will yield a segmentation of musical audio; such a ‘low-level’ segmentation

is useful for some purposes, but it does not directly yield the large-scale musical

structure of the input.

The segments we aim to produce are those corresponding to structures such as the

verse, chorus or introduction of a song; indeed, an integral part of the segmentation

algorithms we will be considering is the classification or labelling of the resulting

segments such that repeated segments of the same type (say, two instances of the

chorus) are tagged with the same label. We shall examine the problems arising from

the fact that musical audio has many aspects of structure, and in particular, the con-

fusion between structural levels which is exhibited by segmentation algorithms. If a

segmentation algorithm suffers from confusion between these levels, it may exhibit

fragmentation or over-segmentation, where the segments generated are too short or

otherwise disjoint, corresponding to a level of detail which is finer than the desired one.
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1.1 Applications of segmentation

A number of problems brought up by large databases of audio files would be simplified

by the existence of a reliable method for automatic segmentation at a meaningful level.

Perhaps most obviously, summary generation is strongly connected to segmentation:

given a good segmentation at the timescale of a musical section, a good summary (or

thumbnail) for an audio track is likely to be given by the most common segment. In

Western pop music, this is likely to be the chorus.

A relevant segmentation is closely related to the structure of music; while most mu-

sic exhibits structure on more than one level (a subject to which we return in Section

8.1), a segmentation even on just one of those levels could be used to inform a user in-

terface for efficient navigation both within songs and across a collection of recordings.

Segmentations can also be used as partial fingerprints for identifying tracks; while

the structure of Western popular music is relatively well-established, there is still suffi-

cient scope for variation that the information in a segmentation can help to distinguish

between different songs (and likewise to identify different performances of the same

song). Finally, segmentation is of assistance in content-based music query systems,

both in analysing queries (which might well be entire tracks, in some kind of stylistic

proximity search) and to reduce the search space in matching a query against a database.

1.2 The problem of over-segmentation

There are several possible causes of over-segmentation. Logan and Chu (2000) im-

plicitly note, in the context of phrase summarization, one of these causes: a mismatch

between the number of distinct segment labels requested and the information in the

signal being segmented. If more labels are assigned than are required, then necessarily

some of the desired segments will be mislabeled; in addition, each label will model

a smaller volume of the feature space, which might cause individual segments to be

fragmented to an undesired level of detail. Logan and Chu first generate a segmenta-

tion using k-means clustering or HMM (hidden Markov model) state path decoding

and then perform an ad hoc aggregation to produce the key phrase. Similarly, Peeters,

Burthe, and Rodet (2002) note the over-segmentation from a k-means based segmen-

tation, and reduce it by training and finding the state path with an HMM with fewer

states than the number of k-means clusters.

Another potential source of over-segmentation is the underlying model of the seg-

ments, where the features determining the desired segmentation are themselves not

modelled over the right timescale for the desired segmentation. This can occur even

when the number of segment labels is appropriate for the level of detail, as disparate

parts of different segments might be more similar to each other than adjacent parts

in one segment (see Fig. 2 for a schematic illustration). In Abdallah et al. (2005), a

Algorithmic A B A B C B C B A C A C
Desired A B C

Fig. 2 A schematic illustration of fragmentation in the algorithmic segmentation when the number of

segment labels is the same in both algorithmic and desired segmentations
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degree of control over this form of excess segmentation was achieved through the use

of mean-field clustering (see Section 4.2) and also through the use of large analysis

windows, which have the effect of smoothing the landscape and so providing fewer

opportunities for oscillations in the dynamics of the model.

However, the solution of using large analysis windows is unsatisfactory, as the

precision of any boundary placement will be inversely proportional to the size of

the window: the resolution of the segmentation will be limited to the window size.

In addition, the smoothing performed by large analysis windows can cause salient

short-time details to be missed.1

Instead of using large analysis windows, we present in this paper an approach

where we define a duration model: a probability distribution for the length of a single

segment. This duration model is used to construct a prior probability distribution

for segmentations themselves, weighting (with our choice of duration model) the

posterior probability for a segmentation away from those with many short segments.

This approach does not suffer from the loss of resolution that the approach using large

analysis windows does, as it is the duration prior, rather than the length of the analysis

window, which tends to encourage averaging of signal features over longer contiguous

intervals; the system remains capable of responding to short-timescale signal features.

1.3 Overview

The rest of this paper is organized as follows: we describe previous approaches to

musical audio segmentation in Section 2. Section 3 describes the low-level signal

processing we perform on an audio signal to generate a time-ordered set of feature

vectors. We describe established methods for segmentation by clustering in Section 4,

before introducing a duration prior for segment lengths in Section 5 and deriving and

explaining our novel algorithm for segmentation given an explicit prior probability in

Section 6. We present our experimental evidence in Section 7, before discussing scope

for further work and concluding in Section 8. Some notational conventions are given

in the Appendix.

2 Previous work on segmentation of music

The approach taken by most of the methods summarized below (as well as our own

contribution described here) is to consider some local properties of the signal, analo-

gous to ‘texture’ in vision, and assert that the segments are ‘texturally’ homogenous

regions over which distributions of those properties are relatively constant. This im-

plies that the boundaries can only appear where there is a local change in the texture.

Although this has been the most common approach to segmentation from audio, it will

fail in certain circumstances: consider a song which contains two separated verses in

the first half but two consecutive verses in the second. If we successfully identify a

local property which corresponds to ‘verseness’, that is, the property is true whenever

a verse is in progress, we will detect the first two verses as individual segments but

1 These details could be accounted for in an ad-hoc way, for example, by quantising or biasing boundary

positions to onset times found by a separate higher-resolution onset detector.
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the other two will be merged into one long verse segment, even if there are other

features marking the boundary between the two. This approach is therefore incapable

of detecting ‘gestalt’2 events; only that a certain type of event or process is occurring.

2.1 Segmentation by spectral shape

If broad spectral features are used to assess textural similarity, then a segmentation

can be obtained where each segment is spectrally homogeneous. This is the approach

taken by Aucouturier, Pachet, and Sandler (2005), who use Mel-frequency cepstral

coefficients (MFCCs), which are sensitive to broad spectral features whilst remaining

relatively invariant to fine spectral (pitch) structure.

Foote (1999) proposed the dissimilarity matrix or S-matrix, which is a matrix

of pairwise dissimilarities between all pairs of frames in the signal. Each frame is

represented by a vector of MFCC coefficients and the dissimilarity between these

tuples measured using a cosine distance measure, which is essentially a function of

the angle between two vectors. With the initial analysis at 100 frames per second, this

means that a 3-minute song produces an 18000 × 18000 S-matrix. This extremely

large, dense data object is the basis for Foote’s methods, which are related to the

recurrence plots discussed in Eckmann, Kamphorst, and Ruelle (1987) . For instance,

Foote proposed that segments should be defined as ‘self-similar’ intervals delimited

by boundaries corresponding to peaks in a ‘novelty’ function computed by correlating

a Gaussian-tapered ‘checkerboard’ kernel along the main diagonal of the dissimilarity

matrix.

Logan and Chu (2000), also using MFCCs as their spectral features, proposed

a method for summarization employing both hidden-Markov models (HMMs) and

threshold-based clustering methods, grouping features into key song segments.

Peeters, Burthe, and Rodet (2002) propose a multi-pass clustering approach that uses

both k-means and HMM-based clustering using multi-scale MFCC features. However,

these studies provide no measure of performance for all segments in a song, and (as

discussed in Section 1.2) exhibit segment fragmentation.

2.2 Segmentation by harmony

Some recent studies addressed the structure extraction problem in terms of harmonic

features rather than timbral texture. For example, Wakefield (1999) proposed chroma-

gram features that represent the distribution of power spectrum energies among the

twelve equal-temperament pitch classes of the Western tonal system. This provides

invariance to timbral changes such as those observed in repetitions of a melody with

different instrumentation.

One desirable property of harmonic features is the possibility of implementing

explicit transpositional invariance; this is the property allowing identification of like

segments with a constant pitch interval offset: a common device employed in repeated

choruses in pop music. Goto (2003) describes a system called RefraiD that locates

2 Think of these as events that are intrinsically countable, e.g.‘running a lap’ as opposed to ‘running’

generally. There is discussion of this and related issues in the literature on temporal logics and event calculi

(e.g. Allen, 1984; Galton, 1987; Shoham, 1988).
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repeated structural segments independent of transposition. The RefraiD system is able

to track a chorus, for example, even if it modulates up a sequence of semitone key

changes. The problem of chorus extraction was divided into four stages: computation

of acoustic features and similarity measures; repetition judgement criterion; estimating

end-points of repeated sections; and detecting modulated repetitions. The results for

chorus detection were reported as accurate for 80 of 100 songs.

Dannenberg and Hu (2002) also describe a system that used agglomerative clus-

tering with chroma-based features for music structure analysis of a small set of Jazz

and Classical pieces. They do not report an evaluation of the methods over a corpus,

but the figures showing their segmentations display symptoms of fragmentation (see

Section 1.2) in some cases.

2.3 Segmentation by rhythm and pitch

Symbolic approaches to structure analysis, such as Orio and Neve (2005), attempt

to identify repeated thematic material in string-based representations of music, for

instance through statistical analysis of n-grams (Downie & Nelson, 2000). Whilst

these methods show promise in identifying structure from score information, they are

not well adapted for use in structure analysis from audio, largely due to the addition of

significant uncertainty in audio representations; instead, these approaches are primarily

used for document retrieval in query by example (or query by humming) systems.

There has recently been some work on combined audio and symbolic represen-

tations, attempting to unify the different views of similarity. Maddage et al. (2004)

describe a system in which a partial transcription is used to make decisions about

structure, integrating beat tracking, rhythm extraction, chord detection and melodic

similarity in a heuristic framework for detecting all segments in a song. They also

propose using octave-scale rather than Mel-frequency scale cepstral coefficients as

pitch-oriented representation. The authors report 100% accuracy for detecting instru-

mental sections in songs (as against sung sections with instrumental accompaniment),

and report results for detection and labelling of verse, chorus, bridge, intro and outro
sections. Similarly, Lu, Wang, and Zhang (2004) describe an HMM-based approach

to segmentation that used a 1
12

th-octave constant-Q filterbank for pitch selectivity in

addition to MFCC features. They report improved performance in segmentation for

the constant-Q transform when used with MFCCs over use of MFCCs alone, when

using an S-matrix approach with an exhaustive search to find the best fit segment

boundaries to a given objective function.

3 Overview of processing chain

The processing chain we use in our system is motivated by a desire to represent

short-term spectral and dynamical structure in a compact way, while being invariant

to characteristics or details of the signal which are thought to be less relevant. Thus,

we use constant-Q log-power spectra as they approximate some of the features of

the human auditory system (Brown, 1991); principal components analysis (PCA)

for dimensionality reduction to focus on the spectral features of greatest variance;

and hidden Markov models (HMMs) to quantise the space of spectral shapes and
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capture some of its temporal dynamics. All of this represents a large reduction in

the amount of data which makes it feasible to apply the final stage of segmentation

using a probabilistic model operating on a time-scale more suitable for the sort of

segmentations we wish to achieve. We give further details of this processing chain

below.

The first step is to form the signal into a sequence of overlapping frames. Then, a

constant-Q or logarithmically-banded spectrogram (Brown, 1991) is computed, cov-

ering the range of frequencies from approximately 50 Hz up to the Nyquist frequency

at 5.5 kHz with bands 1/12 octave wide. This means that the constant-Q spectogram is

sensitive to pitch structure, since the pitch scales of tonal Western music are also loga-

rithmic with 12 equally-spaced tones per octave. We convert the constant-Q spectrum

to a logarithmic power scale to model perceived loudness and divide by the sum of the

squares of the resulting values. Letting z(n)
m denote the mth band of the nth short-term

log-frequency power spectrum in the sequence, with M bands in total, we compute

w(n) =
(

M∑
m=1

(
log z(n)

m

)2

)1/2

and u(n)
m = log z(n)

m

w(n)
. (1)

The M sequences of components z(1)
m , . . . , z(N )

m computed from one song are collected

into an array �X after subtracting the mean of each band to ensure that each row sums

to zero:

Xmn = u(n)
m − 1

N

N∑
n′=1

u(n′)
m . (2)

The speech recognition community uses the Discrete Cosine Transform on Mel

spectrum coefficients to generate a ‘cepstrum’, which has the empirical property of

being approximately decorrelated. Furthermore, higher-order components of the DCT

can be discarded, as they typically correspond to low-eigenvalue dimensions. While

this transformation is well-motivated (Merhav & Lee, 1993) and not incompatible

with some forms of music (Logan, 2000), we choose instead to remove this possible

source of bias by using principal components analysis (PCA) to generate our cepstrum,

keeping 20 principal components (Aucouturier, Pachet, & Sandler, 2005) of a total of

M = 81. PCA can be implemented using a singular value decomposition (SVD) of the

data matrix, i.e. , finding a factorisation �X = �U �S �V T where �U and �V are orthogonal

matrices and �S is diagonal.

The spectral intensity and shape, represented using the results of PCA combined

with the sequence of 2-norms w(1), . . . , w(N ) defined in (1), are used to construct

HMMs with a given number of states and Gaussian observation distributions. For our

investigations, we have used HMMs with between 10 and 80 hidden states, though

the results presented in this paper were derived from 60-state HMMs only, since this

number yielded good results in our previous work on segmentation (Abdallah et al.,

2005). Specifically, the data modelled by our HMMs consist of a sequence of 21-

component vectors where the nth vector is (w(n), Vn,1, . . . , Vn,20) and �V is the matrix

of principal components obtained in the previous step.
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The HMMs are not shared between input signals; there is one per song. Each HMM

is trained using the Baum-Welch method, after which the most probable state sequence

for the trained HMM is determined using the Viterbi algorithm.

Although we use hidden Markov models, we do not use the most likely HMM state

occupancy directly as a proposed high-level segmentation, because the dynamics of

an HMM are such that it does not favour long, connected segments of a single state.

Instead, we use the HMM as a song-specific model of short-term spectral dynamics.

The HMM states and their output distributions cover and discretise the space of typical

spectral shapes for each piece while respecting a degree of temporal coherence be-

tween adjacent frames. When we come to modelling segment classes with particular

distributions over HMM states, these distributions correspond to distributions over

spectral shapes which may be difficult to model directly in the continuous spectral

space, using, for example, a small number of Gaussian components. These consid-

erations suggest that we use a relatively high number of hidden states in our models

to represent a large number of sound types, rather than restricting our models to a

number of states corresponding to the typical number of segments in a song.

Finally, we take the state sequence from the Viterbi algorithm and generate state

path histograms using another sliding window, counting the number of each state

present in the window.

The motivation behind this histogramming step comes from the histogram cluster-

ing method against which we compare our duration-modelling approach, and can be

understood by considering the geometry of clustering histograms. The space of short-

term histograms over a finite alphabet (in this case, the set of available HMM states)

is necessarily discrete, and for very short windows, quite small, as shown in Fig. 3. In

the case of few HMM states and few observations per histogram, there simply isn’t

room in this space for many distinct clusters to form. By using a longer window, we

enlarge the space of possible histograms so that a clustering algorithm is more likely

to find some interesting structure.

These considerations are less relevant for the duration-aware model we describe in

Section 5, since, using a duration prior which penalises short segments, the distribution

over HMM states for each segment type (obtained by averaging over instances of that

x1

x2

x3

x1

x2

x3

)b()a(

Fig. 3 Histogram spaces for short-term histograms over a domain of 3 HMM states (hence the 3 axes:

one for each bin count), for window lengths of (a) 2 and (b) 6. Each point represents a possible complete

histogram. Note how, in (a), there is little room for any clustering in the conventional sense, but in (b), there

begins to be enough room for well-separated clusters surrounded by low density regions
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segment type) is strongly encouraged to reflect runs of neighbouring states. However,

we retain the histogramming step in order to make a direct comparison between the

two methods on the same sequence of histograms.

4 Segmentation by clustering

Assuming, as we are, an approach based on textural similarity, a commonly used tactic

is one which involves three steps:

1. ‘atomization’, dividing the signal into a number of equal-length fragments at the

temporal resolution required for the boundaries and computing the value of the

textural property (or feature tuple) for each fragment;

2. clustering the collection of property values ignoring the temporal relationships

between the fragments to which they belong and thereby assign a class label to

each fragment;

3. agglomerating the runs of equally classified fragments into segments.

Since stage (2) produces a discrete-valued sequence, stage (3) is trivial; for example,

consider the sequence

s = [a, a, a, a, c, c, c, d, d, d, d, b, b, b, c, c]

where a, b, c and d are members of a discrete set C. We can treat such a sequence

as a function s : (1..16) → C, (where M..N denotes the set of integers from M to N
inclusive) since there are 16 elements in the sequence. In this case, we can simply

place boundaries between every consecutive non-equal pair of elements and identify

the segments as the set of maximally long intervals such that the function s takes

exactly one value over each interval. In addition, the segments themselves can inherit

the classification of their constituent fragments. Overall, the segmentation can be taken

to be a set of pairs of type (interval(1..20) × C):

{(1..4, a), (5..7, c), (8..11, d), (12..14, b), (15..16, c)}.

However, this algorithm is liable to produce excessively fragmented segments if the

clusters identified at stage (2) overlap, since fragments are classified without regard

to the classifications of their temporal neighbours. This behaviour can be traced to

a failure to imbue the model with our prior expectations about the durations of the

segments we wish to detect, a subject to which we return in Section 5.1.

4.1 Pairwise clustering

The histograms resulting from the processing steps of Section 3 inhabit a space which

is not self-evidently Euclidean; clustering methods based on Euclidean feature values

are therefore not trivially applicable. One way to proceed is to define an empirical

dissimilarity measure between observed windowed state histograms with reasonable

properties: histograms with the same distribution should be maximally similar, while

those with no overlap should be maximally dissimilar.
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One such measure is the cosine dissimilarity measure as used by Foote (1999). In

Abdallah et al. (2005), we proposed a different dissimilarity measure: a symmetrized

Kullback-Leibler (KL) divergence, where we interpret the histograms as summaries

of data drawn from a discrete probability distribution. For histograms �x and �x ′ with

equal total counts
∑

i xi = ∑
i x ′

i = N , we set

dkl(�x, �x ′) = 1

N

M∑
i=1

(
xi log

2xi

xi + x ′
i

+ x ′
i log

2x ′
i

xi + x ′
i

)
, (3)

This is the sum of the KL divergences from both histograms to their mutual average

(�x + �x ′)/2, and can be interpreted as measure of the likelihood that the two histograms

are actually realisations of the same underlying distribution.

There was no significant difference in performance between the cosine measure and

dkl for a segmentation task using the clustering algorithm of Hofmann and Buhmann

(1997). However, the probabilistic interpretation of the symmetrized KL divergence

suggests the use of other probabilistic clustering models, as explained below.

4.2 Model-based central clustering

An alternative to pairwise clustering is to adopt an explicit generative probabilistic

model for the putatively clustered data. This involves a discrete latent variable model,3

where, for each time i ∈ 1..L , there is an unobserved discrete class label ci ∈ 1..K ,

where there are K possible classes. These classes will model K segment classes. We

then assume that each class defines a conditional probability density pX |C for the data

belonging to that class. The pdf of the data as a whole will be a weighted mixture of

these class-conditional densities.

Since the data we wish to cluster are histograms representing a distribution over a

discrete feature space (the HMM states), we may, following Puzicha, Hofmann, and

Buhmann (1999), consider each underlying class to determine a probability distribu-

tion over the feature space. The observed histograms are then modelled as the result

of drawing samples from one of these distributions. This leads quite naturally to a

probabilistic latent variable model with an optimisable likelihood function.

Assuming the existence of K underlying classes, and a mixture model parameterised

by θ , the joint probability of observing the jth HMM state from the kth class is

p( j, k | θ ) = pX |C ( j | k, θ )pC (k | θ ), (4)

where pC (k | θ ) is the weighting of the kth mixture component in the model associated

with the parameter θ . In our experiments we fixed pC (k | θ ) = 1/K for all k ∈ 1..K .

The discrete class-conditional distributions were parameterised by an M × K matrix
�A, such that pX |C ( j | k, θ ) = A jk . Since pC (k | θ ) was not dependent on either k or

θ , �A was the only parameter required, so we could set θ = �A.

If, instead of observing a single HMM state, we observe a sequence of such states

which we then summarise as a histogram �x such that x j is the number of observations

3 That is, one where we introduce new variables in addition to those representing the observed data.
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of the j th state, then the joint probability of the pair (�x, k) (assuming that all the

observations are associated with a single realization of the class variable k) is

p(�x, k | θ ) = W (�x)

(
M∏

j=1

[
pX |C ( j | k, θ )

]x j

)
pC (k | θ ), (5)

where W (�x) is the multiplicity factor for the histogram �x and accounts for the number

of distinct ways in which that histogram could have been realised.

Given a sequence of L such histograms encoded as an array �X ∈ NM×L , where the

i th column of �X is a histogram over M possible HMM states, and a corresponding

sequence of class assignments �c ∈ (1..K )L , the overall log-probability of the pair

( �X , �c) with respect to the model parameterised by θ = �A, with pC (k | θ ) = 1/K , is

log p( �X , �c | θ ) =
L∑

i=1

(
log W (X :i ) − log K +

M∑
j=1

X ji log A jci

)
(6)

where X :i denotes the i th column of the array �X . If we assume that each histogram

contains the same number of observations J , then Stirling’s approximation yields

log p( �X , �c | θ ) ≈
L∑

i=1

(
M∑

j=1

X ji log
A jci

X ji
+ J log J − log K

)
(7)

For the purposes of constructing an energy function, we can disregard any additive

terms independent of �c and θ . Hence, the following energy function is sufficient to

specify the model exactly 4:

ε(�c, θ ) =
L∑

i=1

M∑
j=1

K∑
k=1

δ(k, ci )X ji log
X ji

A jk
. (8)

The model’s parameters are optimised using a Deterministically-Annealed EM

(DAEM) algorithm as described by Puzicha, Hofmann, and Buhmann (1999); the

end result is a maximum a posteriori estimate for the class assignments �c and the

class-conditional distributions �A.

5 Modelling temporal coherence

When applied to the problem of audio segmentation, the clustering algorithms de-

scribed in Section 4 often result in more fragmented segments than we would like to

see. This is partly because such methods do not model any expectation of temporal

4 Note that the use of Stirling’s approximation for the multiplicity factor does not affect the validity of

the energy function, since both the multiplicity and its approximation are functions of �X alone, and hence

constants in any given problem.
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coherence which we may intuitively bring to the problem. In essence, the clustering

methods associate audio fragments only on the basis of their similarity in some feature

space, and are blind to the notion of association by temporal proximity: as humans, we

are prepared to accept that otherwise dissimilar fragments are more likely to belong

to the same segment if they are adjacent in time than if they are widely separated. One

way to incorporate this into the model is to introduce an explicit prior on the duration

of the segments found.

First order hidden Markov models have (discrete) exponential state duration dis-

tributions, the mean duration being a function of the self-transition probability. It

is far from evident that this exponential distribution is appropriate for musical seg-

ments, and indeed this is the reason that there is further processing after the derivation

of the most probable state sequence: if the HMM had the correct dynamics, fur-

ther processing might be unnecessary. For instance, one can imagine using HMMs

with special state structures: if several states form a chain (i.e. state a can only be

followed by b, which can only be followed by c etc.) then the duration of the com-

posite pattern will be the sum of several exponentially distributed durations, which

will have a Gamma distribution with two degrees of freedom per distinct state in the

chain.

Alternatively, we can implement HMMs with explicit duration distributions, as in

Rabiner (1989) for example. However, the computational cost of this is non-negligible,

so we leave investigation of this area for future work, and instead discuss processing

steps which can explicitly model temporal coherence in the output state sequence

from an ordinary HMM, which we interpret as modelling the low-level dynamics of

the audio-generating processes.

5.1 Duration distributions

We describe below some families of pdfs that could be used as prior segment duration

distributions. We have removed any scale parameter since one can be added to any

univariate density in a mechanical way. In any case, we must also consider how

a continuous-time duration prior maps to a discrete-time duration prior given the

relationship between continuous time and discrete time induced by the discretisation

of the original signal and the two subsequent windowing operations associated with

computing the short-term constant-Q spectra and the short-term histograms of HMM

state occupancy.

5.1.1 Gamma distribution G(α)

The Gamma random variable we describe here is a restriction of the usual two param-

eter Gamma distribution where the scale parameter has been fixed at 1. If X ∼ G(α),

then

pG(x | α) = xα−1e−x

�(α)
. (9)

This can be derived from an ‘energy’ function εG(x, α) = x − (α − 1) log x ,

such that pG(x | α) = e−εG (x,α)/ZG(α), where the normalisation factor is
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ZG(α) = ∫ ∞
0

e−εG (x,α)dx. The Gamma distribution is not ‘scale free’, and tends to

a Gaussian as α → ∞.

5.1.2 Inverse Gamma distribution IG(γ )

An inverse Gamma random variable is the reciprocal of a Gamma random variable:

X ∼ IG(γ ) if X−1 ∼ G(γ ). If X ∼ IG(γ ), then

pIG(x | γ ) = e−1/x

xγ+1�(γ )
. (10)

This can be derived from an energy function εIG(x, γ ) = 1/x + (γ + 1) log x . Be-

cause of the power-law tail of the distribution, the inverse Gamma is ‘scale-free’ down

to a lower cut-off determined by γ .

5.1.3 An alternative non-negative random variable

The parameter α of the Gamma distribution mainly affects the behaviour of its pdf

around zero, whereas the parameter γ of the inverse Gamma distribution mainly affects

the shape of its tail. For our segmentation model, we wish to have available a duration

distribution with the scale-free power-law tail of the inverse Gamma pdf, representing

our general ignorance about the duration of segments, but with a controllable cut-off

for segments below a certain duration. With this in mind, we consider the pdf defined

by the energy function

εH(x, ν, γ ) = 1

| ν | x−ν + (γ + 1) log x . (11)

This includes both the inverse Gamma family (obtained by setting ν = 1), and the

Gamma family (obtained by setting ν = −1). The parameter ν allows very short

segments to be suppressed to a greater or lesser degree. In the experiments we present in

this paper, after examining the empirical distribution of the human-annotated segments,

we set ν = 2 and γ = 0. With ν ≥ 0 and γ = 0, the mode of the distribution is always

1 independent of ν.5 We also applied a scale factor such that the mode was at 20 s. The

values of ν and the scale factor were chosen to match approximately the distribution

of segment durations in the ground-truth segmentations.

5.2 Computing an interval-based representation

In the histogram clustering model of Section 4.2, we represent the latent structure as a

sequence of class assignments �c ∈ CL defined on a regularly sampled discrete timeline

of length L . The final segmentation is performed by agglomerating runs of similarly

classified timepoints. In order to use a duration prior during the optimization itself,

this segmentation process must be brought into the computation of the cost function

5 Note that γ = 0 implies an improper prior for the segment length; when applied to a given problem of

finite length, however, the prior is necessarily normalizeable. See Appendix B for more details.
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to be optimised, rather than applied post-hoc after the optimisation is complete as we

did in the segmentation algorithm based on clustering.

Thus, we define a function segments : C∗ → (interval(N) × C)∗, which returns a list

of classified segments. (The notation A∗ denotes the type of a sequence of indefinite

length consisting of elements of type A.) We also define the functions fst : (A × B) →
A (for any two types A and B) such that fst(x, y) = x , and dur : interval(N) → N which

gives the duration of a discrete-time interval. In these terms we can define a duration-

aware distribution for a random variable C∗ : rv(C∗), of which �c is a realization. Letting

pD : pdf(N) be a probability density over discrete-time durations, we set

pC∗ (�c) =
len(σ )∏
i=1

pD(dur(fst(σi ))) where σ = segments (�c), (12)

that is, the probability of a segmentation is the product of the probabilities of the

durations of each of its segments.

5.3 Constructing a discrete-time duration distribution

The discrete-time duration pdf pD is defined in terms of the desired continuous time

duration distribution and an object M which embodies the relationship between con-

tinuous physical time and the discrete timeline of the model. This relationship is

defined by the initial discretisation of time implied by the sampling of the original

audio signal and the subsequent layers of windowing which go into the computation of

the constant-Q spectrogram and the HMM state-occupancy histograms, which means

that points on the state histogram timeline correspond with overlapping intervals on

the continuous timeline. Given this structure, a number of distinct mappings from

discrete time intervals and durations to continuous time intervals and durations can

be defined, and therefore a discrete time interval could reasonably be associated with

one of a number of continuous time durations. If we let fdM : N → R denote one such

function from discrete time durations to continuous time durations, then to use, for

example, the inverse Gamma duration model IG(γ ), we would set

pD(d) = pIG(τ−1fdM (d) | γ )∑L
l=1 pIG(τ−1fdM (l) | γ )

, (13)

where τ is a scale factor. The limitation on segment duration in the sum in the de-

nominator of (13) is required to obtain a properly normalised distribution; using the

length L of the discrete timeline would seem to be an uncontroversial choice since no

interval can be longer than this.

5.4 Statistical model including durations

The histogram clustering model can be augmented with a segment duration model by

removing the flat prior pC (k | θ ) in (5) and subtracting from (8) the logarithm of the

duration-aware prior pC∗ : pdf(C∗), defining dl(�c) as the duration of the lth segment
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implied by the sequence of class assignments �c and neglecting constant terms:

ε∗(�c, θ ) = ε(�c, θ ) − log pC∗ (�c).

=
L∑

i=1

M∑
j=1

K∑
k=1

δ(k, ci )X ji log
X ji

A jk

+
∑

l

εH(τ−1fdM (dl(�c)), ν, γ ) (14)

In our experiments, the parameters of the duration prior were treated as given, not

subject to optimization as part of the algorithm, and therefore need not be incorporated

into the parameter θ .

We have described the segmentation model using the histogram observation model

used in the histogram clustering method, but it can just as easily be applied to any

observation model for which we can compute and optimise likelihoods, such as a

Gaussian mixture model.

The duration prior introduces a strong coupling between the class variables at nearby

sites on the discrete timeline, which makes the posterior density p(�c | �X , θ ) rather

difficult to work with as part of an EM, or DAEM (deterministically annealed EM)

algorithm. Although it may be possible to construct a good variational approximation

to this posterior by exploring alternative parameterizations, our initial approach has

been direct Markov chain Monte Carlo (MCMC) simulation of the posterior, which

replaces the exact E-step. The statistics collected during the simulation are used in the

M-step.

6 Inference methods

6.1 Markov-Chain Monte Carlo algorithms

The following MCMC algorithms all fit into the general framework of a Metropolis-

Hastings sampler, but with different proposal distributions. See, e.g., Robert & Casella

(1999) for a general introduction to MCMC methods.

6.1.1 Gibbs sampling

A Gibbs sampler (Robert & Casella, 1999) is a Metropolis-Hastings algorithm in which

the proposed steps involve a change in just one component of a multi-component state

variable, chosen in such a way as to ensure that the probability of accepting the

step is 1. In our case, the state variable is the class-assignment sequence �c : CL , and

each step involves resampling one of the class assignments, e.g.the i th one ci , from the

conditional distribution p(ci | c1..L\i , �X , θ ), where c1..L\i denotes the sequence of class

assignments with the i th element removed. The site i to be updated at each iteration

can be chosen at random from a uniform distribution on 1..L (as in Algorithm 1,

describing one step of the Gibbs sampler) or in some some deterministic pattern

that visits all sites equally often. This prescription ensures that no other steps are
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Fig. 4 The prior used for segment durations

needed to ensure detailed balance. In Algorithm 1 and henceforth, we denote the

target probability distribution over class assignment sequences as pt : pdf(CL ), and

the sequence obtained by assigning sites i.. j in the sequence �c to class k as �c←k
i.. j . In the

following, U(1..L) denotes a random variable distributed uniformly over the integers

1 to L .

Algorithm 1 MCGibbs : (�c, pt ) �→ �c′

i ← sample from U(1..L)

k ← sample from pdf p(k | c1..L\i , �X , θ ) ∝ pt
(�c←k

i..i

)
�c′ ← �c←k

i..i

Unfortunately, while the Gibbs algorithm ensures that every proposed step is taken,

it also means that, once any contiguous segments have formed, almost all proposed

steps involve no change of state. This is because a duration prior of the sort we are

interested in (such as that in Fig. 4), favouring longer segments and penalising very

short ones, will strongly inhibit the formation of the very short segments that would

result from changing the classification of single sites embedded in longer segments.

It also means that the algorithm has trouble eliminating short incorrectly classified

domains. The result is that, with a strong duration prior, we would have to sample for

a long time to explore the space of probable configurations and therefore to have any

confidence in the EM optimisation as a whole; the ‘wrong’ segmentations get frozen

in and cannot be rectified.

The same phenomenon, known as ‘critical slowing down’, is observed in Gibbs

or Metropolis simulations of spin systems (e.g. the Ising or Potts models) as the

temperature approaches the ‘critical temperature’ at which the correlation length
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current state
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Fig. 5 A Gibbs sampler can get

stuck when none of the steps

available to it lead to

configurations of significant

probability. Even if other

probable configurations exist,

the Gibbs sampler is unlikely to

reach them. However, the states

can sometimes be reached by

updating several sites at once, as

in the block-Gibbs sampler. (The

two-dimensional space of the

figure represents the usually

much higher-dimensional, state

space of the system in question)

diverges—this is the point of phase transition where, as the temperature decreases,

formation of large similarly-classified domains becomes favoured.

In order to address this problem, we turn for inspiration to the methods adopted

by statistical physicists in simulating Ising and Potts systems near their critical tem-

peratures; similar approaches have been taken in the image segmentation community

(see Barbu & Zhu (2004) for one application, similar to that described below, of the

method of Swendsen & Wang (1987)).

6.1.2 The block-Gibbs sampler

In the state space of the system, the region of significant probability density is highly

constricted by the introduction of a duration prior. If the current state is a relatively

probable one, most single-site updates correspond to steps that would take the system

out of the high probability region (because they correspond with the introduction of

very short segments) and so are not often generated by the single-site Gibbs sampler

(see Fig. 5).

In a block-Gibbs sampler, we update several adjacent sites all at once instead

of single sites one at a time. This can lead the system in a single jump to a probable

configuration that would have taken a Gibbs sampler a very long time to reach updating

one site at a time.

To implement a block-Gibbs sampler, one must decide on a procedure for selecting

which block is going to be sampled at each iteration. In the next section, we investigate

a variant of the Wolff algorithm for selecting these blocks.

6.1.3 A Wolff-Gibbs algorithm

The Wolff algorithm (Wolff, 1989) was designed to simulate Ising, Potts and x − y
systems near their critical temperatures while avoiding the critical slowing down

phenomenon found in single-site update algorithms like Gibbs sampling and the

Metropolis algorithm. It can be thought of as a block-update sampler where choice

of which block of sites to consider at each step is carefully tuned to the temperature

of the system and its current configuration in such a way that the proposed steps are

always accepted.
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Algorithm 2 MCα
WG : (�c, pt ) �→ �c′

(Note: the random variable B(α) is 1 with probability α and 0 otherwise.)

Procedure choosedomain : (�c, α) �→ (i, j)

l ← sample from U(1..L)

i ← l; j ← l
while i �= 1 ∧ ci−1 = ci ∧ (sample from B(α) = 0) do

i ← i − 1

end while
while j �= L ∧ c j = c j+1 ∧ (sample from B(α) = 0) do

j ← j + 1

end while

Function b : (�c, i.. j, k ′) �→ n
n = I(i = 1 ∨ ci−1 �= k ′) + I( j = L ∨ c j+1 �= k ′)
where I(false) = 0, I(true) = 1

(i, j) ← choosedomain (�c, α)

k ← sample from pdf p(k) ∝ pt
(�c←k

i.. j

)
α−b(�c,i.. j,k)

�c′ ← �c←k
i.. j

The procedure is to choose an initial site as in the Gibbs sampler, but then to

expand this into a block of contiguous sites by adding adjacent similarly classified

sites contingent on a random test. This is known in the literature as ‘cluster’ growing,

which is a little unfortunate here since these have nothing to do with the cluster-

ing problem described earlier. To avoid confusion, we will use the term ‘domain’

instead.

Our adapted Wolff-Gibbs algorithm (see algorithm 2 for one Monte Carlo step)

involves a Wolff-like domain growing phase followed by a block-Gibbs sampling step

which updates the entire domain. A random seed site is chosen and a domain grown

from it (leftwards and rightwards), stopping either when a boundary is reached or

with probability α at each step. These sites are then reclassified en masse with a label

chosen using a sampling distribution proportional to the target distribution, with an

extra factor of α for each boundary that the reclassified region has; the function b
counts these boundaries. These extra factors are required in order to preserve detailed

balance as we show in the next section.

6.1.4 Detailed balance in the Wolff-Gibbs algorithm

In the original Wolff algorithm, the conditions for domain growth ensure that once

the domain is chosen, neither a Gibbs-like sampling step nor an acceptance test are

required to ensure detailed balance. In our version, with an arbitrary duration prior

and a Gibbs sampling step, we must adjust the sampling distribution to satisfy the

condition of detailed balance; this is the purpose of the extra factor of α−b(�c,i.. j,k) in

the sampling distribution of Algorithm 2. In this section we show how this correction

is derived.
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Fig. 6 Two ‘cliques’ of configurations that are linked by reassignment of the central interval. Each a, b,

or c represents a sequence of sites classified a a, b, or c, so each arrow represents a block assignment of

the central section. The expressions above and below the boxes show the relative probabilities of proposing

the central section in each case; the common factor is γ = (l/L)(1 − α)(l−1) (see Eq. (15)). The arrows

are labelled by the relative probability of the step according to the sampling distribution. These five cases

include all possible local configurations for the central domain within the context of the two neighbouring

segments, up to permutations of the labels

In the following, we will need to refer to members of the set of configurations

obtained from a base configuration �c ∈ CL by reassigning the sites in the interval

i.. j . We can think of this set of configurations �c←k
i.. j for possible class assignments

k as a ‘clique’, in the sense that each one can be reached by a block reassignment

from all the others (see Fig. 6). Note that, for i.. j to be a valid domain proposition, the

configuration �c must itself be a member of the clique, with �c = �c←k
i.. j (see choosedomain

in Algorithm 2) for some k.

The domain selection phase of the Wolff algorithm implies that the probability of

choosing the domain i.. j given an initial configuration �c = �c←k
i.. j is

pd

(
i.. j | �c←k

i.. j

) = l
L (1 − α)l−1α2−b(�c,i.. j,k), (15)

where l = j − i + 1, the number of sites in the domain, and b is the same boundary

counting function as defined in Algorithm 2. Let the subsequent probability of assign-

ing this domain the class k ′ be denoted by r (k ′ | k, i.. j, �c). The overall probability of

moving from �c←k
i.. j to �c←k ′

i.. j is then

T (k ′ | k, i.. j, �c) = r (k ′ | k, i.. j, �c)pd

(
i.. j | �c←k

i.. j

)
. (16)
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We wish to find a definition of r that fulfils the condition of detailed balance for the

target density pt : pdf(CL ), for which we require

T (k ′ | k, i.. j, �c)pt

(�c←k
i.. j

) = T (k | k ′, i.. j, �c)pt

(�c←k ′
i.. j

)
. (17)

Combining these, we find that

r (k ′ | k, i.. j, �c)

r (k | k ′, i.. j, �c)
= pt

(�c←k ′
i.. j

)
α2−b(�c,i.. j,k ′)

pt
(�c←k

i.. j

)
α2−b(�c,i.. j,k)

. (18)

Bearing in mind that r must also be a properly normalised sampling distribution, the

above condition is satisfied by

r (k ′ | k ′′, i.. j, �c) = pt
(�c←k ′

i.. j

)
α−b(�c,i.. j,k ′)∑

k∈C pt
(�c←k

i.. j

)
α−b(�c,i.. j,k)

, (19)

which reduces to the same distribution as used in Algorithm 2. Note that r (k ′ |
k ′′, i.. j, �c) does not depend on k ′′, and hence the sampling distribution over the clique

is the same regardless of which member of the clique is the current state.

6.2 EM with a stochastic E-step and annealing

While MCMC methods allow us to sample from the posterior distribution, we still have

a number of options for how we measure the necessary statistics for a stochastic EM

algorithm. These range from collecting an entirely new sequence of samples for each

iteration of the EM algorithm (providing for maximum independence of samples), to

computing a small number of samples for each iteration and using a gradually-decaying

memory to compute average sufficient statistics.

In our experiments, we used an exponentially decaying memory which accumulates

a short-term approximation to the posterior distribution over configurations:

qt = (1 − η)qt−1 + ηbmap(�ct ), (20)

where η is the ‘forgetting’ rate, and bmap : (1..K )L → {0, 1}K×L is a function

which converts a discrete valued sequence into a bitmap: if y = bmap(x), then

yi j = (1 if x j = i ; 0 otherwise). We then treat qt as the result of the E-step, and

use it as the approximation to the posterior in the t th iteration of an EM

algorithm.

We anneal by using a temperature dependent posterior pβ(�c | �X , θ ) as the target

distribution and linking the domain growth parameter α to the inverse temperature β

by setting α = e−β J for some constant J . This is an integral part of the original Wolff

algorithm and means that, as the temperature drops (i.e. , as β → ∞), the propensity

to propose large domains increases (since α → 0). This reduces the amount of time

spent considering configurations containing short segments which are very unlikely

at low temperatures.
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7 Experiments

7.1 Test data

The musical test data we used were fourteen tracks of popular music from Sony’s

catalogue, which were downsampled to 11 kHz mono before being distributed to the

MPEG-7 working group. Notional ground truth segmentations and annotations made

by expert listeners were provided, giving a start time, end time and textual label for

each segment.

For each song, two constant-Q spectrograms were computed using frames 200 ms

and 400 ms, with a 50% overlap in all cases, that is, with hop sizes of 100 ms and

200 ms respectively. The frequency resolution was set to 1
12

-octave. The spectrograms

were subjected to normalisation and dimension reduction as described in Section 3,

retaining the first 20 principal components. A separate 60-state HMM was trained on

each song encoded in this way, and the most probable state-path computed by Viterbi

decoding. State occupancy histograms were computed using windows of 10 states

with a hop size of 5 for the smaller audio frames of 200 ms, and 4 states with a hop

size of 2 for the larger 400 ms frames.

For each of the resulting sequences of histograms, we applied the histogram cluster-

ing method (Section 4.2) and the duration-aware model (Section 5) with Wolff-Gibbs

sampling (Section 6.1.3). In the latter case, the duration prior (11) of Section 5.1.3

was used with the parameters γ = 0 and ν = 2, with the overall time-scale of the

duration distribution determined by setting τ = 20 s in (14), which puts the mode of

the duration distribution at 20 s.

7.2 Evaluation methods

To compare the automatically-generated segmentation with the ground truth, it is

necessary to map the boundaries between segments back to the original continuous

timeline in terms of which the ground truth annotations are given. Bearing in mind

that the sequence of short-term histograms is defined on a discrete timeline which is

itself derived via two windowing operations from the original discrete time signal,

this is not a trivial operation. The boundary between two segments (essentially the

‘gap’ between two discrete time moments) could conceivably be mapped back to one

of several points or intervals on the continuous timeline, depending on the desired

semantics of segment classification; consider, for example, the difference between

‘this segment contains piano sounds’ vs. ‘this segment contains only piano sounds’.

We shall, for the time being, map the gap between two discrete moments back to the

middle of the overlap between their respective continuous time intervals, noting that

successive state histograms overlap by approximately 0.5 s on the original continuous

timeline.6

6 Compare with the 3.2 s overlap in Abdallah et al. (2005).
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7.2.1 Interval matching

Having found times for the detected segment boundaries, we adapt the segmentation

evaluation measure of Huang and Dom (1995). Considering the measurement M as

a sequence of segments Si
M , and the ground truth G likewise as segments S j

G , we

compute a directional Hamming distance dG M by finding for each Si
M the segment S j

G
with the maximum overlap, and then summing the difference,

dG M =
∑
Si

M

∑
Sk

G �=S j
G

∣∣Si
M ∩ Sk

G

∣∣ (21)

where | · | denotes the duration of a segment. We normalise dG M by the track length

L to give a measure of the missed boundaries m = dG M/L . Similarly, we compute

dMG , the inverse directional Hamming distance, and a similar normalised measure

f = dMG/L of the segment fragmentation. Note that these measures consider only

the time intervals occupied by each segment, not the classifications of the segments.

7.2.2 Information-theoretic label matching

An alternative information-theoretic measure was also investigated in order to assess

how well the classification reflected the original segment labels. This involves ‘ren-

dering’ the ground-truth segmentation into a discrete time sequence of numeric labels

�c0 : (1..L) → (1..K0), using the same discrete timebase as the sequence to be assessed,

�c1 : (1..L) → (1..K1), and then treating the joint distribution over labels as a prob-

ability distribution. The two sequences are compared by computing the conditional

‘entropies’ H (�c1 | �c0) and H (�c0 | �c1) as follows:

H (�c1 | �c0) =
∑

( j,k)∈R(�c0)×R(�c1)

−p01( j, k) log2

p01( j, k)

p0( j)
, (22)

H (�c0 | �c1) =
∑

( j,k)∈R(�c0)×R(�c1)

−p01( j, k) log2

p01( j, k)

p1(k)
, (23)

I (�c0, �c1) =
∑

( j,k)∈R(�c0)×R(�c1)

p01( j, k) log2

p01( j, k)

p0( j)p1(k)
, (24)

whereR(�c) = {k | ∃i.�c(i) = k}, the set of distinct values in �c, and p01 is the normalised

joint 2-D histogram of corresponding elements of �c0 and �c1; i.e.

∀( j, k) ∈ R(�c0) × R(�c1), p01( j, k) = 1

L

L∑
i=1

δ( j, �c0(i))δ(k, �c1(i)), (25)

where L is the length of the sequences �c0 and �c1. Correspondingly, p0 and p1 are the

marginal distributions defined as p0( j) = ∑
k p01( j, k) and p1(k) = ∑

j p01( j, k).

The H (�c0 | �c1) measures the amount of ground-truth information ‘missing’ from the

class assignments, while H (�c1 | �c0) measures the amount of ‘spurious’ information in
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Fig. 7 A segmentation of a song from the test set, comparing the results of central clustering and those of the

Wolff-Gibbs segmenting algorithm, both with 6 segment types. The constant-Q spectrogram is displayed

in the panel (a), while the ‘ground truth’ annotations from the expert listener are in panel (g). The results of

the Viterbi algorithm are in (b); panels (c) and (d) display two visualisations of the central clustering, while

(e) and (f) show the results of the Wolff segmenter. The shades of gray in the lower two panels encode the

segment labels, and need only match up to a permutation to signify a perfect segmentation

the classification, e.g. when several classes represent one segment type. The ‘mutual

information’ I (�c0, �c1) measures the information in the class assignments about the

ground truth segment label, and is maximal when each segment type maps to one and

only one class. In this case both H (�c1 | �c0) and H (�c0 | �c1) will be zero.

7.3 Results

The two segmentation methods as applied to two of the tracks in our test set are

illustrated in Figs. 7 and 8. Note in those figures the results of the central clustering (in

panels (c) and (d)), which show fragmentation due to picking out the internal structure

of musically coherent segments. The problem is not that the segmentation is man-

ifestly wrong, as the features the central clustering picks out are present in the sound,

but that they are not on the timescale of direct interest: they correspond to chords

or similar low-level features of the audio. Figure 9 shows an example of the relative
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Fig. 8 A segmentation of a different song from the test set comparing the results from the two segmentation

methods

insensitivity of our Wolff-Gibbs algorithm to the sizes of the framing windows in the

preprocessing stages of Section 3: the results are of similar quality to those of Fig. 8.

To evaluate the performance of our algorithms on our test corpus with the interval

matching measure of Section 7.2.1, we plot 1 − f against 1 − m, by analogy with

the precision-recall graph used in the field of Information Retrieval. Precision charac-

terises the ability of the system to avoid false positives, analogous to extra segments in

our case, and so a decreasing function of f . Recall is the measure of successfully find-

ing relevant matches, analogous to avoiding missed boundaries, and so a decreasing

function of m. Thus, in Figs. 10 and 11, the segmentations most closely resembling

the ground truth annotations are represented by points close to (1, 1); points near the

horizontal axis have large f , suffering from excessive fragmentation relative to the

ground truth.

Figure 10 demonstrates the range of quality of segmentations generated by the his-

togram clustering method. Note in particular that 1 − f is strongly weighted towards

small values, indicating that there is significant fragmentation in the generated seg-

mentations (as can be seen for example in Figs. 7–9). By contrast, Fig. 11 illustrates

the ability of the Wolff-Gibbs segmentation algorithm to avoid over-segmentation: the

weight of the chart is at a markedly higher value of 1 − f than that in Fig. 10.
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Fig. 9 A segmentation of the same song as in Fig. 8, but with differently-sized windows for the audio and

HMM state sequence framing steps
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Fig. 10 Values of 1 − f , corresponding loosely to precision, plotted against values of 1 − m, analogous

to recall, for the central clustering algorithm with hopsize/framesize 2/4 in (a), 5/10 in (b)

In Fig. 12 we plot values of f against the number of segments requested from

each algorithm. Note that in each case an increase in the number of segments results

in a greater f , and also that the Wolff algorithm performs very consistently by this

measure over our test data.
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Fig. 11 Values of 1 − f , corresponding loosely to precision, plotted against values of 1 − m, analogous

to recall, for the Wolff-Gibbs segmentation algorithm with hopsize/framesize 2/4 in (a), 5/10 in (b)
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Fig. 12 Values of f plotted against the number of segments requested of each algorithm: (a) central

clustering; (b) Wolff segmentation

We can use the mutual information measures described in Section 7.2.2 to display

another view of the effect of increasing the number of class labels. In Fig. 13 we

plot mutual information I (�c0, �c1) and spurious information H (�c1 | �c0) for one song

in our data set, both for the central clustering and for the Wolff-Gibbs segmenter.

The left panel shows that, while the Wolff-Gibbs algorithm performs slightly better,

it is not by a very large margin (and indeed both algorithms fall quite a way short of

the theoretical maximum); the right panel, however, illustrates the advantage of the

Wolff-Gibbs algorithm: very little spurious information is added to a segmentation

when increasing the number of segment labels, in contrast to the behaviour of the

central clustering algorithm.

8 Discussion and conclusions

It is clear from the results presented that our modified Wolff algorithm incorporating an

explicit prior on segment durations can be used to solve the problem of fragmentation

in audio segmentation. By choosing a suitably broad prior distribution, we are able
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Fig. 13 Panel (a) shows the change of mutual information between segmentation and annotation I (�c0, �c1)

as a function of the number of clusters for one particular song in the corpus (whose ground truth annotation

has 2.06 bits of entropy): the curve for the Wolff algorithm (thin line) is above that for the central clustering

(thick line). The right panel shows the change of spurious information H (�c1 | �c0) in the segmentation; here

the central clustering curve is higher

to generate segmentations with a realistically wide range of segment lengths while

avoiding the generation of a succession of short segments modelling rapidly varying

features of the audio.

The crucial difference between the clustering approach and the duration prior

approach is that the clustering approach operates in a feature space with the time

dimension eliminated, gathering together audio frames with similar textural charac-

teristics regardless of where they appear in the signal, and characterising each segment

class as an average over a potentially disparate group of frames. The duration mod-

elling approach forces the segment classes to be defined by averages over temporally
contiguous frames. This can result in classes that, when projected into the timeless

feature space, overlap significantly, yet retain their identity by virtue of temporal

coherence.

This effect was clearly visible in some of the segmentations we obtained, for exam-

ple, the song ‘Thank U’ by Alanis Morissette, (not shown here due to lack of space)

in which much of the song consists of an alternating harmonic structure with some of

the same chords being used in different sections. The histogram clustering analysis

tended to result in a segmentation at the level of these harmonic variations (which

a b b

l
L

(1 − α)l−1α

a a b

correct placement

correcting
step

Fig. 14 Domain proposal for small boundary adjustment: the current segmentation abb has a slightly

misplaced boundary, which can only corrected by selecting the short central domain with probability
l
L (1 − α)l−1α. When α is small towards the end of the annealing schedule, the probability of selecting this

domain decreases markedly, especially so if the length of the domain l is small, making it unlikely that the

boundary correcting step will be taken
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are well captured in a 1
12

th-octave constant-Q spectrogram), while the duration mod-

elling segmenter was able to detect the different patterns of use of the same harmonic

building blocks on a longer timescale.

One of the motivations in switching to explicit duration modelling rather than rely-

ing on large histogram windows—which is also effective in reducing fragmentation,

as demonstrated, for example, by Abdallah et al. (2005)—was to improve the temporal

resolution of the segmentation. However, we have found in our experiments that the

Wolff domain proposal algorithm introduces a new source of inaccuracy in boundary

placement. The problem can be understood with reference to Fig. 14: it is that the

Markov chain steps necessary to correct minor errors in boundary placement become

increasingly unlikey as the temperature of the simulation drops. We suggest ways of

overcoming this problem in the next section.

8.1 Future work

8.1.1 Developments of the model

A relatively minor refinement to the model would be to introduce a richer parameteri-

sation to be subjected to optimisation. One option would be to allow each segment class

to adopt its own duration distribution, or at least its own characteristic timescale. An-

other would be to model the transition probabilities between different segment classes

using a first-order Markov model. Both of these measures would help distinguish

segment types that differ not in their textural aspects but in their patterns of duration

and succession. However, both cases are likely to require an explicitly Bayesian (as

opposed to maximum a posteriori) approach to learning in order to combat overfitting,

since each song only has a rather limited number of segments and transitions from

which to fit the model parameters.

Although we have begun to model temporal coherence of large-scale segments

as in Section 5, we have not yet modelled the internal dynamics of such segments,

merely their overall distribution over HMM states, which we treat as stationary. This

prevents our current model from detecting consecutive repeats of the same segment

class; two consecutive choruses will be detected as one long segment, not two re-

peats of the same type of segment. To address this, it would be necessary to model

the typical evolution of each segment class. This could potentially be achieved by

replacing each class-specific histogram model with a non-ergodic Markov model,

such that each sub-model has a final state after which a new segment must be

initiated.

Both of the above modifications would take us in the direction of more uniformly

structured hierarchical HMMs, using the same mechanisms to model structures at

different timescales.This would pave the way, in a unified and principled fashion, for

the introduction of more levels in the hierarchy.

8.1.2 Developments of the MCMC algorithm

The performance of a MCMC-based system such as ours is heavily dependent on

the proposal distributions used at each step of the Markov chain. As noted above,
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the Wolff-Gibbs algorithm has difficulty in correcting slightly misplaced boundaries

towards the end of the annealing schedule because of the improbability of select-

ing the short domains that would be required to move the boundary (shown in Fig.

14). This problem could potentially be addressed in one or more of the following

ways.

Firstly, a preliminary analysis of the audio signal using an onset detection system

(e.g. Bello et al., 2004) or beat tracker could supply a map of likely boundary times

which could be used to modulate the domain proposal distribution, biassing it towards

domains that start and end at an onset or beat.

Even with these modifications, the MCMC approach is likely to remain much

more computationally expensive than the deterministically-annealled system used

on the histogram clustering model. Hence, we aim to investigate whether or not a

similar mean field or variational EM approach might be taken with the duration-

aware segmentation model, perhaps by reparameterising the segment configuration

in terms of boundary times rather than as a regularly sampled sequence of frame

classifications.

Appendix A: Notational conventions

In this paper, we adopt the following notation for type specifications:

X : A Means that X is of type A, where A is some type specifier.

D → R The type of functions with domain D and range R.

AN×M The type of N × M arrays with elements of type A.

A∗ The type of sequences of any length with elements of type A.

D(x) The domain of the function or array x .

R(x) The range of the function or array x .

N ..M The set or type of integers between N and M inclusive.

R+
0 The set or type of positive semi-definite reals {x ∈ R | x ≥ 0}.

interval(A) The type of intervals on the linearly ordered domain A.

In addition we define some notation for random variables. A probability space is

a triple (
,F, P), where 
 is a set of elementary events, F is a σ -field over 
, and

P : F → R+
0 is a measure such that P(
) = 1. In these terms we can define two new

types:

rv(A) A random variable with range A. If X : rv(X ), then X : 
 → X .

pdf(A) The type of probability density functions over a measurable space A,

e.g. , if p : pdf(X ), then p(x) ≥ 0 ∀ x ∈ X and
∫
X p(x)dx = 1.

Appendix B: Segment length prior

A prior given by the energy function (11), repeated here for convenience,

εH(x, ν, γ ) = 1

| ν | x−ν + (γ + 1) log x, (26)
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has probability distribution

pH(x, ν, γ )dx = 1

Z
e−εH(x,ν,γ )dx

= 1

Z
x−(γ+1)e− x−ν

|ν| dx, (27)

where Z is a normalizing constant.

The mode of this probability distribution is at the mininum of εH (since the expo-

nential function is monotonic), which is given by

− sgn(ν) + γ + 1

x
= 0. (28)

This has no positive solutions for ν ≤ 0; for ν > 0 the mode is at x = γ + 1. As for

the constant of normalization,

Z =
∫ ∞

0

x−(γ+1)e− x−ν

|ν| dx. (29)

For ν = 0, the distribution is not well-defined. Otherwise, we change variables to

u = x−ν

|ν| , giving

Z =
∫ ∞

0

(| ν |u)
γ+1

ν e−u(| ν |u)−
ν+1
ν du

=
∫ ∞

0

(| ν |u)
γ−ν

ν e−udu

= | ν | γ−ν

ν �(
γ

ν
). (30)

Thus, the prior distribution (11) is improper for
γ

ν
being a nonpositive integer.

However, for positive ν and zero γ , as used in this paper, the restricted prior obtained

by cutting off the prior (11) at the length of the song being segmented, as discussed

in Section 5.3, is a proper normalizeable prior.
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