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Abstract We consider multivariate density estimation with identically distributed
observations. We study a density estimator which is a convex combination of functions
in a dictionary and the convex combination is chosen by minimizing the L2 empirical
risk in a stagewise manner. We derive the convergence rates of the estimator when the
estimated density belongs to the L2 closure of the convex hull of a class of functions
which satisfies entropy conditions. The L2 closure of a convex hull is a large non-
parametric class but under suitable entropy conditions the convergence rates of the
estimator do not depend on the dimension, and density estimation is feasible also
in high dimensional cases. The variance of the estimator does not increase when the
number of components of the estimator increases. Instead, we control the bias-variance
trade-off by the choice of the dictionary from which the components are chosen.

Keywords Boosting . Empirical risk minimization . Greedy algorithms .

Multivariate function estimation

1 Introduction

We study estimation of a multivariate density function f :Rd → R based on identically
distributed random vectors X1, . . . , Xn ∈ Rd . To analyze the estimator we assume
that the observations are independent. We are interested in cases where dimension d
is large.

We estimate the density applying a stagewise optimization of the L2 empirical risk.
The estimator is a convex combination of functions lying in a dictionary of simple
functions. The algorithm starts by choosing a function from the dictionary which
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minimizes the empirical risk, and proceeds in a stagewise manner, adding new simple
functions to the convex combination. The new terms of the convex combination will be
chosen by minimizing the empirical risk in such a way that the new terms increase the
accuracy of the estimate at those regions where the previous estimate was inaccurate.

We analyze the rate of convergence of the expected L2 error of the estimator under
the assumption that the true density belongs to the L2 closure of the convex hull of
a base class of functions. The main example will be the case where the base class
is a finite dimensional manifold of functions. For these cases the estimator has the
convergence rate (n/log n)−1/4 or n−1/4. This rate does not depend on the dimension
d. The curse of dimensionality can be overcome in the sense that we may estimate
densities lying in the closure of the convex hull uniformly well, and this density class
is a large non-parametric density class of practical relevance.

We show that the stagewise minimization estimator is essentially equally good as
the convex combination which minimizes the empirical risk. By defining the estimator
in a stagewise manner we enable efficient calculation of estimates. The definition of
the estimator is semi-algorithmic in the sense that the algorithm involves an additional
minimization problem at each stage. However, even the brute force method for solving
the minimization problem at each stage is feasible in some cases.

Error bounds for minimization estimators have been usually given under entropy
conditions for the density class. Here we do not consider entropy conditions for the
density class but the entropy conditions are posed on the underlying class and the
density class is defined as the closure of the convex hull of this underlying class.

The analysis of the estimator shows that we control the bias-variance balance by the
choice of the dictionary of functions from which the convex combination is selected:
rich dictionaries lead to a small bias and large variance. The dictionary is the smoothing
parameter, or the regularizer, of the estimator. The number of terms in the estimate does
not increase the variance, and we do not have to use any model selection procedure
(like minimum description length) to choose the number of terms. This contrasts for
example with the case of orthogonal series estimators where the number of terms in
the expansion should be chosen to balance between the bias and variance.

Boosting applied to classification tasks is an algorithm defined in Freund and
Schapire (1996), for example. Boosting can also be considered as a generic functional
gradient descent algorithm, and then extended to regression and density function es-
timation. The interpretation of boosting as a gradient descent algorithm is discussed
in Breiman (1998), Friedman, Hastie, and Tibshirani (2000), and Mason et al. (2000).
The stagewise minimization algorithm which we consider does not involve the gra-
dient of the empirical risk functional. We make simulation experiments with such
a boosting algorithm and note that the algorithm gives slower convergence than the
stagewise minimization estimator. In boosting one typically optimizes with respect
to the size of the weights of the terms in the linear combination but the stage-
wise minimization estimator uses a fixed sequence of weights, avoiding the addi-
tional optimization step. In the literature concerning boosting for classification one
has observed that the out-of-sample error decreases as the number of terms is in-
creased, even after the training error of the linear combination has reached zero, see
Breiman (1996). Our analysis is in conformity with this observation, but in boost-
ing the number of terms is often considered to be the regularizer, see the discussion
in Section 2.2.
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The existence of approximation procedures with dimension-independent conver-
gence rates was noticed by Jones (1992) and Barron (1993) for the particular case of
the L1 Fourier classes. The analysis of the L1 Fourier classes is closely related to the
analysis of mixture classes.

Stagewise minimization has been considered in density estimation previously only
with the log-likelihood empirical risk. However, Rigollet and Tsybakov (2006) provide
oracle inequalities for the aggregation in the context of density estimation with the
L2 empirical risk. Li and Barron (2000) derive error bounds for the Kullback-Leibler
distance. They consider sieves which consists of convex combinations of M terms
and both the bias and variance terms in the error bound depend on M . They consider
complexity regularization with the complexity depending on the number of terms. In
contrast, the bounds in this article are such that the variance term does not depend on the
number of terms in the estimate, and thus we do not need a complexity regularization
with respect to the number of terms. The use of the log-likelihood empirical risk
requires the assumption of the boundedness of the logarithm of the density; the density
is assumed to bounded and bounded away from 0, whereas the use of the L2 empirical
risk requires only the boundedness of the densities. Similarly to the current article,
Rakhlin, Panchenko, and Mukherjee (2005) give error bounds which depend only on
the entropy of the base class, but using the fact that Rademacher averages of a convex
hull are equal to those of the base class, and they improve the bound in Li and Barron
(2000) by removing the dependence of the variance bound on M . (We thank a referee
for pointing this reference to us.) Ridgeway (2002) considers stagewise minimization
with a dictionary of Gaussian functions and he finds the new members of the mixture
by the EM algorithm with Newton-Raphson acceleration. Rosset and Segal (2002)
apply a Taylor expansion of the log-likelihood which leads to a boosting algorithm
where the weights of the empirical risk are adjusted at each step (observations are
weighted by the reciprocal of the current estimate). They apply Bayesian networks
as base learners. Projection pursuit density estimation as presented in Friedman et al.
(1984) constructs an estimate of product form with a stagewise algorithm minimizing
the negative log-likelihood criterion. Priebe (1994) considers an iterative algorithm
with a stopping rule for estimating Gaussian mixtures.

The estimator is defined in Section 2. The main theorem is formulated in Section 3.1.
Section 3.2 gives rates of convergence under specific assumptions on the underlying
base class. Section 4 illustrates the properties of the estimator with simulation exam-
ples. The proofs are given in Section 5. A discussion is given in Section 6. Some of
the proofs are given in the Appendix of the technical report Klemelä (2005).

We denote with ‖x‖ the Euclidean norm of x ∈ Rd , with ‖g‖2 the L2 norm of
g : Rd → R, with respect to the Lebesgue measure, and ‖g‖∞ = supx∈Rd |g(x)|. We
denote with #A the cardinality of a finite set A.

2 Definition of the estimator and related methods

2.1 Definition of the estimator

We assume to have a sequence X1, . . . , Xn ∈ Rd of identically distributed observa-
tions from the distribution of an unknown density f :Rd → R. We define a model
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free estimator which may be applied also for estimating the intensity function of a
multivariate Poisson process. To derive the convergence rates we assume that the
observations are i.i.d.

L2 empirical risk. Define the empirical risk of a density estimator f̂ :Rd → R with

γn( f̂ ) = 1

n

n∑
i=1

γ ( f̂ , Xi ) (1)

where γ (g, x) is the L2 contrast function,

γ (g, x) = −2g(x) + ‖g‖2
2, g :Rd → R, x ∈ Rd .

Minimization of ‖ f̂ − f ‖2
2 over estimators f̂ is equivalent to the minimization of ‖ f̂ −

f ‖2
2 − ‖ f ‖2

2, and minimization of γn( f̂ ) amounts to the minimization of ‖ f̂ − f ‖2
2

−‖ f ‖2
2, up to the approximation

∫
Rd f̂ f ≈ n−1

∑n
i=1 f̂ (Xi ). Indeed,

‖ f̂ − f ‖2
2 − ‖ f ‖2

2 = −2

∫
Rd

f f̂ + ‖ f̂ ‖2
2

≈ −2n−1
n∑

i=1

f̂ (Xi ) + ‖ f̂ ‖2
2

= γn( f̂ ). (2)

Stagewise minimization estimator. We define the estimator with a stagewise minimiza-
tion algorithm. New functions are added to a convex combination by minimizing the
empirical risk at each step. Functions are chosen from dictionary D.

Definition 1. Stagewise minimization estimator f̂n :Rd → R, with dictionary D of
functions Rd → R, with number of components M ≥ 1, with mixing coefficients 0 <

πk < 1, k = 1, 2, . . . , M − 1, and with the approximation bound ε > 0, is defined
recursively with the following rules.

1. Choose f̃0 ∈ D so that

γn( f̃0) ≤ inf
φ∈D

γn(φ) + ε. (3)

2. For k = 1, . . . , M − 1, let

f̃k = (1 − πk) f̃k−1 + πk φ̃

where φ̃ ∈ D is chosen so that

γn( f̃k) ≤ inf
φ∈D

γn((1 − πk) f̃k−1 + πkφ) + πkε. (4)

3. Let f̂n = f̃M−1.
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Remark 1 (Quantity to be minimized). We may write the quantity to be minimized in
(4) as

γn((1 − πk) f̂k−1 + πkφ)

= γn((1 − πk) f̂k−1) + γn (πkφ) + 2(1 − πk)πk

∫
Rd

f̂k−1φ. (5)

Thus we try to choose the new additive component πkφ in such a way that the usual
empirical risk γn (πkφ) with an additional “penalization term” which involves the
inner product

∫
Rd f̂k−1φ is minimized. This penalization term has the effect that we

minimize the empirical risk under the condition that the new component should be far
from the current solution f̂k−1.

Remark 2 (Mixing coefficients). We may write the estimator as a mixture f̂n =∑M−1
k=0 pk f̃k, where

pk = πk ·
M−1∏

i=k+1

(1 − πi ), k = 0, . . . , M − 1, (6)

where we denote π0 = 1. We have that 0 < pk < 1 and
∑M−1

k=0 pk = 1. The weights
pk of the mixture may be decreasing or increasing depending on the choice of the
coefficients πk . It would be possible to choose numbers πk at each step so that the
empirical risk is minimized. It will turn out that we get good error bounds with a fixed
choice for the mixing coefficients, see Remark 6 below.

Remark 3 (Computational complexity). We say that the definition of the estimator
in Definition 1 is semi-algorithmic because the definition contains the minimization
problems (3) and (4). An advantage of the estimator is that the minimization problem
over the convex hull is reduced to potentially simpler minimization problems (3)
and (4). We may note that when D is a finite set, then the brute force algorithm for
the calculation of the estimate would take O(#D · M · Ceva) steps, where Ceva is the
cost of evaluating F(φ) = γn((1 − πk) f̂k−1 + πkφ), φ ∈ D. Note that by (22) we take
typically M = n1/2.

Remark 4 (Minimization estimator over mixtures). To clarify the definition of the
stagewise minimization estimator we compare this estimator with the estimator min-
imizing the empirical risk over the convex hull of the dictionary. This minimization
estimator over mixtures has smaller mean integrated squared error than the stagewise
minimization estimator, but the difference consists only of a term of order M−1, as
we state in Theorem 2. Indeed, Lemma 3 below shows that the empirical risk of the
stagewise minimization estimator may be bounded with the minimal empirical risk
and an additional term of order M−1.
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Definition 2. Minimization estimator over mixtures f̄n : Rd → R, with dictionary D
of functions Rd → R, and with the approximation bound ε > 0, satisfies

γn( f̄n) ≤ inf
g∈co(D)

γn(g) + ε, (7)

where co(D) is the convex hull ofD (the collection of convex combinations
∑k

i=1 λiφi ,

where φi ∈ D,
∑k

i=1 λi = 1, λi ≥ 0, and k = 1, 2, . . .).

2.2 Related methods

The stagewise minimization estimator is closely related to the family of boosting
estimators, and we try to describe differences and similarities. We mention also convex
minimization and the EM algorithm which provide alternative approaches.

Boosting. Boosting applied to classification tasks may be considered as a generic
functional gradient descent algorithm for finding a linear combination of classifiers, see
for example Mason et al. (2000). Let (Dγn)( f ) be the gradient at f of the empirical risk
γn . That is, (Dγn)( f ) is a real valued functional and we have a first order approximation

γn( f + h) ≈ γn( f ) + (Dγn)( f )(h).

Since we consider convex combinations we use the approximation

γn((1 − π ) f + πh) = γn( f + π (h − f ))

≈ γn( f ) + π (Dγn)( f )(h − f )

= γn( f ) + π [(Dγn)( f )(h) − (Dγn)( f )( f )].

Thus, when we want to minimize γn((1 − π ) f + πh) with respect to h and π , we
may first minimize (Dγn)( f )(h) with respect to h and then apply one dimensional
minimization with respect to π .

Consider first the empirical risk γn as defined in (1), when γ (g, x) is the L2 contrast
function, γ (g, x) = −2g(x) + ‖g‖2

2, g :Rd → R, x ∈ Rd . For the L2 empirical risk
we may define the gradient as

(Dγn)( f )(h) = − 2

n

n∑
i=1

h(Xi ) + 2

∫
Rd

f h. (8)

Second, let γ (g, x) be the log-likelihood contrast function, γ (g, x) = − log g(x), g :
Rd → R, x ∈ Rd . We may define the gradient for the log-likelihood empirical risk as

(Dγn)( f )(h) = − 1

n

n∑
i=1

h(Xi )

f (Xi )
. (9)
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Definition 3. Boosting estimator f̂n :Rd → R, with dictionary D of functions φ :
Rd → R, with number of components M ≥ 1, and with empirical risk γn : co(D) → R,
and its gradient (Dγn)( f )(φ) as in (8) or (9), is defined recursively with the following
rules.

1. Initialize f̃0 ∈ D.
2. For k = 1, . . . , M − 1,

(a) apply a minimization algorithm to find an approximate solution φk to

φk = argminφ∈D(Dγn)( f̃k−1)(φ),

(b) apply one dimensional minimization to find an approximate solution πk to

πk = argminπ∈(0,1)γn((1 − π ) f̃k−1 + πφk),

(c) set

f̃k = (1 − πk) f̃k−1 + πkφk .

3. Let f̂n = f̃M−1.

Rosset and Segal (2002) considered the log-likelihood empirical risk and the gradient
in (9).

When we use the L2 empirical risk with the gradient (8), then in step 2(a) of the
boosting algorithm we find φ ∈ D minimizing

− 2

n

n∑
i=1

φ(Xi ) + 2

∫
Rd

f̂k−1φ, (10)

where k = 1, . . . , M − 1. In contrast, we noted in (5) that the stagewise minimization
estimator finds φ ∈ D minimizing

− 2πk

n

n∑
i=1

φ(Xi ) + π2
k ‖φ‖2

2 + 2(1 − πk)πk

∫
Rd

f̂k−1φ, (11)

at steps k = 1, . . . , M − 1. The difference between (10) and (11) is that in (11) the
coefficients πk are involved, and that in (11) there appears term ‖φ‖2

2. Term ‖φ‖2
2 has a

further regularization effect. For example, if we use a library of scaled functions φ(x) =
σ−dψ((x − μ)/σ ), whereψ :Rd → R,μ ∈ Rd ,σ > 0, then‖φ‖2

2 = σ−d‖ψ‖2
2, which

grows to infinity when σ → 0. Thus adding term ‖φ‖2
2 to the empirical risk excludes

adding terms to the mixture with small σ .
In boosting one is not only optimizing the choice of a new term φk but also optimiz-

ing the choice of the weight πk , whereas stagewise minimization uses fixed weights.
Minimization with respect to the weights adds flexibility, but it might add also variance
to the estimator. Indeed, one has often noticed that adding more terms to a boosting
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estimator (or keeping the size of the weights of the terms large) increases variance
of the estimator, see for example (Bühlmann, 2002). A high variance may have also
come from the fact that one has used a version of boosting where the dictionary is not
fixed but φk have been decision trees (so that the dictionary is empirical). To choose
the parameters of a decision tree one needs additional estimation steps: decision trees
are constructed by choosing splitting points empirically and applying sample averages
to define the values of the function at the leaf nodes.

Convex minimization. We may try to solve the minimization problem in (7) by con-
vex minimization. Indeed, the minimization of the L2 empirical risk over weights
of a convex combination amounts to the minimization of a convex functional over a
convex domain. One may use for example simplex methods or interior point meth-
ods, see Gill, Murray, and Wright (1991); Nesterov and Nemirovskii (1994). Juditsky
and Nemirovski (2000) considered the setting of regression estimation and they pro-
posed a stochastic approximation algorithm for finding the minimizer over a convex
hull.

EM algorithm. When one applies the log-likelihood empirical risk and when the dic-
tionary consists of Gaussian densities, or of densities belonging to an exponential
family, one may solve the minimization steps (3) and (4) with the EM algorithm. This
approach was considered by Ridgeway (2002).

3 Error bounds

3.1 A non-asymptotic error bound

The stagewise minimization estimator is a model free estimator. However, we want to
analyze the performance of the estimator over certain test beds. We give first a general
error bound when the density belongs to the L2 closure of the convex hull of a set of
functions G. We give in Section 3.2 examples of set G.

The collection of densities. Let G be a collection of functions Rd → R and de-
note with c̄o(G) the L2 closure of the convex hull of G. We consider the density
class

F = c̄o(G) ∩ Fden, (12)

where Fden = Fden(B∞) is the collection of bounded densities on Rd :

Fden =
{

f :

∫
Rd

f = 1, 0 ≤ f ≤ B∞

}
, (13)

where 0 < B∞ < ∞.

Springer



Mach Learn (2007) 67:169–195 177

The general error bound. We give a general bound to the mean integrated squared
error of the stagewise minimization estimator. Let the mixing coefficients be

πk = 2

k + 2
, k = 1, 2, . . . , M − 1. (14)

Theorem 1. Let X1, . . . , Xn be i.i.d. observations from the distribution of density
f :Rd → R. Let estimator f̂n be defined in Definition 1, with mixing coefficients πk

given in (14). Then, for f ∈ F , when F is defined in (12),

E f ‖ f̂n − f ‖2
2 ≤ inf

g∈co(D)
‖g − f ‖2

2 + 4E f sup
φ∈D

|νn(φ)| + 4B2
2

M + 1
+ ε,

where co(D) is the convex hull of D, νn(φ) is the centered empirical operator defined
by

νn(φ) = 1

n

n∑
i=1

φ(Xi ) −
∫

Rd

φ f, φ :Rd → R, (15)

and B2 = supφ∈D ‖φ‖2. We use the notation E f to mean the expectation with respect
to the distribution of (X1, . . . , Xn), that is, with respect to the n-fold product measure
with density

∏n
i=1 f (xi ).

Theorem 1 is proved in Section 5.

Remark 5. The term infg∈co(D) ‖g − f ‖2
2 may be identified as the bias term, the term

E f supφ∈D |νn(φ)| as the variance term, and the term 4B2
2/(M + 1) + ε as the approx-

imation term. The bias and variance terms are different depending on the choice of
the dictionary D. We consider two cases; (1) D is a δ-net of G; (2) D is the base class:
D = G. The first case is studied in Section 3.1.1 and the second case is studied in
Section 3.1.2. In the first case the bias term is equal to δ and in the second case the
bias term vanishes. The variance term has been studied extensively in the theory of
empirical processes. Here it is important that the supremum in the variance term is
over φ ∈ D and not over g ∈ co(D). We give below examples of the bounds for the
variance term.

Remark 6. With the choice of the mixing coefficients as in (14) we may write the
estimator as a mixture f̂n = ∑M−1

k=0 pk f̃k, where pk = 2(k + 1)/[(M(M + 1)], k =
0, . . . , M − 1, where we used the formula given in (6). Thus the coefficients pk of the
mixture are linearly increasing with k and the new term gets always the largest weight.

Remark 7. The main interest of Theorem 1 lies in the case where G is a simple
collection but c̄o(G) is nevertheless a large nonparametric class, although Theorem 1
holds also in the case G = c̄o(G). The main example is the case where G is a finite
dimensional manifold. This case is considered in Section 3.2. In this case we may
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found reasonable algorithms for solving the minimization problems (3) and (4), and
at the same time the convergence rate of the estimator is not unacceptably slow in
high dimensional cases. When G is a Sobolev ball or a Hölder ball of multivariate
functions, then G = c̄o(G), see Remark 10.

Minimization estimator over mixtures. We may clarify Theorem 1 by pointing out
that when we consider the minimization estimator over the convex hull, defined in
Definition 2, then we get a better bound, without term 4B2

2/(M + 1). However, in this
case we do not have an algorithmic definition of the estimator.

Theorem 2. Let X1, . . . , Xn be i.i.d. observations from the distribution of density
f :Rd → R. Let f̄n be defined Definition 2. Then, for f ∈ F , when F is defined in
(12),

E f ‖ f̄n − f ‖2
2 ≤ inf

g∈co(D)
‖g − f ‖2

2 + 4E f sup
φ∈D

|νn(φ)| + ε.

Theorem 2 is proved in Section 5; it follows directly from Lemma 4 given in
Section 5.2.

3.1.1 δ-net dictionary

A natural choice for the dictionary D is to take it equal to a δ-net of the base class G.
When the base class G is L2-bounded:

sup
g∈G

‖g‖2 < ∞, (16)

then for each δ > 0, there exists a finite δ-net Dδ of G; collection Dδ is of finite
cardinality and for each φ ∈ G there is φ′ ∈ Dδ such that ‖φ − φ′‖2 ≤ δ. Theorem 1
leads to the following corollary.

Corollary 1. Let X1, . . . , Xn be i.i.d. observations from the distribution of density
f :Rd → R. Let (16) hold. Let estimator f̂n be defined in Definition 1, with mixing
coefficients πk given in (14). Let δ > 0 and let the dictionary be a δ-net D = Dδ . Then,
for f ∈ F , when F is defined in (12),

E f ‖ f̂n − f ‖2
2 ≤ δ2 + 8 · 21/2 B∞

√
loge(2#D)

n1/2
+ 4B2

2

M + 1
+ ε,

where B2 = supφ∈D ‖φ‖2, and B∞ = supφ∈D ‖φ‖∞.

Proof: Every convex combination of the functions in G may be approximated up to
δ with some convex combination of the functions in dictionary Dδ:

sup
g∈co(G)

inf
h∈co(Dδ )

‖g − h‖2 ≤ δ (17)
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where Dδ is the dictionary defined in Assumption 16. The approximation (17) follows
directly from the fact that Dδ is an δ-net of G in the L2 metric. For a proof of (17) see
Appendix A. The fact that F ⊂ c̄o(G) implies

sup
f ∈F

inf
g∈co(G)

‖ f − g‖2 = 0. (18)

Equations (17) and (18) imply that

sup
f ∈F

inf
h∈co(Dδ )

‖ f − h‖2 ≤ δ. (19)

That is, when Dδ is a δ-net for G, then co(Dδ) is a δ-net for F . We have proved the
bound for the bias term in Theorem 1 (the first term in the right hand side). It is left to
prove a bound for the variance term. The cardinality of Dδ is finite and we have

E f sup
φ∈D

|νn(φ)| ≤ 2B∞n−1/221/2
√

loge(2 # Dδ),

see for example (Lugosi, 2002). We have proved the theorem. �

Remark 8 (Smoothing parameters of the estimate). We have identified term δ2 as the
bias term and term (loge(#Dδ)/n)1/2 as the variance term. We balance the bias and
the variance of the estimator by the choice of dictionary D. The choice of the number
M of the terms does not affect the variance of the estimator. We may improve the
estimator by choosing M large but this increases computational complexity.

3.1.2 G as dictionary

We may choose the base class G itself to be the dictionary. In order to apply Theorem 1
we need that the entropy integral of the base class converges. Let us call a δ-bracketing
net of G with respect to the L2 norm a set of pairs of functions Gδ = {(gL

j , gU
j ) : j =

1, . . . , N (δ)} such that

1. ‖gL
j − gU

j ‖2 ≤ δ, j = 1, . . . , N (δ),

2. for each g ∈ G there is j = j(g) ∈ {1, . . . , N (δ)} such that gL
j ≤ g ≤ gU

j .

Define the entropy integral

G(B2) =
∫ B2

0

√
loge N (u) du, (20)

where B2 = supg∈G ‖g‖2. Theorem 1 implies the following corollary.

Corollary 2. Let X1, . . . , Xn be i.i.d. observations from the distribution of density
f : Rd → R. Let estimator f̂n be defined in Definition 1, with mixing coefficients πk

given in (14). Let the dictionary of f̂n be G. Let (16) hold, let B∞ = supg∈G ‖g‖∞ < ∞,
and let the entropy integral G(B2) be finite. Then, for f ∈ F , when F is defined
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in (12),

E f ‖ f̂n − f ‖2
2 ≤ C

n1/2
+ 4B2

2

M + 1
+ ε,

where B2 = supg∈G ‖g‖2, and C is a positive constant depending on B2, B∞, and on
the entropy integral G(B2).

Proof: We noted already in (18) that the bias term is zero when D = G. For the
variance term we have that

E f sup
g∈G

|νn(g)| ≤ C

n1/2
.

by applying a variant of exponential inequalities given by Ossiander (1987), Birgé and
Massart (1993), Proposition 3, or van de Geer (2000), Theorem 8.13. �

Remark 9. One may also derive a bound for the variance term with the help of the
empirical entropy:

E f sup
g∈G

|νn(g)| ≤ C

n1/2
E f

∫ B∞

0

√
loge N (u, G, ‖·‖2,n) du,

where N (δ, G, ‖·‖2,n) is the cardinality of the smallest δ-cover of G with respect to
the empirical metric ‖g‖2

2,n = ∑n
i=1 g(Xi )2. See Pollard (1989) or van der Vaart and

Wellner (1996). This type of bound was used in Rakhlin, Panchenko, and Mukherjee
(2005). The expectation in the upper bound can further be bounded by using

N (δ, G, ‖·‖2,n) ≤ C ′(1/δ)2(V (G)−1),

where V (G) is the VC-dimension of G, and C ′ is a positive constant depending on
V (G). See van der Vaart and Wellner (1996), Theorem 2.6.4.

3.2 Rates of convergence

We discuss cases where the estimator has the rate of convergence (n/ log n)−1/4 or
n−1/4. This rate may be achieved in the case where the density belongs to the closure
of the convex hull of a finite dimensional manifold. The case where the density is an
infinite mixture of densities on a finite dimensional manifold may be reduced to this
case.

3.2.1 Entropy condition

We consider the class of densities (12) and make restrictions to G. When G is a k-
dimensional class, then there exists a δ-net of G of cardinality Cδ−k . Now we make
concrete choices for the parameters of the stagewise minimization estimator. Let the
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discretization parameter δ = δn > 0 satisfy

δn �
(

log n

n

)1/4

. (21)

Let the component number M = Mn ∈ {1, 2, . . .} and the approximation bound ε =
εn > 0 of the estimator satisfy

M−1
n � εn = O(n−1/2). (22)

Corollary 3. Assume that the collection G has a δ-net Dδ of cardinality

log(#Dδ) ≤ C log δ−1, (23)

for a positive constant C. Let estimator f̂n be defined in Definition 1 with the component
number Mn as in (22), the mixing coefficients πk as in (14), and the approximation
bound εn as in (22).

1. Let δ = δn > 0 satisfy (21) and let the dictionary of the estimator be D = Dδn ,
where Dδ is as in Assumption 16. We have under the assumptions of Corollary 1
that

lim sup
n→∞

(
n

log n

)1/2

sup
f ∈F

E f ‖ f̂n − f ‖2
2 < ∞ (24)

where F is defined in (12).
2. We have under the assumptions of Corollary 2 that

lim sup
n→∞

n1/2 sup
f ∈F

E f ‖ f̂n − f ‖2
2 < ∞. (25)

Proof: Corollary 3 follows directly by plugging the values (21), (22), (23) in the upper
bound of Corollary 1, or in the upper bound of Corollary 2. �

Remark 10. When G is a Sobolev ball or a Hölder ball of multivariate functions, then
there exists a δ-net of G with cardinality Nδ where

log(Nδ) ≤ Cδ−d/s (26)

for a positive constant C , where s > 0 is the smoothness index, see Kolmogorov and
Tikhomirov (1961). In these cases Corollary 1 gives the rate n−s/(4s+d). However,
the optimal rate of convergence is known to be n−s/(2s+d) for the Sobolev or Hölder
balls, and for example kernel estimators achieve this rate. In high dimensional cases a
mixture class makes a stronger restriction to the density than the classical smoothness
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conditions. We have that

(n/log n)1/4 > ns/(2s+d) ⇔ d > 2s. (27)

Thus, in the high dimensional cases, when d > 2s, the rate (n/log n)−1/4 is better than
the classical rate. The curse of dimensionality affects that accurate estimation is not
possible in high dimensional cases if the true density is a worse case in a Sobolev
ball, but if it happens that the true density lies in a mixture class accurate estimation
is possible also in high dimensional cases.

Remark 11. van der Vaart and Wellner (1996) and Carl (1997) have shown that if
there exists a δ-net of G of cardinality C(1/δ)V , then there exists a δ-net of F of
cardinality C ′(1/δ)2V/(V +2), where C ′ depends only on the envelope of G, on C and
V . Here the δ-nets are with respect to the L2(Q) metric, where Q is a probability
measure. Generalizations and better constants has been given by Carl, Kyrezi, and
Pajor (1999) and Mendelson (2002). The results indicate that the rate n−(V +2)/[4(V +1)]

can be achieved by a minimization estimator of Definition 2. For V = 0 the rate is
n−1/2 and for V = ∞ the rate is n−1/4.

3.2.2 Convex closures of parametric families

We consider examples where condition (23) for G holds. Let F be defined by (12)
where

G = {g(·, θ ) : θ ∈ �} (28)

with � ⊂ Rk . Set G is a finite dimensional collection but set F is an infinite di-
mensional collection. With regularity conditions on θ �→ g(·, θ ) we may guarantee a
parametric bound for the entropy of G.

Assumption 1. Assume that � ⊂ Rk is bounded in the Euclidean metric, and for all
θ, θ ′ ∈ �,

‖g(·, θ ) − g(·, θ ′)‖2 ≤ C‖θ − θ ′‖

for a positive constant C .

Lemma 1. Assumption 1 implies (23), for G defined in (28).

Proof: It is enough to note that � may be covered with C ′δ−k balls of radius δ, see
Kolmogorov and Tikhomirov (1961). �

Corollary 4. Let Assumption 1 hold. Define estimator f̂n similarly as in Corollary 3,
except that the dictionary is defined by

Dδ = {g(·, θ ) : θ ∈ �δ} , δ > 0, (29)
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where �δ , δ > 0, is a δ-net of � in the Euclidean metric. Then (24) holds, where F is
defined in (12) with G as in (28). If the dictionary is G, then (25) holds.

Proof: Corollary 4 follows from Corollary 3 and Lemma 1. �

3.2.3 Infinite mixture families

Estimating a density in a class of infinite mixtures may not be more difficult than
estimating a density in the closure of a convex hull. Let G be defined in (28), that is,
G = {g(·, θ ) : θ ∈ �} with � ⊂ Rk . Assume that � = �(1) × �(2), where �(i) ⊂ Rki ,
0 ≤ ki ≤ k, i = 1, 2, k1 + k2 = k. Let

G(G) =
{∫

�(2)

g
(·, θ (1), θ (2)

)
d Q

(
θ (2)

)
: θ (1) ∈ �(1), Q ∈ Q

(
�(2)

)}
(30)

where g (·, θ ) = g(·, θ (1), θ (2)) ∈ G and Q(�(2)) is the set of probability measures on
�(2). Let us state the additional regularity conditions.

Assumption 2. Let g(x, θ (1), · ) be Riemann integrable for all x ∈ Rd , θ (1) ∈ �(1). Let

sup
θ (2)∈�(2)

∥∥g
(·, θ (1), θ (2)

)∥∥
2

< ∞, for all θ (1) ∈ �(1). (31)

Lemma 2. Let G be defined in (28). Let Assumption 2 hold. Then,

G(G) ⊂ c̄o(G). (32)

Proof: A proof of (32) is given in the technical report (Klemelä, 2005). The proof
uses just the fact that the integral in the definition of g ∈ G(G) may be approximated
with a Riemann sum. �

Corollary 5. Let Assumption 1 and Assumption 2 hold. Define the estimator f̂n simi-
larly as in Corollary 3, except that the dictionary is defined by (29). Then (24) holds,
where F is defined by

F = G(G) ∩ Fden. (33)

If the dictionary is G, then (25) holds.

Proof: We apply Lemma 2 and Corollary 4. �

Remark 12. Genovese and Wasserman (2000) show that a maximum likelihood esti-
mator can achieve the rate (n/ log n)1/4 for Gaussian mixture models. Ghosal and
van der Vaart (2001) show that for Gaussian mixture models a maximum likeli-
hood estimator can achieve the almost parametric rate n1/2/(log n)γ , γ ≥ 1. Biau and
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Devroye (2005) show that a complexity penalized minimum distance estimator
achieves the parametric rate n1/2.

4 Illustrations

We illustrate the behavior of the stagewise minimization estimator with one dimen-
sional examples: a two-modal density, the standard log-normal density, and the claw
density. The mean integrated squared error (MISE, E

∫ | f̂ − f|2) and the mean in-
tegrated absolute error (MIAE, E

∫ | f̂ − f|) of the estimates were studied. The L1

error may be more natural error criterion than the L2 error since by Scheffé’s lemma
it is related to the total variation distance:

∫ | f̂ − f| = 1
2

supA|∫A f̂ − ∫
A f|. We also

compared the stagewise minimization estimator to a boosting estimator.
In the simulation experiments we did not choose the first term f̃0 using the rule

(3). Instead, the first term was chosen by performing the minimization only over the
location μ and the standard deviation was fixed to unity: σ = 1. This improved the
estimator. When the optimization in choosing the first term was performed over σ ,
then always the smallest value of σ was chosen. The boosting estimator was initialized
by the same rule as the stagewise minimization estimator. The boosting estimator was
otherwise defined by Definition 3, with the L2 gradient (8), but the weights of the
boosting estimator were not chosen by a minimization; the same fixed sequence of
weights was used as for the stagewise minimization estimator.

A conclusion of the experiments is that the MISE of the stagewise minimization
estimates decreases as the number of terms M is increased, and after achieving the
minimum, the MISE does not increase significantly. The MIAE of the estimates be-
haves similarly. The stagewise minimization estimates detect the shape of the densities
already when M is small, except for the claw density one needs large M . Small wiggles
appear to estimates when M is large. The boosting estimates are much worse for small
values of M , but for large values of M they have the same accuracy as the stagewise
minimization estimates.
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Fig. 1 2-modal density, sample size n = 500. Frame (a) shows the average of MIAE (blue “1”) and the
average of MISE (red “2”) for the stagewise minimization estimator, for the 15 values of M ∈ M, over
500 samples. The average of MISE for the boosting estimator is shown by green “3”. Frame (b) shows the
Box plots for each sample of MISE values for the stagewise minimization estimator and frame (c) shows
the Box plots for the boosting estimator. A logarithmic scale is used for the y-axis
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Fig. 2 2-modal density, sample size n = 500, number of terms M = 7. Frame (a) shows as dashed red
graph the stagewise minimization estimate whose MISE value is equal to the 0.1 quantile among all MISE
values for the 500 samples, as dotted green graph the boosting estimate whose MISE value was equal to
the 0.1 quantile among all MISE values, and the true density as the black solid graph. Frame (b) shows the
estimates corresponding to the median values of MISE. Frame (c) shows the estimates corresponding to the
0.9 quantiles of MISE

4.1 Two-modal density

We estimate a density which is a mixture of 3 univariate Gaussians, with means 0, 2, 4,
with standard deviations 0.3, 1, 1, and with mixture weights 0.25, 0.5, 0.25. The solid
black lines in Figs. 2–3 show the graph of the density.

We applied the dictionary of Gaussians φ((x − μ)/σ )/σ , where φ is the standard
Gaussian density, −1 ≤ μ ≤ 5 with stepsize 0.3, and 0.2 ≤ σ ≤ 2 with stepsize 0.2.
We generated 500 samples of size n = 500. We constructed estimates with the number
of terms

M ∈ M = {1, 2, 3, 4, 5, 7, 9, 11, 15, 20, 30, 50, 100, 200, 300}. (34)

Figure 1(a) shows the average of MIAE (blue “1”) and the average of MISE (red
“2”), for the stagewise minimization estimator for the 15 values of M ∈ M, over
the 500 samples. The average of MISE for the boosting estimator is shown by green
“3”. Frame (b) shows the Box plots for each sample of MISE values of the stagewise
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Fig. 3 2-modal density, sample size n = 500, number of terms M = 300. The setting is otherwise the
same as in Fig. 2 but now M = 300; the dashed red graph shows a stagewise minimization estimate and
the dotted green graph shows a boosting estimate
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minimization estimator, and frame (c) shows the Box plots for the boosting estimator,
over M ∈ M.

Figure 2 shows estimates when the number of terms M = 7. The dashed red graphs
in frames ((a)–(c)) show the stagewise minimization estimates corresponding to the
0.1-quantile, median, and the 0.9-quantile among the MISE values over 500 samples.
The dotted green graphs in frames ((a)–(c)) show the boosting estimates whose MISE
values were equal to the 0.1-quantile, median, and the 0.9-quantile. Thus frame (a)
shows better than average estimates, frame (b) shows typical estimates, and frame (c)
shows worse than average estimates.

Figure 3 shows estimates when the number of terms is M = 300. We show again
the estimates corresponding to the 0.1-quantile, median, and 0.9-quantile of the MISE
values.

Figure 1 shows that the average MISE is minimized for the stagewise minimization
estimator when M = 100, but the average MISE is not significantly larger for M =
300. The MIAE increases even less when M is increased from 100 to 300. The MISE
values for the boosting estimates were larger than for the stagewise minimization
estimates for small values of the number of terms M , but when M increases, then
the MISE values approach each other. Figure 2 shows that when M = 7, then the
stagewise minimization estimator gives good estimates, but the boosting estimate
does not detect the shape of the density. Figure 3 shows that when M = 300, then
both estimators produce good estimates, and the quality of the estimates does not have
much variability. In general, estimates behave qualitatively similarly with respect to
MISE and MIAE.

4.2 Log-normal density

To make a comparison with Priebe (1994) we considered the estimation of the stan-
dard log-normal density (2π )−1/2x−1 exp{−(loge x)2/2}, 0 < x < ∞. Priebe (1994)
constructed a Gaussian mixture estimate with 27 terms when the sample size was
1000.

We applied the dictionary of Gaussians φ((x − μ)/σ )/σ , −1 ≤ μ ≤ 5 with stepsize
0.3, and 0.2 ≤ σ ≤ 2 with stepsize 0.2. We generated 500 samples of size n = 50. We
constructed estimates with the number of terms M ∈ M, when M is defined in (34).

Figure 4(a) shows the average of MIAE (blue “1”) and the average of MISE (red
“2”), for the stagewise minimization estimator for the 15 values of M ∈ M, over the
500 samples. The average of MISE for the boosting estimator is shown by green “3”.
Box plots are shown only for the stagewise minimization estimator. Frame (b) shows
the Box plots for each sample of MISE values, and frame (c) shows the Box plots for
each sample of MIAE values, over M ∈ M.

Figure 5 shows estimates when the number of terms M = 7. The dashed red graphs
in frames ((a)–(c)) show the stagewise minimization estimates corresponding to the
0.1-quantile, median, and the 0.9-quantile among the MISE values over 500 samples.
The dotted green graphs in frames ((a)–(c)) show the boosting estimates whose MISE
values were equal to the 0.1-quantile, median, and the 0.9-quantile.

Figure 6 shows estimates when the number of terms is M = 300. We show again
the estimates corresponding to the 0.1-quantile, median, and 0.9-quantile of the MISE
values.
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Fig. 4 Log-normal density, sample size n = 50. Frame (a) shows the average of MIAE (blue “1”) and the
average of MISE (red “2”) for the stagewise minimization estimator, for the 15 values of M ∈ M, over 500
samples. The average of MISE for the boosting estimator is shown by green “3”. Frame (b) shows the Box
plots for each sample of MISE values, for the stagewise minimization estimator, and frame (c) shows the
Box plots for each sample of MIAE values, for the stagewise minimization estimator. A logarithmic scale
is used for the y-axis
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Fig. 5 Log-normal density, sample size n = 50, number of terms M = 7. Frame (a) shows as dashed red
graph the stagewise minimization estimate whose MISE value is equal to the 0.1 quantile among all MISE
values for the 500 samples, as dotted green graph the boosting estimate whose MISE value is equal to the
0.1 quantile among all MISE values, and the true density as the black solid graph. Frame (b) shows the
estimates corresponding to the median values of MISE. Frame (c) shows the estimates corresponding to the
0.9 quantiles of MISE
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Fig. 6 Log-normal density, sample size n = 50, number of terms M = 300. The setting is otherwise the
same as in Figure 5 but now M = 300
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Fig. 7 Claw density, sample size n = 500. Frame (a) shows the average of MIAE (blue “1”) and the average
of MISE (red “2”) for the stagewise minimization estimator, for the 15 values of M ∈ M, over 500 samples.
The average of MISE for the boosting estimator is shown by green “3”. Frame (b) shows the Box plots for
each sample of MISE values for the stagewise minimization estimator and frame (c) shows the Box plots
for the boosting estimator. A logarithmic scale is used for the y-axis

Figure 4 shows that for the sample size n = 50 the behavior of MISE and MIAE
is similar as for the two-modal density with sample size n = 500. The variability of
the MIAE decreases slightly, when M increases, although the variability of the MISE
stays the same. Figure 5 shows that qualitatively the estimates behave well when
M = 7, although the heightness of the mode is not estimated accurately. Figure 6
shows that when M = 300, then small wiggles start to appear. In the best case the
stagewise minimization estimator estimates the mode well, but the boosting estimate
is less accurate.

4.3 The claw density

The claw density is the density number 10 in Marron and Wand (1992). It is a multi-
modal density with 5 modes, shown in Fig. 8 as a black graph.

We applied the dictionary of Gaussians φ((x − μ)/σ )/σ , −3 ≤ μ ≤ 3 with step-
size 0.3, and 0.02 ≤ σ ≤ 1.1 with stepsize 0.02. We generated 500 samples of size
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Fig. 8 Claw density, sample size n = 500, number of terms M = 300. Frame (a) shows as dashed red
graph the stagewise minimization estimate whose MISE value is equal to the 0.1 quantile among all MISE
values for the 500 samples, and the true density as the black solid graph. Frame (b) shows the estimates
corresponding to the median value of MISE. Frame (c) shows the estimates corresponding to the 0.9 quantile
of MISE
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n = 500. We constructed estimates with the number of terms M ∈ M, when M is
defined in (34).

Figure 7(a) shows the average of MIAE (blue “1”) and the average of MISE (red
“2”), for the stagewise minimization estimator for the 15 values of M ∈ M, over
the 500 samples. The average of MISE for the boosting estimator is shown by green
“3”. Frame (b) shows the Box plots for each sample of MISE values of the stagewise
minimization estimator, and frame (c) shows the Box plots for the MIAE values of
the stagewise minimization estimator, over M ∈ M.

Figure 8 shows estimates when the number of terms M = 300. The dashed red
graphs in frames ((a)–(c)) show the stagewise minimization estimates corresponding
to the 0.1-quantile, median, and the 0.9-quantile among the MISE values over 500
samples. The true density is shown as the black solid graph.

Figure 7 shows that the MISE and MIAE start decreasing when M = 20; for smaller
values of M the modes are not detected at all. Figure 8 shows that qualitatively the
modes are detected by the stagewise minimization estimator, although the height of
the modes is not estimated accurately. The variability of the estimates is small.

5 Proofs

First we show in Section 5.1 that the stagewise minimization estimator has not much
larger empirical risk than the minimization estimator defined in Definition 2. Second,
we derive in Section 5.2 an upper bound for the integrated squared error of the stagewise
minimization estimator in terms of the optimal approximation error, that is, we give
an oracle inequality.

Proof of Theorem 1: Theorem 1 follows combining Lemmas 3 and 4; we choose
ε = 4B2

2/(M + 1) + ε in Lemma 4.

Proof of Theorem 2: Theorem 2 follows directly from Lemma 4 given in Section 5.2.

Notation. Denote

f (x, �) = f (x, �,D) =
∑
φ∈D

λφφ(x), x ∈ Rd , (35)

where � = (λφ)φ∈D ∈ W , and W is the set of vectors of coefficients of finite convex
combinations:

W = W(D) =
{

(λφ)φ∈D ∈ RD : λφ ≥ 0,
∑
φ∈D

λφ = 1, #{λφ > 0} < ∞
}

,

where RD denotes the set of vectors indexed by the possibly infinite set D. The
dictionaries D which we consider in Section 3.2 have finite cardinality and condition
#{λφ > 0} < ∞ is superfluous in these cases. Note that we have { f (·, �) : � ∈ W} =
co(D), where we denote with co(D) the convex hull of D.
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5.1 Empirical risk of the stagewise minimization estimator

We prove that the stagewise minimization estimator f̂n does not have much larger
empirical risk than the global minimum of the empirical risk over f (·, �), � ∈ W .

The fact that the minimization over a convex hull may be solved in a stagewise
manner was noted by Jones (1992) and Barron (1993), Lemma 2, in the Hilbert space
context. Lemma 3 may be considered as an empirical version of these results. A result
of Maurey given in Pisier (1981) is referred as an origin of this algorithm. Breiman
(1993), Lee, Bartlett, and Williamson (1996), Theorem 2, considered the L2 regression
estimation. In the context of density estimation with the log-likelihood empirical risk
the stagewise procedure was analyzed in Li and Barron (2000). A general version of
the algorithm is analyzed in Zhang (2003).

Lemma 3. We have for the estimator f̂n defined in Definition 1 that

γn( f̂n) ≤ inf
�∈W

γn ( f (·, �)) + 4B2
2

M + 1
+ ε,

where γn is defined in (1), B2 = supφ∈D ‖φ‖2, M ≥ 1 is the number of terms in f̂n,
and the mixing coefficients are πk = 2/(k + 2), k = 1, . . . , M − 1.

Proof: Let 0 < δ < B2
2 and let f ∗ ∈ { f (·, �) : � ∈ W} be such that

γn( f ∗) ≤ inf
�∈W

γn( f (·, �)) + δ. (36)

We prove that for k = 0, 1, . . . , M − 1,

γn( f̃k) ≤ γn( f ∗) + 4B2
2

k + 2
+ ε. (37)

The lemma follows from (37) by letting δ → 0, because f̃M−1 = f̂n . Write

f ∗ =
N∑

i=1

piφi ,

where f ∗ is defined in (36), pi ≥ 0,
∑N

i=1 pi = 1, and φi ∈ D. We have that

N∑
i=1

piγn((1 − πk) f̃k−1 + πkφi ) − γn( f ∗)

≤ (1 − πk)[γn( f̃k−1) − γn( f ∗)] + π2
k B2

2 . (38)
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(For a proof of (38) see Klemelä (2005).) From (38) it follows that there is such
φ∗ ∈ {φ1, . . . , φN } ⊂ D that

γn((1 − πk) f̃k−1 + πkφ
∗) − γn( f ∗)

≤ (1 − πk)
[
γn( f̃k−1) − γn( f ∗)

] + π2
k B2

2 . (39)

We prove (37) with induction. From the definition of f̃0 and (39) it follows that

γn( f̃0) ≤ γn(φ∗) + ε ≤ γn( f ∗) + B2
2 + ε.

Thus the case k = 0 in (37) is proved. We make the inductive hypothesis that for k ≥ 1,

γn( f̃k−1) − γn( f ∗) ≤ 4B2
2

k + 2
+ ε (40)

and prove the inductive step. We have

γn( f̃k) − γn( f ∗) ≤ γn((1 − πk) f̃k−1 + πkφ
∗) − γn( f ∗) + πkε (41)

≤ (1 − πk)

[
4B2

2

k + 2
+ ε

]
+ π2

k B2
2 + πkε (42)

= 4B2
2 (k + 1)

(k + 2)2
+ ε (43)

≤ 4B2
2

k + 2
+ ε.

In (41) we applied the definition of the f̃k . In (42) we applied (39) and the inductive
hypothesis (40). In (43) we applied the choice πk = 2/(k + 2). We have proved (37)
and thus the lemma. �

5.2 Oracle inequality

We prove that the theoretical error of a minimization estimator may be bounded by
the optimal theoretical error and an additional stochastic term.

Lemma 4. Let f̂ ∈ { f (·, �) : � ∈ W} be such that

γn( f̂ ) ≤ inf
�∈W

γn( f (·, �)) + ε, (44)

where ε > 0. Then

‖ f̂ − f ‖2
2 ≤ inf

�∈W
‖ f (·, �) − f ‖2

2 + ε + 4 sup
φ∈D

|νn(φ)|
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where f is the true density, f (·, �) is defined in (35), and νn(φ) is the centered
empirical operator defined in (15).

Proof: Let ε′ > 0 and let f 0 ∈ { f (·, �) : � ∈ W} be such that

‖ f 0 − f ‖2
2 ≤ inf

�∈W
‖ f (·, �) − f ‖2

2 + ε′.

We have for g = f̂ , g = f 0,

‖g − f ‖2
2 − γn(g) = ‖ f ‖2

2 − 2

∫
Rd

f g + 2

n

n∑
i=1

g(Xi ).

Thus,

‖ f̂ − f ‖2
2 − γn( f̂ ) + γn( f 0) − ‖ f 0 − f ‖2

2 = 2νn( f̂ − f 0). (45)

Thus,

‖ f̂ − f ‖2
2 − ‖ f 0 − f ‖2

2

= ‖ f̂ − f ‖2
2 − γn( f̂ ) + γn( f̂ ) − ‖ f 0 − f ‖2

2

≤ ‖ f̂ − f ‖2
2 − γn( f̂ ) + γn( f 0) + ε − ‖ f 0 − f ‖2

2 (46)

= 2νn( f̂ − f 0) + ε. (47)

In (46) we applied (44), and in (47) we applied (45). Denote the vectors of the empirical
and theoretical coefficients as

�n =
(

1

n

n∑
i=1

φ(Xi )

)
φ∈D

, � f =
(∫

Rd

f φ

)
φ∈D

.

Let �̂n = (λ̂φ)φ∈D ∈ W , �0 = (λ0
φ)φ∈D ∈ W be such that

f̂ = f (·, �̂n), f 0 = f (·, �0).

Then

νn( f̂ − f 0) = (�n − � f )T (�̂n − �0)

≤ [‖�̂n‖l1
+ ‖�0‖l1

] ‖�n − � f ‖l∞

≤ 2‖�n − � f ‖l∞

= 2 sup
φ∈D

|νn(φ)|. (48)
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Here we applied the notation ‖�‖l1
= ∑

φ∈D |λφ| and ‖�‖l∞ = supφ∈D |λφ|, and

the fact that ‖�̂n‖l1
, ‖�0‖l1

≤ 1. The lemma follows from (47) and (48) by letting
ε′ → 0. �

6 Discussion

Estimators based on local averaging, like kernel estimators, suffer from the curse of
dimensionality. Stagewise minimization can however work in high dimensional cases,
but even this estimator cannot work uniformly well over such large classes as Sobolev
balls. The mixture classes provide however an example of a density class where the
stagewise minimization estimator behaves uniformly well, and this class is a large
non-parametric density class of practical interest.

The stagewise minimization estimator is related to the family of boosting estimators.
Unlike usual boosting estimators, the stagewise minimization estimator uses a fixed
sequence of weights. When using the stagewise minimization estimator one does not
need to choose the number of terms (or the size of the weights) using a model selection
procedure (regularization).

Appendix A: Proof of (17)

Using the notation in (35) Eq. (17) may be written as

sup
�∈W(G)

inf
�′∈W(Dδ )

∥∥ f (·, �, G) − f (·, �′,Dδ)
∥∥

2
≤ δ.

Let �ψ , ψ ∈ Dδ , be the collection of those φ ∈ G for which ψ is the closest member
of Dδ:

{φ ∈ G : ψ = argminψ ′∈Dδ
‖ψ ′ − φ‖2}.

We may solve ties arbitrarily to make a partition of G:

G = ∪ψ∈Dδ
�ψ, �ψ ∩ �ψ ′ , ψ �= ψ ′.

Let � ∈ W(G), � = (λφ)φ∈G. Let �′ ∈ W(Dδ), �′ = (λ′
ψ )ψ∈Dδ

be such that

λ′
ψ =

∑
φ∈�ψ

λφ.

Now

f (·, �, G) =
∑
φ∈G

λφφ =
∑
ψ∈Dδ

∑
φ∈�ψ

λφφ
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and

f (·, �′,Dδ) =
∑
ψ∈Dδ

λ′
ψψ =

∑
ψ∈Dδ

( ∑
φ∈�ψ

λφ

)
ψ.

Thus ∥∥ f (·, �, G) − f (·, �′,Dδ)
∥∥

2
≤

∑
ψ∈Dδ

∑
φ∈�ψ

λφ‖φ − ψ‖2

≤ max
ψ∈Dδ

sup
φ∈�ψ

‖φ − ψ‖2 ≤ δ.

We have proved (17). �
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