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Abstract The mean-square asymptotic behavior of temporal-difference learning algorithms
with constant step-sizes and linear function approximation is analyzed in this paper. The
analysis is carried out for the case of discounted cost function associated with a Markov
chain with a finite dimensional state-space. Under mild conditions, an upper bound for the
asymptotic mean-square error of these algorithms is determined as a function of the step-size.
Moreover, under the same assumptions, it is also shown that this bound is linear in the step
size. The main results of the paper are illustrated with examples related to M/G/1 queues and
nonlinear AR models with Markov switching.

Keywords Temporal-difference learning . Neuro-dynamic programming . Reinforcement
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1. Introduction

The mean-square asymptotic behavior of temporal-difference learning with linear function
approximation is the subject of this paper. Temporal-difference learning could be consid-
ered as a recursive parametric method for approximating a cost function associated with
a Markov chain. The aim of these algorithms is determining the optimal value of the ap-
proximator parameters by using only the available observations of the underlying chain. In
order to minimize the approximation error, temporal-difference learning algorithms update
the approximator parameter whenever a new observation of the underlying chain becomes
available.

The prediction and approximation of a cost-to-go function associated with a Markov chain
are problems arising in the area of dynamic programming (e.g., the policy evaluation step of
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the policy iteration algorithm is based on the estimation of a cost-to-go function), as well as in
areas such as automatic control and time-series analysis. Several methods have been proposed
for solving these problems (e.g., Monte Carlo methods in statistics and maximum likelihood
methods in automatic control), among which temporal-difference learning is probably the
most general. Moreover, it is easy to be implemented and computationally low or moderate
complex. Due to their excellent performance, temporal-difference learning algorithms have
found a wide range of application (for details see e.g., (Bertsekas & Tsitsiklis, 1996; Sutton &
Barto, 1998) and references cited therein), while a great number of papers have been devoted
to the analysis of their asymptotic behavior (see Dayan, 1992; Dayan & Sejnowski, 1994;
Jaakola, Jordan, & Singh, 1994; Konda, 2002; Nedić & Bertsekas, 2003; Sutton, 1988; Tadić,
2000; Tsitsiklis & Van Roy, 1997; see also Bertsekas & Tsitsiklis, 1996; Sutton & Barto,
1998 and references cited therein). Unfortunately, none of the existing results provide an
insight into asymptotic properties of temporal-difference learning algorithms with constant
step-sizes. Since temporal-difference learning algorithms (as well as other reinforcement
learning algorithms) are usually implemented with constant step sizes, it seems that the
asymptotic results obtained for the case of constant step sizes are more important and
interesting (at least from the practical point of view) than results on the asymptotic behavior
of decreasing step size algorithms.

In this paper, the mean-square asymptotic behavior of temporal-difference learning algo-
rithms with constant step-sizes and linear function approximation is analyzed. The analysis
is carried out for the case of discounted cost function associated with a Markov chain with
a finite dimensional state-space. Under mild conditions, an upper bound for the asymptotic
mean-square error of these algorithms (i.e., for the their asymptotic mean-square deviation
from the optimal value of the approximator parameters) is determined as a function of the
step-size. Moreover, under the same assumptions, it is also shown that this bound is linear
in the step size. The main results of the paper are illustrated with examples related to M/G/1
queues and nonlinear autoregressive (AR) models with Markov switching. The results of
this paper are an extension of the results of (Tsitsiklis & Van Roy, 1997) and a continua-
tion of the author’s work presented in (Tadić, 2000). Moreover, to the best of the author’s
knowledge, there does not exist a similar result in the available literature on reinforcement
learning.

The paper is organized as follows. In Section 2, temporal-difference learning algorithms
are formally defined and the assumptions under which their rate of convergence is analyzed
are introduced. The statement of the main result is also presented in Section 2, while its proof
is given in Section 4. A special case where the underlying Markov chain is geometrically
ergodic is considered in Section 5, while the examples related to M/G/1 queues and nonlinear
AR models with Markov switching are presented in Section 6. In Section 3, the existence and
properties of solutions of certain Poisson equations associated with the underlying Markov
chain are analyzed. The results presented in this section are a crucial prerequisite for the
analysis carried out in Section 4.

2. Main results

Temporal-difference learning algorithms analyzed in this paper are defined by the following
equations:

θn+1 = PQ (θn + γ dn+1 en+1), (1)

dn+1 = c (Xn, Xn+1) + αθT
n φ (Xn+1) − θT

n φ (Xn), (2)
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en+1 =
n∑

i=0

(αλ)n−iφ (Xi ), n ≥ 0. (3)

γ ∈ (0, ∞), α ∈ (0, 1) and λ ∈ (0, 1] are constants (γ is the algorithm step size).
c : Rd ′ × Rd ′ → R and φ : Rd ′ → Rd are Borel-measurable functions. θ0 is an Rd-valued
random variable defined on a probability space (�, F,P), while {Xn}n≥0 is an Rd ′

-valued
homogeneous Markov chain defined on the same probability space. Q ⊂ Rd is a convex
compact set, while PQ (·) is the projection on Q, i.e.,

PQ (θ ) = arg inf‖θ ′ − θ‖
θ ′∈Q

for θ ∈ Rd (‖ · ‖) is the Euclidean norm in Rd).
Temporal-difference leaning algorithms appearing the literature on reinforcement learning

typically do not have projection. However, due to the finite precision of digital computers,
any implementation of these algorithms (as well as other reinforcement learning algorithms)
implicitly involves projection of the algorithm iterates. Moreover, if the algorithm limit
points can a priori be located within a convex compact set (which is a typical situation in
practice), the projection to this set usually improves significantly the algorithm asymptotic
properties (stability and convergence).

For x ∈ Rd ′
, let

J∗ (x) = E

( ∞∑
n=0

αnc (Xn, Xn+1)

∣∣∣∣∣ X0 = x

)

(provided that J∗ (·)xs is well-defined). In the context of dynamic programming, J∗ (·) is
interpreted as a discounted cost function associated with the chain {Xn}n≥0 (for details see
e.g., (Bertsekas & Tsitsiklis, 1996). The task of the algorithm (1) – (3) is to approximate
the function J∗ (·) by θT φ(·). It determines the optimal value θ∗ of the parameter θ ∈ Rd

such that the θT
∗ φ(·) is the best approximator of J∗(·) in the sense explained in [Tsitsiklis

& Van Roy, 1997, Section III]. If λ = 1 and {Xn}n≥0 has a unique invariant probability
measure π(·), the algorithm (1) – (3) determines θ∗ ∈ Rd such that θT

∗ φ(·) approximates
J∗ (·) optimally in the L2(π )-sense, i.e., it searches for the minimum of the function J (θ ) =∫

(θT φ (x) − J∗ (x))2 π (dx), θ ∈ Rd .
It can easily be noticed from (1) – (3) that temporal-difference learning algorithms

belong to the category of stochastic approximation algorithms (for more details on stochas-
tic approximation see e.g., (Benveniste, Metivier, & Priouret, 1990 and Kushner & Yin,
1997). Therefore, the asymptotic analysis of temporal-difference learning is usually based
on the methods developed for stochastic approximation (see e.g., Bertsekas & Tsisik-
lis, 1996; Sutton & Barto, 1998 and references cited therein). The analysis carried out
in this paper relies on the Poisson equation based general methodology for the asymp-
totic analysis of stochastic approximation (for details see Benveniste, Metivier, & Priouret,
1990).

The following notation is used throughout the paper. ‖ · ‖ denotes the Euclidean vector
norm and the matrix norm induced by the Euclidean vector norm (i.e., ‖A‖ = sup‖θ‖=1 ‖Aθ‖,
A ∈ Rd×d , whileBd ′

is the family of Borel measurable sets from Rd ′
. For x ∈ Rd ′

, let P (x, ·)
Springer
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and Pn(x, ·) be the single and n-th step transition probability kernel of {Xn}n≥0 (respectively),
i.e.,

Pn (x, B) = P (Xn ∈ B | X0 = x) w.p.1

and P (x, B) = P1 (x, B) for all x ∈ Rd ′
, B ∈ Bd ′

, n ≥ 0.
In this paper, the asymptotic behavior of temporal-difference learning algorithms with

linear function approximation is analyzed under the following conditions.

A1. {Xn}n≥0 has a (unique) invariant probability measure π (·).
A2. There exist a constant K ∈ [1,∞) and a Borel-measurable function f : Rd ′ → [1,∞)
such that ‖φ (x)‖ ≤ f (x) and

∫
f 4 (x ′)π (dx ′) < ∞, (4)

(Pn f 4) (x) ≤ K f 4 (x), (5)

∫
|c (x, x ′)|4 P (x, dx ′) ≤ f 4 (x) (6)

for all x ∈ Rd ′
, n ≥ 0.

A3. There exist a constant L ∈ [1,∞) and a Borel-measurable function g : Rd ′ → [1,∞)
such that ∫

g2 (x)π (dx) < ∞,

(Pn g2) (x) ≤ L g2 (x),

∞∑
m=0

∥∥∥∥
∫

φ (x ′) (Pn φT ) (x ′) (Pm − π ) (x, dx ′)
∥∥∥∥ ≤ g (x), (7)

∞∑
m=0

∥∥∥∥
∫

φ (x ′) (Pnc̃) (x ′)(Pm − π ) (x, dx ′)
∥∥∥∥ ≤ g (x) (8)

for all x ∈ Rd ′
, n ≥ 0, where c̃ (x) = ∫

c (x, x ′) P (x, dx ′).
A4.

∫
φ (x)φT (x) π (dx) is positive definite.

Remark: Using Lemma 1, it can easily be deduced that c̃(·) and the left-hand sides of (7)
and (8) are well-defined and finite.

Assumption A1 is related to the stationarity properties of {Xn}n≥0. Assumptions of this
type are standard for the asymptotic analysis of temporal-difference learning algorithms (see
Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998 and references cited therein; see also
Tadicć, 2000; and Tsitsiklis & Van Roy, 1997).

Assumption A2 corresponds with the growth rate of c(·, ·) and φ(·). It requires these
functions not to grow too fast so that their upper bound f(·) satisfies (4) and (5). The role of
A2 is to ensure that J∗(·) and A∗, b∗ (defined in (10) and (11)) are well-defined and finite,

Springer



Mach Learn (2006) 63:107–133 111

as well as that solutions of certain Poisson equations associated with the algorithm (1) – (3)
(defined in the statement of Lemma 4, Eqs. (31), (32)) have finite second-order moments. A2
is satisfied if c(·, ·) and φ(·) are globally bounded or if c(·, ·), and φ(·) are locally bounded
and there exists a constant M ∈ [1,∞) such that ‖Xn‖ ≤ Mw.p.1, n ≥ 0. It is also satisfied
if {Xn}n≥0 is geometrically ergodic (see Section 5).

A2 and particularly the requirement expressed by (5) are motivated by the necessary
and sufficient conditions for the V-uniform ergodicity of homogeneous Markov chains.
Namely, an irreducible and aperiodic Rd ′

-valued Markov chain with a transition probability
kernel P(x, ·), x ∈ Rd ′

, is uniformly ergodic with respect to a Borel-measurable function
V : Rd ′ → (1,∞) if and only if there exists a Borel-measurable function V0 : Rd ′ → (1,∞),
constants β ∈ (0, 1), b, c ∈ (1,∞) and a set C ∈ Bd ′

such that c−1V (x) ≤ V0(x) ≤ cV (x)
and

(PV0) (x) − V0 (x) ≤ −β V0 (x) + b IC (x) (9)

for all x ∈ Rd ′
(for details see e.g., (Meyn et. al., 1993, Section 16]; IC(·) denotes the indicator

function of the set C). Iterating (9), it can easily be deduced that

(Pn V0) (x) ≤ (1 − β)n V0 (x) + b
n∑

i=1

(1 − β)n−i ≤ V0 (x) + b(1 − β)−1

for all x ∈ Rd ′
, n ≥ 0. Consequently,

(Pn V ) (x) ≤ c(V0 (x) + b(1 − β)−1)

≤ c2V (x) + bc(1 − β)−1 ≤ (b + c)2(1 − β)−1V (x)

for all x ∈ Rd ′
, n ≥ 0. On the other hand, if a Borel-measurable function h : Rd ′ → [0, ∞)

does not satisfy h (x) ≤ V (x) for all x ∈ Rd ′
, it is possible that

∫
h (x)π(dx) = ∞ or

(Pnh)(x) = ∞ for some x ∈ Rd ′
, n ≥ 0. Therefore, in order to ensure that an upper bound

of ‖φ (x)‖ and

(∫
|c (x, x ′)|4 P (x, dx ′)

)1/4

have finite fourth-order moments with respect to π (· ) and P(x ,· ), n ≥ 0, it is quite reasonable
(and natural) to assume that (5) holds (which is equivalent to f (x) = V 1/4(x) if {Xn}n≥0 is
V-uniformly ergodic).

Assumption A3 is related to the stability of {Xn}n≥0. Basically, A3 requires {Xn}n≥0 to
exhibit sufficient “degree of stability” (i.e., Pn(x, ·), x ∈ Rd ′

, to converge to π(· ) sufficiently
fast) so that (7) and (8) hold. Its role is to ensure that the Poisson equations associated with
the algorithm (1) – (3) have unique solutions (see Lemma 4). A3 is satisfied under geometric
ergodicity conditions (see Section 5) and is typical for the asymptotic analysis of temporal-
difference learning algorithms (see Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998; and
references cited therein; see also Tadić, 2000 and Tsitsiklis & Van Roy, 1997).

Assumption A4 is a “persistancy of excitation” condition. These conditions are typical
for the areas of system identification, adaptive control and adaptive signal processing (see
e.g., Goodwin & Sin, 1984; Solo & Kong, 1995 and references cited therein). A4 requires
{φ(Xn)}n≥0 to be sufficiently “rich” with respect to all directions in Rd at the asymptotic
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steady-state characterized by π (· ). Assumptions of this kind are standard for the asymptotic
analysis of temporal-difference learning algorithms (see Bertsekas & Tsitsiklis, 1996; Sutton
& Barto, 1998; and references cited therein; see also Tadić, 2000 and Tsitsiklis & Van Roy,
1997).

Let

A∗ = −
∫

φ(x) φT (x)π (dx) + α(1 − λ)
∞∑

n=0

(αλ)n
∫

φ (x)(Pn+1 φT )(x)π (dx), (10)

b∗ =
∞∑

n=0

(αλ)n
∫

φ (x) (Pn c̃)(x) π(dx), (11)

while θ∗ = −A−1
∗ b∗. Moreover, let λmin be the minimal eigenvalue of −A∗, while

ρQ = sup
θ,θ ′∈Q

max{‖θ‖, ‖θ − θ ′‖},

M = 16(1 − αλ)−2 (K + L)
∫

f 2 (x)π(dx),

K Q = 6M2 (1 + ρQ)2 (1 + λmin) (1 + λ−1
min).

Furthermore, for x ∈ Rd ′
, let

hQ (x) = K Q ( f 4 (x) + g2 (x)).

The main results of the paper are contained in the next theorem.

Theorem 1. Let A1 – A4 hold. Suppose that θ∗ ∈ Q and γ < λ−1
min. Then,

lim
n→∞E(‖θn − θ∗‖2|X0 = x) ≤ hQ(x)γ (12)

for all x ∈ Rd ′

Theorem 1 basically claims that if the step-size γ is less than the constant λ−1
min (which

depends only on π (·), φ(· ), α, λ), the algorithm (1) – (3) is stable in the mean-square sense,
and its conditional mean-square error given the chain initial state X0 = x is asymptotically
bounded by a linear function of the step-size γ . Hence, if the step-size γ is sufficiently small,
the algorithm iterates {θn}n≥0 fluctuate asymptotically around θ∗ with a variance which is
linearly bounded by the step-size.

Let

θ̃n+1 = θ̃n + γ (A∗θ̃n + b̃n+1), n ≥ 0,
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where θ̃0 and {b̃n}n≥1 are vectors from Rd. Then, it is straightforward to demonstrate the
following:

(i) {θ̃n}n≥0 is bounded (i.e., Lagrange stable) for any bounded sequence {b̃n}n≥1 only if
γ < λ−1

min.
(ii) If γ < λ−1

minθ̃0 is deterministic vector and {b̃n}n≥1 is an i.i.d. sequence with b̃∗ = E (b̃1)
σ̃ 2

∗ = E‖b̃1 − b̃∗‖2, then

lim
n→∞ E‖θ̃n − θ̃∗‖2 = γ 2

∞∑
n=0

E((b̃1 − b̃∗)T (I + γ A∗)2n(b̃1 − b̃∗))

≥ σ̃ 2
∗

∞∑
n=0

(1 − γ λmax)2n σ̃ 2
∗

= σ̃ 2
∗ γ 2(1 − (1 − γ λmax)2)−1 ≥ 2−1λ−1

maxσ̃
2
∗ γ

where λmax is the maximal eigenvalue of A∗ and

θ̃∗ = lim
n→∞ E(θ̃n) =

∞∑
n=0

(I + γ A∗)nb̃∗.

Since the algorithm (1) – (3) can be rewritten as

θn+1 = θn + γ (An+1θn + bn+1), n ≥ 0,

where limn→∞ E(An) = A∗ limn→∞ E(bn) = b∗ this is a direct consequence of Lemma 4,
Section 3), the results (i) and (ii) on the asymptotic behavior of {θ̃n}n≥0 suggest that the
mean-square stability of {θn}n≥0 cannot be guaranteed ifγ ≥ λ−1

min, as well as that the asymp-
totic mean-square error of {θn}n≥0 cannot be bounded by a function of the step-size γ

which tends to zero at zero at a rate faster than linear. Hence, the results of Theorem 1
are tight regarding the step-size interval (0, λ−1

min) of the guaranteed stability and the lin-
ear dependence of the upper bound γ hQ(·) on the step-size. Unfortunately, the constant
KQ appears to be conservative. However, is seems very hard (if possible at all) to im-
prove KQ using any existing technique for the asymptotic analysis of stochastic approxi-
mation.

It is also important to emphasize that an upper bound for the asymptotic unconditional
mean-square error of {θn}n≥0 can be obtained from Theorem 1. Namely, Markov property
and Theorem 1 imply that

lim
n→∞E(‖θn − θ∗‖2|Xm) = lim

n→∞E(‖θm+n − θ∗‖2|Xm) ≤ hQ(Xm)γ w.p.1

for m ≥ 0. Then, the Fatou lemma yields that

lim
n→∞E‖θn − θ∗‖2 ≤ E

(
lim

n→∞E(‖θn − θ∗‖2|Xm)
)

≤ γ E(hQ(Xm))

for m ≥ 0. Letting m → ∞ in the previous relation, we get

lim
n→∞E‖θn − θ∗‖2 ≤ γ lim

m→∞ E(hQ(Xm)). (13)
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If {Xn}n≥0 is geometrically ergodic, then

lim
n→∞ E(hQ(Xn)) =

∫
hQ(x)π(dx).

Asymptotic behavior of temporal-difference learning algorithms has been considered in a
large number of papers (see Dayan, 1992, 1994; Jaakola, Jordan, & Singh, 1994; Konda, 2002;
Nedić & Bertsekas, 2003; Sutton, 1988; Tadić, 2000; Tsitsiklis & Van Roy, 1997; see also
Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998 and references cited therein). Although
the existing results provide a good insight into the asymptotic behavior of temporal-difference
learning algorithms, not much is known about the asymptotic properties of the temporal-
difference learning algorithms with constant step sizes. The strongest existing results on their
asymptotic behavior are probably contained in (Tsitsiklis & Van Roy, 1997) recently, the
results of (Tsitsiklis & Van Roy, 1997) have been extended in (Tadić, 2000). In comparison
with the assumptions adopted in (Tsitsiklis & Van Roy, 1997) A1 – A4 are just slightly more
restrictive: the assumptions of (Tsitsiklis & Van Roy, 1997) would be a special case of A1 – A4
if A2 were replaced with the requirement that there exists a constant K ∈ [1, ∞ ) and a Borel-
measurable function f : Rd ′ → [1, ∞] such that

∫
f 2(x)π(dx) < ∞, ‖φ(x)‖ ≤ f (x) and

∫
|c (x, x ′)|2 P(x, dx ′) ≤ f 2(x),

(Pn f 2) (x) ≤ K f 2(x)

for all x ∈ Rd+2d ′
, n ≥ 0. However, only the algorithms with decreasing step sizes have been

analyzed in (Tsitsiklis & Van Roy, 1997. On the other hand, implementations of temporal-
difference learning algorithms are based on constant step sizes. Therefore, the results on
the asymptotic behavior of constant step size algorithms seem to be more important and
interesting than the results obtained for the case of decreasing step-sizes (at least from the
practical point of view). To the best knowledge of the present author, the asymptotic behavior
of temporal-difference learning algorithms with constant step sizes has not been considered
in the available literature on reinforcement learning.

3. Preliminary results

In this section, we consider the existence of J∗(·), A∗, b∗, θ∗, as well as the existence and
properties of solutions of certain Poisson equations associated with the algorithm (1) – (3)
(which are defined in the statement of Lemma 4, Eqs. (31) and (32)). The results of this
section are a crucial prerequisite for the analysis carried out in the next sections.

Throughout the paper, the following notation is used. For x, x ′ ∈ Rd ′
, y ∈ Rd , B ∈ Bd+2d ′

and z = (x, x, y), let

A(z) = y(α φ (x ′) − φ (x))T ,

b(z) = yc (x, x ′),

� (z, B) =
∫

IB (x ′, x ′′, α λ y + φ (x ′))P (x ′, dx ′′),
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where IB(·) denotes the indicator function of the set B. Let Zn+1 = (Xn, Xn+1, en+1), n ≥ 0.
Then, it is straightforward to verify that

θn+1 = θn + γn+1(A(Zn+1)θn + b(Zn+1)),

P(Zn+1 ∈ B | Z1, . . . , Zn) = �(Zn, B) w.p.1

for all B ∈ Bd+2d ′
, n ≥ 0. Moreover, if ϕ : Rd ′ × Rd ′ × Rd → R is a Borel-measurable func-

tion, ψ(z) = ϕ(x, x ′, y) for all x, x ′ ∈ Rd ′
, y ∈ Rd , z = (x, x ′, y), and

∫ |ψ(z′)|�(z, dz′) <

∞ for all z ∈ Rd+2d ′
, then

∫
ψ(z′)�(z, dz′) =

∫
ϕ(x ′, x ′′, αλy + φ(x ′))P(x ′, dx ′′) (14)

for all x, x ′ ∈ Rd ′
, y ∈ Rd , z = (x, x ′, y).

Outline of the Results of Section 3: The most important results of Section 3 are contained
in Lemma 4. Lemma 4 is concerned with the existence and properties of solutions of Poisson
Eqs. (31), (32) and is of crucial importance for the proofs of Lemma 6 and Theorem 1
(see the outline of the results of Section 4 on page 20). It also provides an explanation for the
selection of the constant M in the definition of KQ, hQ(·) (page 7): M is selected in such a way
that the constant terms in the last inequalities of (35), (36) (i.e., 3(1−αλ)−1

∫
f 2(x′′)π(dx′′),

2(1−αλ)−1
∫

f 2(x′′)π(dx′′)) are not greater than 5−1 M. The proof of Lemma 4 is essentially
based on inequalities (35), (36), which themselves are direct consequences of the results of
Lemma 3. Lemma 3 itself determines the conditional expectations of A(·), b(·) with respect
to the kernels �n(z,·), z ∈ Rd+2d′

, n ≥ 1, while its proof uses only mathematical induction
and the results of Lemma 1. On the other hand, Lemma 2 is related to the existence of A∗,
b∗, θ∗, while its proof is exclusively based on the Cauchy-Schwartz inequality and Lemma
1. Lemma 1 itself is concerned with the existence of J∗(·), c̃(·), as well as with the existence
and upper bounds of the conditional expectations of φ(·), c̃(·) with respect to the kernels
Pn(x,·), x ∈ Rd′

, n ≥ 1.

Lemma 1. Let A1 and A2 hold. Then, J∗(·), c̃(·), (Pnφ)(·), (Pnc̃)(·) are well-defined and
finite for all n ≥ 0. Moreover,

max{‖(Pn φ) (x)‖, |(Pnc̃)(x)|} ≤ K f (x), (15)

(Pn f p)(x) ≤ K f p(x) (16)

for all x ∈ Rd′
, n ≥ 0.

Proof: Due to the Jensen inequality and A2,

((Pn f p) (x))1/p ≤ ((Pn f 4) (x))1/4 ≤ K 1/4 f (x), (17)

∫
|c(x, x ′)|P(x, dx ′) ≤

(∫
|c(x, x ′)|4 P(x, dx ′)

)1/4

≤ f (x) (18)
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for all p ∈ [1, 4], x ∈ Rd′
, n ≥ 0. Therefore, c̃(·) is well-defined, finite and satisfy |c̃(x)| ≤ f (x)

for all x ∈ Rd′
. Then, A2 and (17), (18) imply

max{‖(Pnφ)(x)‖, |(Pnc̃)(x)|} ≤ K f (x),
∞∑

m=0

αm
∫ ∫

|c(x ′, x ′′)|P(x ′, dx ′′)Pm(x, dx ′)

≤
∞∑

m=0

αm(Pm f )(x) ≤ K (1 − α)−1 f (x) < ∞

for all x ∈ Rd′
, n ≥ 0. Hence, J∗(·), (Pnφ) (·), (Pnc̃)(·) are well-defined and finite for all n ≥

0, while (15), (16) hold for all x ∈ Rd′
, n ≥ 0. �

Lemma 2. Let A1, A2 and A4 hold. Then, A∗, b∗ and θ∗ are well-defined and finite. Moreover,
A∗ is negative definite and

max{‖A∗‖, ‖b∗‖} ≤ K (1 − αλ)−1
∫

f 2(x)π(dx) ≤ M1/2. (19)

Proof: Due to the Jensen inequality, A2 and Lemma 1,
∞∑

n=0

(αλ)n
∫

‖φ(x)(Pn+1φT )(x)‖π (dx) ≤ K (1 − αλ)−1
∫

f 2(x)π(dx) < ∞,

∞∑
n=0

(αλ)n
∫

‖φ(x)(Pnc̃)(x)‖π (dx) ≤ K (1 − αλ)−1
∫

f 2(x)π(dx) < ∞. (20)

Then, it is obvious that A∗ and b∗ are well-defined and finite. On the other hand, owing to
the Jensen inequality,

∫
(θ (Pnφ)(x))2π (dx) ≤

∫ ∫
(θT φ(x ′))2 Pn(x, dx ′) =

∫
(θT φ(x))2π(dx)

for all θ ∈ Rd, n ≥ 0. Therefore,

∣∣∣∣
∫

θT φ(x)(PnφT )(x)θπ (dx)

∣∣∣∣ ≤
(∫

(θT φ(x))2π(dx)

)1/2

×
(∫

(θT (Pnφ)(x))2π (dx)

)1/2

≤
∫

(θT φ(x))2π(dx)

for all θ ∈ Rd, n ≥ 0. Consequently,

θT A∗θ = −
∫

(θT φ(x))2π (dx) + α(1 − λ)
∞∑

n=0

(αλ)n
∫

θT φ(x)(Pn+1φT )(x)θπ(dx)
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≤ −
(

1 − α(1 − λ)
∞∑

n=0

(α λ)n

) ∫
(θT φ (x))2π (dx)

= −(1 − α)(1 − αλ)−1θT

(∫
φ(x)φT (x)π(dx)

)
θ (21)

for all θ ∈ Rd. Then, it is obvious that A∗ is negative definite, as well as that θ∗ is well-defined
and finite. Due to A2 and (21),

‖A∗‖ ≤ (1 − α)(1 − αλ)−1
∫

‖φ(x)φT (x)‖π (dx) ≤ (1 − αλ)−1
∫

f 2(x)π(dx). (22)

Hence, (19) follows from (20) and (22). �

Lemma 3. Let A2 and A3 hold. Then, (�n A)(·) and (�n b)(·) are well-defined, finite and
satisfy the following relations for all x, x ′ ∈ Rd ′

, y ∈ Rd, z = (x, x ′, y), n ≥ 1:

(�n+1 A)(z) =
n∑

i=0

(αλ)i
∫

φ(x ′′)(α(Pi+1φ)(x ′′) − (Piφ)(x ′′))T · Pn−i (x ′, dx ′′)

+ (αλ)n+1 y(α(Pn+1φ)(x ′′) − (Pnφ)(x ′′))T , (23)

(�n+1b)(z) =
n∑

i=0

(αλ)i
∫

φ(x ′′)(Pi c̃)(x ′′)Pn−i (x ′, dx ′′) + (αλ)n+1 y(Pnc̃)(x ′′). (24)

Proof: The assertion of this lemma is shown by the mathematical induction. Due to A2,

‖A(z)‖ ≤ (‖φ(x)‖ + ‖φ(x ′)‖)‖y‖ ≤ ( f (x) + f (x ′))‖y‖, (25)

‖b(z)‖ ≤ |c(x, x ′)|‖y‖ (26)

for all x, x ′ ∈ Rd ′
, y ∈ Rd, z = (x, x ′, y). Owing to Lemma 1 and (14), (25), (26),

∫
‖A(z′)‖�(z, dz′) =

∫
‖(αλy + φ(x ′))(αφ(x ′′) + φ(x ′))T ‖P(x ′, dx ′′)

≤
∫

( f (x ′) + ‖y‖)( f (x ′) + f (x ′′))P(x ′, dx ′′)

= ( f (x ′) + ‖y‖)( f (x ′) + (P f )(x ′)) < ∞,∫
‖b(z′)‖�(z, dz′) =

∫
‖(αλy + φ(x ′))c(x ′, x ′′)‖P(x ′, dx ′′)

≤
∫

( f (x ′) + ‖y‖)|c(x ′, x ′′)|P(x ′, dx ′′)

= ( f (x ′) + ‖y‖)
∫

|c(x ′, x ′′)|P(x ′, dx ′′) < ∞
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for all x, x′ ∈ Rd ′, y ∈ Rd, z = (x, x′, y ). Consequently, (� A)(· ) and (� b)(· ) are well-defined
and finite, while (14) implies

∫
A(z′)�(z, dz′) =

∫
(αλy + φ(x ′))(αφ(x ′′) − φ(x ′))T P(x ′, dx ′′)

= (αλy + φ(x ′))(α(Pφ)(x ′) − φ(x ′)),∫
b(z′)�(z, dz′) =

∫
(αλy + φ(x ′))c(x ′, x ′′)P(x ′, dx ′′)

= (αλy + φ(x ′))c̃(x ′)

for all x, x′ ∈ Rd′
, y ∈ Rd, z = (x, x′, y ). Hence, (23) and (24) hold for n = 0 and all x, x′

∈ Rd′
, y ∈ Rd, z = (x, x′, y). Suppose that (�n+1 A )(· ) and (�n+1 b )(· ) are well-defined,

finite and satisfy (23), (24) for some n ≥ 0 and all x, x′ ∈ Rd′
, y ∈ Rd, z = (x, x′, y). Then,

Lemma 1 implies that

‖(�n+1 A)(z)‖ ≤
n∑

i=0

∫
‖φ(x ′′)‖(‖(Piφ)(x ′′)‖ + ‖(Pi+1φ)(x ′′)‖) · Pn−i (x ′, dx ′′)

+(‖(Pnφ)(x ′)‖ + ‖(Pn+1φ)(x ′)‖)‖y‖

≤
n∑

i=0

∫
f (x ′′)((Pi f )(x ′′) + (Pi+1 f )(x ′′))Pn−i (x ′, dx ′′)

+((Pn f )(x ′) + (Pn+1 f )(x ′))‖y‖,

≤ 2K
n∑

i=0

(Pn−i f 2)(x ′) + 2K f (x ′)‖y‖ (27)

‖(�n+1b)(z)‖ ≤
n∑

i=0

∫
‖φ(x ′′)‖|(Pi c̃)(x ′′)|Pn−i (x ′, dx ′′) + |(Pnc̃)(x ′)‖y‖

≤
n∑

i=0

∫
f (x ′′)(Pi f )(x ′′)Pn−i (x ′, dx ′′) + (Pn f )(x ′)‖y‖

≤ K
n∑

i=0

(Pn−i f 2)(x ′) + K f (x ′)‖y‖ (28)

for all x, x′ ∈ Rd′
, y ∈ Rd, z = (x, x′, y ). Due to Lemma 1 and (14), (27), (28),

∫
‖(�n+1 A(z′)‖�(z, dz′) ≤ 2K

∫ (
n∑

i=0

(Pn−i f 2)(x ′′) + f (x ′′)‖αλy + φ(x ′)‖
)

P(x ′, dx ′′)

≤ 2K
n∑

i=0

(Pn−i+1 f 2)(x ′) + 2K (‖y‖ + f (x ′))(P f )(x ′) < ∞,
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∫
‖(�n+1b(z′)‖�(z, dz′) ≤ K

∫ (
n∑

i=0

(Pn−i f 2)(x ′′) + f (x ′′)‖αλy + φ(x ′)‖
)

P(x ′, dx ′′)

≤ K
n∑

i=0

(Pn−i+1 f 2)(x ′) + K (‖y‖ + f (x ′))(P f )(x ′) < ∞

for all x, x′ ∈ Rd′, y ∈ Rd′
, z = (x, x′, y). Consequently, (�n+2 A )(· ) and (�n+2 b )(· ) are

well-defined and finite, while (14) implies that

(�n+2 A)(z) =
n∑

i=0

(αλ)i
∫ ∫

φ(x ′′′)(α(Pi+1φ)(x ′′′) − (Piφ)(x ′′′))T

·Pn−i (x ′′, dx ′′′)P(x ′, dx ′′)

+ (αλ)n+1
∫

(αλy + φ(x ′))(α(Pn+1φ)(x ′′) − (Pnφ)(x ′′))T · P(x ′, dx ′′)

=
n∑

i=0

(αλ)i
∫

φ(x ′′)(α(Pi+1φ)(x ′′) − (Piφ)(x ′′))T · Pn−i+1(x ′, dx ′′)

+ (αλ)n+1(αλy + φ(x ′))(α(Pn+2φ)(x ′) − (Pn+1φ)(x ′))T

=
n+1∑
i=0

(αλ)i
∫

φ(x ′′)(α(Pi+1φ)(x ′′) − (Piφ)(x ′′))T · Pn−i+1(x ′, dx ′′)

+ (αλ)n+2 y(α(Pn+2φ)(x ′) − (Pn+1φ)(x ′))T ,

(�n+2b)(z) =
n∑

i=0

(αλ)i
∫ ∫

φ(x ′′′)(Pi c̃)(x ′′′)Pn−i (x ′′, dx ′′′)P(x ′, dx ′′)

+ (αλ)n+1
∫

(αλy + φ(x ′))(Pnc̃)(x ′′)P(x ′, dx ′′)

=
n∑

i=0

(αλ)i
∫

φ(x ′′)(Pi c̃)(x ′′)Pn−i+1(x ′, dx ′′)

+ (αλ)n+1(αλy + φ(x ′))(Pn+1c̃)(x ′)

=
n+1∑
i=0

(αλ)i
∫

φ(x ′′)(Pi c̃)(x ′′)Pn−i+1(x ′, dx ′′) + (αλ)n+2 y(Pn+1c̃)(x ′)

for all x, x′ ∈ Rd′
, y ∈ Rd, z = (x, x′, y ). Hence, (23) and (24) hold for n + 2 and all x, x′ ∈

Rd′
, y ∈ Rd, z = (x, x′, y ). Then, using the mathematical induction, it can easily be deduced

that the assertion of this lemma holds. �

Lemma 4. Let A1 – A3 hold. Then, there exist Borel-measurable functions Ã : Rd+2d ′ →
Rd×d and b̃ : Rd+2d ′ → Rd such that∫

‖ Ã(z′)‖2�(z, dz′) ≤ h2(z), (29)
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∫
‖b̃(z′)‖2�(z, dz′) ≤ h2(z), (30)

A(z) − A∗ = Ã(z) − (� Ã)(z), (31)

b(z) − b∗ = b̃(z) − (�b̃)(z) (32)

for all z ∈ Rd+2d ′, where

h(z) = M( f 2(x ′) + g2(x ′) + ‖y‖2)

for x, x′ ∈ Rd ′, y ∈ Rd, z = (x, x′, y) (M is defined on page 7).

Proof: For x, x′ ∈ Rd ′, y ∈ Rd and z = (x, x′, y), let

â(z) = 5−1 M + f (x)‖y‖ + f (x ′)‖y‖ + 2(1 − αλ)−1g(x ′),

b̂(z) = 5−1 M + |c(x, x ′)|‖y‖ + (1 − αλ)−1g(x ′).

Then, using the Jensen and Minkowski inequality, it can easily be deduced from A2 that

(∫
â2(z′)�(z, dz′)

)1/2

≤ 5−1 M + 2(1 − αλ)−1((Pg2)(x ′))1/2 + f (x ′)‖αλy + φ(x ′)‖

+
(∫

f 2(x ′′)‖αλy + φ(x ′)‖2 P(x ′, dx ′′)
)1/2

≤ 5−1 M + 2(1 − αλ)−1((Pg2)(x ′))1/2

+ ( f (x ′) + ((P f 4)(x ′))1/4)( f (x ′) + ‖y‖)

≤ h(z), (33)

(∫
b̂2(z′)�(z, dz′)

)1/2

≤ 5−1 M + (1 − αλ)−1((Pg2)(x ′))1/2

+
(∫

|c(x ′, x ′′)|2‖αλy + φ(x ′)‖2 P(x ′, dx ′′)
)1/2

≤ 5−1 M + (1 − αλ)−1((Pg2)(x ′))1/2

+
(∫

|c(x, x ′)|4 P(x ′, dx ′′)
)1/4

( f (x ′) + ‖y‖)

≤ h(z) (34)
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for all x, x′ ∈ Rd′
, y ∈ Rd, z = (x, x′, y). On the other hand, using Lemma 3, it is straightforward

to verify that

(�n+1 A)(z) − A∗ =
n∑

i=0

(αλ)i
∫

φ(x ′′)(α(Pi+1φ)(x ′′) − (Piφ)(x ′′))T · (Pn−i − π)(x ′, dx ′′)

−
∞∑

i=n+1

(αλ)i
∫

φ(x ′′)(α(Pi+1φ)(x ′′) − (Piφ)(x ′′))T π · (dx ′′)

+ (αλ)n+1 y(α(Pn+1φ)(x ′) − (Pnφ)(x ′))T , (35)

(�n+1b)(z) − b∗ =
n∑

i=0

(αλ)i
∫

φ(x ′′)(Pi c̃)(x ′′)(Pn−i − π)(x ′, dx ′′)

−
∞∑

i=n+1

(αλ)i
∫

φ(x ′′)(Pi c̃)(x ′′)π(dx ′′) + (αλ)n+1 y(Pnc̃)(x ′) (36)

for all x, x′ ∈ Rd′
, y ∈ Rd, z = (x, x′, y), n ≥ 0 (note that the infinite sums in (35) and (36)

are well-defined and finite due to Lemma 2). Owing to A3,

∞∑
n=0

n∑
i=0

(αλ)i

∥∥∥∥
∫

φ(x ′)(Pm+iφT )(x ′)(Pn−i − π)(x, dx ′)
∥∥∥∥

≤
∞∑

i=0

(αλ)i
∞∑

n=i

∥∥∥∥
∫

φ(x ′)(Pm+iφT )(x ′)(Pn−i − π)(x, dx ′)
∥∥∥∥

≤
∞∑

i=0

(αλ)i g(x) = (1 − αλ)−1g(x), (37)

∞∑
n=0

n∑
i=0

(αλ)i

∥∥∥∥
∫

φ(x ′)(Pi c̃)(x ′)(Pn−i − π)(x, dx ′)
∥∥∥∥

≤
∞∑

i=0

(αλ)i
∞∑

n=i

∥∥∥∥
∫

φ(x ′)(Pi c̃)(x ′)(Pn−i − π)(x, dx ′)
∥∥∥∥

≤
∞∑

i=0

(αλ)i g(x) = (1 − αλ)−1g(x) (38)

for all x ∈ Rd ′, m ≥ 0, while A2 and Lemma 1 imply that
∞∑

n=0

∞∑
i=n+1

(αλ)i
∫

‖φ(x)(Pm+iφT )(x)‖π (dx)

≤ K
∞∑

n=0

∞∑
i=n

(αλ)i
∫

f 2(x)π (dx) = K (1 − αλ)−2
∫

f 2(x)π(dx), (39)
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∞∑
n=0

∞∑
i=n+1

(αλ)i
∫

‖φ(x)(Pm+i c̃)(x)‖π (dx)

≤ K
∞∑

n=0

∞∑
i=n

(αλ)i
∫

f 2(x)π (dx) = K (1 − αλ)−2
∫

f 2(x)π(dx) (40)

for m ≥ 0. Since ‖A(z) ‖ ≤ (f(x) + f(x′) ) ‖y ‖ for all x, x′ ∈ Rd′
, y ∈ Rd, z = (x,x′,y)

(due to A2), it can easily be deduced from Lemma 2 and (35),(36), (37), (38), (39), (40)
that

∞∑
n=0

‖(�n A)(z) − A∗‖ ≤
∞∑

n=0

n∑
i=0

(αλ)i

∥∥∥∥
∫

φ(x ′′)(Pi+1φT )(x ′′)(Pn−i − π)(x ′, dx ′′)
∥∥∥∥

+
∞∑

n=0

n∑
i=0

(αλ)i

∥∥∥∥
∫

φ(x ′′)(PiφT )(x ′′)(Pn−i − π)(x ′, dx ′′)
∥∥∥∥

+
∞∑

n=0

∞∑
i=n+1

(αλ)i
∫

‖φ(x ′′)(Pi+1φT )(x ′′)‖π(dx ′′)

+
∞∑

n=0

∞∑
i=n+1

(αλ)i
∫

‖φ(x ′′)(PiφT )(x ′′)‖π(dx ′′)

+ ( f (x) + f (x ′))‖y‖ + ‖A∗‖

≤ 3(1 − αλ)−1
∫

f 2(x ′′)π (dx ′′) + ( f (x) + f (x ′))‖y‖

+ 2(1 − αλ)−1g(x) ≤ â(z) < ∞, (41)

∞∑
n=0

‖(�nb)(z) − b∗‖ ≤
∞∑

n=0

n∑
i=0

(αλ)i

∥∥∥∥
∫

φ(x ′′)(Pi c̃)(x ′′)(Pn−i − π)(x ′, dx ′′)
∥∥∥∥

+
∞∑

n=0

∞∑
i=n+1

(αλ)i
∫

‖φ(x ′′)(Pi c̃)(x ′′)‖π(dx ′′)

+ |c(x, x ′)|‖y‖ + ‖b∗‖ ≤ 2(1 − αλ)−1
∫

f 2(x ′′)π(dx ′′)

+ |c(x, x ′)|‖y‖ + (1 − αλ)−1g(x) ≤ b̂(z) < ∞ (42)

for all x, x′ ∈ Rd′
y ∈ Rd, z = (x , x′, y). Let Ã(z) = ∑∞

n=0((�n A)(z) − A∗) and b̃(z) =∑∞
n=0((�nb)(z) − b∗), z ∈ Rd+2d ′

. Then, (41) and (42) imply that Ã(·) and b̃(·) are well-
defined, finite and satisfy (31), (32), while (29) and (30) directly follow from (33), (34), (41)
and (42). �
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4. Mean-square error analysis

In this section, Theorem 1 is proved. The following notation is used in the section. For x ∈
Rd′

x ∈ Rd+2d′
, let Ex(· ) = E(·|X0 = x) and

ξ (z) = A(z)θ∗ + b(z),

ξ̃ (z) = Ã(z)θ∗ + b̃(z),

while K̃ Q = M2(1 + ρQ) and L̃ Q = 6K̃ Q(1 + ρQ)2(1 + λmin) (ρQ, λmin, M are defined on
page 7). Moreover, for n ≥ 0, let

θ ′
n+1 = θn + γ (A(Zn+1)θn + b(Zn+1)),

while ϑn = θn− θ∗ and ϑ ′
n = θ ′

n− θ∗. Furthermore, for n ≥ 1, let

pn+1 = 2γϑT
n ( Ã(Zn+1) − (� Ã)(Zn))ϑn + 2γϑT

n (ξ̃ (Zn+1) − (�ξ̃ )(Zn)),

qn+1 = 2γ
(
ϑT

n+1(� Ã)(Zn+1)ϑn+1 − ϑT
n (� Ã)(Zn+1)ϑn

) + 2γ (ϑn+1 − ϑn)T (�ξ̃ )(Zn+1),

rn+1 = γ 2‖A(Zn+1)ϑn + b(Zn+1)‖2 − γ 2ϑT
n A2

∗ϑn,

sn+1 = −4λminγ
2ϑT

n (� Ã)(Zn)ϑn − 4λminγ
2ϑT

n (�ξ̃ )(Zn),

while

un = 2γϑT
n (� Ã)(Zn)ϑn,

vn = 2γϑT
n (�ξ̃ )(Zn)

and an = ‖ϑn‖2 + un + vn .
Outline of the Results of Section 4: The main result of Section 4 is the proof of Theorem 1.

The proof of Theorem 1 is crucially based on the inequality (61). This inequality also provides
an obvious explanation for why γ < γ −1

min has to hold in order for (12) to be satisfied. The
inequality (61) is essentially based on the decomposition (58) of ‖ϑ ′

n+1‖2 and Lemma 6.
Lemma 6 directly follows from the results of Lemma 5 and basic properties of conditional
expectations, while the decomposition (58) is crucially based on the Poisson eqs. (31),
(32). Moreover, Lemma 6 (i.e., the right-hand sides of (56), (57)) provides an obvious
explanation for the selection of hQ(·) in (12). On the other hand, Lemma 5 provides upper
bounds on the conditional expectations of A(·), Ã(·), (� Ã)(·), ξ (· ), ξ̃ (·), (�ξ̃ )(·), while
its proof uses only the Cauchy-Schwartz and Minkowski inequalities, and the results of
Lemma 4.

Lemma 5. Let A1 – A4 hold. Suppose that θ∗ ∈ Q. Then,

max{(Ex‖A(Zn)‖2)1/2, (Ex‖ Ã(Zn)‖2)1/2, (Ex‖(� Ã)(Zn)‖2)1/2} ≤ K̃ Q( f 2(x) + g(x)),(43)

max{(Ex‖ξ (Zn)‖2)1/2, (Ex‖ξ̃ (Zn)‖2)1/2, (Ex‖(�ξ̃ )(Zn)‖2)1/2} ≤ K̃ Q( f 2(x) + g(x)) (44)

for all x ∈ Rd′
, n ≥ 0.
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Proof: Due to the Jensen inequality and A2,

(Ex ( f 4(Xn)))1/4 = ((Pn f 4)(x))1/4 ≤ K 1/2 f (x), (45)

(Ex |c(Xn, Xn+1)|4)1/4 =
(

Ex

(∫
|c(Xn, x ′)|4 P(Xn, dx ′)

))1/4

≤ ((Pn f 4)(x))1/4 ≤ K 1/2 f (x), (46)

(Ex (g2(Xn)))1/2 = ((Png2)(x))1/2 ≤ Lg(x) (47)

for all x ∈ Rd′
, n ≥ 0, while the Minkowski inequality, A2 and (45) yield

(Ex‖en+1‖4)1/4 ≤

Ex

(
n∑

i=0

(αλ)n−i f (Xi )

)4



1/4

≤
n∑

i=0

(αλ)n−i (Ex ( f 4(Xi )))
1/4 ≤ K 1/2(1 − αλ)−1 f (x) (48)

for all x ∈ Rd′
, n ≥ 0. Using the Cauchy-Schwartz and Minkowski inequality, it can easily

be deduced from A2 and (45) – (48) that

(Ex‖A(Zn+1)‖2)1/2 ≤ (Ex (( f (Xn) + f (Xn+1))‖en+1‖)2)1/2

≤ (Ex ( f 2(Xn)‖en+1‖2))1/2 + (Ex ( f 2(Xn+1)‖en+1‖2))1/2

≤ ((Ex ( f 4(Xn))1/4(Ex‖en+1‖4)1/4 + (Ex ( f 4(Xn+1))1/4)(Ex‖en+1‖4)1/4

≤ 2K (1 − αλ)−1 f 2(x), (49)

(Ex‖b(Zn+1)‖2)1/2 ≤ (Ex (|c(Xn, Xn+1)|2‖en+1‖2))1/2

≤ (Ex |c(Xn, Xn+1)|4)1/4(Ex‖en+1‖4)1/4

≤ K (1 − αλ)−1 f 2(x), (50)

(Ex (h2(Zn+1)))1/2 ≤ M((Ex ( f 4(Xn+1)))1/2 + (Ex (g2(Xn+1))1/2

+ (Ex‖en+1‖4)1/2) ≤ M2( f 2(x) + g(x)) (51)

for all x ∈ Rd′
, n ≥ 0. On the other hand the Cauchy-Schwartz inequality and Lemma 4 yield

that

Ex‖ Ã(Zn+1)‖2 = Ex

(∫
‖ Ã(z)‖2�(Zn, dz)

)
≤ Ex (h2(Zn)), (52)
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Ex‖b̃(Zn+1)‖2 = Ex

(∫
‖b̃(z)‖2�(Zn, dz)

)
≤ Ex (h2(Zn)), (53)

Ex‖(� Ã)(Zn)‖2 = Ex

∥∥∥∥
∫

Ã(z)�(Zn, dz)

∥∥∥∥
2

≤ Ex

(∫
‖ Ã(z)‖2�(Zn, dz)

)
≤ Ex (h2(Zn+1)), (54)

Ex‖(�b̃)(Zn)‖2 = Ex

∥∥∥∥
∫

b̃(z)�(Zn, dz)

∥∥∥∥
2

≤ Ex

(∫
‖b̃(z)‖2�(Zn, dz)

)

≤ Ex (h2(Zn+1)) (55)

for all x ∈ Rd ′, n ≥ 0. Since ‖θ∗‖ ≤ ρQ and

‖ξ (Zn)‖ ≤ ‖A(Zn)‖‖θ∗‖ + ‖b(Zn)‖ ≤ (1 + ρQ)(‖A(Zn)‖ + ‖b(Zn)‖),

‖ξ̃ (Zn)‖ ≤ ‖ Ã(Zn)‖‖θ∗‖ + ‖b̃(Zn)‖ ≤ (1 + ρQ)(‖ Ã(Zn)‖ + ‖b̃(Zn)‖),

‖(�ξ̃ )(Zn)‖ ≤ ‖(� Ã)(Zn)‖‖θ∗‖ + ‖(�b̃)(Zn)‖ ≤ (1 + ρQ)(‖(� Ã)(Zn)‖ + ‖(�b̃)(Zn)‖)

for n ≥ 0, (43) and (44) follow directly from (49) – (55). �

Lemma 6. Let A1 – A4 hold. Suppose that θ∗ ∈ Q. Then, Ex(pn) = 0 for all x ∈ Rd′
, n ≥ 1.

Moreover,

lim
n→∞Ex (|qn| + |rn| + |sn|) ≤ L̃ Qγ 2( f 4(x) + g2(x)), (56)

lim
n→∞Ex (|un| + |vn|) ≤ L̃ Qγ ( f 4(x) + g2(x)) (57)

for all x ∈ Rd′
.

Proof: It is straightforward to verify that

qn+1 = 2γ (ϑn+1 − ϑn)T (� Ã)(Zn+1)ϑn + 2γϑT
n (� Ã)(Zn+1)(ϑn+1 − ϑn)

+ 2γ (ϑn+1 − ϑn)T (� Ã)(Zn+1)(ϑn+1 − ϑn) + 2γ (ϑn+1 − ϑn)T (�ξ̃ )(Zn+1)

for n ≥ 0. Since

‖ϑn‖ = ‖θn − θ∗‖ ≤ ρQ,

‖ϑn+1 − ϑn‖ = ‖θn+1 − θn‖ ≤ ρQ,

‖ϑn+1 − ϑn‖ = ‖θn+1 − θn‖ ≤ ‖θ ′
n+1 − θn‖ = ‖ϑ ′

n+1 − ϑn‖
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for n ≥ 1 (notice that ‖PQ(θ ′) −θ ‖ ≤ ‖θ ′ − θ‖ for all θ ∈ Q, θ ′ ∈ Rd; see e.g., [(Pflug,
1996, Appendix E]), it can easily be deduced that for n ≥ 1,

|pn+1| ≤ 2ρ2
Qγ (‖ Ã(Zn+1)‖ + ‖(� Ã)(Zn)‖ + 2ρ2

Qγ ‖ξ̃ (Zn+1)‖ + ‖(�ξ̃ )(Zn)‖),

|qn+1| ≤ γ ‖ϑn+1 − ϑn‖(6ρQ‖(� Ã)(Zn+1)‖ + 2‖(�ξ̃ )(Zn+1)‖)

≤ γ 2(‖A(Zn+1)‖‖ϑn‖ + ‖ξ (Zn+1)‖) · (6ρQ‖(� Ã)(Zn+1)‖ + 2‖(�ξ̃ )(Zn+1)‖)

≤ 6(1 + ρQ)2γ 2(‖A(Zn+1)‖2 + ‖ξ (Zn+1)‖2 + 6(1 + ρQ)2γ 2‖(� Ã)(Zn+1)‖2

+‖(�ξ̃ )(Zn+1)‖2),

|rn+1| ≤ γ 2(‖A(Zn+1)‖‖ϑn‖ + ‖ξ (Zn+1)‖)2 + γ 2‖A∗‖2‖ϑn‖2

≤ 2(1 + ρQ)γ 2(‖A(Zn+1)‖2 + ‖ξ (Zn+1)‖2) + M2ρ2
Qγ 2,

|sn+1| ≤ 4ρ2
Qλminγ

2(‖(� Ã)(Zn)‖ + ‖(�ξ̃ )(Zn)‖),

as well as

|un| ≤ 2ρ2
Qγ ‖(� Ã)(Zn)‖,

|vn| ≤ 2ρQγ ‖(�ξ̃ )(Zn)‖.

Then, Lemma 5 implies that (56) and (57) hold, as well as that Ex|p′
n | < ∞ and Ex|p′

n | <
∞, ∀ x ∈ Rd′}, n ≥ 1.

Let Fn = σ [θ0, X0, . . . , Xn], n ≥ 0. Since σ {ϑn} ⊆ Fn and

Ex ( Ã(Zn+1) | Fn) = (� Ã)(Zn),

Ex (ξ̃ (Zn+1) | Fn) = (�ξ̃ )(Zn) ()

for all x ∈ Rd′
, n ≥ 0, it can easily be deduced that Ex (pn+1 | Fn) = 0 for all x ∈ Rd ′

, n ≥
0. Consequently, Ex (pn) = 0 for n ≥ 0. �

Proof of Theorem 1: It is straightforward to verify that

‖ϑ ′
n+1‖2 = ϑT

n (I + γ A∗)2ϑn + pn+1 + qn+1 + rn+1 + un + vn − un+1 − vn+1, (58)

an ≥ ‖ϑn‖2 − |un| − |vn| (59)

for n ≥ 1. Since

ϑT
n (I + γ A∗)2ϑn ≤ (1 − λminγ )2‖ϑ‖2,

‖ϑn‖ = ‖θn − θ∗‖ ≤ ‖θ ′
n − θ∗‖ = ‖ϑ ′

n‖
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for n ≥ 1 (notice that ‖PQ(θ ′) − θ‖ ≤ ‖θ ′ − θ‖ for all θ ∈ Q, θ ∈ Rd; for details see
e.g.[(Pflug 1996, Appendix E)], it can easily be deduced from (58) that for n ≥ 1

‖ϑn+1‖2 ≤ (1 − λminγ )2‖ϑn‖2 + pn+1 + qn+1 + rn+1 + un + vn − un+1 − vn+1. (60)

Consequently,

an+1 ≤ (1 − λminγ )2‖ϑn‖2 + pn+1 + qn+1 + rn+1 + un + vn

= (1 − λminγ )2an + pn+1 + qn+1 + rn+1 + sn+1

for n ≥ 1. Then, Lemma 6 and (59) imply that for all x ∈ Rd′
, n ≥ 1,

Ex (an+1) ≤ (1 − λminγ )2 Ex (an) + Ex (|qn+1| + |rn+1| + |sn+1|)
≤ (1 − λminγ )2 Ex (an) + L̃ Qγ 2( f 4(x) + g2(x)), (61)

while Lemma 6 and (60) yield that

lim
n→∞Ex‖ϑn‖2 ≤ lim

n→∞Ex |an| + L̃ Qγ ( f 4(x) + g2(x)) (62)

for all x ∈ Rd ′. Due to (61),

E(an) ≤ (1 − λminγ )2n E(a0) + L̃ Qγ 2( f 4(x) + g2(x))
n−1∑
i=0

(1 − λminγ )2i (63)

for n ≥ 1, while (63) yields that for all x ∈ Rd ′,

lim
n→∞Ex (an) ≤ L̃ Qγ 2(1 − (1 − λminγ )2)−1( f 4(x) + g2(x))

= L̃ Qλ−1
minγ (2 − λminγ )−1( f 4(x) + g2(x)) ≤ L̃ Qλ−1

minγ ( f 4(x) + g2(x))(64)

(notice that 2 − λminγ > 1 due to γ < λ−1
min). Owing to (62) and (64), for all x ∈ Rd′

,

lim
n→∞Ex‖ϑn‖2 ≤ L̃ Q(1 + λ−1

min)γ ( f 4(x) + g2(x)),

wherefrom (12) directly follows for all x ∈ Rd′
. �

5. Special Case

The results of this section correspond with a special case of A1 – A4 where {Xn}n≥0 is
geometrically ergodic. This case is analyzed because the geometric ergodicity is considered
in practice as one of the most important types of stability of Markov chains (see e.g., Meyn &
Tweedie, 1993). Furthermore, most of the existing asymptotic results on temporal-difference
learning (as well as on reinforcement learning) either explicitly require the underlying chain
{Xn}n≥0 to be geometrically ergodic, or have been obtained under assumptions which are
very close to geometric ergodicity (see Bertsekas & Tsitsiklis, 1996; Tsitsiklis & Van Roy,
1997 and references cited therein).
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B1. {Xn}n≥0 has a unique invariant probability measure π(·).
B2. There exists a Borel-measurable function f : Rd ′→ [1, ∞ ) such that

∫
f 4(x) π(dx) <

∞, ‖φ(x) ‖ ≤ f(x) and

∫
|c(x, x ′)|4 P(x, dx ′) ≤ f 4(x)

for all x ∈ Rd′
.

B3. There exist constants K ∈ [1, ∞ ) and ρ ∈ (0, 1) such that

∣∣∣∣
∫

ϕ(x ′)(Pn − π )(x, dx ′)
∣∣∣∣ ≤ Kρn f 4(x) (65)

for all x ∈ Rd′
, n ≥ 0, and for any Borel-measurable function ϕ: Rd′→ R satisfying 0 ≤ ϕ(x)

≤ f 4(x) for all x ∈ Rd′
.

Remark. Assumption B3 is equivalent to the requirement that {Xn}n≥0 is f 4-uniformly
ergodic (for more details on this type of ergodicity, see [(Meyns Tweedie, 1993, Section 16]).

Lemma 7. Let B1 – B3 hold. Then, A1 – A3 are also satisfied.

Proof: As {Xn}n≥0 is geometrically ergodic (due to B1), A1 holds. Let

L = K +
∫

f 4(x)π (dx).

Due to the Jensen inequality and B2, B3,

(Pn f 4)(x) ≤
∫

f 4(x)π (dx) +
∣∣∣∣
∫

f 4(x ′)(Pn − π)(x, dx ′)
∣∣∣∣ ≤ L f 4(x), (66)

|c̃(x)| ≤
∫

|c(x, x ′)|P(x, dx ′) ≤
(∫

|c(x, x ′)|4 P(x, dx ′)
)1/4

≤ f (x) (67)

for all x ∈ Rd′
, n ≥ 0. Owing the Jensen inequality and (66), for all x ∈ Rd′

, n ≥ 0,

(Pn f )(x) ≤ ((Pn f 4)(x)1/4 ≤ L f (x) (68)

while B2 and (67), (68) imply

‖φ(x)(Pnφ)(x)‖ ≤ f (x)(Pn f )(x) ≤ 4L f 2(x),

‖φ(x)(Pnc̃)(x)‖ ≤ f (x)(Pn f )(x) ≤ 4L f 2(x)

x ∈ Rd′
, n ≥ 0. Then, B3 yields

∥∥∥∥
∫

φ(x ′)(PmφT )(x ′)(Pn − π )(x, dx ′)
∥∥∥∥ ≤ K Lρn f 4(x),
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∥∥∥∥
∫

φ(x ′)(Pmc̃)(x ′)(Pn − π )(x, dx ′)
∥∥∥∥ ≤ K Lρn f 4(x)

x ∈ Rd′
, m, n ≥ 0. Consequently,

∞∑
n=0

∥∥∥∥
∫

φ(x ′)(PmφT )(x ′)(Pn − π )(x, dx ′)
∥∥∥∥ ≤ K L(1 − ρ)−1 f 4(x),

∞∑
n=0

∥∥∥∥
∫

φ(x ′)(Pmc̃)(x ′)(Pn − π )(x, dx ′)
∥∥∥∥ ≤ K L(1 − ρ)−1 f 4(x)

x ∈ Rd′
m ≥ 0. Then, it can easily be deduced that A2 and A3 hold, too. �

As an immediate consequence of Theorem 1, Lemma 7 and (13), the following corollary
is obtained:

Corollary 1. Let A4 and B1 – B3 hold. Suppose that θ∗ ∈ Q. Then, there exists a Borel-
measurable function hQ: Rd ′→ [1, ∞ ) such that

lim
n→∞E(‖θn − θ∗‖2|X0 = x) ≤ hQ(x)γ,

lim
n→∞E‖θn − θ∗‖2 ≤ γ

∫
hQ(x ′)π(dx ′)

for all γ ∈ (0, λ−1
min), x ∈ Rd′

(λminis defined on page 7).

6. Examples

In this section, the main results of the paper are illustrated with examples related to M/G/1
queues and nonlinear autoregressive (AR) models with Markov switching.

6.1. M/G/1 Queue

M/G/1 queues are models for service stations with the following properties:

(i) The times between arrivals of consecutive customers (interarrival times) are independent
and identically distributed random variables.

(ii) Customers are severed on ‘first-come-first-served’ principle.
(iii) The times of serving customers (service times) are independent and identically dis-

tributed random variables.
(iv) Interarrival times are exponentially distributed.

Let Yn+1 is the number of customers in a M/G/1 queue immediately after the completion of
the service of the n-th customer. Moreover, let Xn = ψ(Yn), n ≥ 0, where ψ(·) is a function
mapping nonnegative integers into Rd′

and satisfying ψ(m) = ψ(n) only if m = n. Then,
it can easily be deduced that {Xn}n ≤ 0 is a Markov process with values in Rd′

and the
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transition probability kernel P(x, ·), x ∈ Rd′
, defined as

P(x, B) =
∞∑

i=0

∞∑
j=0

P(Y1 = j | Y0 = i)I{ψ(i)}(x)IB(ψ( j))

+
∞∑
j=0

P(Y1 = j |Y0 = 0)I{ψ(i):i≥0}c (x)IB(ψ( j))

for x ∈ Rd′
, B ∈ Bd ′

.
Let µ be the mean of the interarrival times of the customers in the queue, while ν(·) is the

distribution of their service times (for details on M/G/1 queues see e.g., (Asmussen, 1987,
Meyn, Tweedie, 1993) and references cited therein). The next lemma is a direct consequence
of[(Meyn & Tweedie, 1993,Subsection 16.1.3]

Lemma 8. Suppose that there exists a constant s ∈ (0, ∞) such that
∫

exp (st) ν(dt) <

∞. Moreover, suppose that
∫

tν(dt) < µ and ‖ψ(n) ‖ ≤ n, n ≥ 0. Then, {Xn}n≥0 has a
unique invariant probability measure π (·) (concentrated on {ψ(n) : n ≥ 0}) and there exist
constants K ∈ [1, ∞ ), L ∈ (0, ∞) and ρ ∈ (0,1) such that

∫
exp (L‖x‖) π(dx) < ∞ and

∣∣∣∣
∫

φ(x ′)(Pn − π )(x, dx ′)
∣∣∣∣ ≤ Kρn exp(L‖x‖)

for all x ∈ Rd′
, n ≥ 0, and any Borel-measurable function ϕ: Rd′→ R satisfying 0 ≤ ϕ(x) ≤

exp (L‖x‖) for all x ∈ Rd′
.

As an immediate consequence of Theorem 1, Lemmas 7, 8, and (13), the following
corollary is obtained.

Corollary 2. Let A4 hold. Suppose that the conditions of Lemma 8 are satisfied and

‖φ(x)‖ ≤ M(1 + ‖x‖p),

|c(x, x ′)| ≤ M(1 + ‖x‖p + ‖x ′‖p)

for all x, x′ ∈ Rd ′, where p, M ∈ [1, ∞ ) are constants. Moreover, suppose that θ∗ ∈ Q.
Then, there exists a Borel-measurable function hQ: Rd ′→ [1, ∞) such that

lim
n→∞E(‖θn − θ∗‖2|X0 = x) ≤ hQ(x)γ,

lim
n→∞E‖θn − θ∗‖2 ≤ γ

∫
hQ(x ′)π(dx ′)

for all γ ∈ (0, λ−1
min), x ∈ Rd′

(λmin is defined on page 7).
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6.2. Nonlinear Autoregressive Models with Markov Switching

Nonlinear autoregressive (AR) models with Markov switching are defined by the following
difference equation:

Xn+1 = F(Xn, sn) + ξn+1, n ≥ 0. (69)

F : Rd′× {1, . . ., d′′ }→ Rd′
is a Borel-measurable function, while X0 ∈ Rd′

is a deterministic
variable. {sn}n≥0 is a homogeneous Markov chain with values in {1, . . ., d′′ }, while {ξn}n≥0

is an Rd ′-valued i.i.d. sequence independent of {sn}n≥0.
Nonlinear AR model with Markov switching (69) is a state-space model with the following

properties:

(i) The model states have two components Xn and sn.
(ii) The discrete-valued components {sn}n≥0 form a Markov chain which evolves indepen-

dently of {Xn}n≥0.
(iii) Conditionally on {sn}n≥0, continuously valued components {Xn}n≥0 have a Markov

property, i.e.,

P(Xn+1 ∈ B|X0, . . . , Xn, sn) = P(Xn+1 ∈ B|Xn, sn) w.p.1

for all B ∈ Bd ′
, n ≥ 0.

Nonlinear AR models with Markov switching usually correspond to systems whose struc-
ture and dynamics (modeled by {Xn}n≥0) is significantly influenced by certain exogenous
events (modeled by {sn}n≥0). These models have found a great number of applications in
areas such as automatic control, signal processing and econometrics (see e.g., Yao & Attoli,
2000).

Let Yn = (Xn, sn), n ≥ 0. Then, it can easily be deduced that {Yn}n≥0 is a Markov chain
with values in Rd ′ × {1, . . . , d ′′} and the transition probability kernel defined as

P(x, i, B × { j}) = E(IB(F(x, j) + ξ0))pi j

for x ∈ Rd′
, B ∈ Bd ′

, 1 ≤ i, j ≤ d′′, where

pi j = P(s1 = j | s0 = i).

The next lemma is a direct consequence of [Yao & Attali., 2000, Theorem 2]

Lemma 9. Suppose that {sn}n≥0 is irreducible and aperiodic. Moreover, suppose that ξ 0 has
everywhere positive density with respect to the Lebesgue measure. Furthermore, suppose
that there exist a constant p ∈ [1, ∞) and a sequence {f(i)}1≤ i≤d′′ from [0, ∞ ) such that

‖F(x, i)‖ ≤ f (i)(1 + ‖x‖4p),

d ′′∑
j=0

f 4p( j)pi j < 1
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for all x ∈ Rd′
, 1 ≤ i ≤ d′′. Then, {Yn}n≥0 has an invariant probability measure π(· ) and

there exist constants K ∈ [1, ∞ ), ρ ∈ (0,1) such that

∣∣∣∣
∫

φ(x ′, s ′)(Pn − π )(x, i, dx ′, ds ′)
∣∣∣∣ ≤ Kρn(1 + ‖x‖4p)

for all x ∈ Rd′
, 1 ≤ i ≤ d′′, n ≥ 0, and any Borel-measurable function φ: Rd′× {1, . . ., d′′}

→ R satisfying φ(x,i) ≤ 1 + ‖x‖4p for all x ∈ Rd′
, 1 ≤ i ≤ d′′.

As an immediate consequence of Theorem 1, Lemmas 7, 9, and (13), the following
corollary is obtained.

Corollary 4. Let A4 hold. Suppose that the conditions of Lemma 9 are satisfied and

‖φ(x)‖ ≤ M(1 + ‖x‖p),

|c(x, x ′)| ≤ M(1 + ‖x‖p + ‖x ′‖p)

for all x, x′ ∈ Rd′
, where M ∈ [1, ∞ ) is a constant. Moreover, suppose that θ∗ ∈ Q. Then,

there exists a Borel-measurable function hQ: Rd′→ [1, ∞ ) such that

lim
n→∞E(‖θn − θ∗‖2|X0 = x) ≤ hQ(x)γ,

lim
n→∞ E‖θn − θ∗‖2 ≤ γ

∫
hQ(x ′)π(dx ′)

for all γ ∈ (0, λmin−1), x ∈ Rd′
(λmin is defined on page 7).

7. Conclusion

In this paper, the mean-square asymptotic behavior of temporal-difference learning algo-
rithms with constant step-sizes and linear function approximation has been analyzed. The
analysis has been carried out for the case of discounted cost function associated with a
Markov chain with a finite dimensional state-space. Under mild conditions, it has been
demonstrated that for sufficiently small step-size, the corresponding temporal-difference
learning algorithm is stable in the mean-square sense and its asymptotic mean-square error
is bounded by a linear function of the step-size. The main results of the paper are illustrated
with examples related to M/G/1 queues and nonlinear AR models with Markov switching.
The results of this paper are an extension of the results of (Tsitsiklis & Van Roy, 1997) and
a continuation of the author’s work presented in (Tadić, 2000).
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