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Abstract This paper addresses the problem of transductive learning of the kernel matrix
from a probabilistic perspective. We define the kernel matrix as a Wishart process prior
and construct a hierarchical generative model for kernel matrix learning. Specifically, we
consider the target kernel matrix as a random matrix following the Wishart distribution with
a positive definite parameter matrix and a degree of freedom. This parameter matrix, in
turn, has the inverted Wishart distribution (with a positive definite hyperparameter matrix)
as its conjugate prior and the degree of freedom is equal to the dimensionality of the feature
space induced by the target kernel. Resorting to a missing data problem, we devise an
expectation-maximization (EM) algorithm to infer the missing data, parameter matrix and
feature dimensionality in a maximum a posteriori (MAP) manner. Using different settings
for the target kernel and hyperparameter matrices, our model can be applied to different types
of learning problems. In particular, we consider its application in a semi-supervised learning
setting and present two classification methods. Classification experiments are reported on
some benchmark data sets with encouraging results. In addition, we also devise the EM
algorithm for kernel matrix completion.
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1. Introduction

In recent years, kernel methods (Schölkopf & Smola, 2002; Vapnik, 1998) are increasingly
popular in machine learning and data processing applications due to their benefits from
conceptual simplicity and theoretical potentiality. Kernel machines, such as the support
vector machines (SVM) (Cortes & Vapnik, 1995), kernel principal component analysis
(PCA) (Schölkopf, Smola, & Müller, 1998) and kernel Fisher discriminant analysis (FDA)
(Baudat & Anouar, 2000), work by mapping data nonlinearly into a high-dimensional feature
space and then implementing some traditional linear algorithms in this feature space. This
approach is attractive since feature vectors in the high-dimensional feature space are more
likely to be linearly separable than data points in the original input space. Moreover, the
so-called kernel trick makes the implementation of kernel methods efficient, since kernels
can be used without explicit usage of the feature vectors themselves.

On the other hand, Gaussian process (GP), also known as “kriging” in geostatistics, has
been widely used for interpolating and smoothing spatial data in spatial statistics (Cressie,
1991). In machine learning, GP is also a common Bayesian tool to assign prior distributions
over functions, and has been successfully used in various nonlinear modeling tasks (Bishop,
1995) such as classification and regression. An important component in GP’s is the covariance
matrix. Usually, the covariance of the random field at any two index vectors is assumed to
be a positive definite function of the distance between the vectors (Wahba, 1990). Thus, the
covariance matrix in a GP can also be regarded as a kernel matrix, and this bridges the two
techniques of GP’s and kernel machines (Seeger, 2000; Smola & Schölkopf, 2002).

1.1. Related work

Because of the central role of the kernel, a poor kernel choice can lead to significantly
impaired performance. Typically, the practitioner has to select the kernel before learning
starts, with common choices being the polynomial kernel, Gaussian kernel, and Laplacian
kernel. The associated kernel parameters, such as the order in the polynomial kernel and the
width in the Gaussian or Laplacian kernel, can then be determined by the user using various
heuristics. A more disciplined approach to set the parameters is by optimizing a quality
functional of the kernel (Ong, Smola, & Willamson, 2003) such as some generalization error
bound (Chapelle et al., 2002) or evidence (Kwok, 2000; Sollich, 2000). Instead of adapting
only the kernel parameters, a recent development is to adapt also the form of the kernel
itself. As in practice we are often interested in finite-sized data sets, almost all information
in the kernel function can be encoded in a kernel matrix. Consequently, one could bypass
the learning of the kernel function by just learning the kernel matrix instead.

Cristianini et al. (2002) introduced the notion of alignment to measure the similarity
between two kernels or between a kernel and a target function. Based on this notion, they
proposed a transductive learning method (Vapnik, 1998) for the kernel matrix by optimizing
the coefficients (eigenvalues) for the spectral decomposition of the full kernel matrix on
both training and test data. Kandola et al. (2002) extended this method to the inductive
setting. Lanckriet et al. (2004) derived a generalization bound for choosing the kernel
and formulated the kernel matrix learning problem as a convex optimization problem that
is not prone to local minima. However, even with the recent advances in interior point
methods, convex programming problems such as semi-definite programming (SDP) are still
very computationally expensive on problems with large kernel matrices. Thus, instead of
using SDP, Bousquet and Herrmann (2003) proposed a simple, efficient gradient-descent
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algorithm that can be orders of magnitude faster than a typical SDP solver. Crammer et al.
(2003), on the other hand, formulated this learning problem under the boosting paradigm,
so that an accurate kernel is constructed from simple base kernels obtained from solving
the generalized eigenvector problem. Recently, kernel matrix learning has been used to
deal with the problem of missing data, giving a kernel matrix completion problem. For
example, Graepel et al. (2002) considered kernel matrix completion by applying SDP. Based
on information geometry (Amari, 1995), Tsuda et al. (2003) introduced the use of Kullback-
Leibler (KL) divergence as a similarity measure between two positive definite matrices. They
then devised an em algorithm for the kernel matrix completion problem.

Notice that among these methods, SDP (Vandenberghe & Boyd, 1996) and gradient
descent (Bousquet & Herrmann, 2003) are algebraic, while boosting (Friedman, Hastie,
& Tibshirani, 2000) can be regarded as statistical. Tsuda et al. (2003) also described an
EM formulation for their em algorithm. However, as mentioned by the authors, this EM
formulation does not in fact have any observed data nor does it have any prior distribution
of missing data. Hence, this so-called EM formulation is only intended for interpreting the
relationship between the equations in the E- and M-steps with those in the e- and m-steps.
In summary, none of the above methods stems from a model-based perspective.

Due to the strong connection between the covariance matrix in a GP and the kernel matrix
as discussed above, the problem of choosing the covariance matrix can also be regarded
as a kernel matrix learning problem. Usually, the covariance matrix is first parameterized
and then the associated hyperparameters are estimated using methods such as maximum
likelihood estimation (MLE) (Mardia & Marshall, 1984) or Markov chain Monte Carlo
(MCMC) (Diggle Tawn, & Mayeed, 1998; Neal, 1997a; Williams & Barber, 1998). These
methods for learning the covariance matrix are based on the inductive setting.

1.2. Outline of our work

In this paper, we propose the notion of Wishart processes by treating a reproducing kernel as
a stochastic process. Specifically, if each feature dimension follows a Gaussian process prior,
then the corresponding random kernel matrix follows the Wishart distribution. Conversely,
if we are given a kernel matrix following the Wishart distribution, then there exists a set of
feature vectors with each feature dimension following the Gaussian process prior. Moreover,
the dimensionality of the kernel-induced feature space is equal to the degree of freedom
of the Wishart distribution. This provides a generative model of the kernel matrix and
motivates us to view the kernel matrix learning problem from a model-based perspective.
Moreover, this also reveals the intrinsic statistical mechanism of reproducing kernels with
Wishart process priors, and inspires us to explore classification and regression problems
using Wishart processes. We use a transductive learning setting (Joachims, 1999; Kandala,
Shawe-Taylor & Cristianini, 2003; Vapnik, 1998) to achieve these goals simultaneously.

Based on the Wishart generative model of the kernel matrix, we first propose in this paper
a hierarchical transductive learning framework for the kernel matrix. We consider the target
kernel matrix as a random matrix distributed according to the Wishart distribution (Gupta
& Nagar, 2000), whose parameter matrix in turn follows the conjugate prior of the Wishart
distribution, which is the inverted Wishart distribution. As will be seen later, this prior has
the effect of including a regularization term in the likelihood function. Under the maxi-
mum a posteriori (MAP) setting, we develop an expectation-maximization (EM) algorithm
(Dempster, Laird, & Rubin, 1977) to infer the missing data and the model parameters for
the corresponding learning problem. To our own surprise, not only the parameter matrix,
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but also the dimensionality of the kernel-induced feature space as defined above, can be
estimated through the proposed EM algorithm.

Since the kernel matrix is a positive semi-definite matrix, our transductive learning model
based on Wishart processes has potential applications in many machine learning and pat-
tern recognition problems. For example, we can consider an affinity matrix or similarity
matrix as a kernel matrix and then learn it from data using our model. In this paper,
we apply our hierarchical transductive learning model to the semi-supervised learning
paradigm (Zhou et al., 2004), which has recently attracted a great deal of interest. By
using different settings on the target kernel matrix, we present two semi-supervised learning
methods.

The first method is derived from the equivalence outlined above, namely, the reproducing
kernel follows a Wishart process and the dimensions of the feature vectors in the kernel-
induced feature space are mutually independent Gaussian processes. This inspires us to
define each feature dimension as a Gaussian process prior. Thus, the resultant method avoids
the usage of the logistic function. Moreover, we shall see that the EM algorithm can be used
to estimate the covariance matrix in a GP. In the second method, we use the discriminant
kernel (Zhang, 2003) as the target kernel, and then construct a transductive discriminant
analysis method for both classification and clustering problems. Our method differs from the
generalized FDA in that the kernel matrix we use includes information from both the input
vectors and the labels.

In addition, based on the Wishart generative model of the kernel matrix, we devise the
EM algorithm for a kernel matrix completion problem (Tsuda, Akaho, & Asai, 2003), where
a kernel matrix is defined over a data set with missing information. This problem can be
formulated a transductive learning problem. Tsuda et al. (2003) devised an em algorithm for
this and described its relationship with the EM formulation. Unfortunately, the derivation
of the E-step in their EM algorithm is theoretically unclear because of the lack of a prior
distribution on the missing part of the kernel matrix. Our work proposes a rigorous derivation
of the EM algorithm, which also bears resemblance to the em algorithm.

1.3. Notations and organization of the paper

Throughout this paper, matrices and vectors are denoted by boldface uppercase letters and
lowercase letters, respectively. Let A = [ai j ] be an m × n matrix. We denote the transpose
of A by A′ and (a11, . . . , am1, a12, . . . , amn)′ by vec(A). Moreover, when m = n, the trace of
A is denoted by tr(A), its determinant by |A|, and its inverse (if exists) by A−1. In addition,
we write A � 0 if A is positive definite and A � 0 if A is positive semi-definite. Also,
the Kronecker product of A and B is denoted by A ⊗ B. To simplify our presentation, we
will employ the notation of (Gupta & Nagar, 2000). Thus, for an n × n random matrix W,
W ∼ Wn(r,�), means that W follows a Wishart distribution with degree of freedom r and
an n × n parameter matrix � � 0. Finally, for an n × n random matrix X, X ∼ IWn(r,�)
means that X follows an inverted Wishart distribution with degree of freedom r + n + 1
and an n × n parameter matrix � � 0.

The paper is organized as follows. Section 2 presents a hierarchical Bayesian model for
transductive learning of the kernel matrix and develops the EM algorithm for our model. In
Section 3, we apply our transductive learning framework with the EM algorithm to the semi-
supervised learning paradigm. An EM algorithm for the kernel matrix completion problem is
then discussed in Section 4. Experimental results on classification applications are presented
in Section 5, and the last section gives some concluding remarks. In order to facilitate
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readers, brief introductions to certain topics of the matrix theory, including matrix variate
distributions, matrix differentials and the Kronecker product, are given in Appendix A.
Detailed derivation of the EM algorithm can be found in Appendix B.

2. Hierarchical transductive learning model of the kernel matrix

Let I denote a given space and S = {ti }n
i=1 ⊂ I be a finite set of samples. Most existing

kernel methods define the kernel function K on the Cartesian space I × I, i.e.,

K : I × I → R, K (ti , t j ) = ki j = F(ti )
′ F(t j ),

where F : I → F is a (usually nonlinear) mapping that relates I to a (possibly infinite-
dimensional) feature space F . The kernel trick allows us to compute the inner product of
F(ti) and F(tj) in F without having to explicitly compute the mapping F. The kernel matrix
(or Gram matrix) defined on all samples in S is denoted as K = [ki j ]n×n . Our point of
departure is to treat the feature vectors {F(t); t ∈ I} as a stochastic process. Then the kernel
function {K (ti , t j ); ti , t j ∈ I} also follows a stochastic process. First of all, we give the
following definition.

Definition 1. {K (s, t); s, t ∈ I} is said to be a Wishart process if for any n ∈ N and
{t1, . . . , tn} ⊆ I, the n × n random matrix K = [K (ti , t j )] follows a Wishart distribution.

Let us assume that the feature space F is of finite dimensionality r. For any input vector
t ∈ I, we can express F(t) = (F1(t), . . . , Fr (t))′ as an r-dimensional functional vector. Let
us define F as

F =




F1(t1) F2(t1) . . . Fr (t1)

F1(t2) F2(t2) . . . Fr (t2)

...
...

. . .
...

F1(tn) F2(tn) . . . Fr (tn)




. (1)

Then K = FF′. In this paper, we formulate a probabilistic generative model of the kernel
matrix K based on random matrix variate theory. Recall that Fj (t) ( j = 1, . . . , r ) represents
the jth coordinate of the feature vector F(t) and Fj(t) is itself a function from I to R. Denote
f( j) = (Fj (t1), Fj (t2), . . . , Fj (tn))′, which contains the jth feature dimension in all n feature
vectors (j = 1, . . ., r). From the dual relationship between the matrix-variate distribution and
the Wishart distribution (Gupta & Nagar, 2000), we have the following theorem:

Theorem 1. Let f(1), f(2), . . . , f(r ) be r independent vectors from N (0,�), where 0 is an
n-dimensional zero vector and � � 0 is n × n. Then K is a random Wishart matrix K ∼

Wn(r,�). Conversely, given a kernel matrix K ∼ Wn(r,�), where r is an integer, then there
exist r mutually independent n-dimensional vectors f (j) from N (0,�).

Thus, we can conclude that {K (s, t); s, t ∈ I} is a Wishart process if and only if each
feature dimension follows a Gaussian process, or in other words, {Fj (t); t ∈ I} ( j = 1, . . . , r )
are r mutually independent Gaussian processes. Theorem 1 leads us to a generative model for
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the kernel matrix K. That is, we define the kernel matrix K as a random Wishart matrix from
Wn(r,�) on which kernel learning can be performed. Furthermore, its degree of freedom
r is equal to the dimensionality of the feature space induced by kernel K. This generative
model provides a statistical basis for developing a Bayesian inference approach for learning
the kernel matrix. Motivated by this idea, we seek to pursue this interesting direction in the
current paper. Specifically, we shall present a hierarchical model for the transductive learning
of the kernel matrix and then devise an EM algorithm to infer this model.

2.1. Hierarchical model

Let the training set be T = {(x1, y1), . . . , (xn1 , yn1 )} and test set be T̃ =
{(xn1+1, yn1+1), . . . , (xn1+n2 , yn1+n2 )}, where xi ∈ R

q , yi ∈ {1, 2, . . . , c} for i = 1, . . . , n1

and the yi’s are unavailable for i = n1 + 1, . . . , n1 + n2. Letting n = n2 + n1, we refer to
X = {x1, . . . , xn1 , xn1+1, . . . , xn} and Y = {y1, . . . , yn1 , yn1+1, . . . , yn} as the input set and
output set, respectively. We define a kernel matrix K on (T ∪ T̃ ) × (T ∪ T̃ ) and partition it
as

K =
[

K11 K12

K21 K22

]
, (2)

where K11 and K22 are n1 × n1 and n2 × n2 matrices defined on the training and test sets,
respectively, and K21 = K′

12 is an n2 × n1 matrix characterizing the similarities between the
training and test data.

We assume that K is distributed according to a Wishart distribution, i.e., K ∼ Wn(r,�/r ).
Although it is allowed that either n ≤ r or n > r , we consider the case of n ≤ r < ∞ in this
paper. In other words, we assume K � 0. In this case, we have

p(K | �, r ) = rrn/2

C(n, r )
|�|−r/2|K|(r−n−1)/2 exp

(
− r

2
tr(�−1K)

)
, (3)

where � � 0 is an n × n parameter matrix, which is left completely unspecified in the model,
and its uncertainty is incorporated through a higher-level prior in this paper. Since the conju-
gate prior of a Wishart distribution is inverted Wishart, we assume that � is distributed accord-
ing to the inverted Wishart distribution1 IWn(ηr + n + 1, ηr�), where �n×n � 0 is called
the hyperparameter matrix and η > 0 is a hyperparameter. From Theorem 4 in Appendix
A.1, it also follows that C = �−1 is distributed according to Wn(ηr + n + 1, (ηr�)−1), as2

p(C | �, r, η) = (ηr )(ηr+n+1)n/2

C(n, ηr + n + 1)
|�|(ηr+n+1)/2|C|ηr/2exp

(
−ηr

2
tr(�C)

)
. (4)

Like �, we could again define � and η as a random matrix and a positive random variable,
respectively, and then incorporate their uncertainties by some higher-level priors. However,
for simplicity, �and η will be held fixed in this paper. Therefore, our probabilistic model

1 As will be seen later, our choice of K ∼ Wn(r, �/r ) and � ∼ IWn(ηr + n + 1, ηr�) facilitates a simple
iterative estimation procedure for the unknown parameters � and r.
2 It is not too restrictive to set the degree parameter ρ to ηr+ n + 1. Indeed, for any ρ > n, we can write
ρ = ηr + n + 1 where η = (ρ−n−1)/r .
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Fig. 1. A hierarchical model for
transductive learning of the
kernel matrix. Here, © indicates
unknown variables while �
indicates known variables.

is a hierarchical model with three levels. The first (lowest) level corresponds to a random
Wishart matrix K, the second level to the parameter matrix C of the Wishart matrix, and the
third level to the hyperparameter matrix � of the parameter matrix. Our model differs from
existing kernel learning methods in that ours is based on a probabilistic generative model.
Moreover, by using the hierarchical model, the hyperparameter matrix may be regarded as a
regularization term to avoid the overfitting problem (Ong, Smola, & Williamson, 2003).

The observed data set provides a particular realization of K. With an abuse of notation,
we will denote this realization again by K. Note that only the K11 part of K in (2) is available,
while both K21 and K22 are missing. Hence, K represents the partially observed kernel matrix.
We will formulate this as a missing data problem and then apply the EM algorithm. In other
words, the incomplete (observable) data is K11, the complete data is {K11, K21, K22},
and the goal is to infer the missing data {K21, K22} and the unknown model parameters
{C, r}.

As for K in (2), �, C and � are similarly partitioned as

� =
[

�11 �12

�21 �22

]
, C =

[
C11 C12

C21 C22

]
, � =

[
�11 �12

�21 �22

]
. (5)

Recall that K � 0 if and only if K11 � 0 and K22·1 � 0 (Horn & Johnson, 1985), where
K22·1 = K22 − K21K−1

11 K12 is the Schur complement of K11. We take {K11, K21, K22·1}
instead as the complete data to ensure that K is always positive definite. Moreover, we will
use {C11·2, C21, C22}, where C11·2 = C11 − C12C−1

22 C21, instead of C in our EM algorithm
given in Section 2.33. We will see that this representation can make the implementation of
the EM algorithm simpler. Figure 1 shows a graphical model representing the hierarchical
model for transductive learning of the kernel matrix.

3 Alternatively, we often use {C11·2, C2|1, C22}, where C2|1 = C−1
22 C21, which is based on the Bartlett decom-

position

[
C11·2 + C′

2|1C22C2|1 C′
2|1C22

C22C2|1 C22

]
of C. Moreover, we shall interchangeably employ either of C,

{C11·2, C21, C22} and {C11·2, C2|1, C22}, depending upon the context.
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2.2. Likelihood and inference

First of all, we give a lemma that will be useful in our later discussions.

Lemma 1. With C = �−1 as partitioned in (5), we have C11 = �−1
11·2, C−1

11 C12 =
−�12�

−1
22 , C22 = �−1

22·1 and C−1
22 C21 = −�21�

−1
11 .

From this lemma and Theorem 3 in Appendix A.1, we immediately have

Corollary 1. Assume K ∼ Wn(r, �/r ). Then
(i)

K11 ∼ Wn1 (r, (rC11·2)−1),

K21 | K11 ∼ N (−C2|1K11, (rC22)−1 ⊗ K11),

K22·1 ∼ Wn2 (r − n1, (rC22)−1) is independent of K11 and K21;

(ii)

E(K21 | K11) = −C2|1K11, E(K22·1) = r−n1

r
C−1

22·1.

As mentioned above, {K11, K21, K22·1} will be used as the complete data and hence
we have to first obtain its density function from p(K) = p(K11, K21, K22). This involves a
standard transformation of variables: K22·1 = K22 − K21K−1

11 K12, B21 = K21 and B11 = K11.
Now, (dK) = (dK11) ∧ (dK21) ∧ (dK22).4 Since the Jacobian determinant involved is unity,
we have

(dK11) ∧ (dK21) ∧ (dK22) = (dB11) ∧ (dB21) ∧ (dK22·1).

Thus, p(K) = p(K11, K21, K22) = p(K11, K21, K22·1). This then follows from Corollary 1
that the log likelihood function L(C| K, r) of the complete data is

L(C | K, r ) = log p(K22·1) + log p(K11) + log p(K21|K11)

= r−n−1

2
log |K11| + r−n−1

2
log |K22·1| + r

2
log |C11·2| + r

2
log |C22|

− r

2
tr(C11·2K11) − r

2
tr(C12C−1

22 C21K11) − r tr(C12K21)

− r

2
tr(C22K22·1) − r

2
tr(C22K21K−1

11 K12) − log C(n, r ) + rn

2
log r. (6)

If we knew the complete matrix K, it would be easy to determine the parameter matrix
C by maximizing the (log) likelihood function. Similarly, if we knew the parameter matrix
C, we could determine the matrices K21 and K22·1. The problem is that we know neither.

4 Here, we use the wedge product or exterior product. Definition 6 in Appendix A.2 gives a brief introduction.
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However, by treating this as a missing data problem with complete data K, observed data
K11, and missing data K21 and K22·1, we can make use of the EM algorithm (Dempster,
Laird, & Rubin, 1977) to alternate estimations of {K21, K22·1} and {C11·2, C21, C22, r}.

2.3. Learning with the EM algorithm

The EM algorithm consists of an E-step and an M-step. The E-step calculates the expecta-
tion of the complete data log-likelihood (with respect to the missing data) and the M-step
maximizes this expectation with respect to the model parameters. With the availability of a
prior distribution on the parameters, the EM algorithm can also be used to obtain the MAP
estimate. In this Section, our EM algorithm will work in such a MAP setting. Thus, the EM
algorithm computes the posterior estimates of the model parameters in two steps: Given the
tth estimates, C(t) and r(t), of C and r, the E-step computes

Q(C, r | C(t), r (t)) = E[log p(K11, K21, K22·1 | C, r ) | K11, C(t), r (t)],

and the M-step produces the new estimates as

{C(t + 1), r (t + 1)} = arg maxQ(C, r | C(t), r (t)) + log p(C | r ).

Using the hierarchical model defined in Section 2.1, these two steps can be shown to be:

E-step: Given K11, C22(t), C2|1(t) and r(t), compute

Q(C, r | C(t), r (t)) = r

2
log |C11·2| − r

2
tr(C11·2K11) + r tr

(
C12C2|1(t)K11

)

− r

2
tr
(
C12C−1

22 C21K11
) − r

2
tr
(
C22C−1

22 (t)
) + r

2
log |C22|

− r

2
tr
(
C22C2|1(t)K11C′

2|1(t)
)

(7)

+ r − n − 1

2


n2 log

2

r (t)
+

n2−1∑
j=0

�

(
r (t) − n1 − j

2

)
− log |C22(t)|




+rn

2
log r − log C(n, r ) + r − n − 1

2
log |K11|.

Here C2|1(t) = C−1
22 (t)C21(t) and �(z) = �′(z)/�(z) is the digamma function.

M-step: Calculate

B = (K11 + η�11)−1

and

C11·2 = (1 + η)B, (8)
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and perform the following two sub-steps:

(i) Given C22(t), C2|1(t) and r(t), compute

C2|1(t+1) = (C2|1(t)K11 − η�21)B, (9)

C−1
22 (t+1) = 1

1 + η

(
C−1

22 (t) + η�22 + C2|1(t)K11C′
2|1(t)

− C2|1(t+1)(K11 + η�11)C′
2|1(t + 1)

)
.

(ii) Given r(t) and C(t + 1), the (t + 1)th estimate of r can be obtained by solving

Q1(C(t + 1)|C(t)) + d Q2(r |C(t), r (t))

dr
= 0, (10)

where

Q1(C | C(t)) = (1 + η) log |C11·2| − tr
(
C11·2(K11 + η�11)

)

+ 2tr
(
C12

(
C2|1(t)K11 − η�21

))

− tr
(
C12C−1

22 C21(K11 + η�11)
) − tr

(
C22

(
C−1

22 (t) + η�22
))

+ (1 + η) log |C22| − tr
(
C22C2|1(t)K11C′

2|1(t)
)
, (11)

Q2(r | C(t), r (t))

= (r − n − 1)


n2 log

2

r (t)
+

n2−1∑
j=0

�

(
r (t) − n1 − j

2

)
− log |C22(t) |




+ rn log r − 2 log C(n, r ) + (r − n − 1) log | K11 | (12)

+ (ηr + n + 1) n log(ηr ) − 2 log C(n, ηr + n + 1) + (ηr + n + 1) log |�|.

In Appendix B, we show the detailed derivation of the above E-step and the first part of
the M-step. From (8), we can see that C11·2 depends only on K11 and �11, and so it can be
computed a priori because K11 and �11 are known. Moreover, instead of C21, we estimate
C−1

22 C21 directly. This makes the M-step more efficient. On the other hand, it is easy to see
that C11·2 � 0 and it is proved in Appendix B.3 that C22(t + 1) is also positive definite.
Thus, C(t + 1) is positive definite. For the second part of the M-step, we have the following
theorem, whose proof is given in Appendix B.4.

Theorem 2. Assume that Q1(C | C(t)) and Q2(r | C(t), r (t)) are as defined in (11) and
(12), respectively. Given C(t +1) in (9), the solution of (10) exists and is unique.

Since it is based on the standard EM algorithm, it inherits its convergence property
directly from (Dempster, Laird, & Rubin, 1977). It is worthy to note that the update of
C is independent of r. In many cases, such as those in Section 3, it is not necessary to
obtain an estimate of r, and so the update of r in M-step(ii) need not be performed. Since
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M-step(i) involves only C−1
22 but not C22, the computational cost can be significantly reduced

by avoiding matrix inversion at each iteration if the update is performed using C−1
22 directly

(instead of C22).
After the algorithm has converged, then, depending upon the problem at hand, we can

immediately compute

K22·1 = r − n1

r
C−1

22 , K21 = −C2|1K11, K22 = K22·1 + C2|1K11C′
2|1 (13)

using Corollary 1(ii), and from Lemma 1,

�11 = K11 + η�11

1 + η
, �21 = −C2|1�11, �22 = C−1

22 + C2|1�11C′
2|1. (14)

3. Applications in semi-supervised learning

Given K11 and �, we can now estimate the missing parts K21 and K22 from the EM algorithm.
Transductive learning seeks to transfer the intrinsic attributes of K11 to K21 and K22 via the
parameter kernel � with hyperparameter kernel �. The principal clue of transductive learning
is the consistency assumption (Zhou et al., 2004), namely that a classification function
should be sufficiently smooth with respect to the structure revealed by the training and test
data.

In general, definitions of both the incomplete kernel matrix K11 and the hyperparameter
matrix � depend on the problem being considered and the prior knowledge available. While
the kernel matrix learning framework presented above is not limited to the classification
problem, the focus of this paper is the application of our model-based transductive learning
framework to the semi-supervised learning problem by incorporating unlabeled data into
labeled data for training the classifier. In particular, we will use K11 to capture class label
information from the training data, so that after learning, we can obtain the kernel matrix
K22, which then contains class label information on the test set, and K21, which measures
the similarity between class labels on the training and test data. By using different settings
on the kernel matrix K11, we present two methods for semi-supervised learning. In the first
method, K is defined as a kernel matrix over the output data set Y , while in the second
method, K is defined as a kernel matrix over the joint set (X × Y ) of the input data set X
and the output data set Y . In both methods, the hyperparameter matrix � is defined as a
kernel matrix over the input data set X . We can select any kernel defined over X for �. In
particular, we use a Gaussian kernel for � in our experiments. Now we can apply K11 and �

to our kernel learning framework, giving the estimates of K22 and K21, which can be used
for classification.

3.1. A classifier using Wishart processes

Here, we follow the same notations in Section 2, and each input vector is assumed to belong
to only one class. The first classification method is inspired by Theorem 1. Assume that the
target kernel matrix K is defined on the output set Y = {y1, . . . , yn1 , yn1+1, . . . , yn} where
yi = j ∈ {1, · · · , c} if the ith input vector belongs to the jth class. If K ∼ Wn(r,�/r ), then,
according to Theorem 1, there exists a functional vector F : Y → R

r . Our point of departure
is to directly present an explicit form of the function F(y) = (F1(y), F2(y), . . . , Fr (y))′,
where r = n + 1. It is obvious that c ≤ r since c ≤ n. First, we define r auxiliary functions
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as,

ψ j (y) =




α j = y,

γ j �= y and j ≤ c,

0 otherwise

j = 1, . . . , r

for y ∈ Y , where, α, γ ∈ (0, 1) and α � γ are constants pre-specified by the user. For the
experiments in Section 5, we will use α = 0.98 and γ = 0.01. Another effective choice for
ψ is

ψ j (y) =




c−1
c j = y,

− 1
c j �= y and j ≤ c,

0 otherwise.

j = 1, . . . , r

Letting ψ̄(y) = 1
r

∑r
j=1 ψ j (y), we thus define

Fj (y) = ψ j (y) − ψ̄(y), j = 1, . . . , r.

For clarity, we again write out F defined in (1) as

F =




F1(y1) F2(y1) . . . Fr (y1)

...
...

. . .
...

F1(yn1 ) F2(yn1 ) . . . Fr (yn1 )

F1(y(n1+1)) F2(y(n1+1)) . . . Fr (y(n1+1))

...
...

. . .
...

F1(yn) F2(yn) . . . Fr (yn)




.

Furthermore, for simplicity of notation, we denote fi = ( fi1, . . . , fir ) as its ith row
vector, and also f( j) = ( f1 j , . . . , fn1 j , f(n1+1) j , . . . , fnj )′ as its jth column vector, where
fi j = Fj (yi ). Let a( j) = ( f1 j , . . . , fn1 j )′ and b( j) = ( f(n1+1) j , . . . , fnj )′ ( j = 1, . . . , r ). Then
f( j) = ((a( j))′, (b( j))′)′ ( j = 1, . . . , r ). Clearly, for i = 1, . . . , n1, the fi ’s are available, while
for i = n1 + 1, . . . , n, the fi

′s are missing because the corresponding labels yi’s are unknown.
This gives a partially observed realization of f( j) for j = 1, . . . , r , i.e., a(j) is available while
b(j) is missing. Moreover, we are given a realization of K11 on the output part of the training
set,

K11 =




f1
...

fn1


(

f′
1, . . . , f′

n1

) + εIn1 , (15)

where In1 is the n1 × n1 identity matrix and ε is a small amount of jitter (e.g., ε = 0.0001)
to prevent K11 from becoming singular.

According to Theorem 1, we have f( j)
∼ N (0,�) ( j = 1, . . . , r ). This results in

b( j)
∼ N (�21�

−1
11 a( j),�22·1), conditioned on a(j). Recall that �21�

−1
11 = −C−1

22 C21 and
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Fig. 2. A classifier using Wishart processes.

C−1
22 = �22·1, then b( j) | a( j)

∼ N (−C−1
22 C21a( j), C−1

22 ). This leads us to a classification
method, which is summarized in Fig. 2. Here, since r = n + 1 is pre-specified, there is
no need to use EM to estimate r. Thus, the current M-step reduces to M-step(i) given in
Section 2.3.

3.2. Kernel transductive discriminant analysis

The second semi-supervised learning method is motivated by a distance-based classifier
using the discriminant kernel (Zhang, 2003). We use the Gaussian kernel matrix on X × X
as the n × n hyperparameter matrix � and the discriminant kernel on I × I to define the
n1 × n1 target kernel matrix K11. In other words, its (k, l)th element, K((xk, yk), (xl, yl)), is
defined as

K ((xk, yk), (xl , yl )) =



1
2 exp

(
−‖xk−xl‖2

β

)
+ 1

2 yk = yl

1
2 exp

(
−‖xk−xl‖2

β

)
yk �= yl

, k, l = 1, . . . , n1. (16)

Since the discriminant kernel guarantees that all between-class distances must be larger
than all within-class distances, this makes it desirable for distance-based classification or
clustering methods. The discriminant kernel K employs information from both the input
vector x and its associated label y. So the nonlinear mapping, which induces K, should
also be a joint function of x and y, and we will denote it by F(x, y). After obtaining the
complete kernel K, we use a distance-based classification method that utilizes the prop-
erty of the discriminant kernel. Assume that Nj points in the training set belong to the
jth class Cj, and the class mean of C j (in the feature space) is m j = 1

N j

∑
xi ∈C j

F(xi , yi ).

We then assign point x to Ci if ‖F(x, y) − mi‖2 ≤ ‖F(x, y) − m j‖2 for all j �= i,
where

‖F(x, y) − mi‖2 = F(x, y)′ F(x, y) + m′
i mi − 2F(x, y)′mi

= 1 + 1

N 2
i

∑
x j ,xl∈Ci

K ((x j , y j ), (xl , yl )) − 2

Ni

∑
x j ∈Ci

K ((x, y), (x j , y j )).(17)

Here, K(·, ·) is the corresponding element of the target kernel K. As can be seen from
(17), this classification method works with K11 and K21, and from (13), we have K21 =
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Fig. 3. Kernel transductive discriminant analysis.

−C2|1K11. Therefore, the classification method is independent of r. In other words, we can
drop M-step(ii) for updating r. The proposed procedure is summarized in Fig. 3. Clearly,
this classification method is a nearest mean classifier with the target kernel. We also note
that our classifier is similar to kernel FDA. Both are motivated by the Fisher discriminant
criterion, and seek to obtain discriminant feature vectors such that between-class distances
are larger than within-class distances. However, the procedures for achieving this goal are
different. By employing joint information from both the input and output spaces, we first
define an inner product over the training set such that the distance induced by the inner
product satisfies the Fisher criterion, and then seek to transfer this distance measure to the
test set through transductive learning. Kernel FDA, on the other hand, tries to find maximally
separable feature vectors by optimizing the Fisher discriminant criterion using spectral
decomposition.

4. EM algorithm for kernel matrix completion

In practical applications, it is possible that the observed data are available only for a subset of
samples. Thus, when we work with a kernel matrix derived from such data, we are required
to first complete the missing entries in this kernel matrix (Graepel, 2002; Tsuda, Akaho, &
Asai, 2003; Kin et al., 1954; Smola, Vishwanathan, & Hoffman, 2004). Specifically, given

an incomplete kernel matrix K, we partition it as K =
[

K11 K12

K21 K22

]
where K11 is available,

and K12 (= K′
21) and K22 are missing. Then, our goal is to complete K12 and K22. This

so-called kernel matrix completion problem can be regarded as a special case of kernel
matrix learning and can be included under the transductive learning framework of the kernel
matrix. A common approach to restoring K12 and K22 is through use of an auxiliary kernel
matrix.

Recently, Tsuda et al. (2003) devised an em algorithm for this problem. Moreover, they
also described an EM formulation, where the E- and M-steps are equivalent to the e- and
m-steps, respectively. However, the model in (Tsuda, Akaho, & Asai, 2003) does not have
any observed data nor does it use any prior distribution of the missing data {K12, K22}. It is
necessary to assign a prior for the missing data to compute the expectation of the missing data
in the E-step. Thus, it is not really clear how to perform this EM algorithm (Tsuda, Akaho, &
Asai, 2003). In this Section, by assigning a Wishart process prior to the kernel matrix K, we
demonstrate a rigorous derivation of the EM algorithm. First, if we let the auxiliary matrix to
be the parameter matrix � of our model in Fig. 1, which is associated with the hyperparameter
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matrix �, then our model and the EM algorithm devised in Section 2.3 can be easily used
for this problem.

Now along the line in (Tsuda, Akaho, & Asai, 2003), the auxiliary matrix �

is defined as � = ∑n
i=1 λiµiµ

′
i with λi > 0. Denote U = [µ1,µ2, . . . ,µn]′ and � =

diag(λ1, λ2, . . . , λn). Here, U is assumed to be known, while � is unknown and has to
be estimated. Usually, µiµ

′
i ’s are also called the base kernel matrices (Cristianini et al.,

2002; Lanckriet et at., 2004; Crammer, Keshet, & Singer, 2003). Thus, we seek to use a
weighted combination of these fixed base matrices to approximate K. Consequently, the
problem is to estimate the weighting coefficients λi’s and the missing data {K12, K22}. As in
Section 2.1, we assume that the kernel matrix K is distributed according to a Wishart distri-
bution Wn(r,�/r ). Similar to Section 2.1, we formulate it as a missing data problem where
{K11, K21, K22·1} represents the complete data, K11 represents the (incomplete) observed
data, and {�, r} represents the unknown parameters. Denote C = �−1 = ∑n

i=1 λ−1
i µiµ

′
i

and partition µi as µ′
i = (a′

i , b′
i ), where ai and bi are n1- and n2-dimensional vectors, re-

spectively. Then C11 = ∑n
i=1 λ−1

i ai a′
i , C22 = ∑n

i=1 λ−1
i bi b′

i , and C21 = ∑n
i=1 λ−1

i bi a′
i . The

log-likelihood function L(�, r | K) can be expressed as

L(�, r | K) = rn

2
ln r − ln C(n, r ) + r

2

n∑
i=1

ln λ−1
i + r − n − 1

2
ln |K| − r

2

n∑
i=1

λ−1
i µ′

i Kµi

= rn

2
ln r − ln C(n, r ) + r

2

n∑
i=1

ln λ−1
i + r − n − 1

2

(
ln |K11| + ln |K22·1|

)

− r

2

n∑
i=1

λ−1
i

(
a′

i K11 ai + 2b′
i K21 ai + b′

i K22·1 bi + b′
i K21 K−1

11 K′
21 bi

)
. (18)

From (18) and the relation (Lutkepohl, 1996)

b′
i K21K−1

11 K′
21bi = (vec(K′

21))′(bi b′
i ⊗ K−1

11 )vec(K′
21),

we have {ln |K22·1|, K22·1, K21, vec(K′
21)(vec(K′

21))′} as complete-data sufficient statistic for
{�, r}. Given the tth estimates, �(t) and r(t), of � and r, by using the properties of Wishart
distributions and matrix variate normal distributions, we obtain

E
(
ln |K22·1|

∣∣K11,�(t), r (t)
) = n2 ln

2

r (t)
+

n2−1∑
j=0

�

(
r (t) − n1 − j

2

)
− ln |C22(t)|,

E
(
K22·1

∣∣K11,�(t), r (t)
) = r (t) − n1

r (t)
C−1

22 (t),

E
(
K21

∣∣K11,�(t), r (t)
) = −C−1

22 (t)C21(t)K11,

E
(
vec(K′

21)(vec(K′
21))′

∣∣K11,�(t), r (t)
)

= (
C−1

22 (t) ⊗ K11
)

vec(C12(t))
(
vec(C12(t))

)′(
C−1

22 (t) ⊗ K11
) + 1

r (t)
C−1

22 (t) ⊗ K11.
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Thus, for the E-step, we obtain the expectation of L(�, r |K) w.r.t. p(K22·1, K21

∣∣K11,

�(t), r (t)) as

Q(�, r
∣∣�(t), r (t)) = rn

2
ln r − ln C(n, r ) + r

2

n∑
i=1

(
ln λ−1

i − λ−1
i µ′

i D(t)µi

)

+ r − n − 1

2


ln

|K11|
|C22(t)| + n2 ln

2

r (t)
+

n2−1∑
j=0

�

(
r (t) − n1 − j

2

)
 .

Here

D(t) =
[

D11(t) D′
21(t)

D21(t) D22(t)

]
,

where D11(t) = K11 and

D22·1(t) = C−1
22 (t), D21(t) = −C−1

22 (t)C21(t)K11. (19)

The M-step consists of two parts:

(i) To compute the (t + 1)th estimate of λi as

λi (t+1) = µ′
i D(t) µi . (20)

(ii) To compute the (t + 1)th estimate of r by solving the following equation

n ln
r

2
−

n−1∑
j=0

�

(
r − j

2

)
=

n∑
i=1

ln µ′
i D(t) µi − ln |D(t)|

+ n2 ln
r (t)

2
−

n2−1∑
j=0

�

(
r (t) − n1 − j

2

)
. (21)

Since l ln z
2 − ∑l−1

j=0 �( z− j
2 ) is a positive monotonic decreasing function of z for z ≥ l (Chen,

1979), n2 ln r (t)
2 − ∑n2−1

j=0 �( r (t)−n1− j
2 ) is always positive since n2 ln r (t)

2 ≥ n2 ln r (t)−n1
2 . Fur-

thermore, applying Hadamard’s inequality (Lütkepohl, 1996) to the positive definite matrix
UD(t)U′ and considering that µi ’s are mutually orthonormal, we have

|D(t)| = |UD(t)U′| ≤
n∏

i=1

µ′
i D(t) µi .

Namely,
∑n

i=1 ln µ′
i D(t) µi − ln |D(t)| is also nonnegative. Hence the right-hand side of (21)

is always positive. As a result, the solution of (21) is unique and may be obtained numerically
through solving the equation. Essentially, the EM algorithm alternately works with (19), (20)
and (21). Obviously, (19) and (20) correspond to the e- and m-steps, respectively, in the em
algorithm of (Tsuda, Akaho, & Asai, 2003).
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Table 1. Test set accuracies (in %) obtained from the classification experiments (60% for training and 40%
for testing). The highest accuracies are shown in boldface.

Method Breast cancer Ionosphere Sonar Wine

GWPC 95.73 (±0.96) 92.44 (±1.92) 87.60 (±3.85) 96.59 (±1.75)
KTDA 96.00 (±0.95) 94.58 (±1.50) 87.40 (±3.61) 98.04 (±1.41)
KFDA 96.58 (±0.97) 92.34 (±1.99) 83.24 (±3.71) 96.04 (±2.55)
SVM 96.04 (±1.15) 92.06 (±2.08) 83.33 (±3.80) 96.92 (±1.95)
KNM 90.89 (±1.54) 68.58 (±4.55) 77.37 (±5.86) 94.39 (±3.10)
1-NN 95.14 (±1.00) 85.82 (±2.07) 84.18 (±3.77) 95.00 (±2.52)

5. Experiments

In this Section, we present some experiments to illustrate the two classification methods
devised in Section 3. For the sake of easy reference, we refer to the classification methods
in Sections 3.1 and 3.2 as GWPC and KTDA, respectively. In all our experiments, the
initialization of C is C(0) = 0.8�−1 and the maximum number of iterations is set to
100. Once the maximum number of iterations is reached or the difference between the log
likelihoods of two successive iterations is smaller than a threshold value of 0.00001, the EM
algorithm will stop.

5.1. Results on UCI benchmark data sets

First, experiments are performed on four benchmark data sets (Wisconsin breast
cancer, ionosphere, sonar, and wine ) from the UCI Machine Learn-
ing Repository. In our experiments, we compare GWPC and KTDA with ker-
nel FDA (KFDA), SVM, kernel nearest mean classifier (KNM) and 1-NN (i.e., k-
NN with k = 1). The hyperparameter kernel � is based on the Gaussian ker-
nel. KNM allocates a data point x to Ci if ‖Fh(x) − ui‖2 ≤ ‖Fh(x) − u j‖2, for all
j �= i , where

‖Fh(x) − ui‖2 = Kh(x, x) + 1

N 2
i

∑
x j ,xl∈Ci

Kh(x j , xl ) − 2

Ni

∑
x j ∈Ci

Kh(x, x j ), (22)

with u j = 1
N j

∑
xi ∈C j

Fh(xi ), and Fh(·) and Kh(·, ·) are the nonlinear mapping and kernel
function, respectively, corresponding to �.

Experiments on these classifiers are performed with the same setting. Specifically, we
set β = 18.5 for the Wisconsin breast cancer and sonar data sets, and β =
2.5 for the ionosphere and wine data sets. In addition, we use the public Matlab
package SVMlight to implement SVM, where the regularization parameter C is set to 300
for all four data sets. Results are averaged over 100 random splits of the data, one with
60% for training and 40% for testing, and another with 10% for training and 90% for
testing.

Tables 1–2 and Figs. 4–5 show the results. The standard deviations with respect to 100
random splits are also given inside brackets. As can be seen, the classification accuracies of
GWPC, KTDA, KFDA and SVM are almost the same. Moreover, they always outperform

Springer



86 Mach Learn (2006) 63: 69–101

Table 2. Test set accuracies (in %) obtained from the classification experiments (10% for training and 90%
for testing). The highest accuracies are shown in boldface.

Method Breast cancer Ionosphere Sonar Wine

GWPC 94.58 (±1.42) 85.58 (±5.63) 70.45 (±4.73) 93.79 (±2.14)
KTDA 94.47 (±1.47) 87.56 (±5.73) 70.22 (±4.59) 94.59 (±2.00)
KFDA 93.30 (±1.82) 77.06 (±10.12) 67.07 (±5.55) 85.37 (±7.83)
SVM 93.35 (±2.05) 77.37 (±10.00) 67.07 (±5.50) 92.59 (±3.29)
KNM 90.89 (±1.51) 76.99 (±7.78) 65.63 (±5.81) 87.22 (±5.32)
1-NN 92.94 (±1.59) 81.14 (±4.27) 69.18 (±4.60) 91.71 (±3.00)
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Fig. 4. Box plots of the classification results for GWPC, KTDA, KFDA, SVM, KNM and 1-NN (60% for
training and 40% for testing).
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Fig. 5. Box plots of the classification results for GWPC, KTDA, KFDA, SVM, KNM and 1-NN (10% for
training and 90% for testing).

KNM because they all utilize class label information from the training data during training but
KNM does not. However, compared with KFDA and SVM, GWPC and KTDA are relatively
insensitive to the training set size. Moreover, we find that KTDA generally outperforms
GWPC, though we think that GWPC can be improved significantly by incorporating active
learning.

As mentioned in Section 3.2, it is unnecessary to perform M-step(ii) for updating r
in KTDA. However, in order to illustrate the dimensionality of the learned feature space,
we also implement M-step(ii) in our experiments, where we initialize r = n + 1. Since
η = (ρ−n−1)/r and ρ > n, one better choice for η is that η ∈ [0, 1]. In order to study
the effect of η on r, we try both η = 1.0 and η = 0.5 in the experiments. For each of the
100 random data splits, r converges to a fixed point. As an illustrative example, we take
one of the splits to demonstrate the convergence of r (Fig. 6). After the EM algorithm has
converged, the average estimated values of r in the 100 random data splits for different
values of n1 (number of training examples) and η are shown in Table 3, showing that the
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feature spaces are indeed of very high dimensionality. We find that for η = 1.0 and η =
0.5, the classification accuracy is insensitive, so we only report the classification results with
η = 0.5. As can be seen, with a decrease in n1 or η, the value of r increases. When
n1 gets smaller, the known part K11 of the kernel matrix becomes smaller. As a re-
sult, information from the hyperparameter matrix �, which is defined via the Gaussian
kernel, will dominate. We know that the dimensionality of the feature space induced
by the Gaussian kernel is infinite. This probably explains why r increases as a re-
sult. As for the relationships between r and η, recall that C is distributed according to
Wn(ηr + n + 1, (ηr�)−1) in our graphical model. Thus, there exists a tradeoff between
r and η.

Fig. 6. Change of estimated value of r with the number of learning iterations for different settings.
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Table 3. Average estimated values of r in the four benchmark data sets.

# training examples (n1)
in terms of data set size n

η breast cancer
(n = 569)

ionosphere
(n = 351)

sonar
(n = 208)

wine
(n = 178)

1.0 6,761 (±7) 3,040 (±10) 1,723 (±5) 1,502 (±8)
0.6 n 0.5 7,366 (±7) 4,407 (±13) 2,521 (±5) 2,187 (±7)

1.0 19,015 (±159) 11,447 (±226) 6,569 (±128) 6,445 (±195)
0.1 n 0.5 28,118 (±195) 16,997 (±226) 9,796 (±155) 9,422 (±223)

Table 4. Average test set accuracies obtained from the classification experiments on the USPS database.
The highest accuracies are shown in boldface.

# training
examples GWPC KTDA KFDA SVM KNM 1-NN

10% 97.74 97.63 97.59 97.04 94.55 96.58
(± 0.31) (± 0.34) (± 0.36) (± 0.49) (± 0.45) (± 0.37)

1% 93.05 92.45 91.47 90.45 92.08 88.98
(± 1.27) (± 1.36) (± 3.83) (± 1.65) (± 1.30) (± 1.75)

5.2. Results on USPS digit recognition

In this set of experiments, we use GWPC and KTDA to classify handwritten digits of size
16 × 16 from the USPS database. For simplicity, we only use digits 1, 2, 3 and 4 as four
classes, comprising of 1269, 929, 824 and 852 examples, respectively. We set η = 0.5.
The results are averaged over 100 random splits of the data, one with 10% for training and
90% for testing and the other with 1% for training and 99% for testing. Table 4 shows the
averages and standard deviations of the test set accuracies over 100 random splits of the
data. The corresponding box plots are shown in Fig. 7. Here, the regularization parameter
C in the SVM is set to 300 and β in the Gaussian kernel is set to the average Euclidean
distance between training examples. We see that with decreasing size of the training data
set, both GWPC and KTDA outperform KFDA and SVM. Considering that the USPS data
possesses good local consistency, we implemented the consistency method of Zhou et al.
(2004) for comparison. The method was initialized with the classification result of 1-NN
and ω in it is fixed at 0.95. When we used the value of β reported above, the classification
accuracy of the consistency method (Zhou et al., 2004) is very low (< 50%). We found
that the β in this method prefers smaller values. Thus, we used β = 10. In this case,
the consistency method obtained better accuracy, which is given in Table 5. However, the
classification accuracies of SVM and KFDA are very low (< 60%). Both GWPC and KTDA,
whose accuracies are given in Table 5, are only slightly affected by changes in the value
of β.

6. Conclusion

In this paper, we have proposed a model-based approach for transductive learning of the ker-
nel matrix. Formulated as a missing value problem, we devise an EM algorithm for learning
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(a) 10% for training data (b) 1% for training data

Fig. 7. Box plots of the classification results for GWPC, KTDA, KFDA, SVM, KNM and 1-NN on the
USPS database.

Table 5. Average test set accuracies obtained from the classification experiments on the USPS database
when β = 10. The highest accuracies are shown in boldface.

# training examples GWPC KTDA Consistency method

10% 96.73 (± 0.29) 96.61 (± 0.42) 98.04 (± 0.29)
1% 90.84 (± 1.32) 90.44 (± 1.38) 96.17 (± 1.27)

the missing entries of the kernel matrix and the unknown parameters of the underlying
distribution. We have demonstrated the efficacy of this approach by proposing two semi-
supervised learning methods. In particular, we have studied our hierarchical transductive
learning framework with the EM algorithm under the classification setting. In another work
(Zhang et al., 2004), based on this same framework, we also devised the Tanner-Wong
data augmentation algorithm (Tanner and Wong, 1987) which is a variant of MCMC. It is
also possible to apply the framework to regression problems with Gaussian processes. This
direction will be pursued in our future work.

Recall that in most existing kernel-based methods, only the kernel on the input set is
used. However, in our first method, the target kernel K and the hyperparameter kernel � are
defined on the output set and input set, respectively. Their relationship is established through
the parameter matrix � (or C). So the parameter matrix plays a role similar to the cross-
covariance kernel (Baker, 1973). In the second method, since the discriminant kernel K is
the direct sum of the ideal kernel (Cristianini et al., 2002) on the output set and the Gaussian
kernel on the input set, it can also be regarded as a cross-covariance kernel that relates the
input space with the output space. In fact, our proposed methods for semi-supervised learning
consist of two separate processes: the first explores the mutual relationship between kernels
on the input and output sets through a hierarchical model, and the second implements the
classification task with the target kernel or discriminant kernel.
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A. Matrix theory

A.1 Matrix variate distributions

In the following, we will briefly introduce the concept of random matrices and some common
matrix variate distributions. Interested readers are referred to (Gupta and Nagar, 2000) for
more details.

Definition 2 An m × n random matrix X = [xij] is a matrix of random variables x11, . . .,
xmn.

Obviously, random vectors and random variables are special cases of random matrices.
Analogous to random vectors and random variables, random matrices also follow some
distributions, called matrix variate distributions, with common examples including the nor-
mal, Wishart, and inverted Wishart distributions.

Definition 3. An s × t random matrix X is said to follow the matrix variate normal distri-
bution with mean matrix M and covariance matrix A ⊗ B (denoted X ∼ Ns,t (M, A ⊗ B)),
where A(s × s) � 0 and B(t × t) � 0, if vec (X′) ∼ N (vec(M′), A ⊗ B). The corresponding
p.d.f. is

p(X) = (2π)−st/2|A|−t/2|B|−s/2 exp

[
−1

2
tr
(
A−1(X − M)B−1(X − M)′

)]
.

Definition 4. An m × m symmetric positive definite random matrix W is said to follow the
Wishart distribution (denoted W∼ Wm(ρ, S)), if

p(W) = 1

C(m, ρ)
|S|−ρ/2|W|(ρ−m−1)/2 exp

(
−1

2
tr(S−1W)

)
.

Here, ρ ≥ m is the degree of freedom, S(m × m) � 0 is the parameter matrix, and
C(m, ρ) = 2ρm/2πm(m−1)/4 · ∏m

j=1 �( ρ+1− j
2 ) is a normalization term with �(·) being the

Gamma function.

Definition 5. An m × m symmetric positive definite random matrix V is said to follow the
inverted Wishart distribution (denoted V ∼ IWm(ρ, T)) if

p(V) = 1

C(m, ρ)
|T|ρ/2|V|−(ρ+m+1)/2 exp

(
−1

2
tr (TV−1)

)
.

Some properties of these distributions are given in the subsequent part. In particular, the
first moments of W ∼ Wm(ρ, S) and V ∼ IWm(ρ, T) are E(W) = ρS and E(V) = T/(ρ −
m − 1), respectively.

Proposition 1

(1) If X ∼ Ns,t (M, A ⊗ B), then

E(X) = M,

E
(
(X − M)(X − M)′

) = A ⊗ B.
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(2) If W ∼ Wm(ρ, S), then

E (log |W|) = log |S| + m log 2 +
m−1∑
j=0

�

(
ρ − j

2

)
.

Here, E(·) denotes the expectation and �(z) = �′(z)/�(z) is the digamma function.

Proof. The moments of X are given in (Gupta and Nagar, 2000). To obtain E(log |W|),
consider

∫
|S|−ρ/2|W|(ρ−m−1)/2exp

(
−1

2
tr (S−1W)

)
(dW) = C(m, ρ),

and take the derivatives of both sides with respect to ρ:

1

2

∫
(log |W| − log |S|)|S|−ρ/2|W|(ρ−m−1)/2exp

(
−1

2
tr (S−1W)

)
(dW) = C ′(m, ρ).

Take log of C(m, ρ) as

log C(m, ρ) = ρm

2
log 2 + m(m−1)

4
log π +

m−1∑
j=0

log �

(
ρ− j

2

)
.

Then take the derivative of log C(m, ρ) with respect to ρ:

C ′(m, ρ)

C(m, ρ)
= m

2
log 2 + 1

2

m−1∑
j=0

�′
(

ρ− j
2

)

�
(

ρ− j
2

) = m

2
log 2 + 1

2

m−1∑
j=0

�

(
ρ− j

2

)
.

Thus,

E (log |W|) =
∫

log |W|p(W)(dW) = log |S| + m log 2 +
m−1∑
j=0

�

(
ρ − j

2

)
.

�

The following results, which can be found in (Gupta and Nagar, 2000), follow easily from
the definitions.

Theorem 3. Suppose W � 0 and W ∼ Wm(ρ, S). Partition W and S as

[
W11 W12

W21 W22

]

and

[
S11 S12

S21 S22

]
respectively, where W11 and S11 are of size k × k. Let W22·1 =
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W22 − W21W−1
11 W12 and S22·1 = S22 − S21S−1

11 S12 be the Schur complements of W11 and
S11, respectively. Then

(i) W11 ∼ Wk(ρ, S11) and W22 ∼ Wm−k(ρ, S22);
(ii) W21 | W11 ∼ N (S21S−1

11 W11, S22·1 ⊗ W11); and
(iii) W22·1 ∼ Wm−k(ρ − k, S22·1) and is independent of W21 and W11.

Theorem 4. If W ∼ Wm(ρ, S), then W−1
∼ IWm(ρ, S−1).

A.2 Wedge product and matrix differentials

For any matrix X, we denote the matrix of differentials (dxi j ) by dX.

Definition 6. For an arbitrary m × n matrix X, (dX) denotes the wedge product (or exterior
product) of all mn elements of dX:

(dX) ≡ dx11∧ · · · ∧ dx1n ∧ · · · ∧ dxm1 ∧ · · · ∧ dxmn .

If X is a symmetric m × m matrix, (dX) is the wedge product of the 1
2 m(m + 1) distinct

elements of dX:

(dX) ≡ dx11 ∧ · · · ∧ dx1m ∧ dx22 ∧ · · · ∧ dx2m ∧ · · · ∧ dxmm .

We list below some results of matrix calculus that will be used in the sequel.

Proposition 2

(a) If X and A are p × q and q × p, then

∂tr (XA)

∂X
= A′;

(b) If X, A and B are p × q, q × q and p × p, then

∂tr (AX′BX)

∂X
= BXA + B′XA′;

(c) If X is a p × p symmetric positive definite matrix, then

∂ log | X |
∂X

= 2X−1 − diag(X−1),

∂tr (XA)

∂X
= A + A′ − diag(A);

(d) If X is a p × p symmetric positive definite matrix and A and B are q × p and p × q,
then

∂tr (AX−1B)

∂X
= −X−1(BA + A′B′)X−1 + diag(X−1BAX−1).
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Proof. Here we only prove (d). As I = XX−1, we have

0 = ∂I/∂x = ∂/∂x(XX−1) = ∂/∂x(X)X−1 + X∂/∂x(X−1).

If i �= j , since X is symmetric, then ∂X/∂xi j = ei e′
j + e j e′

i , where ei is the ith column of I.
It then follows that ∂/∂xi j (X−1) = −X−1(ei e′

j + e j e′
i )X

−1. Thus,

∂/∂xi j (tr (Ax−1B)) = −tr
(
Ax−1(ei e′

j + e j e′
i )X

−1B
)

= −tr
(
AX−1ei e′

j X
−1B

) − tr
(
AX−1e j e′

i X
−1B

)

= −e′
j X

−1BAX−1ei − e′
i X

−1BAX−1e j

= −(X−1BAX−1) j i − (X−1BAX−1)i j

= −(X−1A′B′X−1)i j − (X−1BAX−1)i j .

On the other hand, as ∂X/∂xii = ei e′
i , thus

∂/∂xii (tr(AX−1B)) = −(X−1A′B′X−1)i i .

Result follows from combining the two. �

A.3 The kronecker product of matrices

Definition 7. Let A = (ai j ) be a p × q matrix and B = (bi j ) be an s × t matrix. The
Kronecker product of A and B, denoted by A ⊗ B, is the ps × qt matrix

A ⊗ B =




a11B a12B . . . a1qB

a21B a22B . . . a2qB
...

...
. . .

...

ap1B ap2B . . . apqB




.

Some important properties of the Kronecker product are listed in the following.

Proposition 3

(a) (A ⊗ B)′ = A′ ⊗ B′.
(b) If A and B are both n × n, then tr(A ⊗ B) = tr(A)tr(B).
(c) If A and B are both n × n, then |A ⊗ B| = |A|n · |B|n.
(d) If A is k × l, B is p × q, X is l × s and Y is q × t , then (A ⊗ B)(X ⊗ Y) =

AX ⊗ BY.
(e) If A and B are nonsingular, then (A ⊗ B)−1 = A−1 ⊗ B−1.

The following proposition (Horn and Johnson, 1991) shows the connection between
Kronecker product and the vec of a matrix.
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Proposition 4 If A is t × k, X is k × l, B is l × s, Y is l × l and D is l × t, then

(i) vec(AXB) = (B′ ⊗ A)vec(X)
(ii) tr(AXD) = (vec(A′))′(I ⊗ X)vec(D)

(iii) tr(AXYX′D) = (vec(X′))′(DA ⊗ Y′)vec(X′) = (vec(X′))′(A′D′ ⊗ Y)vec(X′)

A.4 Proof of Lemma 1

Lemma 2 With C = ∑−1 as partitioned in (5), we have C11 = �−1
11·2, C−1

11 C12 = −�12�
−1
22 ,

C22 = �−1
22·1 and C−1

22 C21 = −�21�
−1
11 .

Proof. As

� · C =
[

�11 �12

�21 �22

]
·
[

C11 C12

C21 C22

]
= I,

we have




�11C11 + �12C21 = I,

�11C12 + �12C22 = 0,

�21C11 + �22C21 = 0,

�21C12 + �22C22 = I.

Thus, C21 = −�−1
22 �21C11, C12 = −�−1

11 �12C22, (�11 − �12�
−1
22 �21)C11 = I and (�22 −

�21�
−1
11 �12)C22 = I, and result follows. �

B. Details of the proposed EM algorithm

B.1 Derivation of the E-step

The E-step is equivalent to computing the expectation Q(C, r | C(t), r (t)) of the complete
data log-likelihood function:

Q(C, r | C(t), r (t))

= E
[
log p (K | C, r ) | K11, C(t), r (t)

]

=
∫

L (C, r | K) p(K22·1 | C(t), r (t))p(K21 | K11, C(t), r (t))(dK22·1) ∧ (dK21). (23)

Substituting (6) into (23), we obtain

Q(C, r | C(t), r (t)) = rn

2
log r − log C(n, r ) + r

2
log |C11·2| + r

2
log |C22|

− r

2
tr(C11·2K11) − r

2
tr(C12C−1

22 C21K11) + r − n − 1

2
log |K11|
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+ r − n − 1

2

∫
log |K22·1|p(K22·1 | C(t), r (t))(dK22·1)

− r

2

∫
tr(C22K22·1)p(K22·1 | C(t), r (t))(dK22·1)

− r
∫

tr(C12K21)p(K21 | K11, C(t), r (t))(dK21)

− r

2

∫
tr(C22K21K−1

11 K12)p(K21 | K11, C(t), r (t))(dK21). (24)

Using Corollary 1 and Proposition 1 in Appendix A.1, we have:

∫
tr(C22K22·1)p(K22·1 | C22(t), r (t))(dK22·1) = r (t) − n1

r (t)
tr
(
C22C−1

22 (t)
)
,

∫
log |K22·1|p(K22·1 | C(t), r (t))(dK22·1) = n2 log

2

r (t)
+

n2−1∑
j=0

�

(
r (t) − n1 − j

2

)

− log |C22(t)|,
∫

tr(C12K21)p(K21 | K11, C(t), r (t))(dK21) = −tr
(
C12C2|1(t)K11

)
. (25)

As a result of using the statement “Y is N (M, C ⊗ D)” is equivalent to the statement that
“y is N (m, C ⊗ D)” with y = vec(Y′) and m = vec(M′), we obtain

E (vec(K12)|K11) = −vec
(
K11C12C−1

22

) = − (
C−1

22 ⊗ K11)vec(C12
)
,

E
(
vec(K12)(vec(K12))′|K11

) = (
C−1

22 ⊗ K11
)

vec(C12)(vec(C12))′
(
C−1

22 ⊗ K11
)

+ 1

r
C−1

22 ⊗ K11.

On the other hand,

tr
(
C22K21K−1

11 K12
) = (vec(K12))′

(
IC22 ⊗ K−1

11

)
vec(K12)

= tr
((

C22 ⊗ K−1
11

)
vec(K12)(vec(K12))′

)
.

It then follows from Propositions 3 and 4 in Appendix A.3 that

∫
tr(C22K21K−1

11 K′
21)p(K21 | K11, C(t), r (t))(dK21)

=
∫

tr
(
(C22 ⊗ K−1

11 )vec(K12)(vec(K12))′
)

p (vec(K12) | K11, C(t), r (t)) dvec(K12)

= n1

r (t)
tr
(
C22C−1

22 (t)
) + tr

(
C22C2|1(t)K11C′

2|1(t)
)
. (26)
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So we obtain (7) through substituting (25) and (26) back into (24). It is worthy to note that

{K22·1, log |K22·1|, K21, vec(K′
21)(vec(K′

21))′}

are complete-data sufficient statistic for {C11·2 , C21, C22, r}.

B.2 Derivation of the M-step

After some calculations, we have

log p(C | �, r ) = (ηr + n + 1)n

2
log(ηr ) − log C(n, ηr + n + 1) + ηr + n + 1

2
log |�|

+ηr

2
log |C11·2| − ηr

2
tr(C11·2�11) − ηr

2
tr
(
C12C−1

22 C21�11
)

−ηr tr(C21�12) − ηr

2
tr(C22�22) + ηr

2
log |C22|. (27)

Our M-step is now to maximize Q (C, r | C(t), r (t)) + log p(C | �, r, η) with respect to
C and r, and then obtain C(t + 1) and r(t + 1). Letting F(C, r | C(t), r (t)) = Q(C, r |
C(t), r (t)) + log p(C | �, r ), we reformulate it as

F(C, r | C(t), r (t)) = r

2
Q1(C | C(t)) + 1

2
Q2(r | C(t), r (t)),

where Q1(C | C(t)) and Q2(r | C(t), r (t)) are defined in (11) and (12), respectively. As




∂ F(C,r |C(t),r (t))
∂C = 0

∂ F(C,r |C(t),r (t))
∂r = 0

⇐⇒



∂ Q1(C|C(t))
∂C = 0

∂ Q2(r |C(t),r (t))
∂r + Q1(C | C(t)) = 0,

our M-step can be separated into two parts: first, obtain the (t + 1)th estimate of C by solving
∂ Q1(C|C(t))

∂C = 0; then, obtain the (t + 1)th estimate of r by solving (10). For the first part,
using Proposition 2 in Appendix A.2, we obtain the derivatives of Q1(C | C(t)) with respect
to C11·2, C21 and C22 as

∂ Q1

∂C11·2
= 2(1 + η)C−1

11·2 − (1 + η)diag
(
C−1

11·2
) − 2(K11 + η�11)

+ diag(K11 + η�11),

∂ Q1

∂C21
= 2C−1

22 (t)C21(t)K11 − 2η�21 − 2C−1
22 C21(K11 + η�11),

∂ Q1

∂C22
= 2(1 + η)C−1

22 − (1 + η)diag
(
C−1

22

) − 2
(
C−1

22 (t) + η�22
)

+ diag
(
C−1

22 (t) + η�22
) − 2C−1

22 (t)C21(t)K11C12(t)C−1
22 (t)

+ diag
(
C−1

22 (t)C21(t)K11C12(t)C−1
22 (t)

)
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+ 2C−1
22 C21(K11 + η�11)C12C−1

22

− diag
(
C−1

22 C21(K11 + η�11)C12C−1
22

)
.

As 2A − diag(A) = 0 is equivalent to A = 0, the saddle point equations of F with respect to
C11·2, C21 and C22 are

C11·2 = (1 + η)(K11 + η�11)−1,

C−1
22 C21 = (C−1

22 (t)C21(t)K11 − η�21)(K11 + η�11)−1,

(1 + η)C−1
22 = C−1

22 (t) + η�22 + C−1
22 (t)C21(t)K11C12(t)C−1

22 (t)

−C−1
22 C21(K11 + η�11)C12C−1

22 .

Substituting the second equation into the third equation above, we obtain the M-step in (11).

B.3 Proof of C(t + 1) � 0

Assuming that C(t) � 0, we now proceed to prove that C(t + 1) given in (9) is also positive
definite. Consider the following equality:

C−1
22 (t) + η�22 + C2|1(t)K11C′

2|1(t) − C2|1(t+1)(K11 + η�11)C′
2|1(t+1)

= C−1
22 (t) + η�22 + C2|1(t)K11C′

2|1(t)

−(C2|1(t)K11 − η�21)(K11 + η�11)−1(C2|1(t)K11 − η�21)′

= C−1
22 (t) + η�22 + C−1

22 (t)C21(t)K11C12(t)C−1
22 (t)

−(C−1
22 (t)C21(t)K11 − η�21)(K11 + η�11)−1(K11C12(t)C−1

22 (t) − η�12)

= D22(t) + η�22 − (D21(t) + η�21)(D11(t) + η�11)−1(D12(t) + η�12),

where D11(t) = K11, D21(t) = D′
12(t) = −C−1

22 (t)C21(t)K11 and D22(t) = C−1
22 (t) +

C−1
22 (t)C21(t)K11C12(t)C−1

22 (t). Now we define a new matrix as

D(t) =
[

D11(t) D12(t)

D21(t) D22(t)

]
. (28)

It is easy to obtain D22·1(t) = C−1
22 (t). So we have D(t) � 0 and D(t) + η� � 0. This

then follows that D22(t) + η�22 − (D21(t) + η�21)(D11(t) + η�11)−1(D12(t) + η�12), the
Schur complement of D11(t) + η�11, is positive definite. Therefore, by (9), we
obtain C22(t+1) � 0. Integrating C11·2(t+1) � 0, we have C(t+1) � 0 as long as
C(0) � 0.

B.4 Proof of Theorem 2

Using the matrix D(t) defined in (28), we can re-express Q1(C(t + 1) | C(t)) as

Q1(C(t + 1) | C(t)) = (1 + η) log |C(t + 1)| − tr
(
C(t + 1)(D(t) + η�)

)
,
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and compute

∂ Q2

∂r
= n2 log

2

r (t)
+

n2−1∑
j=0

�

(
r (t) − n1 − j

2

)
+ log |D(t)| + η log |�|

+ n + (ηr + n + 1)ηn

ηr
+ ηn log

ηr

ηr + n + 1
+ n log

r

2
−

n−1∑
j=0

�

(
r − j

2

)

+ ηn log
ηr + n + 1

2
− η

n−1∑
j=0

�

(
ηr + n + 1 − j

2

)
.

So we have

n log
r

2
−

n−1∑
j=0

�

(
r − j

2

)
+ ηn log

ηr + n + 1

2
− η

n−1∑
j=0

�

(
ηr + n + 1 − j

2

)

+ ηn
n + 1

ηr
− ηn log

(
1 + n + 1

ηr

)
= n2 log

r (t)

2
−

n2−1∑
j=0

�

(
r (t) − n1 − j

2

)
(29)

+ tr
(
C(t+1)(D(t) + η�)

) − log |D(t)| − η log |�| − (1 + η) log |C(t+1)| − (1 + η)n.

It is clear that ηn n+1
ηr − ηn log

(
1 + n+1

ηr

)
is a positive decreasing function of r for r ≥ n.

From the Lemma in the Appendix of (Chen, 1979), we also obtain that both n log r
2 −∑n−1

j=0 �( r− j
2 ) and ηn log ηr+n+1

2 − η
∑n−1

j=0 �( ηr+n+1− j
2 ) are positive monotonic decreasing

functions of r for r ≥ n. Thus, the left-hand side of (29) is a positive monotonic decreasing
function of r for r ≥ n. Furthermore, as

tr
(
C(t + 1)D(t)

) + ηtr
(
C(t + 1)�

) ≥ log |C(t + 1)D(t)| + n + η log |C(t + 1)�| + ηn,

together with n2 log r (t)
2 − ∑n2−1

j=0 �( r (t)−n1− j
2 ) ≥ 0, which is due to n2 log r (t)

2 ≥
n2 log r (t)−n1

2 , the right-hand side of (29) is always nonnegative. Therefore the solution
of (29) is uniquely determined.
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