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Abstract We propose an approach to the learning of long-term plans for playing chess
endgames. We assume that a computer-generated database for an endgame is available,
such as the king and rook vs. king, or king and queen vs. king and rook endgame. For
each position in the endgame, the database gives the “value” of the position in terms of
the minimum number of moves needed by the stronger side to win given that both sides
play optimally. We propose a method for automatically dividing the endgame into stages
characterised by different objectives of play. For each stage of such a game plan, a stage-
specific evaluation function is induced, to be used by minimax search when playing the
endgame. We aim at learning playing strategies that give good insight into the principles of
playing specific endgames. Games played by these strategies should resemble human expert’s
play in achieving goals and subgoals reliably, but not necessarily as quickly as possible.

Keywords Machine learning - Computer chess - Long-term Strategy - Chess endgames -
Chess databases

1. Introduction

The standard approach used in chess playing programs relies on the minimax principle,
efficiently implemented by alpha-beta algorithm, plus a heuristic evaluation function. This
approach has proved to work particularly well in situations in which short-term tactics are
prevalent, when evaluation function can easily recognise within the search horizon the con-
sequences of good or bad moves. The weakness of this approach may show in positions that
require long-term planning beyond the search horizon.
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Thus, a deficiency of minimax-based techniques for game playing is in the handling of
long-term plans. Previous attempts at handling long-term plans include Advice Languages
(Bratko, 1984) and chunking (George & Schaeffer, 1990).

Another aspect that is still deficient in computer game-playing is learning. Early attempts
by Samuel (1967) in his checkers program were only partially successful. There have been
some noticeable achievements: Tesauro’s backgammon program (Tesauro, 1992), Buro’s
Othello player (Buro, 1999), and the chess playing program KNIGHTCAP (Baxter et al., 2000).
However, successes of ML in games still seem to be relatively rare. The learning of long-term
strategies is particularly weak and under represented. A thorough review of machine learning
in game-playing is given in Fiirnkranz (2001).

In this paper we investigate the learning of long-term strategies from computer-generated
databases. Chess endgame tablebases, containing all possible positions for 5-piece and some
6-piece chess endgames, originally constructed by Thompson (1986, 1996), are readily avail-
able. Some of these endgames are very hard or impossible for the best human players to play
reliably. The chess endgame databases contain a vast amount of detailed information, but this
information is not in a form that a human player can use without computer. The problem is
that raw information in these databases lacks conceptual structure. The databases lack explicit
and economical concepts that would enable the human to understand, memorise and use the
relevant knowledge. Our main goal in applying machine learning to chess databases is to help
understand certain types of positions that are beyond human capabilities. So in this paper we
attempt to convert detailed unstructured information into human-assimilable knowledge.

2. Method

Given a complete database for a chess endgame in which the stronger side can eventually
win, our goal is to break down the endgame into stages that can be interpreted as a long-term
strategy for playing this endgame. The main idea of our approach is based on the assumption
that various stages are characterised by different sets of important features. In one stage,
some things are important, when we enter another stage, other things become important.

2.1. Detecting borders between stages

The method that we propose here detects borders between (yet unknown) stages of play
through the analysis of a set of position’s attributes. We measure how relevant individual
attributes are at different times, and then analyse the changes in attributes’ importance during
play. The assumption is that large changes indicate borders between stages of play. The details
of our implementation of this idea are described in the following paragraphs.

We define the relevance of an attribute at a given point of play as the attribute’s ability
to measure progress of play the stronger side is making. This ability is evaluated by the
attribute’s strength to discriminate between positions of neighbouring levels in the database,
i.e. distances from the final goal of play—for example the distance to mate in KRK (king and
rook vs. king) or distance to winning the opponent’s rook in KQKR (king and queen vs. king
and rook). We chose to measure attributes’ discrimination strength by Quinlan’s information
gain ratio (Quinlan, 1986).

Now assume we have a vector A = (ay, a, . . .) of position’s attributes, and observe their
information gain ratio for the following classification problems fori = 1, 2, . . .: discriminate
positions in the database of level i from those of level i + 1. All the positions are with the
same side to move which means that positions at level i + 1 are one full move (i.e. two
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ply) apart from positions at level i. Information gain ratio of an attribute indicates to what
extent each of the attributes on its own can recognise whether the position is of level i or
i + 1. Let us denote the information gain ratio of attribute a; with g(i, j). Let G(i) stand
for the vector of gain ratios of all the attributes with respect to this classification task, so
G(@i) = (g(, 1), g@i,2),...). Now our assumption is that the behaviour of G(i) when level
i changes is indicative of stages of play. If G(i) is similar to G(i 4 1), this indicates that
both levels belong to the same stage of play. Similar attributes are relevant to measuring
the progress when moving from level i 4 1 to level i. On the other hand, when the vectors
G(i) and G(i + 1) are considerably different, this indicates that the important objectives of
play differ between both levels. We chose to measure the similarity between gain vectors by
correlation:

E(G(@i) - G(i + 1)) — E(G(i)) - E(G(i + 1))

Corr (i) = VVar(G(D)) - Var(G( + 1))

)]

Here, E(X) denotes the average value of the values in vector X, and Var(X) the variance of
values in X.
The partitioning of the database into stages is thus carried out in the following steps:

Compute the gain vectors G(i) for all levels i.

For all levels i, compute correlations Corr(i) between the gain vectors of neighbouring
levelsi and i + 1.

Plot Corr(i) versus i. The values of i where Corr(i) has local minima are candidate points
for borders between stages of play.

Once the database is segmented into subsets, that is stages of play, we can induce a classifier
that classifies a given position into a corresponding stage of play. We are particularly interested
in such classifiers that are comprehensible. The intention is that they characterise stages of
play and thus give insight to a human into the long-term strategy for playing the endgame in
question.

2.2. Playing the endgame

For each stage, we induce a regression function that approximates the distance-to-win for
each position in that stage. Then we use this approximation of distance-to-win as a heuristic
evaluation function for minimax search up to a chosen depth. The move played is decided
by this minimax search. In the following paragraphs, we give some details of implementing
these ideas in our experiments in this paper.

For each stage of play, we have a corresponding set of positions. These sets can be used
as examples from which we can induce a classifier that discriminates between the stages. For
a given position, such a classifier determines its stage of play. In our experiments we chose
decision tree learning for this task.

For each stage of play we induce an evaluation function as an approximator of distance-
to-win. In our experiments, we chose to use multivariate linear regression to approximate
distance-to-win as a linear function of position’s attributes. For each stage of play, we induce
a linear regression function from the set of positions in the database that belong to that stage.

A position is evaluated as follows: first, the induced decision tree classifier is applied to
determine the position’s stage of play, and second, this stage’s of play regression function
is applied to the position to approximate its distance-to-win. It should be noted that the
induced decision tree typically is not a perfect classifier, so it may classify some positions
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into incorrect stage of play, and consequently in such a case, a regression function is used
that is intended for a different stage than the stage to which the position actually belongs.
Therefore the so obtained distance-to-win predictor is typically imperfect for two reasons:
first, the local linear regression functions make some numerical error, and second, the decision
tree may select a wrong linear regression function.

We experimented with this approach in the simple KRK endgame, and the difficult KQKR
endgame. We describe these experiments in the following sections. As a control experiment
in the evaluation of stage partitioning, we compared the results so obtained with a “single
stage” strategy. That is one without partitioning the database into stages, and inducing a
global linear regression function for the whole database.

The tablebase for the KRK endgame used is available from the UCI Repository (Blake &
Merz, 1998). It contains a subset (28,056 positions) of all legal positions, taking into account
various symmetries. The tablebase for the KQKR endgame was constructed in the same
fashion as Thompson’s tablebases, however, only a random subset of about 60,000 positions
was used for inducing a classifier that discriminates between stages of play. In both cases, the
feature set used does not uniquely describe the positions. The classifiers were induced using
the Orange (Demsar et al., 2004) tree learner (equivalent to C4.5 for all practical purposes),
and due to our aim to obtain comprehensible classifiers we used forward pruning requiring
that leaf nodes contain at least 1,000 examples. Classifiers induced without pruning were
extremely complex.

A simple mechanism is used to avoid cycling. If a repetition is about to occur, the program
chooses the second-best move. Also, special code, acting similar to material element of the
evaluation function, prevents both sides to lose material unnecessarily.

3. Experiments in king and rook versus king endgame

The attributes chosen for the learning about KRK were based upon sets of attributes used in
some previous studies, e.g., Bratko (2001). Thus these attributes were not specially engineered
for the application of our learning method in the KRK domain. On the other hand, some of
the attributes were carefully defined in Bratko (2001) to support a particular winning method
for KRK, so these attributes are rather domain specific.

Figure 1 shows the correlation plot measuring the similarity between adjacent gain vectors
for the KRK endgame. The x-axis identifies the classification problem, that is distance-to-
mate i versus i + 1, and the y-axis is the correlation value between this gain vector and
the gain vector for the classification problem i + 1 versus i 4+ 2. There are two distinct local
minima, one separating levels 7 and 8, and the other separating levels 11 and 12. Accordingly

Fig. 1 Stage separation for the 1
KRK endgame

0.5

0

-0.5

3v4 5v6 7v8 9v10 11vl2 13vl4

@ Springer



Mach Learn (2006) 63:329-340 333

Fig. 2 Decision tree for
classification into KRK stages.
Attributes are: edist = distance in
king moves of black king from
nearest edge, kdist = distance
between kings, grook = rook
divides both kings with respect to
the nearest edge to black king

we divided the KRK endgame into three stages: stage “CLOSE” comprised of levels 0 to 7,
stage “MEDIUM” comprised of levels 8 through 11, and stage “FAR” comprised of levels
12 through 16. Levels 2 or less were omitted from the correlation plot because these levels
contain a relatively low number of positions.

The induced decision tree for classification of positions into the three stages is shown in
Fig. 2. It only uses three attributes, and is easy to interpret. On the basis of the differences
between the neighbouring stages as given by the tree, we can extract the objectives of different
stages of the game. The prevailing objective of stage FAR is to force the black king towards
the edge. The objective of stage MEDIUM is to bring our king close to the opponent’s king.

We experimented with several regression functions, using all twelve attributes. The re-
gression function called GLOBAL was induced from all the positions in the database and
applies to the whole domain. “Local” functions, called FAR, MEDIUM and CLOSE, were
induced from the subsets of positions belonging to the corresponding stages of play. During
play these local functions were used as described in Section 2. A position is classified by the
tree of Fig. 2 into a stage, and the corresponding local regression function is applied. Note
that this classifier is not perfect, so it may select a local function not intended for that position.

The distance-to-win predictors described above were used as evaluation function to play
KRK with minimax search to depth 6 ply. The quality of play with various regression functions
was assessed by two criteria: (a) success rate, the percentage of all positions in the endgame
that the program can actually win, and (b) suboptimality level, how many more moves above
the minimal number the player actually needs on average to win. The GLOBAL regression
function has 58.43% success rate and suboptimality level of 29.71. The three local functions
combined with the tree classifier have 100% success rate and suboptimality 4.22. These results
indicate the benefit of our automatic decomposition of KRK into stages. A closer inspection
shows that the GLOBAL function was affected by some of the attributes unsuitable for linear
regression, in particular the attribute “white king distance to corner”. This attribute behaves
non-monotonically with respect to distance-to-win. The decomposition successfully coped
with such “regression-unfriendly” attributes. However, it turned out in another experiment
that, surprisingly, any of the three local functions when applied globally also plays comparably
to the composite predictor. This result may on the other hand be interpreted as that the benefit
of decomposition into stages was not essential.

4. Experiments in king and queen versus king and rook endgame

The KQKR endgame is usually won for the queen’s side, except for rare special cases.
Unlike the KRK endgame, which is trivial for good human players, KQKR is very hard, and
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Fig. 3 Stage separation for the 1
KQKR endgame
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in practical play the stronger side may easily fail to win, as happened for example to Svidler,
a leading grandmaster, in a game with grandmaster Gelfand.

We chose to use just simple attributes that typically make sense in such endgames and are
not specific to KQKR. The following attributes are distances between any combination of
two pieces: wp (distance between the two white pieces), kk (between two kings), kr (white
king and rook), gk (queen and black king), gr (queen and rook), and bp (two black pieces).
Attributes wkedge, bkedge, wkcrn, and bkcrn are the distances of white or black king to their
nearest edge or corner, respectively. Finally, boolean attribute bkchk tells whether black king
is in check. It should be noted that all the distances are measured in king moves. This is
natural for distances involving kings, but debatable regarding other pieces.

Figure 3 shows the correlations between adjacent gain vectors for the KQKR endgame.
There are three significant local minima: at move 6, at move 14, and at move 28. The reason
why the minimum at move 24 was not considered for a split between stages, apart from the fact
that one of the drops is higher in every other minima considered, is that this minimum still has
a considerably high value of the correlation coefficient (over 0.65)—this signifies moderate
to strong correlation and cannot be interpreted as a lack of correlation between corresponding
vectors. The local minima we considered all have their corresponding correlation coefficients
well below 0.4, signifying at most weak correlation.

In determining the stages of play, we ignore the rightmost minimum as it separates away
only a relatively very small subset of positions at the far end. So on the basis of the first
and the second minimum, we divided the KQKR endgame into three stages called CLOSE,
MEDIUM and FAR, the borders between them being at move 6 and at move 14. These
three stages contain 12.5%, 9.7%, and 77.8% of all the positions, respectively. We induced a
decision tree for classification into these three stages shown in Fig. 4 (left). As the set FAR
is far larger than both sets CLOSE and MEDIUM, we also tried to join the sets CLOSE and
MEDIUM and induced a classifier for the resulting two-class problem (Fig. 4, right). Both
trees in Fig. 4 are very similar, so in the interest of simplicity we decided to continue working
with just two stages called CLOSE and FAR, where CLOSE now also includes the previous
stage MEDIUM. The accuracy of the FAR vs. CLOSE decision tree is 81%. This is very low
in the view of 77.8% majority of FAR.

Let us attempt an interpretation of the trees in Fig. 4. Can we learn something about how
to play the KQKR endgame? Somewhat surprising, the attribute at the root is Black king
in check. This rather short-term feature only becomes important in KQKR when the black
pieces are not close together—in such cases Black king cannot defend the rook. This reflects
the typical tactical idea in this endgame: White queen attacks both the Black king and rook
at the same time, and when the king moves out of check the queen captures the rook. But
the check is only effective when Black pieces are sufficiently far apart. This dependence is
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Fig. 4 On the left, decision tree for classification into three stages; on the right, tree for classification into
“CLOSE” (i.e. CLOSE + MEDIUM) and FAR

reflected in the left hand branch of the tree where the Black king and rook are at least three
king moves apart. It is precisely this distance when checking Black king becomes important,
because at this distance or greater Black king cannot step next to the rook to defend it.
Consequently, such positions are (probabilistically) classified as CLOSE. This branch in the
tree implies a hint for White: force the Black pieces apart and then check the Black king. The
right branch (Black king is not in check) says that for a position to be “close” to win, Black
king must be on the edge and White king close to Black king (up to three king-moves). This
contains another piece of advice for White. To make progress, Black king should be forced
to an edge, and White king should approach the Black king. It should be noted that these
suggestions for White correspond to the overall advice for KQKR in Dvoretsky’s endgame
manual (Dvoretsky, 2003). This is nice, but on the other hand this advice appears to be still
too general for a human to play this endgame reliably and comfortably. In the experiments
in computer play based on this stage decomposition of KQKR we found that this general
knowledge requires rather deep minimax search to be effective. The amount of search required
is beyond human’s capability.

4.1. Playing the endgame

We induced three multivariate linear regression functions, using all eleven attributes, to predict
distance-to-win for a given position: “GLOBAL” for the whole KQKR domain, “CLOSE” for
the stage CLOSE, and “FAR” for the stage FAR. The numerical errors (difference between
the predicted and the actual number of moves to win), measured by RMSE (root mean squared
error), of these three functions, are: GLOBAL: 3.76, CLOSE: 1.97, FAR: 1.32. RMSE of the
two local regression functions overall on the whole domain (CLOSE and FAR) is 1.46. This
would be the error of the composite, piece-wise linear predictor comprising the two local
linear predictors, if we had a perfect classifier for classifying positions into CLOSE vs. FAR.
Of course, without the help of the database, we do not have such a perfect classifier. Instead,
we used an approximate classifier, the right hand tree in Fig. 4. Due to high classification
error of this tree, RMSE of this composite classifier is 3.73. Unfortunately, this is almost the
same as the global linear regression function. Obviously, applying a local regression function
on a position from a different stage causes numerical error to increase dramatically. This fact
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Fig. 5 Combined linear regression (left) and global linear regression (right)

indicates that an implementation of computer play based on the two-stage split CLOSE vs.
FAR will have problems.

Figure 5 enables further analysis of the accuracy of prediction by these linear regression
functions. The horizontal axis in these diagrams corresponds to the index of a KQKR
position, so that according to this index the positions are ordered thus: first by their true
distance-to-win, and second, the positions with the same true distance-to-win are ordered
according to the predicted distance-to-win. The vertical axis represents the predicted
distance-to-win. The diagrams in Fig. 5 show two huge problems of our prediction functions.
First, there is a large overlap of predicted values between adjacent true distance-to-win levels.
This means that using this as an evaluation function with minimax will have difficulties
in determining the most promising successor position. Obviously, our evaluation functions
poorly discriminate between positions whose true distances-to-win are similar. The second
problem of the composite predictor with tree classifier, is the discontinuity at the border
between the stages of play. Close to the borders, the positions from different stages are hard
to compare because the local linear regression functions have different biases.

We experimented with these distance-to-win predictors as evaluation functions with min-
imax search. In the experiments, we varied the following: (1) predictor (GLOBAL, CLOSE
applied globally on whole domain, FAR applied globally, composite CLOSE+FAR with the
right tree of Fig. 4, and composite with the perfect classifier), and (2) depth of minimax
search measured in plies. As in KRK, we observed the quality of play in terms of success
rate and degree of suboptimality. Of course, the composite predictor with perfect classifier
is of no practical significance (as it requires the database itself), but it is useful to assess the
upper limits of performance of piece-wise linear predictors.

Table 1 gives the success rate and degree of suboptimality (in parentheses) for each
combination of predictor and depth of search. The results show that this approach requires

Table 1 Performance depending on evaluation function used and depth of minimax

Evaluation function Depth 8 Depth 10 Depth 12 Depth 14  Depth 16

Global LR 38.43% 93.85% 82.63% 99.16% 99.95%
(+21.29)  (+11.04)  (+10.65) (+4.65) (+3.56)
Local LR with perfect classifier ~ 72.08% 96.21% 97.92% 98.22% 98.56%
(+16.54)  (+9.94) (+5.92) (+4.47) (+2.91)

Local LR with tree classifier 17.28% 19.04% 21.77% 27.74% 44.32%
(+24.23)  (+23.54)  (+22.68) (+21.44) (+17.80)

CLOSE LR used globally 14.12% 15.40% 16.83% 18.03% 19.86%
(+25.44)  (+24.87) (+24.28) (+23.80) (+23.09)

FAR LR used globally 15.99% 28.84% 43.70% 89.88% 98.46%

(+24.72)  (4+22.32)  (+20.20) (4+10.75)  (+5.26)
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search of roughly at least 10 ply before it starts becoming successful. Searching to 14 or
16 ply attains close to perfect success rate, whereby needing on average some 3 to 5 moves
above optimal. This performance is achieved by the global linear predictor, and similarly by
the piece-wise-linear predictor with perfect classifier. Unfortunately, the performance of the
composite predictor with imperfect classifier is significantly inferior. This result shows that
in this case the decomposition of the endgame into two stages of play did not contribute to
the playing performance.

5. Related work

Several researchers attempted to compress chess databases, and thus make them comprehen-
sible to humans, by extracting from databases rules to be used by humans. Quinlan (1979,
1983) did early experiments in King-Rook-King-Knight (KRKN) endgame with his ID3
program and induced rules for classifying lost-in-2-ply and lost-in-3-ply positions. He found
that hand-crafting relevant attributes was getting harder with increasing number of plies. For
lost-in-4-ply, he tried to automatically generate relevant attributes, but there was no further
report on that.

Shapiro and Niblett (1982) used structured induction for King-Pawn-King (KPK) endgame
to alleviate the problem of acquiring good attributes. They constructed a hierarchical model
consisting of two layers of decision trees. The tree in the upper layer divided the endgame
into separate subproblems (e.g., KPK with the rook pawn), and the trees in the lower layer
classified the positions as either won or drawn. Trees were induced with the ID3 program.

Bain and Srinivasan (1995) tried to learn a perfect player for the King-Rook-King (KRK)
endgame using inductive logic programming methods. They managed to learn exact classifiers
for “won in 0 moves” up to “won in 5 moves” positions. However, their approach resulted in
a vast number of rules, making it hard to understand by humans.

There were also attempts to learn suboptimal playing strategies from endgame databases
(“suboptimal” in the sense of winning in a number of moves larger than necessary). Human
players rarely use optimal strategies, therefore this relaxation is very sensible. Morales (1994)
developed a system called PAL, similar to Shapiro and Niblett’s structured induction, but using
inductive logic programming techniques. PAL learned to play the KRK endgame reasonably
well. Muggleton’s program DUCE (Muggleton, 1989) used constructive induction starting
with primitive board features and occasionaly queried a domain expert. It learned to play part
of the difficult King-Bishop-Bishop-King-Knight (KBBKN) endgame.

6. Discussion

Let us assess the results of our approach to the learning from databases. On the positive
side, the results of learning in the KQKR endgame indicate some success with the proposed
approach, given the difficulty of play in this endgame. KQKR is much more difficult than any
other domain used in previous attempts at learning from chess databases. But let us analyse
the achievements more systematically against the set goals of this work. The goal of learning
was twofold: to extract descriptions that would (1) help the human player understand and
play the endgame, and (2) would enable good computer play.

According to our experimental results, these goals were partially achieved. The decompo-
sition into stages of play does give a human player some insight into the endgame and some
hints about how to play the endgame. These insights are correct and useful, and are basically
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in line with general recommendations from chess endgame textbooks. However, at least for
KQKR, the more difficult of the two experimental endgames, the extracted insights are rather
general and are hardly sufficient to enable a human to win this endgame easily and reliably.
Thus extracting more specific and powerful patterns remains the task for future work.

The induced knowledge, which also included the (piece-wise) linear regression distance-
to-win estimate, was, in combination with minimax, converted into a playing algorithm. This
enabled reliable play given a sufficient depth of search. On the critical side, however, the
success of our approach regarding playing strength depends on how deep is sufficiently deep?
Correct play at unlimited depth of search (or 60 ply in KQKR) is trivial and does not require
any knowledge apart from the rules of the game. In the case of KQKR, it turned out that
sufficient depth was 14 ply. This is incomparably better than playing without any knowledge,
but still it appears a bit high and remains as an obvious challenge for future work. In fact,
looking at the regression based prediction of distance-to-win in Fig. 5, reliable play emerging
from these predictors may be a major positive surprise.

Our learned programs play reasonably well, but we were also interested in the style of
play. Is it more human-like than the play resulting from the optimal database? Looking at
games played by our program, they clearly follow the game decomposition plan into stages,
achieving the next stage as a next subgoal. There are occasional slippages when immediately
after attaining the next stage, the program drops back for a short time into the previous stage
and then firmly re-attains the next stage again. The play is suboptimal in terms of the number
of moves needed to win. So these games appear to could have been quite naturally played
by a human player who is aware of the stage decomposition plan. However, it is hard to
prove that these games are indeed more human-like than, say, the same endgames played
by a chess program like FRITZ. We analysed games played by our program and those by
FriITZ, and found that the differences in style are rather subtle. So it seems that a substantial
psychological study would be needed to decide convincingly that our programs’ play is a
better model of human play.

In both KRK and KQKR, we compared experimentally the program’s playing strength
when using global regression and the more sophisticated regression that relies on the de-
composition into stages of play. Decomposition into stages has not proved to be particu-
larly effective in our minimax-based playing algorithm. This experimental observation is
rather surprising. Counterintuitively, an evaluation function with better prediction accuracy,
when used with minimax, performed inferior to a numerically less accurate predictor. In
particular, the global linear regression function, or even a local linear regression function
applied globally, played superior to more sophisticated, combined piece-wise linear pre-
dictors. How can this be explained? Probably this is due to discontinuities between stages
of play (cf. regression functions in Fig. 5). The linear regression functions are biased to-
ward average, so they have different biases for different stages of play. These functions are
glued together by the decision tree classifier, which results in large discontinuities at the
borders between the stages. This indicates that this way of exploiting the decomposition into
stages has an unfortunate drawback. The fact that the tree classifier is imperfect is respon-
sible for higher numerical prediction error of the composite predictor, but this seems not
to be the critical deficiency of the composite predictor. The composite predictor performs
inferior even when used with a perfect classifier. Therefore the difficulty regarding play-
ing performance seems to come mainly from the discontinuities rather than from numerical
inaccuracy.

Another problem with our decomposition, in which stages are defined in terms of distance-
to-win, is that this distance may not reflect the “true” stages perfectly. In particular, distance-
to-win may not necessarily correspond to the current objectives of play.
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In KQKR, the playing algorithm was observed to be relatively more successful in the
FAR stage than in the CLOSE stage. Why is FAR easier to play than CLOSE? The answer
may be that FAR is dominated by clear goal-oriented behaviour (centralise king, force oppo-
nent’s king towards edge), whereas CLOSE is dominated by precise tactics that require rather
deep search, but not by some clear long-term goals that can be expressed in terms of simple
measures, such as piece-to-piece distance or piece-to-corner distance. One interesting obser-
vation related to this is that our approach might nicely complement the standard approach
to computer chess playing. The standard approach is particularly successful in short-term,
tactics dominated play, and not in long-term, strategic play. This is just the opposite to our
algorithm. So the obvious combination would be: rely on long-term strategic knowledge
induced by our approach in the FAR stage, and then rely on the tactics-effective search of
the standard approach in the CLOSE stage.

Let us mention some other limitations of our work. One obvious limitation is in the
selection of attributes used in learning. There was no construction of new, stage-specific
attributes. One would imagine that in the CLOSE stage of the KQKR endgame which seems
to lack simple measures of progress, it should be possible to help the relatively deep tactical
search by tactical patterns. Our induction algorithm did not reveal any such tactical patterns,
possibly due to lack of relevant attributes among the chosen set of attributes. They should
perhaps also include distances in terms of other piece moves—not only king-move distances.
Then possibly endgame specific patterns could be automatically constructed. An example
of such pattern-based attribute for KQKR is suggested by Dvoretsky (2003): control by the
queen the square from which black rook could check white king after the king will have
moved closer to the black king.

Appendix: Sample games

We have provided some commented games of our learned computer players on the web.
They can be accessed at the following address: http: //www.ailab.si/sasha/MLJ/
MLJgames .html
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