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Abstract Kernel functions are typically viewed as providing an implicit mapping of points

into a high-dimensional space, with the ability to gain much of the power of that space

without incurring a high cost if the result is linearly-separable by a large margin γ . However,

the Johnson-Lindenstrauss lemma suggests that in the presence of a large margin, a kernel

function can also be viewed as a mapping to a low-dimensional space, one of dimension

only Õ(1/γ 2). In this paper, we explore the question of whether one can efficiently produce

such low-dimensional mappings, using only black-box access to a kernel function. That is,

given just a program that computes K (x, y) on inputs x, y of our choosing, can we efficiently

construct an explicit (small) set of features that effectively capture the power of the implicit

high-dimensional space? We answer this question in the affirmative if our method is also

allowed black-box access to the underlying data distribution (i.e., unlabeled examples). We

also give a lower bound, showing that if we do not have access to the distribution, then this

is not possible for an arbitrary black-box kernel function; we leave as an open problem,

however, whether this can be done for standard kernel functions such as the polynomial

kernel. Our positive result can be viewed as saying that designing a good kernel function

is much like designing a good feature space. Given a kernel, by running it in a black-box

manner on random unlabeled examples, we can efficiently generate an explicit set of Õ(1/γ 2)
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features, such that if the data was linearly separable with margin γ under the kernel, then it

is approximately separable in this new feature space.

1. Introduction

Kernels functions have become a powerful tool in Machine Learning (Boser et al., 1992;

Cortes and Vapnik, 1995; Herbrich, 2002; Muller et al., 2001; Smola et al., 2000; Scholkopf

et al., 1999; Shawe-Taylor, 2004; Scholkopf et al., 2004; Scholkopf and Smola, 2002;

Vapnik, 1998). A kernel function can be viewed as allowing one to implicitly map data into

a high-dimensional space and to perform certain operations there without paying a high

price computationally. Furthermore, if the data has a large margin linear separator in that

space, then one can avoid paying a high price in terms of sample size as well (Bartlett and

Shawe-Taylor, 1999; Shawe-Taylor et al., 1998; Freund and Schapire, 1999).

The starting point for this paper is the observation that if a learning problem indeed has

the large margin property under some kernel K (x, y) = φ(x) · φ(y), then by the Johnson-

Lindenstrauss lemma, a random linear projection of the “φ-space” down to a low dimensional

space approximately preserves linear separability (Achlioptas, 2003; Arriaga and Vempala,

1999; Dasgupta and Gupta, 1999; Johnson and Lindenstrauss, 1984). Specifically, suppose

data comes from some underlying distribution D over the input space X and is labeled by

some target function c. If D is such that the target function has margin γ in the φ-space,1 then

a random linear projection of the φ-space down to a space of dimension d = O( 1
γ 2 log 1

εδ
)

will, with probability at least 1 − δ, have a linear separator with error rate at most ε (see

Arriaga and Vempala (1999) and also Theorem 3 of this paper). This means that for any

kernel K and margin γ , we can, in principle, think of K as mapping the input space X into

an Õ(1/γ 2)-dimensional space, in essence serving as a method for representing the data in

a new (and not too large) feature space.

The question we consider in this paper is whether, given kernel K , we can in fact produce

such a mapping efficiently. The problem with the above observation is that it requires explic-

itly computing the function φ(x). In particular, the mapping of X into Rd that results from

applying the Johnson-Lindenstrauss lemma is a function F(x) = (r1 · φ(x), . . . , rd · φ(x)),

where r1, . . . , rd are random vectors in the φ-space. Since for a given kernel K , the dimension-

ality of the φ-space might be quite large, this is not efficient. Instead, what we would like is an

efficient procedure that given K (·, ·) as a black-box program, produces a mapping with the de-

sired properties and with running time that depends (polynomially) only on 1/γ and the time

to compute the kernel function K , with no dependence on the dimensionality of the φ-space.

Our main result is a positive answer to this question, if our procedure for computing the

mapping is also given black-box access to the distribution D (i.e., unlabeled data). Specifi-

cally, given black-box access to a kernel function K (x, y), a margin value γ , access to unla-

beled examples from distribution D, and parameters ε and δ, we can in polynomial time con-

struct a mapping F : X → Rd (i.e., to a set of d real-valued features) where d = O( 1
γ 2 log 1

εδ
)

with the following property. If the target concept indeed has margin γ in the φ-space, then

with probability 1 − δ (over randomization in our choice of mapping function), the induced

distribution in Rd is separable with error ≤ ε. In fact, not only will the data in Rd be separable,

but it will be separable with margin �(γ ). Note that the logarithmic dependence on ε implies

1 That is, there exists a linear separator in the φ-space such that any example from D is correctly classified by
margin γ . See Section 2 for formal definitions. In Section 4.1 we consider the more general case that only a
1 − α fraction of the distribution D is separated by margin γ .
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that if the learning problem has a perfect separator of margin γ in the φ-space, we can set ε

small enough so that with high probability a set S of O(d log d) labeled examples would be

perfectly separable in the mapped space. This means we could apply an arbitrary zero-noise

linear-separator learning algorithm in the mapped space, such as a highly-optimized linear-

programming package. However, while the dimension d has a logarithmic dependence on

1/ε, the number of (unlabeled) examples we use to produce our mapping is Õ(1/(γ 2ε)).

To give a feel of what such a mapping might look like, suppose we are willing to use

dimension d = O( 1
ε
[ 1
γ 2 + ln 1

δ
]) (so this is linear in 1/ε rather than logarithmic) and we are

not concerned with preserving margins and only want approximate separability. Then we

show the following especially simple procedure suffices. Just draw a random sample of d
unlabeled points x1, . . . , xd from D and define F(x) = (K (x, x1), . . . , K (x, xd )). That is, if

we think of K not so much as an implicit mapping into a high-dimensional space but just

as a similarity function over examples, what we are doing is drawing d “reference” points

and then defining the i th feature of x to be its similarity with reference point i . We show

(Corollary 1) that under the assumption that the target function has margin γ in the φ space,

with high probability the data will be approximately separable under this mapping. Thus, this

gives a particularly simple way of using the kernel and unlabeled data for feature generation.

Given the above results, a natural question is whether it might be possible to perform

mappings of this type without access to the underlying distribution. In Section 5 we show

that this is in general not possible, given only black-box access (and polynomially-many

queries) to an arbitrary kernel K . However, it may well be possible for specific standard

kernels such as the polynomial kernel or the gaussian kernel.

1.1. Relation to support vector machines and margin bounds

Given a set S of n training examples, the kernel matrix defined over S can be viewed as

placing S into an n-dimensional space, and the weight-vector found by an SVM will lie in

this space and maximize the margin with respect to the training data. Our goal is to define a

mapping over the entire distribution, with guarantees with respect to the distribution itself. In

addition, the construction of our mapping requires only unlabeled examples, and so could be

performed before seeing any labeled training data if unlabeled examples are freely available.

There is, however, a close relation to margin bounds (Shawe-Taylor et al., 1998; Bartlett and

Shawe-Taylor, 1999) for SVMs (see Remark 1 in Section 3), though the dimension of our

output space is lower than that produced by combining SVMs with standard margin bounds.

Our goals are to some extent related to those of Ben-David et al. (2003) and Ben-David

(2001). They show negative results giving simple classes of learning problems for which one

cannot construct a mapping to a low-dimensional space under which all functions in the class

are linearly separable. We restrict ourselves to situations where we know that such mappings

exist, but our goal is to produce them efficiently.

1.2. Interpretation

Kernel functions are often viewed as providing much of the power of an implicit high-

dimensional space without having to pay for it. Our results suggest that an alternative view

of kernels is as a (distribution-dependent) mapping into a low-dimensional space. In this

view, designing a good kernel function is much like designing a good feature space. Given a

kernel, by running it in a black-box manner on random unlabeled examples, one can efficiently

generate an explicit set of Õ(1/γ 2) features, such that if the data was linearly separable with

margin γ under the kernel, then it is approximately separable using these new features.
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1.3. Outline of this paper

We begin with by giving our formal model and definitions in Section 2. We then in Section

3 show that the simple mapping described earlier in this section preserves approximate

separability, and give a modification that approximately preserves both separability and

margin. Both of these map data into a d-dimensional space for d = O( 1
ε
[ 1
γ 2 + ln 1

δ
]). In

Section 4, we give an improved mapping, that maps data to a space of dimension only

O( 1
γ 2 log 1

εδ
). This logarithmic dependence on 1

ε
means we can set ε small enough as a

function of the dimension and our input error parameter that we can then plug in a generic

zero-noise linear separator algorithm in the mapped space (assuming the target function was

perfectly separable with margin γ in the φ-space). In Section 5 we give a lower bound,

showing that for a black-box kernel, one must have access to the underlying distribution D if

one wishes to produce a good mapping into a low-dimensional space. In Section 6 we present

experimental results using our mappings on both synthetic and standard datasets, and finally

we end with a short discussion in Section 7.

2. Notation and definitions

We assume that data is drawn from some distribution D over an instance space X and labeled

by some unknown target function c : X → {−1, +1}. We use P to denote the combined

distribution over labeled examples.

A kernel K is a pairwise function K (x, y) that can be viewed as a “legal” definition of

inner product. Specifically, there must exist a function φ mapping X into a possibly high-

dimensional Euclidean space such that K (x, y) = φ(x) · φ(y). We call the range of φ the

“φ-space”, and use φ(D) to denote the induced distribution in the φ-space produced by

choosing random x from D and then applying φ(x).

We say that for a set S of labeled examples, a vector w in the φ-space has margin γ if:

min
(x,�)∈S

[
�

w · φ(x)

||w|| ||φ(x)||
]

≥ γ.

That is, w has margin γ if any labeled example in S is correctly classified by the linear

separator w · φ(x) ≥ 0, and furthermore the cosine of the angle between w and φ(x) has

magnitude at least γ .2 If such a vector w exists, then we say that S is linearly separable with

margin γ under the kernel K . For simplicity, we are only considering separators that pass

through the origin, though our results can be adapted to the general case as well (see Section

4.1).

We can similarly talk in terms of the distribution P rather than a sample S. We say that a

vector w in the φ-space has margin γ with respect to P if:

Pr
(x,�)←P

[
�

w · φ(x)

||w|| ||φ(x)|| < γ

]
= 0.

2 Often margin is defined without normalizing by the length of the examples, though in that case the “γ 2” term
in sample complexity bounds becomes “γ 2/R2”, where R is the maximum ||φ(x)|| over x ∈ S. Technically,
normalizing produces a stronger bound because we are taking the minimum of a ratio, rather than the ratio of
a minimum to a maximum.
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If such a vector w exists, then we say that P is linearly separable with margin γ under

K (or just that P has margin γ in the φ-space). One can also weaken the notion of perfect

separability. We say that a vector w in the φ-space has error α at margin γ if:

Pr
(x,�)←P

[
�

w · φ(x)

||w|| ||φ(x)|| < γ

]
≤ α.

Our starting assumption in this paper will be that P is perfectly separable with margin γ

under K , but we can also weaken the assumption to the existence of a vector w with error α

at margin γ , with a corresponding weakening of the implications (see Section 4.1). Our goal

is a mapping F : X → Rd where d is not too large that approximately preserves separability,

and, ideally, the margin. We use F(D) to denote the induced distribution in Rd produced by

selecting points in X from D and then applying F , and use F(P) = F(D, c) to denote the

induced distribution on labeled examples.

For a set of vectors v1, v2, . . . , vk in Euclidean space, let span(v1, . . . , vk) denote the

set of vectors v that can be written as a linear combination a1v1 + · · · + akvk . Also, for a

vector v and a subspace Y , let proj(v, Y ) be the orthogonal projection of v down to Y . So,

for instance, proj (v, span(v1, . . . , vk)) is the orthogonal projection of v down to the space

spanned by v1, . . . , vk . We note that given a set of vectors v1, . . . , vk and the ability to

compute dot-products, this projection can be computed efficiently by solving a set of linear

equalities.

3. Two simple mappings

Our goal is a procedure that given black-box access to a kernel function K (·, ·), unlabeled

examples from distribution D, and a margin value γ , produces a (probability distribution over)

mappings F : X → Rd with the following property: if the target function indeed has margin

γ in the φ-space, then with high probability our mapping will approximately preserve linear

separability. In this section, we analyze two methods that both produce a space of dimension

d = O( 1
ε
[ 1
γ 2 + ln 1

δ
]), where ε is our desired bound on the error rate of the best separator in

the mapped space. The second of these mappings in fact satisfies a stronger condition that

its output will be approximately separable at margin γ /2 (rather than just approximately

separable). This property will allow us to use this mapping as a first step in a better mapping

in Section 4.

The following lemma is key to our analysis.

Lemma 1. Consider any distribution over labeled examples in Euclidean space such that
there exists a vector w with margin γ . Then if we draw

d ≥ 8

ε

[
1

γ 2
+ ln

1

δ

]
Examples z1, . . . , zd i.i.d. from this distribution, with probability ≥ 1 − δ, there exists a
vector w′ in span(z1, . . . , zd ) that has error at most ε at margin γ /2.

Remark 1. Before proving Lemma 1, we remark that a somewhat weaker bound on d can be

derived from the machinery of margin bounds. Margin bounds (Shawe-Taylor et al., 1998;
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Bartlett and Shawe-Taylor, 1999) tell us that using d = O( 1
ε
[ 1
γ 2 log2( 1

γ ε
) + log 1

δ
]) points,

with probability 1 − δ, any separator with margin ≥ γ over the observed data has true error

≤ ε. Thus, the projection of the target function w into the space spanned by the observed

data will have true error ≤ ε as well. (Projecting w into this space maintains the value of

w · zi , while possibly shrinking the vector w, which can only increase the margin over the

observed data.) The only technical issue is that we want as a conclusion for the separator not

only to have a low error rate over the distribution, but also to have a large margin. However,

this can be obtained from the double-sample argument used in Shawe-Taylor et al. (1998)

and Bartlett and Shawe-Taylor (1999) by using a γ /4-cover instead of a γ /2-cover. Margin

bounds, however, are a bit of an overkill for our needs, since we are only asking for an

existential statement (the existence of w′) and not a universal statement about all separators

with large empirical margins. For this reason we are able to get a better bound by a direct

argument from first principles.

Proof (Lemma 1): For any set of points S, let win(S) be the projection of w to span(S), and let

wout(S) be the orthogonal portion of w, so that w = win(S) + wout(S) and win(S) ⊥ wout(S).

Also, for convenience, assume w and all examples z are unit-length vectors (since we have

defined margins in terms of angles, we can do this without loss of generality). Now, let

us make the following definitions. Say that wout(S) is large if Prz(|wout(S) · z| > γ/2) ≥ ε,

and otherwise say that wout(S) is small. Notice that if wout(S) is small, we are done, because

w · z = (win(S) · z) + (wout(S) · z), which means that win(S) has the properties we want. That

is, there is at most an ε probability mass of points z whose dot-product with w and win(S)

differ by more than γ /2. So, we need only to consider what happens when wout(S) is large.

The crux of the proof now is that if wout(S) is large, this means that a new random point z
has at least an ε chance of significantly improving the set S. Specifically, consider z such that

|wout(S) · z| > γ/2. Let zin(S) be the projection of z to span(S), let zout(S) = z − zin(S) be

the portion of z orthogonal to span(S), and let z′ = zout(S)/||zout(S)||. Now, for S′ = S ∪ {z},
we have wout(S′) = wout(S) − proj(wout(S), span(S′)) = wout(S) − (wout(S) · z′)z′, where the

last equality holds because wout(S) is orthogonal to span(S) and so its projection onto span(S′)
is the same as its projection onto z′. Finally, since wout(S′) is orthogonal to z′ we have

||wout(S′)||2 = ||wout(S)||2 − |wout(S) · z′|2, and since |wout(S) · z′| ≥ |wout(S) · zout(S)| =
|wout(S) · z|, this implies by definition of z that ||wout(S′)||2 < ||wout(S)||2 − (γ /2)2.

So, we have a situation where so long as wout is large, each example has at least an ε chance

of reducing ||wout||2 by at least γ 2/4, and since ||w2 = ||wout(∅)||2 = 1, this can happen at

most 4/γ 2 times. Chernoff bounds state that a coin of bias ε flipped n = 8
ε
[ 1
γ 2 + ln 1

δ
] times

will with probability 1 − δ have at least nε/2 ≥ 4/γ 2 heads. Together, these imply that with

probability at least 1 − δ, wout(S) will be small for |S| ≥ 8
ε
[ 1
γ 2 + ln 1

δ
] as desired. �

Lemma 1 implies that if P is linearly separable with margin γ under K , and we draw

d = 8
ε
[ 1
γ 2 + ln 1

δ
] random unlabeled examples x1, . . . , xd from D, then with probability at

least 1 − δ there is a separator w′ in the φ-space with error rate at most ε that can be written

as

w′ = α1φ(x1) + · · · + αdφ(xd ).

Notice that since w′ · φ(x) = α1 K (x, x1) + · · · + αd K (x, xd ), an immediate implication

is that if we simply think of K (x, xi ) as the i th “feature” of x—that is, if we define

F1(x) = (K (x, x1), . . . , K (x, xd ))—then with high probability the vector (α1, . . . , αd ) is
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an approximate linear separator of F1(P). So, the kernel and distribution together give us

a particularly simple way of performing feature generation that preserves (approximate)

separability. Formally, we have the following.

Corollary 1. If P has margin γ in the φ-space, then with probability ≥ 1 − δ, if x1, . . . , xd

are drawn from D for d = 8
ε
[ 1
γ 2 + ln 1

δ
], the mapping

F1(x) = (K (x, x1), . . . , K (x, xd ))

produces a distribution F1(P) that is linearly separable with error at most ε.

Unfortunately, the above mapping F1 may not preserve margins because we do not have

a good bound on the length of the vector (α1, . . . , αd ) defining the separator in the new

space, or the length of the examples F1(x). The key problem is that if many of the φ(xi )

are very similar, then their associated features K (x, xi ) will be highly correlated. Instead, to

preserve margin we want to choose an orthonormal basis of the space spanned by the φ(xi ):

i.e., to do an orthogonal projection of φ(x) into this space. Specifically, let S = {x1, ..., xd}
be a set of of 8

ε
[ 1
γ 2 + ln 1

δ
] unlabeled examples from D. We can then implement the desired

orthogonal projection of φ(x) as follows. Run K (x, y) for all pairs x, y ∈ S, and let M(S) =
(K (xi , x j ))xi ,x j ∈S be the resulting kernel matrix. Now decompose M(S) into U T U , where

U is an upper-triangular matrix. Finally, define the mapping F2 : X → Rd to be F2(x) =
F1(x)U−1, where F1 is the mapping of Corollary 1. This is equivalent to an orthogonal

projection of φ(x) into span(φ(x1), . . . , φ(xd )). Technically, if U is not full rank then we

want to use the (Moore-Penrose) pseudoinverse (Ben-Israel and Greville, 1974) of U in

place of U−1.

We now claim that by Lemma 1, this mapping F2 maintains approximate separability at

margin γ /2.

Theorem 1. If P has margin γ in the φ-space, then with probability ≥ 1 − δ, the mapping
F2 : X → Rd for d ≥ 8

ε
[ 1
γ 2 + ln 1

δ
] has the property that F2(P) is linearly separable with

error at most ε at margin γ /2.

Proof The theorem follows directly from Lemma 1 and the fact that F2 is an orthogonal

projection. Specifically, since φ(D) is separable at margin γ , Lemma 1 implies that for

d ≥ 8
ε
[ 1
γ 2 + ln 1

δ
], with probability at least 1 − δ, there exists a vector w′ that can be written

as w′ = α1φ(x1) + · · · + αdφ(xd ), that has error at most ε at margin γ /2 with respect to

φ(P), i.e.,

Pr
(x,�)←P

[
�(w′ · φ(x))

||w′|| ||φ(x)|| <
γ

2

]
≤ ε.

Now consider w = α1 F2(x1) + · · · + αd F2(xd ). Since F2 is an orthogonal projection and

the φ(xi ) are clearly already in the space spanned by the φ(xi ), w can be viewed as the

same as w′ but just written in a different basis. In particular, we have ||w|| = ||w′||, and

w′ · φ(x) = w · F2(x) for all x ∈ X . Since ||F2(x)|| ≤ ||φ(x)|| for every x ∈ X , we get that

w has error at most ε at margin γ /2 with respect to F2(P), i.e.,

Pr
(x,�)←P

[
�(w · F2(x))

||w|| ||F2(x)|| <
γ

2

]
≤ ε.
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Therefore, for our choice of d, with probability at least 1 − δ (over randomization in our

choice of F2), there exists a vector w ∈ Rd that has error at most ε at margin γ /2 with

respect to F2(P). �

Notice that the running time to compute F2(x) is polynomial in 1/γ, 1/ε, 1/δ and the time

to compute the kernel function K .

4. An improved mapping

We now describe an improved mapping, in which the dimension d has only a logarithmic,

rather than linear, dependence on 1/ε. The idea is to perform a two-stage process, composing

the mapping from the previous section with a random linear projection from the range of that

mapping down to the desired space. Thus, this mapping can be thought of as combining two

types of random projection: a projection based on points chosen at random from D, and a

projection based on choosing points uniformly at random in the intermediate space.

We begin by stating a result from Achlioptas (2003), Arriaga and Vempala (1999), Das-

gupta and Gupta (1999), Indyk and Motwani (1998), Johnson and Lindenstrauss (1984) that

we will use. Here N (0, 1) is the standard Normal distribution with mean 0 and variance 1

and U (−1, 1) is the distribution that has probability 1/2 on −1 and probability 1/2 on 1.

Here we present the specific form given in Arriaga and Vempala (1999).

Theorem 2 (Neuronal RP (Arriaga and Vempala, 1999)). Let u, v ∈ Rn. Let u′ = 1√
k
u A

and v′ = 1√
k
vA where A is a n × k random matrix whose entries are chosen independently

from either N (0, 1) or U (−1, 1). Then,

Pr
A

[(1 − ε)||u − v||2 ≤ ||u′ − v′||2 ≤ (1 + ε)||u − v||2] ≥ 1 − 2e−(ε2−ε3) k
4 .

Let F2 : X → Rd2 be the mapping from Section 3 using ε/2 and δ/2 as its error and

confidence parameters respectively. Let F̂ : Rd2 → Rd3 be a random projection as in Theorem

2. Specifically, we pick A to be a random d2 × d3 matrix whose entries are chosen i.i.d.

N (0, 1) or U (−1, 1). We then set F̂(x) = 1√
d3

x A. We finally consider our overall mapping

F3 : X → Rd3 to be F3(x) = F̂(F2(x)).

We now claim that for d2 = O( 1
ε
[ 1
γ 2 + ln 1

δ
]) and d3 = O( 1

γ 2 log( 1
εδ

)), with high probabil-

ity, this mapping has the desired properties. The basic argument is that the initial mapping F2

maintains approximate separability at margin γ /2 by Lemma 1, and then the second mapping

approximately preserves this property by Theorem 2.

Theorem 3. If P has margin γ in the φ-space, then with probability at least 1 − δ, the map-
ping F3 = F̂ ◦ F2 : X → Rd3 , for values d2 = O( 1

ε
[ 1
γ 2 + ln 1

δ
]) and d3 = O( 1

γ 2 log( 1
εδ

)), has
the property that F3(P) is linearly separable with error at most ε at margin γ /4.

Proof By Lemma 1, with probability at least 1 − δ/2 there exists a separator w in the

intermediate space Rd2 with error at most ε/2 at margin γ /2. Let us assume this in fact occurs.

Now, consider some point x ∈ Rd2 . Theorem 2 implies that a choice of d3 = O( 1
γ 2 log( 1

εδ
))

is sufficient so that under the random projection F̂ , with probability at least 1 − εδ/4, the

squared-lengths of w, x , and w − x are all preserved up to multiplicative factors of 1 ± γ /16.

This then implies that the cosine of the angle between w and x (i.e., the margin of x with
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respect to w) is preserved up to an additive factor of ±γ /4. Specifically, using x̂ = x
||x || and

ŵ = w
||w|| , which implies F̂(w)·F̂(x)

||F̂(w)|| ||F̂(x)
|| = F̂(ŵ)·F̂(x̂)

||F̂(ŵ)|| ||F̂(x̂)|| , we have:

F̂(ŵ) · F̂(x̂)

||F̂(ŵ)|| ||F̂(x̂)|| =
1
2
(||F̂(ŵ)||2 + ||F̂(x̂)||2 − ||F̂(ŵ) − F̂(x̂)||2)

||F̂(ŵ)|| ||F̂(x̂)||
∈ [ŵ · x̂ − γ /4, ŵ · x̂ + γ /4].

In other words, we have shown the following:

For all x, Pr
A

[∣∣∣∣∣ w · x

||w|| ||x || − F̂(w) · F̂(x)

||F̂(w)|| ||F̂(x)||

∣∣∣∣∣ ≥ γ /4

]
≤ εδ/4.

Since the above is true for all x , it is clearly true for random x from F2(D). So,

Pr
x←F2(D),A

[∣∣∣∣∣ w · x

||w|| ||x || − F̂(w) · F̂(x)

||F̂(w)|| ||F̂(x)||

∣∣∣∣∣ ≥ γ /4

]
≤ εδ/4,

which implies that:

Pr
A

[
Pr

x←F2(D)

(∣∣∣∣∣ w · x

||w|| ||x || − F̂(w) · F̂(x)

||F̂(w)|| ||F̂(x)||

∣∣∣∣∣ ≥ γ /4

)
≥ ε/2

]
≤ δ/2.

Since w has error at most ε/2 at margin γ /2, this then implies that the probability that F̂(w)

has error more than ε over F̂(F2(D)) at margin γ /4 is at most δ/2. Combining this with the

δ/2 failure probability of F2 completes the proof. �

As before, the running time to compute our mappings is polynomial in 1/γ, 1/ε, 1/δ and

the time to compute the kernel function K .

Since the dimension d3 of the mapping in Theorem 3 is only logarithmic in 1/ε, this

means we can set ε to be small enough so that with high probability, a sample of size

O(d3 log d3) would be perfectly separable. This means we could use any noise-free linear-

separator learning algorithm in Rd3 to learn the target concept. However, this requires using

d2 = Õ(1/γ 4) (i.e., Õ(1/γ 4) unlabeled examples to construct the mapping).

Corollary 2. Given ε′, δ, γ < 1, if P has margin γ in the φ-space, then Õ( 1
ε′γ 4 ) unlabeled

examples are sufficient so that with probability 1 − δ, mapping F3 : X → Rd3 has the property
that F3(P) is linearly separable with error o(ε′/(d3 log d3)), where d3 = O( 1

γ 2 log 1
ε′γ δ

).

Proof Just plug in the desired error rate into the bounds of Theorem 3. �

4.1. A few extensions

So far, we have assumed that the distribution P is perfectly separable with margin γ in the

φ-space. Suppose, however, that P is only separable with error α at margin γ . That is, there

exists a vector w in the φ-space that correctly classifies a 1 − α probability mass of examples

by margin at least γ , but the remaining α probability mass may be either within the margin or

incorrectly classified. In that case, we can apply all the previous results to the 1 − α portion
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of the distribution that is correctly separated by margin γ , and the remaining α probability

mass of examples may or may not behave as desired. Thus all preceding results (Lemma 1,

Corollary 1, Theorems 1, and 3) still hold, but with ε replaced by (1 − α)ε + α in the error

rate of the resulting mapping.

Another extension is to the case that the target separator does not pass through the origin:

that is, it is of the form w · φ(x) ≥ β for some value β. If φ is normalized, so that ||φ(x)|| = 1

for all x ∈ X , then all results carry over directly. In particular, all our results follow from

arguments showing that the cosine of the angle between w and φ(x) changes by at most ε

due to the reduction in dimension. If φ(x) is not normalized, then all results carry over with

γ replaced by γ /R, where R is an upper bound on ||φ(x)||, as is done with standard margin

bounds (Bartlett and Shawe-Taylor, 1999; Shawe-Taylor et al., 1998; Freund and Schapire

1999).

5. On the necessity of access to D

Our algorithms construct mappings F : X → Rd using black-box access to the kernel func-

tion K (x, y) together with unlabeled examples from the input distribution D. It is natural to

ask whether it might be possible to remove the need for access to D. In particular, notice

that the mapping resulting from the Johnson-Lindenstrauss lemma has nothing to do with the

input distribution: if we have access to the φ-space, then no matter what the distribution is, a

random projection down to Rd will approximately preserve the existence of a large-margin

separator with high probability.3 So perhaps such a mapping F can be produced by just

computing K on some polynomial number of cleverly-chosen (or uniform random) points in

X . (Let us assume X is a “nice” space such as the unit ball or {0, 1}n that can be randomly

sampled.) In this section, we show this is not possible in general for an arbitrary black-box

kernel. This leaves open, however, the case of specific natural kernels.

One way to view the result of this section is as follows. If we define a feature space based

on uniform binary (Rademacher) or gaussian-random points in the φ-space, then we know

this will work by the Johnson-Lindenstrauss lemma. If we define features based on points in

φ(X ) (the image of X under φ) chosen according to φ(D), then this will work by Corollary 1.

However, if we define features based on points in φ(X ) chosen according to some method

that does not depend on D, then there will exist kernels for which this does not work.

In particular, we demonstrate the necessity of access to D as follows. Consider X =
{0, 1}n , let X ′ be a random subset of 2n/2 elements of X , and let D be the uniform distribution

on X ′. For a given target function c, we will define a special φ-function φc such that c is

a large margin separator in the φ-space under distribution D, but that only the points in X ′

behave nicely, and points not in X ′ provide no useful information. Specifically, consider

φc : X → R2 defined as:

φc(x) =
⎧⎨⎩

(1, 0) if x �∈ X ′

(−1/2,
√

3/2) if x ∈ X ′ and c(x) = 1

(−1/2, −√
3/2) if x ∈ X ′ and c(x) = −1

3 To be clear about the order of quantification, the statement is that for any distribution, a random projection
will work with high probability. However, for any given projection, there may exist bad distributions. So, even
if we could define a mapping of the sort desired, we might still expect the algorithm to be randomized.
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Fig. 1 Function φc used in lower
bound

See Fig. 1. This then induces the kernel:

Kc(x, y) =
{

1 if x, y �∈ X ′ or [x, y ∈ X ′ and c(x) = c(y)]

−1/2 otherwise

Notice that the distribution P = (D, c) over labeled examples has margin γ = √
3/2 in the

φ-space.

Theorem 4. Suppose an algorithm makes polynomially many calls to a black-box kernel
function over input space {0, 1}n and produces a mapping F : X → Rd where d is polynomial
in n. Then for random X ′ and random c in the above construction, with high probability F(P)

will not even be weakly-separable (even though P has margin γ = √
3/2 in the φ-space).

Proof Consider any algorithm with black-box access to K attempting to create a mapping

F : X → Rd . Since X ′ is a random exponentially-small fraction of X , with high probability

all calls made to K when constructing the function F are on inputs not in X ′. Let us assume

this indeed is the case. This implies that (a) all calls made to K when constructing the

function F return the value 1, and (b) at “runtime” when x chosen from D (i.e., when F is

used to map training data), even though the function F(x) may itself call K (x, y) for different

previously-seen points y, these will all give K (x, y) = −1/2. In particular, this means that

F(x) is independent of the target function c. Finally, since X ′ has size 2n/2 and d is only

polynomial in n, we have by simply counting the number of possible partitions of F(X ′) by

halfspaces that with high probability F(P) will not even be weakly separable for a random

function c over X ′. Specifically, for any given halfspace, the probability over choice of c that

it has error less than 1/2 − ε is exponentially small in |X ′| (by Hoeffding bounds), which

is doubly-exponentially small in n, whereas there are “only” 2O(dn) possible partitions by

halfspaces. �

Notice that the kernel in the above argument is positive semidefinite. If we wish to have a

positive definite kernel, we can simply change “1” to “1 − α” and “−1/2” to “− 1
2
(1 − α)”

in the definition of K (x, y), except for y = x in which case we keep K (x, y) = 1. This

corresponds to a function φ in which rather that mapping points exactly into R2, we map into
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R2+2n
giving each example a

√
α-component in its own dimension, and we scale the first two

components by
√

1 − α to keep φc(x) a unit vector. The margin now becomes
√

3
2

(1 − α).

Since the modifications provide no real change (an algorithm with access to the original

kernel can simulate this one), the above arguments apply to this kernel as well.

One might complain that the kernels used in the above argument are not efficiently com-

putable. However, this can be rectified (assuming the existence of one-way functions) by

defining X ′ to be a cryptographically pseudorandom subset of X and c to be a pseudorandom

function (Goldreich et al., 1986). In this case, except for the very last step, the above argument

still holds for polynomial-time algorithms. The only issue, which arises in the last step, is

that we do not know any polynomial-time algorithm to test if F(P) is weakly-separable in

Rd (which would distinguish c from a truly-random function and provide the needed contra-

diction). Thus, we would need to change the conclusion of the theorem to be that “F(P) is

not even weakly-learnable by a polynomial time algorithm”.

Of course, these kernels are extremely unnatural, each with its own hidden target function

built in. It seems quite conceivable that positive results independent of the distribution D can

be achieved for standard, natural kernels.

6. Experiments

One consequence of our analysis is that it provides an alternative to “kernelizing” a learning

algorithm: rather than modifying the algorithm to use kernels, one can instead construct a

mapping into a low-dimensional space using the kernel and the data distribution, and then

run an un-kernelized algorithm over examples in the new space.

To illustrate this idea, we performed several experiments on both synthetic and standard

datasets using standard kernel functions. For each experiment, we used unlabeled examples to

determine new representations of the data via the mappings F1 and F2 described in Section 3.

Then, to find linear decision surfaces in these new feature spaces (and so to come up with

classification rules for our learning problem) we used both the Balanced Winnow algorithm

(see Littlestone, 1988, Nevo and El-Yaniv, 2003), as well as linear SVM. We compared the

accuracies of these methods with those produced by SVM with the same kernel K . We used the

SVM implementation available at http://www.isis.ecs.soton.ac.uk/resources/svminfo/ and

described in Gunn (1997).4

6.1. Synthetic datasets

To test our methods, we generated several synthetic datasets as follows. We started

by considering 2-dimensional input data with separating boundaries of the form
x2

1

a2 + x2
2

b2 − 1 = 0 or
x2

1

a2 − x2
2

b2 − 1 = 0. We generated points according to various distribu-

tions on which we ensured that there is a reasonable margin in the φ-space induced

by the degree-2 polynomial kernel. Specifically, we generated points x = (x1, x2) so that

they satisfy l(x)(
x2

1

a2 ± x2
2

b2 − 1) ≥ c, for various parameters a, b, c ≥ 0 and we also con-

strained that |xi | ≤ M . This in turn implied that the margin γ in the φ-space is at least

4 In all the experiments we report we considered C = 10; notice that if the kernel is ideal in the sense that the
data is perfectly separable in the φ-space, then C = ∞ is the right choice for running SVM under that kernel.
However, we cannot expect the data to be perfectly linearly separable in the new feature spaces and, therefore,
for running linear SVM under mappings F1 and F2 it makes sense to lower the value of the parameter C .
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Table 1 Classification errors of the five methods using the second degree polynomial kernel on various
synthetic datasets

Type surface a b c M d1 Ntrain Ntest F1 Winnow F1 SVM F2 Winnow F2 SVM SVM

Ellipsis unif-unif 1 1 0.2 1.2 10 40 100 0.044 0.014 0.031 0.018 0.017

Ellipsis gauss-unif 1 1 0.2 1.2 10 40 100 0.049 0.021 0.013 0.000 0.001

Hyp. unif-unif 1 1 0.2 1.2 10 40 100 0.031 0.022 0.023 0.012 0.010

Hyp. gauss-unif 1 1 0.2 1.2 10 40 100 0.004 0.000 0.001 0.000 0.000

Ellipsis unif-unif 1 0.5 0.1 1.1 10 40 100 0.140 0.060 0.065 0.051 0.045

Ellipsis gauss-unif 1 0.5 0.1 1.1 10 40 100 0.061 0.048 0.049 0.032 0.036

Hyp. unif-unif 1 0.5 0.1 1.1 10 40 100 0.029 0.035 0.018 0.027 0.018

Hyp. gauss-unif 1 0.5 0.1 1.1 10 40 100 0.008 0.000 0.004 0.000 0.000

γl = c

(1+2M2)·
√

1+1/a4+1/b4
. We then picked d1 random unlabeled examples to define our map-

pings, and Ntrain random labeled training points to train the classifiers. We ran experiments

in this setting for several values of a, b, c, M , using either the uniform distribution inside

the legal regions, or a (truncated) gaussian (with different standard deviation parameters).

We summarize in Table 1 a few such results for several values of the parameters.5 For all

five methods (mapping F1 with Winnow, mapping F1 with linear SVM, mapping F2 with

Winnow, mapping F2 with linear SVM, and SVM) we report the average errors on a random

test set over 10 runs of the experiment. Note that the choices of d1 and Ntrain for the experi-

ments we summarize in Table 1 are substantially smaller than those given by the theoretical

bounds, but performance appears to still be quite reasonable especially under mapping F2.

6.2. Standard datasets

We also compared our mappings with SVM on standard datasets from the UCI Irvine Machine

Learning Repository (Blake and Merz, 1998), namely Cancer,6 Ionosphere, and IRIS dataset.

Both Cancer and Ionosphere datasets are for binary classification problems. IRIS is a dataset

with three classes, Iris Setosa, Iris Versicolor and Iris Virginica, and as in Gunn (1997), we

constructed three binary classification problems associated with it: separating Setosa from

the other classes, which we call IRIS 1VS23, separating Versicolor from the other classes,

which we call IRIS 2VS13, and separating Virginica from the other classes, which we call

IRIS 3VS12.

In Table 2 we summarize several results obtained as follows. For each dataset, we first

randomly permute all its examples, we then pick d1 unlabeled points for creating our map-

pings, and then from the remaining we pick Ntrain examples for training and keep the rest for

testing. We repeat the procedure 10 times and then report for all five methods the average

5 To be more explicit, for the experiments we report in Table 1, we consider a 50/50 distribution. To generate
a random point x = (x1, x2) for the ellipsis unif-unif case we first flip an unbiased coin to decide its sign l(x),

and then pick a point uniformly at random in the region specified by l(x)(
x2

1

a2 + x2
2

b2 − 1) ≥ c, |xi | ≤ M . For

the ellipsis gauss-unif case we similarly first flip an unbiased coin to decide the sign l(x), and then if l(x) is

1 we pick a point uniformly at random in the region specified by (
x2

1

a2 + x2
2

b2 − 1) ≥ c, |xi | ≤ M ; if l(x) is −1

we keep generating points x = (x1, x2) with xi distributed gaussian with mean 0 and variance 0.2 until we

have (
x2

1

a2 + x2
2

b2 − 1) ≤ −c, |xi | ≤ M . In a similar way we obtain random points for the hyperbola unif-unif
and hyperbola gauss-unif cases.
6 Note that we discarded from this dataset those examples with missing attributes.
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Table 2 Classification errors of the five methods on various standard datasets

Dataset Kernel Ntotal d1 Ntrain Ntest F1 Winnow F1 SVM F2 Winnow F2 SVM SVM

Cancer Poly2 683 20 200 513 0.1037 0.0842 0.0713 0.0821 0.0713

Ionosphere Poly2 351 20 250 81 0.1500 0.1160 0.1457 0.1179 0.1278

IRIS 1VS23 Poly1 150 10 50 90 0.0656 0.0144 0.0011 0.0000 0.000

IRIS 2VS13 RBF, σ = 1 150 10 50 90 0.0767 0.0611 0.0678 0.0444 0.0456

IRIS 3VS12 RBF, σ = 1 150 10 50 90 0.0733 0.0622 0.0678 0.0556 0.0533

error on the test set. We use a polynomial kernel of degree 2 for Cancer and Ionosphere

datasets, an RBF kernel with σ = 1 for IRIS 2VS13 and for IRIS 3VS12, and a linear kernel

for IRIS 1VS23 (for IRIS dataset we considered kernels suggested in Gunn (1997)).

Notice that in most of the cases both Winnow and linear SVM performed nearly as well

in the new feature spaces. An interesting point to observe is that mapping F2 performs nearly

as well as SVM, while on several datasets mapping F1 performs slightly worse. This is to

some extent expected since under mapping F1 we do not expect to have large margin, and

also the size of our training set is usually quite small.

6.3. Discussion

The experiments show that (at least for this data) mappings F1 and F2 can be used to place data

into a low-dimensional space and run a linear-separator algorithm (Winnow or linear SVM)

without much degradation in performance. Note that we did not experience any improvement
in performance. However, the ability to perform such explicit mappings opens the door to

other possible learning algorithms, perhaps especially designed for low-dimensional data

or especially designed for speed, that one might not be able to run over the original data

representation. In particular, these mappings allow one to enjoy the benefits of having a large

margin in the φ-space without restricting the class of learning algorithms to those that are

easily kernelizable.

7. Conclusions and open problems

We show how given black-box access to a kernel function K and a distribution D (i.e., unla-

beled examples) we can use K and D together to efficiently construct a new low-dimensional

feature space in which to place the data that approximately preserves the desired properties

of the kernel. Our procedure uses two types of “random” mappings. The first is a mapping

based on random examples drawn from D that is used to construct the intermediate space,

and the second is a mapping based on Rademacher/binary (or Gaussian) random vectors in

the intermediate space as in the Johnson-Lindenstrauss lemma.

Our analysis suggests that designing a good kernel function is much like designing a good

feature space. It also provides an alternative to “kernelizing” a learning algorithm: rather

than modifying the algorithm to use kernels, one can instead construct a mapping into a low-

dimensional space using the kernel and the data distribution, and then run an un-kernelized

algorithm over examples drawn from the mapped distribution.

One interesting aspect of our simplest method, namely choosing x1, . . . , xd from D and

then using the mapping x �→ (K (x, x1), . . . , K (x, xd )), is that it can be applied to any generic

“similarity” function K (x, y), even those that are not necessarily legal kernels and do not
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necessarily have the same interpretation as computing a dot-product in some implicit φ-space.

It would be interesting if one could prove guarantees for this more general setting.

Our main concrete open question is whether, for natural standard kernel functions, one

can produce mappings F : X → Rd in an oblivious manner, without using examples from

the data distribution. The Johnson-Lindenstrauss lemma tells us that such mappings exist,

but the goal is to produce them without explicitly computing the φ-function. Barring that,

perhaps one can at least reduce the unlabeled sample-complexity of our approach.

On the practical side, it would be interesting to further explore the alternatives that these

(or other) mappings provide to widely used algorithms such as SVM, or Kernel Perceptron.
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