
Mach Learn (2006) 64:121–144

DOI 10.1007/s10994-006-8261-3

Complexity parameters for first order classes∗

Marta Arias† · Roni Khardon

Received: 23 June 2004 / Revised: 23 February 2006 / Accepted: 2 March 2006 / Published online: 8 May
2006
Springer Science + Business Media, LLC 2006

Abstract We study several complexity parameters for first order formulas and their suitabil-

ity for first order learning models. We show that the standard notion of size is not captured by

sets of parameters that are used in the literature and thus they cannot give a complete charac-

terization in terms of learnability with polynomial resources. We then identify an alternative

notion of size and a simple set of parameters that are useful for first order Horn Expressions.

These parameters are the number of clauses in the expression, the maximum number of

distinct terms in a clause, and the maximum number of literals in a clause. Matching lower

bounds derived using the Vapnik Chervonenkis dimension complete the picture showing that

these parameters are indeed crucial.

Keywords Inductive logic programming · Learning theory · First-order logic ·
VC-dimension · Query learning

1. Introduction

Since the introduction of Inductive Logic Programming (ILP), several theoretical investiga-

tions have contributed to characterizing the complexity of learning classes of expressions

in first order logic (FOL). While learnability is usually defined using the size of the target

concept as complexity measure, the complexity of algorithms and related lower bounds in

∗This work has been partly supported by NSF Grant IIS-0099446. A preliminary version of this paper
appeared in the proceeding of the conference on Inductive Logic Programming 2003.

†Most of this work was done while M.A. was at Tufts University.

Editors: Tamás Horváth and Akihiro Yamamoto

M. Arias (�)
Center for Computational Learning Systems, Columbia University, New York, NY 10115, USA
e-mail: marta@cs.columbia.edu

R. Khardon
Department of Computer Science, Tufts University, Medford, MA 02155, USA
e-mail: roni@cs.tufts.edu

Springer



122 Mach Learn (2006) 64:121–144

the literature are usually quantified with other complexity measures. It is therefore not clear

what these imply for the standard notions of polynomial learnability.

A comparison to propositional logic can highlight the difficulty. Work on learnability in

propositional logic typically uses the number of propositions n and the size m of the target

formula as complexity parameters; see Kearns & Vazirani (1994) for an overview. This is

reasonable as it allows a learning algorithm to use more time and other resources when

examples (length n) or the formula being learned (length m) are larger. The situation in FOL

differs from the propositional case since we do not have a fixed instance size n and it has

proved difficult to get upper bounds directly in terms of the target size m. Moreover several

parameters are inter-related so the value of one affects the other and a bound in terms of one

implicitly depends on the other. It is therefore harder to interpret complexity results in this

context.

This paper clarifies the situation by studying explicitly the relations between various

notions of size used in the literature. We show that there is a discrepancy between parameters

which are often used and the standard notion of size, and give a setting and set of parameters

which are in some sense the right ones for first order learnability.

Previous work has provided both lower bounds and upper bounds on the resources required

for learnability. Upper bounds are typically obtained by analyzing concrete algorithms. In do-

ing so several authors have used standard parameters from first order logic, such as the number

of clauses, the number of literals per clause etc. Others introduce special syntactic parameters

such as depth and determinacy or restrict the structure of clauses or background knowledge

in their analysis (Muggleton & Feng, 1992; Džeroski et al., 1992; Kietz & Džeroski, 1994;

Cohen, 1995; Arimura, 1997). See results of Reddy & Tadepalli (1997); Horváth & Turán

(2001) and also ours in Arias & Khardon (2002).

Lower bounds were derived using the notion of Vapnik-Chervonenkis (VC) dimension. VC

based bounds apply in several models of learnability including the PAC model (Ehrenfeucht

et al., 1989) and the model of exact learning with queries (Maass & Turán, 1992). Several

lower bound results for first order learnability ignore some parameters and prove exponential

or infinite growth w.r.t other parameters (Arimura, 1997; Khardon, 1999a; Maass & Turán,

1995). Work in Arimura (1997) and Khardon (1999a) shows that the complexity may be

exponential in the arity of predicates. However, both papers do not highlight the fact that the

number of literals in the expressions being learned is of the same order (also exponential in

arity). Maass & Turán (1995) show that the VC dimension is infinite with a single binary

predicate but do not highlight the fact that these cases allow for an infinite number of constants

whose encoding is not accounted for in the size of expressions.1 In fact, any such lower

bound going beyond the size of expressions must have a hidden unaccounted aspect: since

the VC dimension is bounded by the logarithm of the class size, for discrete cases the lower

bounds cannot be larger than the size of the learned expressions assuming a reasonable

encoding scheme.

Therefore, the question is what constitutes a good set of parameters for first order learn-

ability. Such a set should capture the size and avoid the confusion from inter-related parameter

sizes. To answer this question we consider a setting where the parameters of the FOL signa-

ture (number of predicates, constants, function symbols, arity) are fixed in advance and are

1 The case here is similar to learning classes with real valued parameters where each number is charged one
unit of complexity, but nonetheless the VC dimension of various concept classes is bounded. The negative
result mentioned shows that this does not hold for first order logic except in very restricted cases. The work
in Maass & Turán (1995) and Grohe & Turán (2002) identifies syntactic restrictions on formulas, examples,
and background knowledge that give bounded VC dimension in this setting.

Springer



Mach Learn (2006) 64:121–144 123

therefore numerical constants. The concept class is defined by the other parameters control-

ling the expressions (number of variables, terms, clauses etc).

We start our investigation by defining when two sets of parameters are “related” so that

polynomial learnability transfers from one set to the other. Using this we show that there

is no simple answer (set of parameters) if the standard notion of formula size is used: the

standard notion of size for FOL is not polynomially bounded by the natural parameters of

FOL. On the other hand if we use a more compact representation, where a repeated term is

counted only once, then one can derive a polynomial bound for the total size. The crucial

parameters turn out to be c, l, and t where c is the number of clauses in the Horn expression,

l is the largest number of literals in a single clause, and t is the maximal number of distinct

terms and subterms in a single clause. With this in mind we prove that the VC dimension

is �̃(cl + ct) (where �̃() hides logarithmic factors in the standard �() notation). This holds

for ILP both in the model of learning from interpretations (De Raedt & Džeroski, 1994) and

for learning from entailment (Frazier & Pitt, 1993). Therefore, our results identify a natural

separation of the parameters to fixed ones relating to the signature and variable ones relating

to the construction of expressions. With this we give a new notion of size and corresponding

set of parameters that capture it, and characterize the VC dimension which is polynomially

related to these parameters.

The rest of the paper is organized as follows. The next section gives some technical

preliminaries. Section 3 defines complexity measures for first order logic. Section 4 develops

the notion of polynomially related sets of parameters and Section 5 applies this notion to

first order logic. Section 6 develops the results on the VC dimension. The concluding section

gives further discussion of the results and directions for future work.

2. Preliminaries

We assume familiarity with first order logic (Lloyd, 1987). The following gives the basic

definitions for concept classes and learnability in this context.

A signature determines the variables, function symbols and predicate symbols (with their

respective arity) over which formulas are built. Function symbols of arity zero are often

called constants. A term is built bottom up from constants and variables by applying function

symbols of the appropriate arity; if t1, . . . , ta are terms and f is a function symbol of arity

a, then f (t1, . . . , ta) is a term. An atom is a predicate applied to a tuple of terms of the

appropriate length. A literal is an atom or the negation of an atom.

We consider universally quantified first order Horn expressions. A clause is a disjunction

of literals where all variables in the clause are (implicitly) universally quantified. A Horn

clause has at most one positive literal. A Horn expression is a conjunction of Horn clauses.

Note that any clause can be written as C = (∧n∈Negn) → (∨p∈Pos p) where Neg and Pos are

the sets of atoms that appear in negative and positive literals of C respectively. When doing

so we will refer to (∧n∈Negn) as the antecedent of C and to (∨p∈Pos p) as the consequent of

C . A clause is range restricted if every term or sub-term that appears in its consequent also

appears in its antecedent. A clause is constrained if every term or sub-term that appears in

its antecedent also appears in its consequent.

Example 1. Consider a signature with a predicate p of arity 2, a constant b, a function sym-

bol f of arity 1 and a variable x . When discussing concrete signatures, we will use the

notation p/a to denote a predicate symbol with its arity (or a function symbol with its ar-

ity). Thus this signature has function symbols b/0 and f/1, and predicate p/2. The clause

Springer



124 Mach Learn (2006) 64:121–144

C1 = p(x, b) ∧ p( f (b), x) → p( f (x), f (b)) is constrained but not range restricted, the

clause C2 = p(x, b) ∧ p( f (b), f (x)) → p( f (x), b) is range restricted but not constrained,

and the clause C3 = p(x, b) ∧ p( f (b), x) → p( f (x), b) is neither range restricted nor con-

strained.

We often use sets of literals to denote clauses and set of clauses to denote their conjunction.

Hence, when we write {L1, . . . , Ll} where Li are literals we mean L1 ∨ .. ∨ Ll . When we

write {C1, . . . , Cc} where Ci are clauses we mean C1 ∧ .. ∧ Cc. The intension is clear from

the context and helps simplify the presentation.

Given a signature S, an S-interpretation (sometimes called S-model or S-structure) as-

signs a “meaning” to symbols in the language in the following way. The interpretation

includes a domain D whose elements are referred to as objects. Each function symbol is

associated with a mapping from tuples of domain objects of appropriate arity to domain

objects. Each predicate symbol is associated with a subset of tuples of the appropriate arity

on which it is true; this is known as the extension of the predicate. We refer to the set of

possible interpretations over S as Int(S).

A formula is given a truth value on an interpretation in a natural way, by first extending

the function mapping to a term assignment associating an object to each term and then

evaluating the resulting atoms and logical connectives based on the extension of predicates

in the interpretation.

If an expression T evaluates to true on interpretation I then we say that I satisfies T and

denote this by I |= T . In this case, we also say that I is a model of T . If T evaluates to false

under I , then we say that I falsifies T and denote this by I �|= T . A first order expression

T1 entails (logically implies) another expression T2, denoted T1 |= T2, if every model of T1

is also a model of T2. Two expressions T1, T2 are logically equivalent, denoted T1 ≡ T2, iff

T1 |= T2 and T2 |= T1.

There exist several settings in ILP defining what constitute concepts and examples

(Muggleton & De Raedt, 1994; De Raedt, 1997). We mainly consider the framework of

learning from interpretations (De Raedt & Džeroski, 1994) where examples given to the

learner are interpretations. Concepts are represented by first order formulas. A concept is

associated with a set of interpretations for which it is true. Thus the concept represented by

a formula ψ is given by the set of interpretations {M | M |= ψ and M ∈ Int(S)}. A concept
class is a set of concepts usually described by a family of formulas representing the concepts.

We also consider learning from entailment (Frazier & Pitt, 1993) where examples are

clauses in the language. To minimize confusion we defer definition and discussion of this

setting to Section 6.2.

The size of a concept is the size of the smallest formula representing it. If no such formula

exists, then the concept’s size is infinite. Usually the size of a formula is its string length but

other notions of size are also possible and we discuss these in detail below. Given a concept

class C and a notion of size, we define C≤m as the concepts in C of size at most m. Naturally,

C = ∪m≥1C≤m .

While our discussion and results are largely independent of the learning model it will be

useful to have a model in mind. We briefly review the model of exact learning with equiv-
alence queries and membership queries (Angluin, 1988) in the context of learning from

interpretations. Before the learning process starts, a concept is fixed among all the concepts

in the concept class. We refer to this concept as target concept. The goal of the learner is to

output an expression that represents the target concept. The learner (the learning algorithm)

has access to an equivalence oracle and a membership oracle that provide information about

the target concept. In an equivalence query, the learner presents a hypothesis in the form of

Springer



Mach Learn (2006) 64:121–144 125

a first order formula and the oracle answers Yes if it is a representation of the target concept.

Otherwise, it answers No and provides a counterexample, that is, an example (interpretation)

where target and hypothesis disagree. In a membership query, the learner presents an exam-

ple (interpretation) and the oracle answers Yes or No depending on whether the example

presented is a member of the target concept. We assume that the learner is given the signature

S as input.

The following definitions are due to Hellerstein et al. (1996):

Definition 1. The query complexity of a learning algorithm A at any stage in a run is the sum

of the sizes of the (i) inputs to equivalence queries, and (ii) inputs to membership queries

made up to that stage.

Notice that the definition of query complexity uses two different notions of size, one cap-

turing the complexity of the hypotheses, the other capturing the complexity of the examples.

The following definition captures learnability with respect to query complexity (ignoring

time complexity):

Definition 2. An algorithm A is a polynomial query learning algorithm for a concept class C
if there exists a polynomial r (·, ·) such that, for any positive integer m, and for any unknown

target concept c ∈ C≤m :

(i) A uses membership queries and equivalence queries of the form EQ(h) where h repre-

sents a concept in C
(ii) A eventually halts and outputs a string h representing the target concept c, and

(iii) at any stage, if n is the size of the longest counterexample received so far in response to

an equivalence query, the query complexity of A at that stage does not exceed r (n, m).

3. Complexity parameters for first order logic

In this section we present several ways of quantifying the representation complexity of our

two first order constructs of interest: interpretations and expressions.

3.1. Complexity of first order expressions

We start with a description of possible ways of quantifying the representation or description

complexity of first order expressions. We illustrate these using the following first order

expression E :

(∀X add(zero, X, X )) ∧
(∀X ∀Y ∀Z add(X, Y, Z ) → add(succ(X ), Y, succ(Z )))

First, we introduce parameters that quantify the complexity of a given signature. Since

our model assumes that the signature is fixed and given in advance, these parameters are

considered as numerical constants when reporting results.

Springer



126 Mach Learn (2006) 64:121–144

NPredicates(·) counts the number of distinct predicate symbols appearing in the input ex-

pression. In the example, NPredicates(E) = 1 corresponding to {add/3}. We denote this

parameter by p.

NFunctions(·) counts the number of distinct function symbols appearing in the input expres-

sion. In the example, N Functions(E) = 2 corresponding to the function symbols zero/0

and succ/1. We denote this parameter by f .

Arity(·) the largest arity of any predicate or function symbol appearing in the input expression.

In the example, Arity(E) = 3 corresponding to the predicate add/3. We denote this parameter

by a.

Next, we introduce parameters that quantify the global complexity of a given expression.

StringSize(·) as its name suggests, StringSize counts the number of syntactic symbols used

to write down the input expression, ignoring spaces. Predicate and function symbols whose

name is longer than one letter contribute just 1. In our example, StringSize(E) = 44: the

first clause contributes 12 and the second clause contributes 31, and we have to count the

connective ∧ as well.

TreeSize(·) this size measure counts the number of nodes in a tree constructed recursively

in the following manner. If the expression is a quantified expression, then put the quantifier

in the root (labeled with the quantifier, FORALL or EXISTS), the quantified variable as its

left child and the rest of the expression as the right child. If the expression is a conjunct,

then add as children to the root (labeled with AND) all its conjuncts. Disjuncts are treated

analogously, having OR as the root and the disjuncts as children. For implications the root is

labeled with IMPLIES and the left child is the antecedent and the right child the consequent.

With a negation the node is labeled with NOT and the only child is the rest of the expres-

sion. For atomic formulas, the root is labeled with the predicate symbol and the children

are its arguments. If the expression is a variable, then the root is a leaf labeled with the

variable name. For functional terms, the root is the outermost function symbol and the chil-

dren are its arguments. In our example, TreeSize(E) = 24; its associated tree is depicted in

Fig. 1.

Fig. 1 Tree representing the
expression E

Springer



Mach Learn (2006) 64:121–144 127

DAGSize(·) counts the number of nodes in a DAG constructed by unifying identical subtrees

that correspond to terms in the tree constructed as explained above. We assume that expres-

sions are standardized apart, that is, we avoid re-use of variable names that belong to scopes

of different quantifiers. This converts our expression E into the equivalent E ′:

(∀X ′ add(zero, X ′, X ′)) ∧
(∀X ∀Y ∀Z add(X, Y, Z ) → add(succ(X ), Y, succ(Z )))

In the example, the only repetition of terms are of variables X, Y, Z and X ′ which appear 3

times each. We save 4 × (3 − 1) = 8, hence DAGSize(E ′) = TreeSize(E) − 8 = 16.

We next consider natural parameters of first order representations. Notice that some of

these parameters apply only to clause-based expressions such as Horn expressions.

Depth(·) the maximum depth of any functional term appearing in the input expression. In

the example, Depth(E) = 2 corresponding to the deepest term succ(X ) (or succ(Z )). We

denote this parameter by d .

NTerms(·) counts the maximum number of distinct terms (including sub-terms) in any clause

of the input CNF expression. In the example, NTerms(E) = 5, corresponding to term set in

the second clause {X, Y, Z , succ(X ), succ(Z )}. We denote this parameter by t .

NVariables(·) counts the maximum number of distinct variables appearing in any clause of

the input CNF expression. In the example, NVariabless(E) = 3, corresponding to variable

set in the second clause {X, Y, Z}. We denote this parameter by v.

NLiterals(·) counts the maximum number of literals in any clause of the input CNF expres-

sion. In the example, NLiterals(E) = 2 from the second clause. We denote this parameter by

l.

NClauses(·) counts the number of clauses in the input CNF expression. In our example,

NClauses(E) = 2. We denote this parameter by c.

3.2. Complexity of first order interpretations

The complexity of a first order interpretation can be captured by a single parameter: the

number of objects in its domain. The remaining constituents of an interpretation (function

mappings and extensions) are of polynomial size w.r.t. the number of domain objects if the

arity, the number of function symbols and the number of predicate symbols are considered

constant.

4. Relating parameters to “Size”

While learnability is usually defined in terms of the notion of size, it may be useful to provide

bounds using other measures (as various authors have done). We therefore need to extend

the definitions of query complexity and learnability to refer to a set of parameters. This

is done in a natural way so that query complexity measures each of the parameters, and

learnability requires a polynomial bound in every parameter. Thus, in Definition 1, instead

Springer



128 Mach Learn (2006) 64:121–144

of summing the sizes of hypotheses and examples, we sum each parameter separately and

have a complexity measure per parameter. Similarly, in Definition 2 we need to replace n, m
with lists of complexity parameters and replace r (·, ·) with a list of bounds, one for each

parameter. This is done in Theorem 2 below. However, this is not sufficient. We must also

identify when such a replacement preserves polynomial learnability. For this we define:

Definition 3. Let C be a class of first order expressions. Let k and j be positive integers.

Let C = {C1, . . . , Ck} be a list of complexity measures on expressions in C, and let D =
{D1, . . . , D j } be an alternative list of complexity measures on expressions in C. We say that

C and D are polynomially related w.r.t. C if there exist polynomials p1, . . . , pk of arity j
and polynomials q1, . . . , q j of arity k such that for every E ∈ C:

(i) for all i = 1, . . . , k: Ci (E) ≤ pi (D1(E), . . . , D j (E)), and

(ii) for all i = 1, . . . , j : Di (E) ≤ qi (C1(E), . . . , Ck(E)).

The next lemma follows directly from the definition of polynomial relation:

Lemma 1. The polynomial relation between sets of complexity measures is reflexive, tran-
sitive, and symmetric.

The next theorem shows that this notion of polynomial relation among complexity mea-

sures captures exactly the situations in which one can substitute the related complexity

measures without changing the learning model.

Theorem 2. Let C be a class of first order expressions. Let C1, . . . , Ck be a set of complexity
measures that is polynomially related to Si ze w.r.t. the class C, where Si ze is some notion of
size for the expressions inC. Let p1(·), . . . , pk(·) and q(·, . . . , ·) be the polynomials witnessing
their polynomial relation. Similarly, let D1, . . . , Dk ′ be a set of complexity measures that
is polynomially related to Si ze′ w.r.t. the class E , where E is a representation class for
the examples, and Size′ is some notion of size for the example representations in E . Let
p′

1(·), . . . , p′
k ′ (·) and q ′(·, . . . , ·) be the polynomials witnessing their polynomial relation.

Suppose thatA is a learning algorithm for class C with query complexity (w.r.t. C1, . . . , Ck

and D1, . . . , Dk ′ ) bounded by the polynomials si (c1, . . . , ck, d1, . . . , dk ′ ) for i = 1, . . . , k,
and s ′

j (c1, . . . , ck, d1, . . . , dk ′ ) for j = 1, . . . , k ′, where c1, . . . , ck bound the complexity of
the target concept (w.r.t. C1, . . . , Ck), and d1, . . . , dk ′ bound the complexity of the counterex-
amples received (w.r.t. D1, . . . , Dk ′ ). Then, A is a polynomial query learning algorithm for
C.

Proof: Notice that items (i) and (ii) of Definition 2 on learnability hold trivially since we

have assumed that A is a learning algorithm for C working in the same model. We show

that item (iii) holds. Namely, there is a polynomial r (·, ·) s.t. at any stage, if n is the size of

the longest counterexample received so far in response to an equivalence query, the query

complexity of A at that stage does not exceed r (n, m).

In the following, f1...k(args) stands for f1(args), . . . , fk(args). We define

r (n, m) = q(s1...k(p1...k(m), p′
1...k ′ (n))) + q ′(s ′

1...k ′ (p1...k(m), p′
1...k ′ (n))).

Springer



Mach Learn (2006) 64:121–144 129

Observe that all the functions s1, . . . , sk, s ′
1, . . . , s ′

k ′ , p1, . . . , pk, p′
1, . . . , p′

k ′ and q, q ′ are

polynomials and hence r is a polynomial. It is left to show that r bounds the query complexity

for A.

Notice that c ∈ C≤m implies c ∈ C≤p1...k (m) since p1(m), . . . , pk(m) bound the complexity

measures in C1, . . . , Ck . By assumption, the query complexity (w.r.t. parameters C1, . . . , Ck)

of A is bounded by

s1...k(p1...k(m), p′
1...k ′ (n))

and by

s ′
1...k ′ (p1...k(m), p′

1...k ′ (n)).

Hence, the query complexity of A (w.r.t. Size and Size′) is bounded by

q(s1...k(p1...k(m), p′
1...k ′ (n))) + q ′(s ′

1...k ′ (p1...k(m), p′
1...k ′ (n))).

�

Remark 1. Note that we require polynomial bounds in both directions to guarantee learnabil-

ity. This is needed for learning with queries and for proper PAC learnability (where hypothesis

class is the same as concept class), whereas a one sided bound suffices for PAC predictability.

It is useful to highlight what can go wrong if this does not hold. In Fig. 2 we can see

three terms: t1 has TreeSize exponential in the depth while its DAGSize is just linear (further

discussion of t1 is given in Theorem 4 below); t2 has both T reeSi ze and DAGSize exponential

in the depth; finally t3 has both TreeSize and DAGSize linear in the depth.

Now, if one has an algorithm that learns w.r.t. TreeSize then when learning an expression

including t1 the algorithm is allowed to include t2 in a query but this is not possible for

learning w.r.t. DAGSize since t1 is just polynomial in the depth whereas t2 is exponential.

On the other hand, if one has an algorithm that learns w.r.t. DAGSize then when learning an

expression including t3 the algorithm can use t1 in its query. If we try to use this algorithm

to learn w.r.t. TreeSize this query is too large.

Fig. 2 Three terms with different combinations of (asymptotic) TreeSize and DAGSize

Springer



130 Mach Learn (2006) 64:121–144

5. Relating complexity measures for first order logic

The previous two sections give complexity parameters and a tool to relate them. We next

investigate which subsets of the alternative complexity measures are polynomially related to

our notions of size.

Definition 4. Let P be the set of alternative complexity parameters {NTerms, NVariables,

Depth, NLiterals, NPredicates, NFunctions, Arity, NClauses}.

It is not hard to see that the tree representation can be padded with extra commas and

parentheses and therefore:

Lemma 3. StringSize is polynomially related to TreeSize.

As a result, while we typically think of StringSize as defining learnability, we can discuss

complexity with respect to TreeSize without loss of clarity. The question is whether we can

find a combination of the alternative parameters in P that is polynomially related to TreeSize.

Suppose that E is a first order Horn expression s.t.

NTerms(E) = t NVariables(E) = v Depth(E) = d
NLiterals(E) = l NPredicates(E) = p NFunctions(E) = f
Arity(E) = a NClauses(E) = c

Observe that any term appearing in E has (tree) size at most O(ad ). Hence, any atomic

formula has (tree) size at most 1 + O(ad+1) = O(ad+1) (1 for the predicate symbol, ad+1 for

the arguments). Hence, the tree size of any Horn clause is bounded by 1 + 2v + l O(ad+1) =
O(v + lad+1) (1 for the implication symbol in the clause, 2v for the quantifiers and quantified

variables, and O(ad+1) for each atom in the clause). Therefore:

TreeSize(E) = O(cv + clad+1) = O(clad+1),

where the last equality follows since the number of “slots” for variables in each clause is

bounded above by lad+1, and hence v ≤ lad+1.

On the other hand, it is clear that all the parameters above are bounded by TreeSize(E).

The next theorem shows that the converse does not hold:

Theorem 4. TreeSize is not polynomially bounded by any subset of parameters in P for
classes over signatures with at least one constant and one function symbol of arity at least 2.

Proof: We give an expression E such that its TreeSize is exponential in NTerms. Let E =
p(t1), where t1 is a complete tree of degree a with internal nodes labeled with function symbol

f and leaves labeled with constant 1:

p(

d times︷ ︸︸ ︷
f (. . . f ( f ( f (

a times︷ ︸︸ ︷
1, . . . , 1), . . . , f (1, . . . , 1)), . . . , f ( f (1, . . . , 1), . . . , f (1, . . . , 1))) . . .))

The term t1 is represented in Fig. 2 for a = 2 and d = 3. The complexity measures for E are:

Springer



Mach Learn (2006) 64:121–144 131

NTerms(E) = d NVariables(E) = 0 Depth(E) = d
NLiterals(E) = 1 NPredicates(E) = 1 NFunctions(E) = 2

Arity(E) = a NClauses(E) = 1 TreeSize(E) = �(ad )

Hence no polynomial combination of the available complexity measures upper bounds

TreeSize(E). �

This is a surprising fact that has not been noticed in previous work working with these

parameters. No polynomial combination of the parameters above can replace TreeSize.

Proposition 5. If there are no function symbols of arity greater than 1, then the set
{NClauses, NLiterals, Depth} is polynomially related to TreeSize.

Proof: This follows from the fact that in this case TreeSize = O(cv + clad) = O(clad).

�

On the other hand, exponential lower bounds in terms of arity have been derived when

ignoring NLiterals. These essentially reflect the following fact:

Proposition 6. If the number of literals is ignored then TreeSize and DAGSize are not poly-
nomially bounded by Arity.

Proof: Let p be a predicate of arity a. Let {1, . . . , t} be a set of t distinct terms built e.g.

by one constant and one unary function. Let P be the set of all different p() atoms built

from these terms; |P| = ta . Let p̂ be a particular element in P . Let E be the expression

E = P \ { p̂} → p̂. The complexity of E is given by:

NTermss(E) = t NVariables(E) = 0 Depth(E) = t
NLiterals(E) = ta NPredicates(E) = 1 NFunctions(E) = 2

Arity(E) = a NClauses(E) = 1

TreeSize(E) = �(ta) DAGSize(E) = �(ta)

Hence, the tree size is exponential in the arity and is not polynomially bounded by other

parameters when l is ignored. �

As a result, a linear lower bound in terms of size can be seen as an exponential lower

bound in terms of arity.

Like in the case of TreeSize, DAGSize also gives an upper bound for all the alternative

parameters in P . But, unlike TreeSize, the relation in the other direction is polynomial for

DAGSize. Notice that a DAG encodes terms in a smarter way, since multiple occurrences of a

term are only counted once. Hence, t terms in a clause contribute only �(t) to the DAGSize.

Each atomic formula contributes only 1 since its arguments have already been counted

(encoded with the terms). Hence, every clause has size at most O(v + t + l) = O(t + l) and

c + l + t ≤ DAGSize(E) = O(ct + cl).

We therefore have:

Theorem 7. The set of parameters {NTerms, NLiterals, NClauses} is polynomially related
to DAGSize w.r.t. the class of first order Horn expressions.

Springer



132 Mach Learn (2006) 64:121–144

Notice that the theorem is true for any values of the other parameters. Proposition 6 shows

that D AGSize can be exponential in arity but in such a case Theorem 7 guarantees that one

of c, l, t must be large as well. It is also interesting to note that several results on learning

with queries give upper bounds in terms of ta and other parameters: Arimura (1997), Reddy

& Tadepalli (1998), Krishna Rao & Sattar (1998), Arias & Khardon (2002). While l ≤ pta

these bounds do not directly relate to DAGSize or TreeSize.

6. The VC dimension of first order Horn expressions

This section characterizes the Vapnik-Chervonenkis dimension (VC dimension) of first order

Horn expressions. It is known that the VC dimension provides tight bounds on the number of

examples needed for PAC learning; see Vapnik & Chervonenkis (1971), Blumer et al. (1989),

Ehrenfeucht et al. (1989). It also provides a lower bound for the number of equivalence and

membership queries needed for exact learning (Maass & Turán, 1992).

We start with the necessary definitions.

Definition 5. Let I be a set, H ⊆ 2I , and S ⊆ I. Then �H(S) is the set {h ∩ S | h ∈ H},
i.e. the set of subsets of S that can be obtained by intersection with elements of H. If
|�H(S)| = 2|S|, then we say that H shatters S. Finally, VCDim(H) is the size of the largest

set shattered by H (or ∞ if arbitrary large sets are shattered).

From the definition above it follows that for finite classes T , we have VCDim(T ) ≤
log |T |. Hence, in order to obtain an upper bound for the VC dimension of first order Horn

expressions, we compute first how many concepts there are in the class H≤c,t,l of first order

Horn expressions with at most c clauses, at most t terms per clause, and at most l literals per

clause.

We show how to encode each concept in H≤c,t,l with a binary alphabet. In order to

represent terms or literals we need to refer to function and predicate symbols; assume there

are p predicates and f function symbols (of arity at most a) that we can refer to by using log p
and log f bits, respectively. We assume that a, p and f are constant values, hence a, log p
and log f are just O(1). To encode a set of t distinct terms, we list them in a table with t rows,

where each row is of size at most log f + a log t (log f are the bits used to encode the head

of the term, and a log t are the number of bits used to encode its arguments). This results in

t(log f + a log t) = O(t log t) bits for the term table. Now, we just need log t bits to refer to

terms in the expressions (the indices of the terms in the term table). To encode one clause, we

use a table with at most l rows, each being of size at most 1 + log p + a log t (1 is to indicate

whether the literal is negated or not). This results in l(1 + log p + a log t) = O(l log t) bits

for the clause table. Hence, to encode a single clause we need O(l log t + t log t) bits. To

encode c clauses, we need to have a term and a clause table for each clause, and hence

O(cl log t + ct log t) bits are sufficient.

With B = O(cl log t + ct log t) bits we can represent a maximum of 2B different concepts.

Note that this fact is valid regardless of representation of the examples, thus:

Theorem 8. VCDim(H≤c,t,l ) = O(cl log t + ct log t). This bound holds for learning from
interpretations and for learning from entailment.

Springer



Mach Learn (2006) 64:121–144 133

In the rest of this section we show that VCDim(H≤c,t,l ) = �(cl + ct). The two learning

models are handled separately in the next two subsections.

6.1. Learning from interpretations

In the following sequence of lemmas we construct sets of interpretations of appropriate

cardinality, and show how to shatter them by giving families of first order Horn expressions

separating each possible dichotomy of the interpretation sets. We make extensive use of the

interpretations’ function mappings to ensure that terms evaluate to appropriate values so that

separation is guaranteed.

Lemma 9. There exists a set of c interpretations of size �(log c) that can be shattered using
first order Horn expressions bounded by NClauses ≤ c, NTerms ≤ log c + 3, NLiterals = 2,
NVariables = 0, Depth = log c, Arity = 2, NFunctions = 4 and NPredicates = 2.

Proof: We construct a set of c different terms using a function f of arity 2 and three constants

1, 2 and 3 and by forming ground terms of depth log c in the following manner:

T̂ = {
f (a1, f (a2, f (a3, f (... f (alog c, 3)...))

∣∣ ai ∈ {1, 2} for 1 ≤ i ≤ log c
}

Notice that there are exactly 2log c = c such terms (Fig. 3 shows all of these terms when

c = 8). Moreover, every term in T̂ contains at most log c + 3 distinct subterms.

We define I, the set of interpretations to be shattered, by giving an interpretation per

element t̂ of T̂ . Hence, |I| = ˆ|T | = c. The domain of the interpretation It̂ , consists of

the �(log c) objects corresponding to the subterms appearing in t̂ (including itself) and

a distinguished object ∗. The function mapping for f is defined to follow the functional

structure of the distinguished term t̂ , and remaining entries are mapped to ∗. Notice that

any term t ′ ∈ T̂ s.t. t̂ �= t ′ is mapped to the special object ∗ under the interpretation It̂ . The

signature includes two predicates P/1 and F/0; the extension of It̂ contains a single atom

P(t̂) in its extension, the extension for F is always empty and hence F() is always false.

Fig. 3 Trees representing the 8 terms in the set T̂ for c = 8 (Lemma 9)

Springer



134 Mach Learn (2006) 64:121–144

Given any subset S ⊆ I, define HS as

HS = {P(t̂) → F() | It̂ ∈ S}.

We now show that HS separates interpretations in S from interpretations in I \ S. Inter-

pretations I in S falsify one of the clauses in HS (the one corresponding to I ’s distinguished

term) and hence I �|= HS . Interpretations I not in S falsify each clause’s antecedent since

the terms present in the clauses of HS are all mapped to the special object ∗ under I . Hence,

I |= HS . �

Example 2. Let c = 4 so that log c = 2 and

T̂ = { f (1, f (1, 3)), f (1, f (2, 3)), f (2, f (1, 3)), f (2, f (2, 3))}.

Recall that the signature used has function symbols 1/0, 2/0, 3/0, f/2 and predicate symbols

P/1, F/0. Each term in T̂ generates an interpretation, e.g. I f (1, f (2,3)) consists of:

– Domain: {∗, 1, 2, 3, f (2, 3), f (1, f (2, 3))}.
– Function mappings: 1 �→ 1, 2 �→ 2, 3 �→ 3, f (2, 3) �→ f (2, 3), f (1, f (2, 3)) �→ f (1, f

(2, 3)) and f (·, ·) �→ ∗ for every other combination of domain objects.

– Extension for P: {P( f (1, f (2, 3)))}.
– Extension for F : {}.
The set I is I = {I f (1, f (1,3)), I f (1, f (2,3)), I f (2, f (1,3)), I f (2, f (2,3))}. Suppose that S =
{I f (1, f (1,3)), I f (1, f (2,3))} then

HS = {[P( f (1, f (1, 3))) → F()], [P( f (1, f (2, 3))) → F()]}.

The VC dimension construction of Khardon (1999a) uses a signature that grows with

N T erms. The following lemma modifies this construction to use a fixed signature.

Lemma 10. For l ≤ ta , there exists a set of l interpretations of size �(t) that can be shattered
using first order Horn expressions bounded by NTerms = 2t , NVariables = t , Depth = log t ,
NLiterals ≤ l, NPredicates = 3, NFunctions = 1, Arity ≤ a and NClauses = 1.

Proof: We construct a set of interpretations I that is shattered using first order Horn expres-

sions with parameters as stated. Fix a and t . The expressions use a predicate symbol F of

arity 0, a unary predicate L and a predicate symbol Q of arity logt l. Notice that logt l ≤ a
since l ≤ ta . Let

Qall = {
Q(i1, . . . , ilogt l )

∣∣ i j ∈ {1, .., t} for all j = 1, . . . , logt l
}
,

where {1, . . . , t} are some of the domain objects as described below. Notice that |Qall | =
t logt l = l.

Let f be a binary function, and let τ be the term represented by a binary balanced tree

of depth log t whose leaves are labeled by the objects 1 . . . t (in order) and whose internal

nodes are labeled by the function symbol f . Such a term contains 2t subterms. The term t2
of Fig. 2 represents τ for t = 8.

Springer



Mach Learn (2006) 64:121–144 135

The domain for all the interpretations in I includes an object for each subterm of τ

(including 1, . . . , t) and a special object ∗. The function mappings for f follow the functional

structure of τ with undefined entries completed by the special domain object ∗. Interpretations

include in their extension the atom L(τ ) and all the atoms in Qall except one. The extension

for F is always empty. There are l interpretations in I.

Given a subset S ⊆ I we define HS as follows. Let τ ′ be the result of replacing j ∈
{1, . . . , t} by the corresponding variable x j ∈ {x1, . . . , xt } in τ . Let QS be the intersection

of the Q() atoms in the extensions of all the interpretations in S after the same substitution.

Since all interpretations coincide in the domain and function mappings, an interpretation can

be viewed as simply describing a set of true atoms. When we take the intersection of these

sets of true atoms we are constructing the set of atoms that are true simultaneously in all the

interpretations. Then

HS = L(τ ′) ∧ QS → F().

We show that HS separates S from its complement I \ S. Suppose I ∈ S. Take the

substitution {x j �→ j}. Then I �|= HS because the antecedent is satisfied (it is a subset of the

extension of I ) but F() is not. Suppose on the other hand that I �∈ S. Substitutions other

than {x j �→ j} falsify L(τ ′). The clause HS is also satisfied under the substitution {x j �→ j}
because the “omitted Q” in I ’s extension is present in QS . Hence I |= HS . �

Example 3. Suppose l = 4 and t, a = 2. Then Qall = {Q(1, 1), Q(1, 2), Q(2, 1), Q(2, 2)}
and τ = f (1, 2). Notice that the interpretations coincide in everything except in the Q atom

that they leave out. Hence, let us denote by IQ̂ the interpretation that leaves atom Q̂ out. As

an example, the interpretation IQ(2,1) is:

– Domain: {∗, 1, 2, f (1, 2)}.
– Function mappings: 1 �→ 1, 2 �→ 2, f (1, 2) �→ f (1, 2) and f (·, ·) �→ ∗ for every other

combination of domain objects.

– Extension for Q: {Q(1, 1), Q(1, 2), Q(2, 2)} (notice atom Q(2, 1) missing!)

– Extension for L: {L( f (1, 2))}.
– Extension for F : {}.
Suppose that S = {IQ(2,1), IQ(2,2)}. The atoms included in IQ(2,1)’s extension for Q
are {Q(1, 1), Q(1, 2), Q(2, 2)} and the ones in IQ(2,2)’s extension for Q are {Q(1, 1),

Q(1, 2), Q(2, 1)}. Hence their intersection is {Q(1, 1), Q(1, 2)} and QS = {Q(x1, x1),

Q(x1, x2)}. HS is

L( f (x1, x2)) ∧ Q(x1, x1) ∧ Q(x1, x2) → F().

Now the previous two constructions can be combined to get:

Lemma 11. For l ≤ ta , there exists a set of cl interpretations of size �(log c + t) that can
be shattered using range-restricted and constrained first order Horn expressions bounded by
NClauses ≤ c, NTerms = �(log c + t), NLiterals ≤ l, NVariables = t , Depth = �(log c +
log t), Arity ≤ a, NFunctions = 5 and NPredicates = 4.

Proof: Let I be the set shattered in Lemma 10. We create a new set of interpretations I+ of

cardinality cl in the following way. We have an additional set of c terms constructed in the

Springer



136 Mach Learn (2006) 64:121–144

same way as in Lemma 9, let us denote this set T̂c. T̂c contains c distinct terms of depth log c
each.

We augment the interpretations in the construction of Lemma 10 by associating each

I ∈ I with a new term ĉ in T̂c (and hence we create c new interpretations in I+ for each old

interpretation in I). This adds to each interpretation log c new objects (corresponding to ĉ and

its subterms) and function mappings following ĉ’s structure, completing undefined entries

with the special object ∗. Additionally, we use a new predicate P/1 and include the atom

P(ĉ) in the extension of interpretations with distinguished term ĉ ∈ T̂c. Hence
∣∣I+∣∣ = cl.

Given a subset S ⊆ I we define HS as:

HS = {
L(τ ′) ∧ QSĉ ∧ P(ĉ) → F(τ ′, ĉ)

∣∣ ĉ ∈ T̂c
}
, (1)

where τ ′ is the same as above, Sĉ is the subset of interpretations in S with distinguished

term ĉ, and QSĉ is constructed as in Lemma 10. Notice that HS is both range-restricted and

constrained.

We show that HS separates S from its complement I \ S. Let I be any interpretation in I.

Suppose that ĉ is the distinguished term in T̂c associated to I . Terms c′ ∈ T̂c s.t. c′ �= ĉ evaluate

to ∗ under I , and every clause in HS containing P(c′) is satisfied. The clause containing P(ĉ)

is falsified iff I ∈ S by the same reasoning as in Lemma 10. �

The next result shows that by varying the number of terms we can shatter arbitrarily large

sets with a fixed signature.

Lemma 12. There exists a set of t interpretations of size O(t) that can be shattered using
Horn expressions bounded by NClauses = 1, NTerms ≤ 4t , NLiterals = 2, NVariables = 0,
Depth = 2 log t + 2, Arity = 2, NFunctionss ≤ 9 and NPredicates = 2.

Proof: Let t = k log k for some k ∈ N . Using the same signature as in Lemma 9 we

generate a set T̂ of k terms of depth log k each. We associate to every interpretation a

term in T̂ and an index i ∈ {1, . . . , log k} and we denote by It̂,i the interpretation associ-

ated to (t̂, i) ∈ T̂ × {1, . . . , log k}. Thus, we have a set of interpretations I of cardinality
|I| = ˆ|T | |{1, . . . , log k}| = k log k = t .

The signature used in this construction uses function symbols a/0, 1/0, 2/0, 3/0, f/2,

f0/1, f1/1, g/2, h/2, and predicate symbols M/1, F/0.

Given a subsetS ⊆ I, we construct a ground term TREES that associates to every possible

term t̂ in T̂ a set of indices lt̂ where lt̂ = {i | It̂,i ∈ S}. The function mappings in each

interpretation It̂,i ensure that the term TREES evaluates to a special domain object y if and

only if the index i appears in the set of indices for term t̂ encoded in TREES . The expression

HS is now defined as:

HS = M(TREES ) → F().

Each interpretation includes in its extension the atom M(y) so that the clause HS is falsified

by I iff the term TREES evaluates to y under I , i.e., iff I ∈ S.

We first describe the structure of the term TREES . We encode the set lt̂ with the term

fi1
( fi2

(· · · filog k (a)) · · ·) where i j = 0 if j �∈ lt̂ and i j = 1 otherwise. Denote this term by tlt̂
.

As an example, assume log k = 6 and let lt̂ = {1, 4, 5}. Then, tlt̂
= f1( f0( f0( f1( f1( f0(a)))))).

Springer



Mach Learn (2006) 64:121–144 137

Fig. 4 Tree representing TREES
in Example 4

Notice that we are using two unary functions f0 and f1 and a constant a. Next we use a binary

function g to encode the association between terms t̂ and their sets of indices lt̂ as g(t̂, tlt̂
).

Finally, TREES is constructed as a balanced tree, using a binary function h, whose leaves are

terms of the form g(t̂, tlt̂
), for every t̂ ∈ T̂ .

Example 4. Let k = 4. Then T̂ = {t̂1, t̂2, t̂3, t̂4}, where

– t̂1 = f (1, f (1, 3)), t̂2 = f (1, f (2, 3))

– t̂3 = f (2, f (1, 3)), t̂4 = f (2, f (2, 3))

If S = {It̂1,1, It̂2,2, It̂3,1, It̂3,2}, then:

– lt̂1 = {1}, lt̂2 = {2}, lt̂3 = {1, 2} and lt̂4 = {}.
– tlt̂1

= f1( f0(a)), tlt̂2
= f0( f1(a)), tlt̂3

= f1( f1(a)) and tlt̂4
= f0( f0(a)).

– T RE ES is depicted in Fig. 4.

Let us now describe in detail the domain and function mappings for interpretation It̂,i .

The domain objects are:

– Three special objects ∗, y, n.

– Up to log k + 3 distinct objects that represent all terms and subterms present in the distin-

guished term t̂ .
– Up to 2k + 1 objects representing all the possible terms and subterms of the vector indices

fi1
( fi2

(· · · filog k (a)) · · ·) for all possible i j ∈ {0, 1} where 1 ≤ j ≤ log k.

The function mappings are:

– The constants 1, 2, 3 are mapped to objects 1, 2, 3. The mapping for binary function f
follows the functional structure of t̂ , with undefined entries mapped to the special object ∗.

– The constant a is mapped to object a. Unary functions f0 and f1 also mimic the functional

structure of terms and subterms of fi1
( fi2

(· · · filog k (a)) · · ·) for all possible i j ∈ {0, 1} where

1 ≤ j ≤ log k.

– The binary function g(t1, t2) is mapped to special object y iff t1 = t̂ and the unary function

used at depth i in term t2 is f1. Otherwise it is set to the special object n. Note that while

function mappings cannot be based on term structure, we have identified each subterm of

t2 with a domain object so that this is a valid mapping.

Springer



138 Mach Learn (2006) 64:121–144

– Finally, the binary function h(a1, a2) is mapped to domain object y iff either a1 = y or

a2 = y, otherwise it is mapped to object n.

Finally, for each interpretation It̂,i the only atom true in the interpretation is M(y).

We prove that It̂,i falsifies HS iff It̂,i ∈ S. Notice that It̂,i falsifies HS iff It̂,i satisfies the

atom M(TREES ) iff the term TREES is mapped to the domain object y under It̂,i iff some

term g(t1, t2) is mapped to y iff term g(t̂, t2) is mapped to y (other terms g(t1, t2) where t1 �= t̂
are mapped to n by construction) iff the unary function used at depth i in term t2 is f1 iff

It̂,i ∈ S.

We finally quantify the complexity of the parameters used in HS : it has 1 clause, 2

literals, no variables, uses one single term of depth �(log k) (that is O(log t)) which contains

�(k log k) subterms (that is �(t) subterms) that are built from 4 constants, 5 function symbols

whose maximal arity is 2. �

Example 5. Building on Example 4, we illustrate how It̂1,1 ∈ S satisfies HS but It̂1,2 �∈ S
does not. This is clear if we look at both interpretations’ domain and function mappings in

detail. Recall that t̂1 = f (1, f (1, 3)). Since the distinguished term for both interpretations is

t̂1, they have the same domains, consisting of the set:

– {∗, y, n, 1, 2, 3, f (1, 3), f (1, f (1, 3)), a, f0(a), f1(a), f0( f0(a)), f0( f1(a)), f1( f0(a)),

f1( f1(a))}.
The functional mappings for the constants and functions f/2, f0/1, f1/1, and h/2 are the

same for both interpretations:

– 1 �→ 1, 2 �→ 2, 3 �→ 3, a �→ a
– f (1, 3) �→ f (1, 3), f (1, f (1, 3)) �→ f (1, f (1, 3)),

o/w map to ∗
– f0(a) �→ f0(a), f0( f0(a)) �→ f0( f0(a)), f0( f1(a)) �→ f0( f1(a)),

o/w map to ∗
– f1(a) �→ f1(a), f1( f0(a)) �→ f1( f0(a)), f1( f1(a)) �→ f1( f1(a)),

o/w map to ∗
– h(y, ·) �→ y, h(·, y) �→ y, o/w map to n

The functional mapping for g/2 in It̂1,1 is (notice that first index is f1 always):

– g( f (1, f (1, 3)), f1( f0(a))) �→ y, g( f (1, f (1, 3)), f1( f1(a))) �→ y,

o/w map to n

The functional mapping for g/2 in It̂1,2 is (notice second index is f1 always):

– g( f (1, f (1, 3)), f0( f1(a))) �→ y, g( f (1, f (1, 3)), f1( f1(a))) �→ y,

o/w map to n.

Hence, the term of TREES corresponding to the term t̂1 (left-most application of g in

TREES , see Fig. 4), evaluates to y for It̂1,1. However, for It̂1,2, this term evaluates to n. Since

the remaining g’s of TREES evaluate all to n in both interpretations, the final evaluation for

It̂1,1 is y whereas the evaluation of TREES is n for It̂1,2.

Recall that HS = M(TREES ) → F(). Since the extension of the interpretations contain

M(y) but nothing else, It̂1,1 violates HS but It̂1,2 does not.

Springer



Mach Learn (2006) 64:121–144 139

As before we can extend the previous construction to introduce a dependence on c:

Lemma 13. There exists a set of ct interpretations of size O(log c + t) that can be shattered
using range-restricted and constrained first order Horn expressions bounded by NClauses ≤
c, NTerms = �(t + log c), NLiterals = 2, NVariables = 0, Depth = O(log t + log c),
Arity = 2, NFunctions ≤ 9, and NPredicates = 3.

Proof: We extend the previous construction. Let I be the set shattered in Lemma 12. We

create a new set of interpretations I+ of cardinality ct in the following way. We have an

additional set of c terms constructed in the same way as in Lemma 9 using the constants

1,2,3 and a binary function symbol g. Let us denote this set T̂c. As in Lemma 9, T̂c contains

c distinct terms of depth log c each. Notice that we can safely re-use 1,2,3 and g since these

are never combined in the construction of Lemma 12.

As before, we augment the interpretations in the construction of Lemma 12 by associating

I ∈ I with a new term in T̂c (and hence we create c new interpretations in I+ for each old

interpretation in I), adding log c new objects and the corresponding functional mappings

following the term’s structure. Hence
∣∣I+∣∣ = ct . In addition we modify the predicates M

and F that now have arity 2. The only atom true in I is M(ĉ, y), where ĉ is the distinguished

term associated to I .

For each subset S ⊆ I we define

HS = {
M(ĉ, TREESĉ ) → F(ĉ, TREESĉ )

∣∣ ĉ ∈ T̂c
}
,

where Sĉ is the subset of interpretations in S with distinguished term ĉ. Notice that HS is

both range-restricted and constrained.

We finally prove that I falsifies HS iff I ∈ S. Suppose that ĉ is the distinguished term

in T̂c associated to I . I contains the atom M(ĉ, y) in its extension, and every clause

M(c′, TREESc′ ) → F(c′, TREESc′ ) in HS s.t. ĉ �= c′ is satisfied since term c′ does not eval-

uate to domain object ĉ under I . The clause M(ĉ, TREESĉ ) → F(ĉ, TREESĉ ) is falsified iff

I ∈ Sĉ by the same reasoning as in Lemma 12. �

Combining Lemmas 11 and 13 we conclude:

Theorem 14. Let S be a signature with at least 9 function symbols and 4 predicates of arity
at least 2. The VC dimension of the class of range-restricted and constrained first order Horn
expressions over S with at most c clauses, each using up to l literals and t + log c terms is
�(cl + ct).

Corollary 15. The VC dimension of the class of range-restricted and constrained expressions
in H≤c,t,l for learning from interpretations is �̃(cl + ct).

6.2. Learning from entailment

In the model of learning from entailment (Frazier & Pitt, 1993), examples are clauses and

class membership is determined by logical consequence. That is, a clause C is a member

of the concept represented by target expression T iff T |= C . Thus a concept is associated

with the set of clauses that it implies. The notions of equivalence and membership queries

are adapted so that the examples used are clauses rather than interpretations.

Springer



140 Mach Learn (2006) 64:121–144

In some cases it is easy to transform a lower bound from learning from interpretations

to learning from entailment. In particular the construction in Lemma 11 uses interpretations

whose term structure is simple. Any object that appears in the extension of any predicate has

a unique maximal term that describes it. Thus in some sense one can think of the relation

I �|= HS as subsumption between the clauses in HS and the “term structure” of the extension

in I .

Example 6. To illustrate this property consider a signature with one predicate p of arity 1,

two constants a, b, and one function f of arity 1. Consider two interpretations with the same

domain {1, 2, ∗}, same extension where p(2) is the only true atom, and same mapping for f
with f (1) = 2, f (2) = ∗, and f (∗) = ∗. The first interpretation maps a → 1, b → ∗. In this

case we can give a “maximal atom” p( f (a)) to describe what is true in the interpretation.

The antecedent of any clause that is falsified by the interpretation must subsume p( f (a)).

The second interpretation maps a → 1, b → 2. In this case there are two possible “maximal

atoms” p( f (a)) and p(b) describing what is true in the interpretation and we cannot make

the same claim regarding subsumption.

If every true fact refers to a unique description of a maximal object, then we can turn

things around and make an antecedent of a clause CI from the extension of predicates in

the interpretation. If we can also choose an appropriate consequent then such a construction

would satisfy I �|= HS iff HS |= CI . We can therefore construct a set of clauses that are

shattered from the previous construction. One can abstract this idea and show how such a

transformation can be done (see related discussion in Khardon (1999b)) and that we get a

shattered set. But in our case a direct application as given in the following lemma is easier

to see:

Lemma 16. For l ≤ ta , there exists a set of cl clauses that can be shattered using
range-restricted and constrained first order Horn expressions bounded by NClauses ≤ c,
NTerms = �(log c + t), NLiterals ≤ l, NVariables ≤ t , Depth = �(log c + log t), Arity ≤
a, NFunctions = 5 and NPredicates = 4.

Proof: We give a set of clauses Cl and show that it can be shattered. LetI+ be as in Lemma 11

and let Cl = {CI |I ∈ I+} where for I ∈ I+ whose associated term is ĉ we have

CI = H{I }(from Eq. (1)) = L(τ ′) ∧ Q{I } ∧ P(ĉ) → F(τ ′, ĉ).

Given a subset S ⊆ Cl we define HS as in Eq. (1) i.e.

HS = {
L(τ ′) ∧ QSĉ ∧ P(ĉ) → F(τ ′, ĉ)

∣∣ ĉ ∈ T̂c
}
,

where we use the interpretations corresponding to the clauses S in the definition of HS .

Notice that in our case implication and subsumption are equivalent since no chaining of rules

or self subsumption is possible (Gottlob, 1987). Let C ∈ Cl be a clause with distinguished

term ĉ. If C ∈ S, the corresponding clause in HS contains a subset of the atoms of C (no

substitution needs to be applied) and therefore HS |= C . On the other hand consider C �∈ S.

It is clear that clauses in HS with other associated terms cannot be used to imply C . For the

clause with the same associated term only the empty substitution can be used due to the atom

L(τ ′). However in this case the “omitted Q” atom in C is present in the clause in HS and the

clause cannot be subsumed. �
Springer



Mach Learn (2006) 64:121–144 141

The term structure in the interpretations in Lemmas 12 and 13 is more complex and we

cannot use the extensions directly in clause bodies. However a related construction yields

the same bounds.

Lemma 17. There exists a set of t clauses that can be shattered using Horn expressions
bounded by NClauses = 1, NTerms ≤ 2t , N Literals = 1, N V ariables ≤ t , Depth =
log t , Arity = 2, NFunctions = 3 and NPredicates = 1.

Proof: For each 1 ≤ i ≤ t , let t̂i be a term of depth log t represented by a binary tree of t
leaves with binary function symbol f . Each t̂i has as the i-th leaf a constant a and in all other

leaves a constant b.

Let P be a unary predicate symbol. The set of clauses to be shattered is Cl =
{Ci | 1 ≤ i ≤ t}, where Ci is the single literal P(t̂i ). Clearly, |Cl| = t .

Given a subset S ⊆ Cl, let TERMS be the term represented by a balanced binary tree of

depth log t with internal nodes labeled by a function symbol f and with the constant b in a

leaf i if and only if Ci ∈ S. All other leaves are labeled with distinct variables, namely, a leaf

in position j s.t. C j �∈ S contains a variable x j . HS is defined as the single clause with just

one literal:

HS = P(TERMS ).

Now we prove that Ci ∈ S iff HS �|= Ci , or equivalently, that Ci ∈ S iff P(TERMS ) �|=
P(t̂i ). Fix any Ci . By construction the i-th leaf of t̂i contains the constant a. If Ci ∈ S, then

the i-th leaf of TERMS contains the constant b and subsumption is not possible. Therefore,

P(TERMS ) �|= P(t̂i ). If Ci �∈ S, then TERMS contains a variable xi in the i-th leaf. The

substitution θ = {xi �→ a} ∪ {x j �→ b | 1 ≤ j ≤ t and j �= i} is such that P(TERMS )θ =
P(t̂i ) so that P(TERMS ) |= P(t̂i ). �

The next lemma extends this construction to include a dependence on c:

Lemma 18. There exists a set of ct clauses that can be shattered using range-restricted
and constrained Horn expressions bounded by NClauses ≤ c, NTerms = �(t + log c),
NLiterals = 2, NVariables ≤ t , Depth = O(log t + log c), Arity = 2, NFunctions ≤ 4 and
NPredicates = 2.

Proof: We extend the construction in the previous lemma. First create a set of c distinct terms

T̂c as in Lemma 9. It is safe to reuse the same binary function symbol f and the constants a
and b; hence a single extra constant is needed to mimic the construction from Lemma 9 of

T̂c.

Let P, R be binary predicate symbols. The new set of clauses is

Cl = {
P(ti , ĉ) → R(ti , ĉ)

∣∣ 1 ≤ i ≤ t and ĉ ∈ T̂c
}
.

Clearly, |Cl| = |{1, . . . , t}| × ∣∣T̂c

∣∣ = tc.

Given a subset S ⊆ Cl, let HS be

HS = {
P(TERMSĉ , ĉ) → R(TERMSĉ , ĉ)

∣∣ ĉ ∈ T̂c
}
,

Springer



142 Mach Learn (2006) 64:121–144

where Sĉ is the subset of S of clauses that are associated to the term ĉ. Notice that HS is both

range-restricted and constrained.

Let Ci,ĉ be the clause in Cl that contains the terms ti and ĉ. We next show that Ci,ĉ ∈ S
iff HS �|= Ci,ĉ. Notice that if ĉ �= c′ then P(TERMSc′ , c′) → R(TERMSc′ , c′) �|= Ci,ĉ. Hence,

HS |= Ci,ĉ iff P(TERMSĉ , ĉ) → R(TERMSĉ , ĉ) |= Ci,ĉ. Finally, to prove that Ci,ĉ ∈ S iff

P(TERMSĉ , ĉ) → R(TERMSĉ , ĉ) �|= Ci,ĉ it is sufficient to observe that Ci,ĉ ∈ S iff Ci,ĉ ∈ Sĉ,

so that a similar argument as in Lemma 17 applies. �

Combining Lemmas 16 and 18 we conclude:

Theorem 19. Let S be a signature with at least 9 function symbols and 4 predicates of arity
at least 2. The VC dimension of the class of range-restricted and constrained first order Horn
expressions over S with at most c clauses, each using up to l literals and t + log c terms in
the framework of learning from entailment is �(cl + ct).

Corollary 20. The VC dimension of the class of range-restricted and constrained expressions
in H≤c,t,l for learning from entailment is �̃(cl + ct).

Now applying the lower bound given by Maass & Turán (1992) we can conclude:

Corollary 21. Any algorithm that exactly learns the class of range-restricted and con-
strained expressions in H≤c,t,l for either learning from interpretations or learning from
entailment must make �(cl + ct) membership and equivalence queries.

7. Conclusions and future work

The paper studies different complexity parameters for first order learnability. The results

show that the standard notion of size is not polynomially related to parameters that are

commonly used in the literature, identify an alternative notion of size that can be captured,

and characterize the VC-dimension showing that the new size and parameters are indeed

crucial for learnability. This gives a uniform treatment to different ways of quantifying

the complexity and puts previous work in context so that lower bounds can be interpreted

appropriately.

The results are also useful in clarifying the complexity of recent algorithms on learning

Horn expressions with equivalence and membership queries. The case of Horn definitions

(with a single head) (Reddy & Tadepalli, 1997) is indeed polynomial in c + l + t . Other

results are either not polynomial (Arias & Khardon, 2002) or rely on syntax based oracles

(Arimura, 1997; Reddy & Tadepalli, 1998; Krishna Rao & Sattar, 1998). Our results in Arias

& Khardon (2002) show that constrained expressions as well as range-restricted expressions

are learnable with complexity polynomial in c + tv + ta , where v is the number of variables

per clause and a is the maximum arity of predicates and function symbols (we simplify here

by ignoring some of the parameters). Note that ta essentially bounds l but may in fact be

much larger than l. This issue seems to arise in any context where multiple consequents are

possible and identifying these may require looking at the ta possibilities. More importantly,

it is not known whether the exponential dependence on v is necessary and this remains the

main discrepancy between known lower and upper bounds. As pointed out above, VC based

bounds cannot resolve this question since they are limited by expression size. The notion of

certificate size of concept classes, developed by Hellerstein et al. (1996) and Hegedűs (1995)

Springer



Mach Learn (2006) 64:121–144 143

gives both lower and upper bounds for query complexity and thus may provide tools to do

so. Characterizing the certificate complexity of first order classes is an interesting direction

for future work. Preliminary results solving some cases in propositional logic are reported

in Arias et al. (2003).

References

Angluin, D. (1988). Queries and concept learning. Machine Learning, 2(4), 319–342.
Arias, M., & Khardon, R. (2002). Learning closed horn expressions. Information and Computation, 178,

214–240.
Arias, M., Khardon, R., & Servedio, R. A. (2003). Polynomial certificates for propositional classes. In:

Proceedings of the Conference on Computational Learning Theory (pp. 537–551). Springer-Verlag.
Arimura, H. (1997). Learning acyclic first-order horn sentences from entailment. In: Proceedings of the

International Conference on Algorithmic Learning Theory. Springer-Verlag.
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989). Learnability and the Vapnik-

Chervonenkis dimension. Journal of the ACM, 36(4), 929–965.
Cohen, W. (1995). PAC-learning recursive logic programs: Efficient algorithms. Journal of Artificial Intelli-

gence Research, 2.
De Raedt, L. (1997). Logical settings for concept learning. Artificial Intelligence, 95(1), 187–201.
De Raedt, L., & Džeroski, S. (1994). First order jk-clausal theories are PAC-learnable. Artificial Intelligence,

70.
Džeroski, S., Muggleton, S., & Russell, S. (1992). PAC-learnability of determinate logic programs. In: D.

Haussler (Ed.) Proceedings of the conference on computational learning theory. (pp. 128–135). Pittsburgh,
PA: ACM Press.

Ehrenfeucht, A., Haussler, D., Kearns, M., & Valiant, L. (1989). A general lower bound on the number of
examples needed for learning. Information and Computation, 82(3).

Frazier, M., & Pitt, L. (1993). Learning from entailment: An application to propositional horn sentences’.
In: Proceedings of the International Conference on Machine Learning. (pp. 120–127). Amherst, MA:
Morgan Kaufmann.

Gottlob, G. (1987). Subsumption and implication. Information Processing Letters, 24(2), 109–111.
Grohe, M., & Turán, G. (2002). Learnability and definability in trees and similar structures. In: Proceedings

of the 19th Annual Symposium on Theoretical Aspects of Computer Science (STACS) (pp. 645–658).
Springer-Verlag. LNCS 2285.

Hegedűs, T. (1995) On generalized teaching dimensions and the query complexity of learning. In: Proceedings
of the Conference on Computational Learning Theory. (pp. 108–117). New York, NY, USA: ACM Press.

Hellerstein, L., Pillaipakkamnatt, K., Raghavan, V., & Wilkins, D. (1996). How many queries are needed to
learn? Journal of the ACM, 43(5), 840–862.

Horváth, T., & Turán, G. (2001). Learning logic programs with structured background knowledge. Artificial
Intelligence, 128(1–2), 31–97.

Kearns, M., & Vazirani, U. (1994). An Introduction to computational learning theory. Cambridge: MIT Press.
Khardon, R. (1999a). Learning function free horn expressions. Machine Learning, 37.
Khardon, R. (1999b). Learning range restricted horn expressions. In: Proceedings of the Fourth European

Conference on Computational Learning Theory (pp. 111–125), Springer-Verlag.
Kietz, J. U., & Džeroski, S. (1994). Inductive logic programming and learnability. SIGART Bulletin, 5(1),

22–32.
Krishna Rao, M., & Sattar, A. (1998). Learning from entailment of logic programs with local variables. In:

Proceedings of the International Conference on Algorithmic Learning Theory. Springer-Verlag.
Lloyd, J. W. (1987). Foundations of logic programming; (2nd extended ed.). Springer-Verlag.
Maass, W., & Turán, G. (1992). Lower bound methods and separation results for online learning models.

Machine Learning, 9, 107–145.
Maass, W., & Turán, G. (1995). On learnability and predicate logic (extended abstract). In: Proceedings of the

4th Bar-Ilan Symposium on Foundations of AI (BISFAI).
Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods. The Journal of

Logic Programming, 19 & 20, 629–680.
Muggleton, S., & Feng, C. (1992). Efficient induction of logic programs. In: S. Muggleton (Ed.) Inductive

logic programming. (pp. 281–298) Academic Press.

Springer



144 Mach Learn (2006) 64:121–144

Reddy, C., & Tadepalli, P. (1997). Learning horn definitions with equivalence and membership queries.
In: International Workshop on Inductive Logic Programming. (pp. 243–255). Prague, Czech Republic:
Springer-Verlag.

Reddy, C., & Tadepalli, P. (1998). Learning first order acyclic horn programs from entailment. In: International
Conference on Inductive Logic Programming. (pp. 23–37), Madison, WI: Springer-Verlag.

Vapnik, V., & Chervonenkis, A. (1971). On the uniform convergence of relative frequencies of events to their
probabilities. Theory of Probability and its Applications, 16(2), 264–280.

Springer


