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Abstract The melody of a musical piece—informally, the part you would hum along with—

is a useful and compact summary of a full audio recording. The extraction of melodic content

has practical applications ranging from content-based audio retrieval to the analysis of mu-

sical structure. Whereas previous systems generate transcriptions based on a model of the

harmonic (or periodic) structure of musical pitches, we present a classification-based system

for performing automatic melody transcription that makes no assumptions beyond what is

learned from its training data. We evaluate the success of our algorithm by predicting the

melody of the ADC 2004 Melody Competition evaluation set, and we show that a simple

frame-level note classifier, temporally smoothed by post processing with a hidden Markov

model, produces results comparable to state of the art model-based transcription systems.

Keywords Melody transcription . Audio . Music . Support vector machine . Hidden

markov model . Imbalanced data sets . Multiway classification

1. Introduction

Melody provides a concise and natural description of music. Even for complex, polyphonic

signals, the perceived predominant melody is the most convenient and memorable description,

and can be used as an intuitive basis for communication and retrieval e.g. through query-by-

humming (e.g., Birmingham et al., 2001). However, to deploy large-scale music organization

and retrieval systems based on melodic content, we need mechanisms to automatically extract

the melody from recorded audio. Such transcription would also be valuable in musicological

analysis as well as numerous potential signal transformation applications.
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Although automatic transcription of polyphonic music recordings (multiple instruments

playing together) has long been a research goal, it has remained elusive. In Goto and Hayamizu

(1999), the authors proposed a reduced problem of transcribing polyphonic audio into a sin-

gle melody line (along with a low-frequency bass line) as a useful but tractable analysis of

audio. Since then, a significant amount of research has taken place in the area of predom-

inant melody detection, including Goto (2004), Eggink and Brown (2004), Marolt (2004),

Paiva et al. (2005), Li and Wang (2005).

These methods, however, all rely on a core analysis that assumes a specific audio struc-

ture, specifically that musical pitch is produced by periodicity at a particular fundamental

frequency in the audio signal. For instance, the system of Goto and Hayamizu (1999) extracts

instantaneous frequencies from spectral peaks in the short-time analysis frames of the mu-

sic audio; Expectation-Maximization is used to find the most likely fundamental frequency

value for a parametric model that can accommodate different spectra, but constrains all the

frequency peaks to be close to integer multiples (harmonics) of the fundamental, which is

then taken as the predominant pitch. This assumption that pitch arises from harmonic com-

ponents is strongly grounded in musical acoustics, but it is not necessary for transcription. In

many fields (such as automatic speech recognition) classifiers for particular events are built

without any prior, explicit knowledge of how they are represented in the features.

In this paper, we pursue this insight by investigating a machine learning approach to

automatic melody transcription. We propose a system that infers the correct melody label

based only on training with labeled examples. Our algorithm identifies a single dominant

pitch, assumed to be the melody note, for all time frames in which the melody is judged to

be sounding. The note is identified via a Support Vector Machine classifier trained directly

from audio feature data, and the overall melody sequence is smoothed via a hidden Markov

model, to reflect the temporal consistency of actual melodies. This learning-based approach

to extracting pitches stands in stark contrast to previous approaches that all incorporate prior

assumptions of harmonic or periodic structure in the acoustic waveform. The main contribu-

tion of this paper is to demonstrate the feasibility of this approach, as well as describing our

solutions to various consequent issues such as selecting and preparing appropriate training

data.

Melody, or predominant pitch, extraction is an attractive task for the reasons outlined

above, but melody does not have a rigorous definition. We are principally interested in

popular music which usually involves a lead vocal part—the singing in a song. Generally,

the lead vocal will carry a melody, and listeners will recognize a piece they know based only

on that melody alone. Similarly in jazz and popular instrumental music, there is frequently

a particular instrument playing the lead. By this definition, there is not always a melody

present—there are likely to be gaps between melody phrases where only accompaniment

will be playing, and where the appropriate output of a melody transcriber would be nothing

(unvoiced); we will refer to this problem as voicing detection, to distinguish it from the

pitch detection problem for the frames containing melody. There will always be ambiguous

cases—music in which several instruments contend to be considered the ‘lead’, or notes which

might be considered melody or perhaps are just accompaniment. Of course, a classification

system simply generalizes from the training data, so to some extent we can crystallize our

definition of melody as we create our training ground truth. On the whole, we have tended

to stay away from borderline cases when selecting training data (and the standard test data

we use has been chosen with similar criteria), but this ambiguity remains a lurking problem.

For the purposes of this paper, however, we evaluate melody transcription as the ability to

label music audio with either a pitch—a MIDI note number, or integer corresponding to

one semitone (one key on the piano)—or an “unvoiced” label. Resolving pitch below the

Springer



Mach Learn (2006) 65:439–456 441

level of musical semitones has limited musical relevance and would fit less cleanly into the

classification framework.

The remainder of this paper is structured as follows: Training data is the single greatest

influence on any classifier, but since this approach to transcription is unprecedented, we were

obliged to prepare our own data, as described in the next section. Section 3 then describes the

acoustic features and normalization we use for classification. In Section 4 we describe and

compare different frame-level pitch classifiers we tried based on Support Vector Machines

(SVMs), and Section 5 describes the separate problem of distinguishing voiced (melody) and

unvoiced (accompaniment) frames. Section 6 describes the addition of temporal constraints

with hidden Markov models (HMMs) by a couple of approaches. Finally, Section 7 discusses

the results, and presents some ideas for future developments and applications of the approach.

2. Audio data

Supervised training of a classifier requires a corpus of labeled feature vectors. In general,

greater quantities and variety of training data will give rise to more accurate and successful

classifiers. In the classification-based approach to transcription, then, the biggest problem

becomes collecting suitable training data. Although the availability of digital scores aligned

to real recordings is very limited, there are some other possible sources for suitable data. We

investigated using multi-track recordings and MIDI audio files for training; for evaluation,

we were able to use some recently-developed standard test sets.

2.1. Multi-track recordings

Popular music recordings are typically created by layering a number of independently-

recorded audio tracks. In some cases, artists (or their record companies) make available

separate vocal and instrumental tracks as part of a CD or 12” vinyl single release. The

‘acapella’ vocal recordings can be used to create ground truth for the melody in the full

ensemble music, since solo voice can usually be tracked at high accuracy by standard pitch

tracking systems (Talkin, 1995; de Cheveigne & Kawahara, 2002). As long as we can identify

the temporal alignment between the solo track and the full recording (melody plus accompa-

niment), we can construct the ground truth. Note that the acapella recordings are only used to

generate ground truth; the classifier is not trained on isolated voices since we do not expect

to use it on such data.

A collection of multi-track recordings was obtained from genres such as jazz, pop, R&B,

and rock. The digital recordings were read from CD, then downsampled into monaural files

at a sampling rate of 8 kHz. The 12” vinyl recordings were converted from analog to digital

mono files at a sampling rate of 8 kHz. For each song, the fundamental frequency of the

melody track was estimated using fundamental frequency estimator in WaveSurfer, which is

derived from ESPS’s get f0 (Sjölander & Beskow, 2000). Fundamental frequency predictions

were calculated at frame intervals of 10 ms and limited to the range 70–1500 Hz.

We used Dynamic Time Warping (DTW) to align the acapella recordings and the full

ensemble recordings, along the lines of the procedure described in Turetsky and Ellis (2003).

This time alignment was smoothed and linearly interpolated to achieve a frame-by-frame

correspondence. The alignments were manually verified and corrected in order to ensure the

integrity of the training data. Target labels were assigned by calculating the closest MIDI note

number to the monophonic prediction. Example signals from the training data are illustrated

in Fig. 1.
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Fig. 1 Examples from training data generation. The fundamental frequency of the isolated melody track (top

pane) is estimated and time-aligned to the complete audio mix (center). The fundamental frequency estimates,

rounded to the nearest semitone are used as target class labels (overlaid on the spectrogram). The bottom panel

shows the power of the melody voice relative to the total power of the mix (in dB); if the mix consisted only

of the voice, this would be 0 dB

We ended up with 12 training excerpts of this kind, ranging in duration from 20 s to 48 s.

Only the voiced portions were used for training (we did not attempt to include an ‘unvoiced’

class at this stage), resulting in 226 s of training audio, or 22,600 frames at a 10 ms frame

rate.

2.2. MIDI audio

MIDI was created by the manufacturers of electronic musical instruments as a digital repre-

sentation of the notes, times, and other control information required to synthesize a piece of

music. As such, a MIDI file amounts to a digital music score that can easily be converted into

an audio rendition. Extensive collections of MIDI files exist consisting of numerous tran-

scriptions from eclectic genres. Our MIDI training data is composed of several frequently

downloaded pop songs from www.findmidis.com. The training files were converted from the

standard MIDI file format to monaural audio files (.WAV) with a sampling rate of 8 kHz

using the MIDI synthesizer in Apple’s iTunes. Although completely synthesized (with the

lead vocal line often assigned to a wind or brass voice), the resulting audio is quite rich, with

a broad range of instrument timbres, and including production effects such as reverberation.

In order to identify the corresponding ground truth, the MIDI files were parsed into

data structures containing the relevant audio information (i.e. tracks, channels numbers,

note events, etc). The melody was isolated and extracted by exploiting MIDI conventions:

Commonly, the lead voice in pop MIDI files is stored in a monophonic track on an isolated

channel. In the case of multiple simultaneous notes in the lead track, the melody was assumed

to be the highest note present. Target labels were determined by sampling the MIDI transcript

at the precise times corresponding to the analysis frames of the synthesized audio.
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We used five MIDI excerpts for training, each around 30 s in length. After removing the

unvoiced frames, this left 125 s of training audio (12,500 frames).

2.3. Resampled audio

In the case when the availability of a representative training set is limited, the quantity

and diversity of musical training data may be extended by re-sampling the recordings

to effect a global pitch shift. The multi-track and MIDI recordings were re-sampled at

rates corresponding to symmetric semitone frequency shifts over the chromatic scale (i.e.,

±1, 2, . . . 6 semitones); the expanded training set consisted of all transpositions pooled to-

gether. The ground truth labels were shifted accordingly and linearly interpolated to main-

tain time alignment (because higher-pitched transpositions also acquire a faster tempo).

Using this approach, we created a smoother distribution of the training labels and re-

duced bias toward the specific pitches present in the training set. Our classification ap-

proach relies on learning separate decision boundaries for each individual melody note

with no direct mechanism to ensure consistency between similar note classes (e.g. C4

and C#4), or to improve the generalization of one note-class by analogy with its neigh-

bors in pitch. Using a transposition-expanded training restores some of the advantages we

might expect from a more complex scheme for tying the parameters of pitchwise-adjacent

notes: although the parameters for each classifier are separate, classifiers for notes that

are similar in pitch have been trained on transpositions of many of the same original data

frames. Resampling expanded our total training pool by a factor of 13 to around 456,000

frames.

2.4. Validation and test sets

Research progress benefits when a community agrees a consistent definition of their problem

of interest, then goes on to define and assemble standard tests and data sets. Recently, the

Music Information Retrieval (MIR) community has begun formal evaluations, starting with

the Audio Description Contest at the 2004 International Symposium on Music Information

Retrieval (ISMIR/ADC 2004) (Gomez et al., 2004). Its successor is the Music Information

Retrieval Evaluation eXchange (MIREX, 2005) (Downie et al., 2005). Each consisted of

numerous MIR-related evaluations including predominant melody extraction. The ADC 2004

test set is composed of 20 excerpts, four from each of five styles, each lasting 10–25 s, for

a total of 366 s of test audio. The MIREX 2005 melody evaluation created a new test set

consisting of 25 excerpts ranging in length from 10–40 s, giving 536 s total. Both sets include

excerpts where the dominant melody is played on a variety of musical instruments including

the human voice; the MIREX set has more of a bias to pop music. In this paper, all of our

experiments are conducted using the ADC 2004 data as a development set, since the MIREX

set is reserved for annual evaluations

3. Acoustic features

Our acoustic representation is based on the ubiquitous and well-known spectrogram, which

converts a sound waveform into a distribution of energy over time and frequency, very often

displayed as a pseudocolor or grayscale image like the middle pane in Fig. 1; the base features

for each time-frame can be considered as vertical slices through such an image. Specifically,

the original music recordings (melody plus accompaniment) are combined into a single

(mono) channel and downsampled to 8 kHz. We apply the short-time Fourier transform
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(STFT), using N = 1024 point transforms (i.e. 128 ms), an N -point Hanning window, and a

944 point overlap of adjacent windows (for a 10 ms hop between successive frames). Only

the coefficients corresponding to frequencies below 2 kHz (i.e. the first 256 bins) were used

in the feature vector.

We compared different feature preprocessing schemes by measuring their influence on

a baseline classifier. Our baseline pitch classifier is an all-versus-all (AVA) algorithm for

multiclass classification using SVMs trained by Sequential Minimal Optimization (Platt,

1998), as implemented in the Weka toolkit (Witten & Frank, 2000). In this scheme, a majority

vote is taken from the output of (N 2 − N )/2 discriminant functions, comparing every possible

pair of classes. For computational reasons, we were restricted to a linear kernel. Each audio

frame is represented by a 256-element input vector, with N = 60 classes corresponding to

five octaves of semitones from G2 to F#7. In order to classify the dominant melodic pitch

for each frame, we assume the melody note at a given instant to be solely dependent on the

normalized frequency data below 2 kHz. For these results, we further assume each frame to

be independent of all other frames. More details and experiments concerning the classifier

will be presented in Section 4.

Separate classifiers were trained using six different feature normalizations. Of these, three

use the STFT, and three are based on (pseudo)autocorrelation. In the first case, we simply

used the magnitude of the STFT normalized such that the maximum energy frame in each

song had a value equal to one. For the second case, the magnitudes of the bins are normalized

by subtracting the mean and dividing by the standard deviation calculated in a 71-point

sliding frequency window; there is no normalization along time. The goal is to remove some

of the influence due to different instrument timbres and contexts in training and test data.

The third normalization scheme applied cube-root compression to the STFT magnitude, to

make larger spectral magnitudes appear more similar; cube-root compression is commonly

used as an approximation to the loudness sensitivity of the ear.

A fourth feature took the inverse Fourier transform (IFT) of the magnitude of the STFT,

i.e. the autocorrelation of the original windowed waveform. Taking the IFT of the log-STFT-

magnitude gives the cepstrum, which comprised our fifth feature type. Because overall gain

and broad spectral shape are separated into the first few cepstral bins, whereas periodicity

appears at higher indexes, this feature also performs a kind of timbral normalization. We

also tried normalizing these autocorrelation-based features by liftering (scaling the higher-

order cepstra by an exponential weight). Scaling of individual feature dimensions can make

a difference to SVM classifiers, depending on the kernel function used.

Table 1 compares the accuracy, on a held-out test set, of classifiers trained on each of the

different normalization schemes. Here we show separate results for the classifiers trained on

multi-track audio alone, MIDI syntheses alone, or both data sources combined. The frame

Table 1 Effect of normalization:

Frame accuracy percentages on

the ADC 2004 held-out test set

for each of the normalization

schemes considered, trained on

either multi-track audio alone,

MIDI syntheses alone, or both

data sets combined. (Training

sets are roughly balanced in size,

so results are not directly

comparable to others in the paper)

Training data

Normalization Multi-track MIDI Both

STFT 56.4 50.5 62.5

71-pt norm 54.2 46.1 62.7
Cube root 53.3 51.2 62.4

Autocorr 55.8 45.2 62.4

Cepstrum 49.3 45.2 54.6

LiftCeps 55.8 45.3 62.3
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Table 2 Impact of resampling the training data: Frame

accuracy percentages on the ADC 2004 set for systems

trained on the entire training set, either without any re-

sampling transposition, or including transpositions out

to ±6 semitones (500 frames per transposed excerpt, 17

excerpts, 1 or 13 transpositions)

Training set # Training frames Frame acc %

No resampling 8,500 60.2

With resampling 110,500 67.7

accuracy results are for the ADC 2004 melody evaluation set and correspond to melodic pitch

transcription to the nearest semitone.

The most obvious result in Table 1 is that all the features, with the exception of Cepstrum,

perform much the same, with a slight edge for the across-frequency local normalization. This

is perhaps not surprising since all features contain largely equivalent information, but it also

raises the question as to how effective our normalization (and hence the system generalization)

has been. It may be that a better normalization scheme remains to be discovered.

Looking across the columns in the table, we see that the more realistic multi-track data

forms a better training set than the MIDI syntheses, which have much lower acoustic simi-

larity to most of the evaluation excerpts. Using both, and hence a more diverse training set,

always gives a significant accuracy boost—up to 9% absolute improvement, seen for the

best-performing 71-point normalized features. (We will discuss significance levels for these

results in the next section.)

Table 2 shows the impact of including the replicas of the training set transposed through

resampling over ±6 semitones. Resampling achieves a substantial improvement of 7.5%

absolute in frame accuracy, underlining the value of broadening the range of data seen for

each individual note.

4. Pitch classification

In the previous section, we showed that classification accuracy seems to depend more strongly

on training data diversity than on feature normalization. It may be that the SVM classifier we

used is better able to generalize than our explicit feature normalization. In this section, we

examine the effects of different classifier types on classification accuracy, as well as looking

at the influence of the total amount of training data used.

4.1. N-way all-versus-all SVM classification

Our baseline classifier is the AVA-SVM described in Section 3 above. Given the large amount

of training data we were using (over 105 frames), we chose a linear kernel, which requires

training time on the order of the number of feature dimensions cubed for each of the O(N 2)

discriminant functions. More complex kernels (such as Radial Basis Functions, which require

training time on the order of the number of instances cubed) were computationally infeasible

for our large training set. Recall that labels are assigned independently to each time frame at

this stage of processing.

Our first classification experiment was to determine the number of training instances to

include from each audio excerpt. The number of training instances selected from each song
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Fig. 2 Variation of classification

accuracy with number of training

frames per excerpt. Incremental

sampling takes frames from the

beginning of the excerpt; random

sampling takes them from

anywhere. Training set does not

include resampled (transposed)

data

was varied using both incremental sampling (taking a limited number of frames from the

beginning of each excerpt) and random sampling (picking the frames from anywhere in the

excerpt), as displayed in Fig. 2. Randomly sampling feature vectors to train on approaches an

asymptote much more rapidly than adding the data in chronological order. Random sampling

also appears to exhibit symptoms of overtraining.

The observation that random sampling achieves peak accuracy with only about 400 sam-

ples per excerpt (out of a total of around 3000 for a 30 s excerpt with 10 ms hops) can

be explained by both signal processing and musicological considerations. Firstly, adjacent

analysis frames are highly overlapped, sharing 118 ms out of a 128 ms window, and thus their

feature values will be very highly correlated (10 ms is an unnecessarily fine time resolution

to generate training frames, but is the standard used in the evaluation). From a musicological

point of view, musical notes typically maintain approximately constant spectral structure over

hundreds of milliseconds; a note should maintain a steady pitch for some significant fraction

of a beat to be perceived as well-tuned. If we assume there are on average 2 notes per second

(i.e. around 120 bpm) in our pop-based training data, then we expect to see approximately

60 melodic note events per 30 s excerpt. Each note may contribute a few usefully different

frames to tuning variation such as vibrato and variations in accompaniment. Thus we expect

many clusters of largely redundant frames in our training data, and random sampling down

to 10% (or closer to one frame every 100 ms) seems reasonable.

This also gives us a perspective on how to judge the significance of differences in these

results. The ADC 2004 test set consists of 366 s, or 36,600 frames using the standard 10 ms

hop. A simple binomial significance test can compare classifiers by estimating the likelihood

that random sets of independent trials could give the observed differences in empirical error

rates from an equal underlying probability of error. Since the standard error of such an

observation falls as 1/
√

N for N trials, the significance interval depends directly on the

number of trials. However, the arguments and observations above show that the 10 ms frames

are anything but independent; to obtain something closer to independent trials, we should test

on frames no less than 100 ms apart, and 200 ms sampling (5 frames per second) would be

a safer choice. This corresponds to only 1,830 independent trials in the test set; a one-sided

binomial significance test suggests that differences in frame accuracies on this test of less

than 2.5% are not statistically significant at the accuracies reported in this paper.

A second experiment examined the incremental gain from adding novel training excerpts.

Figure 3 shows how classification accuracy increased as increasing numbers of excerpts,

from 1 to 16, were used for training. In this case, adding an excerpt consisted of adding

500 randomly-selected frames from each of the 13 resampled transpositions described in
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Fig. 3 Variation of classification

accuracy with the total number of

excerpts included, compared to

sampling the same total number

of frames from all excerpts

pooled. This data set includes 13

resampled versions of each

excerpt, with 500 frames

randomly sampled from each

transposition

Section 2, or 6,500 frames per excerpt. Thus, the largest classifier is trained on 104 k frames,

compared to around 15 k frames for the largest classifier in Fig. 2. The solid curve shows

the result of training the same number of frames randomly drawn from the pool of the entire

training set; again, we notice that the system appears to reach an asymptotes by 20 k total

frames, or fewer than 100 frames per transposed excerpt. We believe, however, that the level

of this asymptote is determined by the total number of excerpts; if we had more novel training

data to include, we believe that the “per excerpt” trace will continue to climb upwards. We

return to this point in the discussion.

In Fig. 4, the pitched frame transcription success rates are displayed for the SVM classifier

trained using the resampled audio. An important weakness of the classifier-based approach is

Fig. 4 Variation in voiced transcription frame accuracy across the 20 excerpts of the ADC 2004 evaluation set

(4 examples from each of 5 genre categories, as shown). Solid line shows the classification-based transcriber;

dashed line shows the results of the best-performing system from the 2004 evaluation. Top pane is raw pitch

accuracy; bottom pane folds all results to a single octave of 12 chroma bins, to ignore octave errors
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that any classifier will perform unpredictably on test data that does not resemble the training

data. While model-based approaches have no problem in principle with transcribing rare,

extreme pitches as long as they conform to the explicit model, by deliberately ignoring our

expert knowledge of the relationship between spectra and notes our system is unable to

generalize from the notes it has seen to different pitches. For example, the highest pitch

values for the female opera samples in the ADC 2004 test set exceed the maximum pitch in

all our training data. In addition, the ADC 2004 set contains stylistic genre differences (such

as opera) that do not match our pop music corpora. That said, many of the pitch errors turn

out to be the right pitch chroma class but at the wrong octave (e.g. F6 instead of F7). When

scoring is done on chroma class alone—i.e. using only the 12 classes A, A#, . . . G#, and

ignoring the octave numbers—the overall frame accuracy on the ADC 2004 test set improves

from 67.7% to 72.7%.

4.2. Multiple one-versus-all SVM classifiers

In addition to the N-way melody classification, we trained 52 binary, one-versus-all (OVA)

SVM classifiers representing each of the notes present in the resampled training set. We took

the distance-to-classifier-boundary hyperplane margins as a proxy for a log-posterior prob-

ability for each of these classes; pseudo-posteriors (up to an arbitrary scaling power) were

obtained from the distances by fitting a logistic model. Transcription is achieved by choosing

the most probable class at each time frame. While OVA approaches are seen as less sophis-

ticated, Rifkin and Klautau (2004) present evidence that they can match the performance of

more complex multiway classification schemes. Figure 5 shows an example ‘posteriorgram’

(time-versus-class image showing the posteriors of each class at each time step) for a pop

excerpt, with the ground truth labels overlaid.

Since the number of classifiers required for this task is O(N ) (unlike the O(N 2) classifiers

required for the AVA approach) it becomes computationally feasible to experiment with

additional feature kernels. Table 3 displays the best result classification rates for each of the

SVM classifiers. Both OVA classifiers perform marginally better than the pairwise classifier,

with the slight edge going to the OVA SVM using an RBF kernel.

Table 3 Frame Accuracy for multiway

classifiers based on all-versus-all (AVA)

and one-versus-all (OVA) structures. Be-

cause there are fewer classifiers in an OVA

structure, it was practical to try an RBF

kernel. Accuracies are given for both raw

pitch transcription, and chroma transcrip-

tion (which ignores octave errors)

Classifier Kernel Pitch Chroma

AVA SVM Linear 67.7 72.7

OVA SVM Linear 69.5 74.0

OVA SVM RBF 70.7 74.9
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Fig. 5 Spectrogram and posteriorgram (pitch probabilities as s function of time) for the first 8 s of pop music

excerpt “pop3” from the ADC 2004 test set. The ground-truth labels, plotted on top of the posteriorgram,

closely track the mode of the posteriors for the most part. However, this memoryless classifier also regularly

makes hare-brained errors that can be corrected through HMM smoothing

5. Voiced frame classification

Complete melody transcription involves not only deciding the note of frames where the main

melody is active, but also discriminating between melody and non-melody (accompaniment)

frames. In this section, we briefly describe two approaches for classifying instants as voiced

(dominant melody present) or unvoiced (no melody present).

In the first approach, voicing detection is performed by simple energy thresholding. Spec-

tral energy in the range 200 < f < 1800 Hz is summed for every 10 ms frame. Each value is

normalized by the median energy in that band for the given excerpt, and instants are classified

as voiced or unvoiced via a global threshold, tuned on development data. Since the melody

instrument is usually given a high level in the final musical mix, this approach is quite suc-

cessful (particularly after we have filtered out the low- frequency energy of bass and drums).

In keeping with our classifier-based approach, we also tried a second mechanism of a binary

SVM classifier based on the normalized magnitude of the STFT, which could potentially learn
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Table 4 Voicing detection performance. “Voicing Det” is the proportion of

voiced frames correctly labeled; “False Alarms” is the proportion of unvoiced

frames incorrectly labeled, so labeling all frames as voiced scores 100% on both

counts, the first row. d ′ gives a threshold-independent measure of the separation

between two Gaussian distributions that would exhibit this performance. “Vx

Frame Acc” is the proportion of all frames given the correct voicing label

Classifier Voicing Det False Alarms d ′ Vx Frame Acc

All Voiced 100% 100% 0 85.6%

Energy Threshold 88.0% 32.3% 1.63 78.4%

Linear SVM 76.1% 46.4% 0.80 73.0%

RBF SVM 82.6% 48.1% 0.99 78.3%

particular spectral cues to melody presence. We tried both linear and RBF kernels for this

SVM. The voiced melody classification statistics are displayed in Table 4, which shows that

the simple energy threshold provides better results; however none of the classifiers achieves

a higher frame accuracy than simply labeling all frames as voiced. Because the test data is

more than 85% voiced, any classifier that attempts to identify unvoiced frames risks making

more mislabelings than unvoiced frames correctly detected. We also report performance in

terms of d ′, a statistic commonly used in evaluating detection systems in an effort to discount

the influence of trading false alarms for false rejects. d ′ is the separation, in units of standard

deviation, between the means of two unit-variance one-dimensional Gaussians that would

give the same balance of false alarms to false rejects if they were the underlying distributions

of the two classes; a d ′ of zero indicates indistinguishable distributions, and larger is better.

While our voicing detection scheme is simple and not particularly accurate, it is not the

main focus of the current work. The energy threshold gave us a way to identify nearly 90%

of the melody-containing frames, without resorting to the crude choice of simply treating

every frame as voiced. However, more sophisticated approaches to learning classifiers for

tasks with highly-skewed priors offer a promising future direction (Chawla et al., 2004).

6. Hidden Markov model post processing

The posteriorgram in Fig. 5 clearly illustrates both the strengths and weaknesses of the

classification approach to melody transcription. The success of the approach in estimating

the correct melody pitch from audio data is clear in the majority of frames. However, the

result also displays the obvious fault of the approach of classifying each frame independently

of its neighbors: the inherent temporal structure of music is not exploited. In this section, we

attempt to incorporate the sequential structure that may be inferred from musical signals. We

use hidden Markov models (HMMs) as one of the simplest yet most flexible approaches to

capturing and using temporal constraints.

6.1. HMM state dynamics

Similarly to our data driven approach to classification, we learn temporal structure directly

from the training data. Our HMM states correspond directly to the current melody pitch, thus

the state dynamics (transition matrix and state priors) can be estimated from our ‘directly

observed’ state sequences—the ground-truth transcriptions of the training set. The note class

prior probabilities, generated by counting all frame-based instances from the resampled
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Fig. 6 Hidden Markov parameters learned from the ground truth and confusion matrix data. Top (pane (a)):

class priors. Middle: state transition matrix, raw (pane (b)), and regularized across all notes (pane (c)). Bottom:

Observation likelihood matrix for the discrete-label smoothing HMM, raw (pane (d)) and regularized across

notes (pane (e))

training data, and the note class transition matrix, generated by observing all note-to-note

transitions, are displayed in Fig. 6(a) and (b) respectively.

Note that although some bias has been removed in the note priors by symmetrically re-

sampling the training data, the sparse nature of a transition matrix learned from a limited

training set is likely to generalize poorly to novel data. In an attempt to mitigate this lack of

generalization, each element of the transition matrix is replaced by the mean of the corre-

sponding diagonal. This is equivalent to assuming that the probability of making a transition

between two pitches depends only on the interval between them (in semitones), not on their

absolute frequency. This normalized approach is close to implementing a relative transition

vector, and the resulting normalized state transition matrix is displayed in Fig. 6(c).

6.2. Smoothing discrete classifier outputs

We can use an HMM to apply temporal smoothing even if we only consider the labels

assigned by the frame-level classifier at each stage and entirely ignore any information on

the relatively likelihood of other labels that might have been available prior to the final hard

decision being made by the classifier. If the model state at time t is given by qt , and the

classifier output label is ct , then the HMM will achieve temporal smoothing by finding the
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most likely (Viterbi) state sequence i.e. maximizing

∏
t

p(ct | qt )p(qt | qt−1) (1)

p(qt | qt−1) is the transition matrix estimated from ground-truth melody labels in the previous

subsection, but we still need p(ct | qt ), the probability of seeing a particular classifier label ct

given a true pitch state qt . We estimate this from the confusion matrix of classifier frames—

i.e. counts normalized to give p(ct , qt )—from some development corpus. In this case, we

reused the training set, which might lead to an overoptimistic belief about how well ct will

reflect qt , but was our only practical option. Figure 6(d) shows the raw confusion matrix

normalized by columns (qt ) to give the required conditionals; pane (e) shows this data again

regularized by setting all values in a diagonal to be equal, except for the zero (unvoiced) state,

which is smoothed a little by a moving average, but otherwise retained. From the confusion

(observation) matrix, we can see that the most frequently confused classifications are between

members of the same chroma (i.e. separated by one or more octaves in pitch) and between

notes with adjacent pitches (separated by one semitone).

For the total transcription problem (dominant melody transcription plus voicing detection),

our baseline (memoryless) transcription is simply the pitch classifier output gated by the

binary energy threshold. If at each instant we use the corresponding column of the observation

matrix in our Viterbi decoder dynamic-programming local-cost matrix, we can derive a

smoothed state sequence that removes short, spurious excursions of the raw pitch labels.

Despite the paucity of information obtained from the classifier, Table 5 shows that this

approach results in a small but robust improvement of 0.9% absolute in total frame accuracy.

Table 5 Melody transcription frame accuracy percentages for

different systems with and without HMM smoothing. “Voicing

Acc” is the proportion of frames whose voicing state is cor-

rectly labeled. “Pitch Acc” is the proportion of pitched frames

assigned the correct pitch label. “Total Acc” is the proportion

of all frames assigned both the correct voicing label, and, for

voiced frames, the correct pitch label. All results are based

on the all-versus-all SVM classifier using an RBF kernel. The

“Memoryless” classifier simply takes the most likely label

from the frame classifier after gating by the voicing detector;

“MemlessAllVx” ignores the voicing detection and reports a

pitch for all frames (to maximize pitch accuracy). “Discrete”

applies HMM smoothing to this label sequence without ad-

ditional information, “Posteriors” uses the pseudo-posteriors

from the OVA SVM to generate observation likelihoods in the

HMM, and “PostAllVx” is the same except the unvoiced state

is excluded (by setting its frame posterior to zero)

Classifier Voicing Acc Pitch Acc Total Acc

Memoryless 85.1 71.2 70.7

MemlessAllVx 86.1 76.8 66.1

Discrete 83.6 71.9 71.6

Posteriors 86.2 74.5 73.2
PostAllVx 86.1 79.4 68.3
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6.3. Exploiting classifier posteriors

We constructed the OVA classifier to give us an approximation to log-posteriors for each

pitch class, and we can use this detailed information to improve our HMM decoding. Rather

than guessing the local likelihood of a particular note given the single best note, we can look

directly at the likelihood of each note according to the classifiers. Thus, if the acoustic data

at each time is xt , we may regard our OVA classifier as giving us estimates of

p(qt | xt ) ∝ p(xt | qt )p(qt ) (2)

i.e. the posterior probabilities of each HMM state given the local acoustic features. Thus,

by dividing each (pseudo)posterior by the prior of that note, we get scaled likelihoods that

can be employed directly in the Viterbi search for the solution of Eq. 1. The unvoiced state

needs special treatment, since it is not considered by the main classifier. We tried several

approaches, including decoding the pitch HMM with the unvoiced state excluded (setting

its observation likelihood to zero), then applying voicing decisions from a separate voicing

HMM, or setting the observation posterior of the unvoiced state to 1/2 ± α, where α was

tuned on the development (training set), which gave significantly better results.

As shown in Table 5, using this information achieves another robust improvement of

1.6% absolute in total frame accuracy over using only the 1-best classification information.

More impressively, the accuracy on the pitched frames jumps 3.3% absolute compared to

the memoryless case, since knowing the per-note posteriors helps the HMM to avoid very

unlikely notes when it decides to stray from the one-best label assigned by the classifier. If

we focus only on pitch accuracy (i.e. exclude from scoring the frames whose ground truth

is unvoiced), we can maximize pitch accuracy with a posterior-based HMM decode that

excludes the unvoiced state, achieving a pitch accuracy of 79.4%, or 2.6% better than the

comparable unsmoothed case.

7. Discussion and conclusions

We have described techniques for recovering a sequence of melodic pitch labels from a

complex audio signal. Our approach consists of two steps: first, a discriminatively-trained

local pitch classifier operating on single time frames, followed by a hidden Markov model

trained to apply some of the temporal constraints observed in real melody label sequences to

the resulting signal. This combination is ad-hoc: if the task is to exploit local features subject to

sequential constraints, then we should look for an approach that optimizes the entire problem

at once. Recently, Taskar et al. (2003) have suggested an approach to using the advantages of

classifier-margin-maximization from SVMs in a Markov model, but we expect that solving

the entire optimization problem would be impractical for the quantities of training data we are

using. The important question is whether there are significant differences in how local features

would be processed depending on the context in such a scheme, or whether the problem can

in fact be separated into the two stages we have implemented without significant impact on

performance. Looking at the intermediate posterior representation illustrated in Fig. 5, we

suspect that this is an adequate representation of the acoustic information for the sequential

modeling to be operating on. We feel that the most promising areas for improvement are

improving the frame-level accuracy of this front end and more sophisticated post-processing

(including improved voicing detection), and not a tighter integration between the two stages,

which seem comfortably separate from our perspective.
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There are several directions in which we plan to continue this work. Although this paper

has considered the problem of melody extraction i.e. assigning at most one pitch to each

time step, the OVA classifiers can be run and examined independently. With a different kind

of decoding scheme running over the output posteriors, it may be possible to report more

than one note for each time frame i.e. polyphonic transcription. Alternatively, there may be

a direct classification path to polyphonic transcription i.e. training classifiers to recognize

entire chords, although this raises serious combinatoric problems.

We believe the local harmonic structure carried by a chord could provide significant

additional information and constraints for melody transcription. In conventional western

music, there is an underlying harmonic progression of chords, and the melody notes are

strongly dependent on the current chord. The chord sequence itself has a strong sequen-

tial structure, and is dependent on the overall key of the piece. This hierarchy of hidden

states is a natural fit to hidden Markov modeling, based either on separate chord-related

features or on the note observations alone, and a system that explicitly represents the

current chord can have a more powerful, chord-dependent transition matrix for the pitch

state.

We have shown that a pure classification approach to melody transcription is viable, and

can be successful even when based on a modest amount of training data. In the MIREX 2005

evaluation, we entered the system denoted “AVA SVM” in this paper, without any HMM

smoothing, which ranked third of ten entries; by switching to the OVA architecture, the RBF

kernel, and the posterior-based HMM smoothing, we achieve a 5.5% absolute improvement

in overall frame accuracy (from 67.7% to 73.2%), and believe this would carry across to the

MIREX test. (The MIREX 2005 results are visible at http://www.music-ir.org/
evaluation/mirex-results/audio-melody/ .)

The natural question is: what is the upper limit on the performance achievable by this

approach? One attraction of data-driven approaches is that further improvements can pre-

dictably be obtained by gathering additional training data. Figure 3 is the important example

here: if we create ground truth for another 15 excerpts, how high can our accuracy grow? The

slope of accuracy vs. excerpt count looks quite promising, but it may be reaching an asymp-

tote. One of the most striking results of the recent MIREX evaluation is that our radically

different approach to transcription scored much the same as the traditional model-based ap-

proaches; the performance spread across all systems on raw pitch accuracy was within 10%,

from 58% to 68%.

This suggests that the limiting factors are not so much in the algorithms, but in the data,

which might consist of 60–70% of relatively easy-to-transcribe frames with the pitch of the

remaining frames very difficult to transcribe for classifier- or model-based approaches alike.

If this were the case, we would not expect rapid improvements from our classifier with modest

amounts of training data, although there must be some volume of training data that would

allow us to learn these harder cases.

Given the expense of constructing additional training data—either in trying to beg multi-

track recordings from studios and artists, or in manually correcting noisy first-pass transcripts,

we are also curious about the tradeoff between quantity and quality in training data. Raw

musical audio is available in essentially unlimited quantities: given an automatic way to

extract and label ground-truth, we might be able to construct a positive-feedback training

loop, a system that attempts to transcribe the melody (aided perhaps by weak annotation, such

as related but unaligned MIDI files), then retrains itself on the most confidently-recognized

frames, then repeats. Bootstrap training based on lightly-annotated data of this flavor has

proven successful for building speech recognition systems from very large training sets

(Lamel et al., 2002).
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However, classification-based transcription has a number of other attractive features that

make it interesting even if it cannot provide a significant performance improvement over

conventional methods. One application that we find particularly appealing is to train the clas-

sifier on the accompaniment data without the lead melody mixed in, but still using the lead

melody transcripts as the target labels. Then we will have a classifier trained to predict the

‘appropriate’ melody from accompaniment alone. With suitable temporal smoothness con-

straints, as well as perhaps some random perturbation to avoid boring, conservative melody

choices, this could turn into a very interesting kind of automatic music generation or robotic

improvisor.
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