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Abstract Supervised learning models have been applied to create good onset detection

systems for musical audio signals. However, this always requires a large set of labeled

training examples, and hand-labeling is quite tedious and time consuming. In this paper, we

present a bootstrap learning approach to train an accurate note onset detection model. Audio

alignment techniques are first used to find the correspondence between a symbolic music

representation (such as MIDI data) and an acoustic recording. This alignment provides an

initial estimate of note boundaries which can be used to train an onset detector. Once trained,

the detector can be used to refine the initial set of note boundaries and training can be repeated.

This iterative training process eliminates the need for hand-labeled audio. Tests show that

this training method can improve an onset detector initially trained on synthetic data.

Keywords Bootstrap learning . Onset detection . Audio-to-score alignment

1. Introduction

A note onset is simply the beginning of a musical note. In real music performances, a note

onset can be very smoothly connected to the previous note, so onset detection is challenging.
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Onset detection in sound signals is an important topic in many audio processing areas such as

speech recognition and audio coding. In the domain of computer music and Music Information

Retrieval (MIR), it is often a crucial pre-processing step for further music processing, for

example, segmenting sung melodies into note sequences for a Query-by-Humming system,

or providing candidate beat locations for rhythmic analysis and tempo estimation. Because of

its importance, audio onset detection has been one of the major tasks in the Music Information

Retrieval Evaluation eXchange (MIREX) contests (Downie et al., 2005).

A common practice is to apply various machine learning techniques to the onset detection

problem, and good results have been obtained. Some of the representative machine learning

models used in this area are the Hidden Markov Model (HMM) (Raphael, 1999), Neural

Network (Marolt, Kavcic & Privosnik, 2002), Support Vector Machine (SVM) (Lu, Lu &

Zhang, 2001), and the Hierarchical Model (Kapanci & Pfeffer, 2004). However, as in many

other machine learning applications, audio segmentation using machine learning schemes

inevitably faces a problem: getting training data is difficult and tedious. Manually marking

each note onset in a five-minute piece of music can take several hours of work. Since the

quantity and quality of the training data directly affect the performance of the machine

learning model, many designers have no choice but to label some training data by hand.

Meanwhile, audio-to-score alignment has become a popular MIR topic. Linking signal

and symbolic representations of music can enable many interesting applications, such as

polyphonic music retrieval (Hu, Dannenberg & Tzanetakis, 2003; Muller & Kurth, 2005),

real-time score following (Raphael, 2004), and intelligent editors (Dannenberg & Hu, 2003).

In a sense, audio-to-score alignment and music note onset detection are closely related.

Both of the operations are performed on acoustic features extracted from the audio, though

alignment focuses on global correspondence while onset detection focuses on local changes.

Given a precise alignment between the symbolic and corresponding acoustic data, desired

note onsets can be located in the audio. Even if alignment is not that precise, it still pro-

vides valuable information for audio onset detection. Conversely, given precise note onset

detection, alignment becomes almost trivial. This relationship between alignment and seg-

mentation is exploited in our bootstrap learning method to improve onset detection.

We assume we are given a musical score in some machine-readable form that indicates

nominal pitches and durations (e.g., a MIDI file). We are also given an audio recording

(possibly played expressively) of that score, and we want to determine the onset times of

each note in the audio recording. As a second problem, we want to find onset times in

additional audio recordings for which we have no score information.

We propose a bootstrap learning method that uses automatic alignment information to

help train the onset detector. The training process consists of two parts. One is an alignment

process that finds the time correspondence between the symbolic and acoustic representations

of a music piece. The other part is an onset detection process that marks each note onset in

the acoustic recording. Alignment is accomplished by matching sequences of chromagram

features using Dynamic Time Warping (DTW). The onset detection model is a feed-forward

neural network, with several features extracted from audio as the inputs, and a real value

between 0 and 1 as the output. The alignment results help train the onset detector iteratively.

Our implementation and evaluation show that this training scheme is feasible, and that it

can greatly improve the performance of audio onset detection without manually labeling any

training data.

The bootstrap learning approach does not replace the commonly used machine learning

models previously mentioned. On the contrary, it is meant to be a complementary part that

should be used in conjunction with those models. Its essential purpose is to alleviate the

problem of not having enough labeled data.
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Fig. 1 A typical trumpet slurred note (a mezzo forte C4 from an ascending scale of slurred quarter notes),

displayed in waveform along with the amplitude envelope. Attack, sustain and decay parts are indicated in the

figure

Onset detection can be viewed as a special case of a more general problem, which is to

split audio into segments that have homogeneous properties. A typical example is dividing

acoustic recordings into segments with and without singing. Though this paper mainly aims at

detecting note onsets accurately, we believe that the bootstrap learning scheme combined with

automatic alignment can also be used for other kinds of audio segmentation and classification.

The initial purpose of this project is to aid the research of creating high-quality music

synthesis by training on data from real music performances. Our system learns how amplitude

and frequency vary, not only with time, but as a function of information in the score such as

pitch, duration, and neighboring notes. Thus, the training data consists of notes (as audio)

paired with symbolic data from the music score. This requires an audio-to-score alignment

process.

We previously developed a polyphonic audio alignment system and effectively deployed

it in several applications (Hu, Dannenberg & Tzanetakis, 2003; Dannenberg & Hu, 2003).

However, the alignment is not precise enough to isolate the initial “attack” portion of tones.

For example, the attack of a typical trumpet tone lasts only about 30 ms (see Fig. 1). But

due to limits imposed by the acoustic features used for alignment, the size of the analysis

window is usually 50 to 250 ms, which is too large to accurately pinpoint note onsets. If note

boundaries are not detected precisely, the learning system will not receive good examples of

attacks which are important for high quality synthesis.

Moreover, we want our system to learn from acoustic examples and corresponding scores

without much human intervention, thus no manual data labeling should be involved. There-

fore, we pursue accurate audio alignment with a resolution of several milliseconds. Thus,

our study is motivated and characterized by three goals: (1) very high precision, on the order

of milliseconds, (2) very high accuracy, which can only be obtained through the use of a

symbolic score and score alignment, and (3) no need for manual onset labeling to provide

training examples. While our previous work addresses some of these issues, we believe this

new approach is superior in terms of satisfying all three requirements. As an added benefit,

the onset detector works very well without the aid of a symbolic score, once trained by this

bootstrap learning method.

Because our note detector was initially developed for music synthesis data, our initial

experiments use monophonic audio.We have extended this work to deal with polyphonic

music, just to demonstrate that this approach can also work well in polyphonic cases.

Springer



460 Mach Learn (2006) 65:457–471

The audio-to-score alignment process is closely related to that of Orio and Schwarz (2001),

who also use dynamic time warping to align polyphonic music to scores. While we use the

chromagram (described in a later section), they use a measure called Peak Structure Distance,

which is derived from the spectrum of audio and from synthetic spectra computed from score

data. They also intend to use their system to generate training examples for music synthesis

(Schwarz, 2004), and they obtain accurate alignment using small (5.8 ms) analysis windows.

The average error reported is about 23 ms (Soulez, Rodet & Schwarz, 2003), which makes

it possible to directly generate training data for an onset detection system. However, such

a small analysis window also greatly affects the efficiency of the alignment process. They

report that even with optimization measures, their system is running “2 hours for 5 minutes

of music, and occupying 400 MB memory”. In contrast, our system uses larger analysis

windows and aligns 5 minutes of music in less than 5 minutes. Although we use larger

analysis windows for alignment, we use small analysis windows (and different features) for

note segmentation, and this allows us to obtain high accuracy.

Note that the best features for score alignment, which typically relies on melody and

harmony, may not be the best features for detecting segment boundaries, which are also

characterized by rapid changes in energy and noise content. Our approach recognizes this

difference and uses different features for onset detection verses alignment.

In the following sections, we describe our system in detail. We introduce the audio-to-

score alignment process in Section 2, and the note detection model in Section 3. Section 4

describes the bootstrap learning method in detail. Section 5 evaluates the system and presents

some experimental results. We conclude and summarize this paper in the last section.

2. Audio-to-score alignment

2.1. The chroma representation

As mentioned above, the alignment is performed on two sequences of features extracted

from both the symbolic and audio data. As described in a previous study (Hu, Dannenberg

& Tzanetakis, 2003), we looked at the ability of different features to discriminate matching

music from non-matching music when aligning scores to recorded audio. The chroma rep-

resentation is clearly the winner for this task compared to several other features including

spectrograms and cepstral coefficients.

Thus, our first step is to convert audio data into discrete chromagrams: sequences of

chroma vectors. The chroma vector representation is a 12-element vector, where each element

represents the spectral energy corresponding to one pitch class (i.e., C, C#, D, D#, etc.). To

compute a chroma vector from a magnitude spectrum, we assign each bin of the FFT to the

pitch class of the nearest step in the chromatic equal-tempered scale. Then, given a pitch

class, we average the magnitude of the corresponding bins. This results in a 12-value chroma

vector. Each chroma vector in this work represents 50 ms of audio data (non-overlapping).

The symbolic data, i.e. MIDI file, is also converted into chromagrams. The obvious way is

to synthesize the MIDI data and convert the synthetic audio into chromagrams. However, we

have found a simple alternative that directly maps from MIDI events to chroma vectors (Hu,

Dannenberg & Tzanetakis, 2003). To compute the chromagram directly from MIDI data, we

first associate each pitch class with an independent unit chroma vector—the chroma vector

with only one element value as 1 and the rest as 0; then, where there is polyphony in the

MIDI data, the unit chroma vectors are simply multiplied by the MIDI loudness of notes,

added and normalized.
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The direct mapping scheme speeds up the system by skipping the synthesis procedure,

and it rarely sacrifices any quality in the alignment results. In most cases we have tried, the

results are generally better when using this alternative approach. Furthermore, when audio is

rendered from symbolic (MIDI) data, there can be small timing variations in practice. Since

we are aiming for highly accurate results, it is desirable to bypass this source of error.

2.2. Matching MIDI to audio

After obtaining two sequences of chroma vectors from the audio recording and MIDI data,

we need to find a time correspondence between the two sequences such that corresponding

vectors are similar. Before comparing the chroma vectors, we normalize the vectors, as

obviously the amplitude levels vary throughout the acoustic recordings and MIDI files. We

experimented with different normalization methods, and normalizing the vectors to have a

mean of zero and a variance of one seems to be the best one. But this can cause trouble

when dealing with silence. Thus, if the average amplitude of an audio frame is lower than

a predefined threshold, we define it as a silence frame. We then calculate the Euclidean

distance between the vectors. The distance is zero if there is perfect agreement. If exactly

one of the two compared chroma vectors is a silence frame, we assign the distance a pre-

defined value dmax . Choosing an adequate value of dmax is important as it may affect the

alignment quality. This will be discussed in more detail after the alignment algorithm is

described.

Figure 2 shows a similarity matrix where the horizontal axis is a time index into the

acoustic recording, and the vertical axis is a time index into the MIDI data. The intensity

of each point is the distance between the corresponding vectors, where black represents a

distance of zero. A path in this matrix is a sequence of neighboring cells (including diagonal

neighbors) from the lower left to the upper right corner. The cost of a path is the sum of the

between-vector distances of all the cells in the path.

We use the Dynamic Time Warping (DTW) algorithm to find the lowest cost path, which

we refer to as the optimal alignment. DTW computes a matrix (in addition to the similarity

matrix) where each matrix cell (i, j) represents the sum of distances along the best path from
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Fig. 3 Calculation pattern for

cell (i, j)

(0, 0) to (i, j). We use the calculation pattern shown in Fig. 3 for each cell. The best path up

to location (i, j) in the matrix (labeled in the figure) depends only on the adjacent cells (A,

B, and C) and the weighted distance between the vectors corresponding to row i and column

j. Note that the horizontal step from C and the vertical step from B allow for the skipping

of silence in either sequence. We also weight the distance value in the step from cell A by√
2 so as not to favor the diagonal direction. This calculation pattern is the one we feel most

comfortable with, but the resulting differences from various formulations of DTW (Hu &

Dannenberg, 2002) are often subtle. The DTW algorithm requires a single pass through the

matrix to compute the cost of the best path. Then, a back-tracing step is used to identify the

actual path.

As we mentioned earlier, when any of the compared chroma vectors is a silence frame,

the distance between the two is defined as dmax . dmax should have the value that neither

penalizes horizontal or vertical direction of the alignment path, nor makes matching silence

to non-silence frames impossible. Otherwise, the detection of those note onsets immediately

after silence frames can be slightly delayed, as DTW may be prone to local minima. In our

experiments, we set dmax to 16, which is suitable for this kind of data.

The time complexity of the automatic alignment is O(mn), where m and n are respec-

tively the lengths of the two compared feature sequences. Assuming the expected opti-

mal alignment path is near the diagonal, we can optimize the process by running DTW on

just a part of the similarity matrix, which is basically a diagonal band representing the al-

lowable range of misalignment between the two sequences. However, if the width of the

diagonal band of interest is a constant fraction of its length, the time complexity is still

O(mn).

After computing the optimal path found by DTW, we get the time points of the note onsets

in the MIDI file and map them to the acoustic recording according to the path (see Fig. 4).

The analysis window used for alignment is Wa = 50 ms. A smaller window actually makes

the alignment worse because of the way chroma vectors are computed. Thus the alignment

result is really not that accurate, considering the alignment resolution is on the same scale

as the analysis window size. Nevertheless, the alignment path still indicates roughly where

the note onsets should be in the audio. In fact, the statistical error between the actual note

onsets and the estimated ones found by the alignment path appears to be approximately

Gaussian. (Figure 5 shows the histogram of such an error distribution from 154 synthetic

note onset samples.) In other words, the probability of observing an actual note onset around

an estimated one given by the alignment can be roughly estimated by a Gaussian distribution.

This is valuable information that can help train the segmenter.
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Fig. 5 Histogram of estimated

onset error distribution.

Testimated (i) denotes an estimated

note onset given by the

alignment, while Tactual (i)

denotes the corresponding actual

note onset manually labeled in

acoustic recordings. Here

1 ≤ i ≤ 154. The dotted curve

represents a Gaussian window

function with a standard

deviation about half the size of

the alignment analysis window

(0.5 × 0.05s = 0.025s)

3. Onset detection

3.1. Acoustic features

Several features are extracted from the acoustic signals. The basic ones are listed below:

– Logarithmic energy of the frame (measured in decibels), distinguishing silent frames,

LogEng = 10log10 Energy.

– Fundamental frequency F0. Fundamental frequency and harmonics are computed using the

McAulay-Quatieri model (McAulay & Quatieri, 1986) provided by the SNDAN package

(Beauchamp, 1993).
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– Relative strengths of first three harmonics

Rel Ampi = Ampli tudei

Ampli tudeoverall
,

where i denotes the i th harmonic.

– Relative frequency deviations of first three harmonics

Rel DFri = fi − i × F0

fi
,

where fi is the frequency of the i th harmonic

– Zero-crossing rate (ZCR), serving as an indicator of the noisiness of the signal.

Furthermore, the derivatives of these features are also included, as derivatives are good

indicators of fluctuations in the audio such as note attacks or fricatives.

Features are computed using a sliding non-overlapping analysis window Ws with a size

of 5.8 ms. If the audio to be processed has a sampling rate of 44.1 kHz, every analysis

window contains 256 samples. Other features that have proved to be useful in audio seg-

mentation (Plumbley, Brossier & Bello, 2004) could be added to this set and might improve

performance.

3.2. Onset detection model

We use a multi-layer perceptron (MLP) Neural Network as the onset detection model (see

Fig. 6). It is a feed-forward network with two hidden layers, and is fully connected between

each layer. The first hidden layer contains 6 neurons and the second 4 neurons. Each neuron

(perceptron) is a Sigmoid unit, which is defined as f (s) = 1
1+e−s , where s is the input of the

neuron, and f (s) is the output. The input units accept the features extracted from the acoustic

signals. The output is a single real value ranging from 0 to 1, indicating the likelihood that

the current audio frame is a segmentation point. In other words, the output is the model’s

estimate of the certainty of a note onset. When using the model to detect onsets in the audio

file, an audio frame is classified as a note onset if the output of the detector is more than

0.5.

Neural networks offer a standard approach for supervised learning. Labeled data are

required to train a network. Training is accomplished by adjusting weights within the network

to minimize the expected output error. We use a conventional back-propagation learning

method to train the model.

OutputInput Layer 1 Layer 2

Fig. 6 Neural network for onset

detection
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It should be noted that the emphasis of this work is to demonstrate that the alignment

information can help train the onset detector and improve its performance via bootstrap

learning. We chose a small neural network with two hidden layers based on the proof by the

Kolmogorov Theorem (Kurková, 1992) that an MLP with two hidden layers is theoretically

sufficient to model any problem. This model does work well, so it is certainly adequate for our

study. We would expect a neural network with a single hidden layer or some other supervised

learning approach to also work well.

4. Bootstrap learning

Making use of unlabeled data has been a hot topic in machine learning. Standard approaches

are usually classified as unsupervised (use only unlabeled data) or semi-supervised (use both

unlabeled and labeled data) learning. If we can find some way to transform an unsuper-

vised learning problem into a supervised learning problem, we might gain huge benefits, as

supervised learning is better understood and offers many well-studied techniques.

In our study, the amount of labeled data is either very limited or synthetically generated.

We overcome this problem by utilizing the global correspondence information provided by

the alignment, which provides approximate note boundaries. Our approach uses a super-

vised learning model, such as a neural network, to iteratively improve its own training data.

Adopting terminology from related work (Kuipers & Beeson, 2002), we call this bootstrap
learning.

Our bootstrap learning system starts by creating a function representing the probability

of a note starting at a particular time point in the acoustic recording, based on estimated note

onsets computed from the alignment path. As shown in Fig. 7, the function is generated by

summing up a set of Gaussian window functions. Each window function is centered at the

estimated note onsets given by the alignment path, and its standard deviation is half the size

of the alignment analysis window as in Fig. 5 (σ = 0.5 × 0.05s = 0.025s). For those points

Fig. 7 Probability function

generated from the alignment of a

snippet, which is a phrase from

the piece shown in Fig. 2
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outside any Gaussian function window, the value is assigned to a small value slightly bigger

than 0 (e.g., 0.04).

The creation of the probability function is based on the assumption that note onsets are

independent of each other. We should also point out that this is just a pseudo-probability

function, and the function integral is not necessarily equal to 1.

We also need to initialize the onset detection model. The neural network needs to be trained

first to get initial weights. The training data for initialization are generated automatically by

synthesizing onsets at known times. Synthesized audio is not equivalent to recorded audio

from acoustic instruments, but this simplifies the initialization and avoids the need to label

recordings by hand.

Then we run the following steps iteratively until the outputs of the trained neural network

are unchanged by a round of training or testing error of the validation dataset starts to increase.

Usually the training process will stop after 6 to 10 iterations.

1. Execute onset detection process on the acoustic audio.

2. Multiply the sequence of real values v output by the segmenter with the note onset prob-

ability function computed from the alignment. The result is a new sequence of values

denoted as vnew.

3. For each note onset estimated by alignment, find a time point that has the biggest value

vnew within a window Wp, and mark it as the adjusted note onset. The window is defined

as follows:

Wp(i) =
[

max

(
Ti + Ti−1

2
, Ti − Wa

)
, min

(
Ti + Ti+1

2
, Ti + Wa

)]
,

where Ti is the estimated onset time of the i th note in the acoustic recording given by

alignment, and Wa is the size of the analysis window for alignment.

4. Use the audio frames to re-train the neural network. The adjusted note onset points are

labeled as 1, and the rest are labeled as 0. Because the number of positive examples is far

less than the negative ones, we increase the penalty by a factor of 300 when false negatives

occur. This factor is chosen to approximate the ratio of non-onset frames to onset frames.

To prevent data over-fitting, we use 5-fold cross-validation. The iterative training process

will stop when the local minimum of the validation set error is found.

As the onset detection model has a finer resolution than the alignment model, the trained

onset detector can detect note boundaries in audio signals more precisely, as demonstrated

in Fig. 8.

Fig. 8 Onset detection results after 8 iterations of bootstrap learning on the same music content as in Fig. 7.

Note that the note onsets marked by the detector with bootstrapping are not exactly the same as the ones

estimated from alignment. This is best illustrated on the note boundary around 1.9 seconds, where the detected

onset is 32 ms later than the one estimated from alignment
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5. Evaluations

5.1. Monophonic experiments

As mentioned in previous sections, the system was initially designed for helping with music

synthesis research, which uses monophonic recordings as training examples. Thus, we were

mainly focusing on monophony. The experimental data for monophonic music is the English

Suite transcribed by R. Bernard Fitzgerald (1955) for Bb Trumpet. This is a set of 5 English

folk tunes artfully arranged into one work. Each of the 5 movements (recorded without

accompaniment) is essentially a monophonic melody, and the whole suite contains a total

of 673 notes. We have several formats of this particular music piece, including MIDI files

created using a digital piano, the real acoustic recordings performed by the second author,

and synthetic audio generated from the MIDI files.

We conducted experiments to measure the impact of bootstrap learning. The baseline is

just a neural network previously described as the onset detection model, and it weights are

initialized by training on a set of labeled data: an arbitrarily picked MIDI file (monophonic

melody of the Beatles’ song “Let It Be”) and an audio recording synthesized from it. The

baseline detector represents the model before bootstrap learning. The onset detector with

bootstrapping has the same initial configuration as the baseline, and then it is iteratively

trained on the alignment information. Naturally this represents the model after bootstrap

learning.

To measure the performance of two onset detectors, we run the baseline onset detector

through all the audio files in the data set and compare its detected note onsets with the actual

ones. For the onset detector with bootstrapping, we use cross-evaluation. In every evaluation

pass, 4 MIDI files and the corresponding audio files are used to train the segmenter through

the bootstrap method, and the remaining MIDI-audio files pair is used as the test set. This

process is repeated so that the data of all 5 movements have been used once for evaluation, and

the results on the test sets are combined to evaluate the model performance. It is important to

note that when testing the segmenter with bootstrap learning, score alignment is not used. If

the score were used (and this is in fact how we derive data for our synthesis project), the miss

rate and spurious rate would normally be zero because the one-to-one alignment of audio

notes to symbolic notes leaves little opportunity for these kinds of errors.

We do not need to use a similar cross-validation scheme on the baseline onset detector

because it uses the dataset merely for testing. One may ask why the data is not used for

training. The reason is that the data is deemed as unlabeled when used to train the onset

detector with bootstrapping, but it would need to be fully labeled to train the baseline onset

detector. Furthermore, if we hand-labeled the data, any performance differences between the

two models would be due to the quality of the hand-labeled data verses the quality of data

generated by the bootstrap learning process. While this might be theoretically interesting,

the hand-labeled data is simply unavailable in a realistic scenario, and that is exactly why we

introduce bootstrapping.

We calculate several values to measure the performance of the systems. Miss rate is defined

as the ratio of missed note onsets among all the labeled data—a labeled note onset is deemed

as missed when there is no detected onset within the window Wp around it. Spurious rate is

the ratio between spurious onsets detected by the system and all the labeled note onsets—

spurious note onsets are those detected that do not correspond to any labeled onset. Average

error and standard deviation (STD) are obtained by measuring the distance between each

labeled note onset and its corresponding detected onset, if the note onset is neither missed

nor spurious.
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Table 1 Model comparison on

synthetic monophonic audio Miss Spurious Average

Model rate rate error STD

Baseline

Onset detector 8.8% 10.3% 21 ms 29 ms

Onset detector

w/ Bootstrap 0.0% 0.3% 10 ms 14 ms

Table 2 Model comparison on

real monophonic recordings Miss Spurious Average

Model rate rate error STD

Baseline

Onset detector 15.0% 25.0% 35 ms 48 ms

Onset detector

w/ Bootstrap 2.0% 4.0% 8 ms 12 ms

We first use the synthetic audio from MIDI files as the data set, and the experimental

results are shown in Table 1. Since the baseline detector is trained with data similar to that

used for the bootstrapped detector, the differences in performance are mainly due to the

greater quantity of training data available to the bootstrapped detector.

We also tried the two onset detectors on the acoustic recordings. However, it is very

difficult to evaluate results because labeling all the note onsets in acoustic recordings is too

time consuming. Therefore, we randomly picked a set of 100 note onsets throughout the

music (20 in each movement), and labeled their onsets manually. The results are shown in

Table 2. Some of the timing error could actually be due to error in the labels, but the clear

trends in the data indicate that the bootstrap detector is better than the baseline detector. In

this comparison, the differences in performance have two sources: The bootstrapped detector

has more training data because it can use unlabeled data, and the data for the bootstrapped

detector includes trumpet recordings similar to the data used for evaluation. If we could

label all this data and use it to train the baseline detector, we would expect essentially equal

performance from both systems. However, as explained earlier, labeling is expensive. The

bootstrap detector offers good performance without the need for manual labeling.

5.2. Polyphonic experiments

We also tried the bootstrap learning method on polyphonic music. The experimental data

are 3 piano pieces. They are F. Chopin, Nocturne Op. 9, No. 2; L. van Beethoven, Adagio

“Moonlight” Sonata; and W.A. Mozart, Turkish March. As in the monophonic experiments,

we used several formats of the pieces, including MIDI files, synthetic audio generated from

MIDI files, and recordings of acoustic performances by the first author.

The polyphonic experiments are very similar to the monophonic experiments, and we

count multiple simultaneous note onsets as one. Tables 3 and 4 show the experimental results

on synthetic audio and real recordings respectively. Compared to experimental results on

monophonic music, the polyphonic results are slightly worse with both onset detectors.

Piano onsets are generally considered more prominent and easier to detect than trumpet

onsets, but on the other hand, polyphony is generally considered more difficult to analyze

than monophony. With polyphony, note onsets can be masked by other sounding notes. Also,

our features may not be well-chosen for polyphonic music. Nevertheless, the onset detector
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Table 3 Model comparison on

synthetic polyphonic audio Miss Spurious Average

Model rate rate error STD

Baseline

Onset detector 10.8% 12.1% 28 ms 61 ms

Onset detector

w/ Bootstrap 1.2% 0.4% 12 ms 20 ms

Table 4 Model comparison on

real polyphonic recordings Miss Spurious Average

Model rate rate error STD

Baseline

Onset detector 16.0% 17.0% 27 ms 55 ms

Onset detector

w/ Bootstrap 5.0% 3.0% 11 ms 23 ms

with bootstrapping significantly outperforms the baseline one, and its results are comparable

to other published works (Marolt, Kavcic & Privosnik, 2002). This indicates that our bootstrap

learning method works well with polyphony.

In all the experiment results presented here, bootstrap learning shows significant improve-

ment over the original onset detector. However, this approach still has its limitations. First of

all, it depends on the accuracy of the alignment path found by DTW. In our experiments, it is

not a problem when a few onsets estimated by alignment are not very close to the actual ones.

But if the alignment path makes too many mistakes or the MIDI file and real recordings do not

basically correspond to each other, it is unlikely that bootstrapping can improve on the labels

it is given. Secondly, there might be problems with over-fitting even though cross-validation

is being used. A solution to that is to increase the size of the alignment data set, thus both

the training set and the test set contain more data.

6. Conclusions

Onset detection is an important step in many music processing tasks, including beat tracking,

tempo analysis, music transcription, and music alignment. However, onset detection at note

boundaries is rather difficult. In real recordings, the end of one note often overlaps the

beginning of the next due to resonance in acoustic instruments and reverberation in the

performance space. Even humans have difficulty deciding exactly where note transitions

occur. One promising approach to good onset detection is machine learning. With good

training data, supervised learning systems frequently outperform those created in an ad hoc

fashion. Unfortunately, we do not have very good training data for onset detection, and

labeling acoustic recordings by hand is very tedious and time consuming.

Our work offers a solution to the problem of obtaining good training data. We use music

alignment to tell us (approximately) where to find note boundaries. This information is used to

improve the note segmentation, and the segmentation can then be used as labeled training data

to improve the onset detector. This bootstrapping process is iterated until it either converges

or minimizes testing error.

Our tests show that note onset detection can be dramatically improved using this ap-

proach. When a symbolic score is available (which must be the case at least for the bootstrap

training data), the bootstrap process gives more accurate onset times than either the baseline
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non-bootstrapped onset detector or the alignment process working alone, and alignment

guarantees zero missing or spurious detection errors. Once trained, the bootstrapped onset

detector also shows improved performance on new unlabeled data. One key advantage of

the bootstrapping process is that it can learn from unlabeled acoustic recordings, while a

non-bootstrapped onset detector is either restricted to synthetic training data, where onset

times are known, or to expensive and therefore limited data that is labeled by hand.

Supervised learning models such as Neural Networks can scale well with more feature

inputs. In future work, we hope to improve further on onset detection by considering more

signal features and using multiple window sizes to incorporate features at different time

scales. This will require more training data, but our bootstrap learning method should make

this feasible.

In summary, we have described a system for music note onset detection that uses alignment

to provide an initial set of labeled training data. A bootstrap learning method is used to improve

both the labels and the onset detector. Onset detectors trained in this manner show improved

performance over a baseline detector. Our bootstrap learning approach can be generalized to

incorporate additional signal features and other supervised learning algorithms. This method

is already being used to segment acoustic recordings for a music synthesis application, and

we believe many other applications can benefit from this new approach.

Acknowledgments This project greatly benefits from the helpful discussions and suggestions during the

Computer Music group meetings held at Carnegie Mellon University. We would also like to thank Guanfeng

Li for his valuable input and support.

References

Beauchamp, J. (1993). Unix workstation software for analysis, graphics, modifications, and synthesis of

musical sounds. AES Convention, preprint 3479. New York: Audio Engineering Society.

Dannenberg, R. B. & Hu, N. (2003). Polyphonic audio matching for score following and intelligent audio

editors. In Proceedings of the 2003 International Computer Music Conference (pp. 27–34). San Francisco:

International computer music association.

Downie, J. S., West, K., Ehmann, A., & Vincent, E. (2005). The 2005 Music Information Retrieval Eval-
uation Exchange (MIREX 2005): Preliminary Overview (pp. 320–323). ISMIR 2005: 6th International
Conference on Music Information Retrieval Proceedings (pp. 288–295). London: Queen Mary, University

of London.

Fitzgerald, R. B. (1955). English suite: For Bb trumpet or cornet and piano. Bryn Mawr: Theodore Presser

Co.

Hu, N. & Dannenberg, R. B. (2002). A comparison of melodic database retrieval techniques using sung

queries. In JCDL 2002: Proceedings of the Second ACM/IEEE-CS Joint Conference on Digital Libraries
(pp. 301–307). New York: ACM.

Hu, N., Dannenberg, R. B., & Tzanetakis, G. (2003). Polyphonic audio matching and alignment for music

retrieval. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 185–188).

New York: IEEE.

Kapanci, E. and Pfeffer, A. (2004). A hierarchical approach to onset detection. In Proceedings of the 2004
International Computer Music Conference (pp. 438–441). San Francisco: International Computer Music

Association.

Kuipers, B. & Beeson, P. (2002). Bootstrap learning for place recognition. In Proceedings of the Eighteenth
National Conference on Artificial Intelligence (pp. 174-180). Menlo Park, CA: AAAI Press.
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