
Mach Learn (2006) 65:273–308

DOI 10.1007/s10994-006-9455-4

Training a reciprocal-sigmoid classifier by feature
scaling-space

Kar-Ann Toh

Received: 21 December 2004 / Revised: 6 June 2006 / Accepted: 9 June 2006 / Published online: 14 July
2006
Springer Science + Business Media, LLC 2006

Abstract This paper presents a reciprocal-sigmoid model for pattern classification. This pro-

posed classifier can be considered as a �-machine since it preserves the theoretical advantage

of linear machines where the weight parameters can be estimated in a single step. The model

can also be considered as an approximation to logistic regression under the framework of

Generalized Linear Models. While inheriting the necessary classification capability from lo-

gistic regression, the problems of local minima and tedious recursive search no longer exist in

the proposed formulation. To handle possible over-fitting when using high order models, the

classifier is trained using multiple samples of uniformly scaled pattern features. Empirically,

the classifier is evaluated using a benchmark synthetic data from random sampling runs for

initial statistical evidence regarding its classification accuracy and computational efficiency.

Additional experiments based on ten runs of 10-fold cross validations on 40 data sets further

support the effectiveness of the reciprocal-sigmoid model, where its classification accuracy

is seen to be comparable to several top classifiers in the literature. Main reasons for the good

performance are attributed to effective use of reciprocal sigmoid for embedding nonlinearities

and effective use of bundled feature sets for smoothing the training error hyper-surface.

Keywords Machine learning . Pattern classification . �-machine . Polynomials . Parameter

estimation

1. Introduction

“The more relevant patterns at your disposal, the better your decisions will be.”—Herbert

Simon. The importance of pattern classification thus cannot be over-emphasized.

Editor: Risto Miikkulainen

K.-A. Toh (�)
Biometrics Engineering Research Center, School of Electrical & Electronic Engineering,
Yonsei University, Seoul, Korea
e-mail: katoh@yonsei.ac.kr or katoh@ieee.org

Springer

274 Mach Learn (2006) 65:273–308

While the statistical approach (see e.g. Duda et al., 2001) has received considerable atten-

tion, many estimators, predictors or approximators (see e.g. Poggio & Girosi, 1990; Bishop,

1995; Mitchell, 1997; Schürmann, 1996) can be used for pattern classification. From the

model perspective, these estimators can be formulated either in linear or nonlinear form. The

advantages of linear formulation include its tractability for optimization, sensitivity analysis,

and prediction of confidence intervals. However, it is limited to decision hyperplanes that can

be projected onto the prescribed set of linear parameters. The nonlinear formulation, on the

other hand, offers a compact mapping capacity but it comes with an increased complexity

in obtaining an appropriate solution. A good balance between the mapping capacity and

solution complexity for predicting unseen test data becomes an issue for optimal classifier

design.

The proposed reciprocal-sigmoid model attempts to embed nonlinearities in a linear for-

mulation without sacrificing much of the capability to classify nonlinear hyper-surfaces.

This model can be considered as a �-machine since it preserves the theoretical advantages

of linear machines while allowing for nonlinear combinations of the inputs (Nilsson, 1965;

Duda & Hart, 1973; Precup & Utgoff, 2004). The approximation capability of this model

is shown prior to the introduction of scaling-space learning technique that aims to provide

a stable learning. The concept of scale-space filtering has been well explored in computer

vision where some derived image signals are used for extracting signal structures suitable

for classification and other applications. Unlike these scale-space filters, our derived signal is

not distorted except that it is uniformly scaled. Multiple samples of these scaled signals were

used thereby forming a scaled feature space for classifier training, and hence the scheme

is called scaling-space learning in brief. As we are not able to find a better term, we use

“scaling-space” instead of “scale-space” to differentiate between our definition and that in

the context of computer vision.

The scaling-space learning is also differentiated from the input scale parameter adaptation

as seen in kernel or network parameter adjustment schemes (see e.g. Juszczak et al., 2000;

Grandvalet & Canu, 2002) since a single scaling factor is attached to each kernel parameter

in these schemes thereby giving rise to vast combinatorial possibilities. These combinatorial

possibilities can be both advantageous and disadvantageous. The advantage is that they can

cater for diverse applications and the disadvantage is that the search required to find a good

solution could be difficult. Moreover, as the formulation for scaling factor search is nonlinear

for many kernel basis functions, the issue of local solution complicates the matter and this

may give rise to difficulties in arriving at well conclusive observations. A good balance

between model complexity and predictivity becomes an issue for practical design.

The proposed feature scaling-space learning technique is consistent with the spirit of

Bootstrapping (Efron & Tibshirani, 1993) for stable classifier design, but differs in its training

replicates which are not obtained from re-sampling. Unlike that in Bootstrap Aggregating

(Bagging; Breiman, 1994), all the scaled training replicates are bundled to form a large

training set and only a single classifier is trained using this large data set. In essence, multiple

virtual classifiers from different scalings are embedded within a single training step to form

the final classifier. The computational effort for those aggregated classifiers like bagging,

boosting and random subspace methods (see e.g. Breiman, 1996; Skurichina & Duin, 2002;

Tax & Duin, 2000) is translated into a process of selecting an appropriate scaling factor in

the scaling-space technique.

To summarize, the proposed reciprocal-sigmoid model can be considered as an

approximation to logistic regression in Generalized Linear Models (GLM, see e.g.

Nelder & Wedderburn, 1972; McCullagh & Nelder, 1989; Hardin & Hilbe, 2001; Gordon,

2002) demonstrating match of link and loss functions for linear estimation. Specifically, the

Springer

Mach Learn (2006) 65:273–308 275

proposed model embeds the following types of nonlinearities for pattern classification: (i)

use of nonlinear reciprocal of sigmoid as the basis function, and (ii) use of bundled feature

sets (scaling-space) for training error hyper-surface smoothing. Main contributions of this

paper are in the aspects of having: (i) proposed a reciprocal-sigmoid classifier where the

number of constructed feature terms varies linearly with the order of the polynomial, instead

of having a power law in the case of full multivariate polynomials, (ii) showed the approxima-

tion capability of the classifier for discrete data, and (iii) demonstrated that the scaling-space

input provides means to improve numerical conditioning. Extensive numerical experiments,

which provide benchmarks for such design, are performed to support the proposal. The sig-

nificance of this work thus lies on the massive empirical evidences pointing to an efficient

approximation of logistic regression model for pattern classification.

The paper is organized as follows: the next section provides a brief review on related back-

ground developments and our problem treatment. In Section 3, a linear reciprocal-sigmoid

model is introduced. By removing some redundant terms from an original formulation, the

approximation capability, and hence classification capability of the refined model is shown.

With these fundamentals in place, Section 4 tackles the learning problem by a regularized

scaling-space learning technique, aiming at a stable solution which does not over-fit the data.

Section 5 uses a benchmark synthetic data to illustrate the usefulness of the proposed method

on a plug-in polynomial model and the proposed classifier model. The applicability of the

method is further supported using 40 benchmark data sets taken from UCI Machine Learning

Repository.

2. Background and problem treatment

2.1. Supervised learning and related issues

In pattern classification, there are two major hurdles in good applications of nonlinear esti-

mators, namely (1) model structure selection and, (2) solving for parameters that best fit the

data (training), both of which aim to arrive at a classifier that performs well for unseen data.

More frequently, these two problems are coupled such that overcoming both of them for good

predictivity is a difficult task. In Huang and Babri (1998) and Huang (2003), an ingenious

way to efficiently compute the network weights in a single step after certain initialization

procedures can be found. However, for pattern classification, solving an exact solution of a

nonlinear formulation to pass through every training data point may cause over-fitting which

means that it may lose much predictivity for unseen test data. Moreover selection of an

appropriate number of layers and number of nodes remains an issue for good predictivity.

Much research activities are on-going in the field to resolve this issue.

The Support Vector Machine (SVM) developed by Boser et al. (1992) and Vapnik (1998)

provides a mechanism to minimize the training error and compute a bound on the VC-

dimension at the same time (see e.g. Osuna et al., 1997; Burges, 1998 for a very comprehen-

sive account). This result is achieved via minimizing a parameter norm subject to a separation

functional. For classification problems, the main idea behind the technique is to find a hy-

perplane that maximizes the separation margin rather than attempting to pass a hyperplane

through all data points as in the case of curve fitting. This proposal has led to many useful

applications in the literature.

In a recent attempt to achieve good predictivity, Tipping (2000, 2001) proposed the Rel-

evance Vector Machine (RVM) from reduction of model complexity viewpoint. Basically,

the RVM is a Bayesian treatment of a generalized linear model of similar functional form to

Springer

276 Mach Learn (2006) 65:273–308

SVM. A prior over the model weights is introduced wherein each weight is associated with

a hyper-parameter. The most probable values of these weights are then estimated iteratively

from the data. The relevance of vectors comes from the weights associated with non-zero

probability values of hyper-parameters. It has been reported that the RVM can maintain the

generalization performance comparable to an equivalent SVM with typically much fewer

kernel functions utilization (Tipping, 2000, 2001).

Another approach is by aggregation of variants of classifiers, which are trained diversely

according to different feature and classifier settings. The bagging, boosting and random

subspace methods are good examples for such approach (see e.g. Breiman, 1994; Skurichina

& Duin, 2002; Tax & Duin, 2000; Vetter et al., 1997) where they have been shown to work

well in practical problems with appropriate settings.

As above formulations are either iterative or aggregative in nature, they incur much com-

putational effort in training and determining the parameters. We seek in this paper, a linear

formulation similar to that of least-squares estimate, which provides possible means to sta-

bilize the solution and hence reduces possible over-fitting. Instead of adopting the above

hyperprior methods by statistical means, the stabilization problem is approached from the

mapping point of view utilizing derived features obtained from scaling. The training effort

to arrive at multiple classifiers for aggregation as in bagging technique is translated into the

process of selecting a scaling parameter from a single-step least-squares training paradigm.

2.2. Pattern classification treatment

Given an inference measure g, for two-class problems, the threshold function th : � → {0, 1}
given by

th(g) =
{

0, g < t0

1, g � t1,
, t0 � t1, (1)

is used for classification decision. For multi-class problems, given g = [g1, g2, . . . , gNC]

where NC being the number of class labels, the following classification function cls : �l →
[1, 2, . . . , NC] is used to define each class label:

cls(g) = arg maxi gi , i = 1, 2, . . . , NC . (2)

2.3. Feature scaling-space in our context

The scale-space concept has been much explored in image processing and computer vision

(see e.g. Lindeberg, 1990). In the context of image processing and computer vision, scale-

space refers to a family of derived signals that represent the original signal at various levels

of scale (Lindeberg, 1990). These derived signals are usually obtained from convolution of

the original data (image) with a kernel.

In our context here, feature scaling-space refers to the set of pattern features containing

both the original and the derived signals. Unlike the above derived signals in scale-space or

multiscale representation, our derived signals for feature scaling-space are obtained from

simple uniform scaling of the original signal. The feature scaling-space is also differentiated

from those 3L algorithms as seen in Helzer et al. (2004) and references within, in the way

that the error objective of 3L and related algorithms are expressed using variations of the

training target values, whereas in our feature scaling-space, similar target values are used.

Springer

Mach Learn (2006) 65:273–308 277

Apart from the input scale parameters adaptation as seen in kernel or network parameter

adjustment schemes (see e.g. Juszczak et al., 2000; Grandvalet & Canu, 2002; Tipping,

2001), the proposed feature scaling-space is also differentiated from the feature weighting and

normalization in neural network learning schemes (see e.g. Bishop, 1995) and classification

features selection (see e.g. Duch & Grudziński, 1999) since these schemes do not include

multiple sets of scaled signals in processing. Scaling is an important preprocessing step in

SVM and Neural Networks for pattern classification since it has notable outcomes for these

methods. It is defined by a linear transformation of the input vector x space such that x̃ = Γx
where Γ = diag(γ), and γ is the scaling vector. However, the search for a good combination

of these scaling values can be a daunting task since the number of possibilities increases

tremendously with the input dimension.

Main reasons that feature scaling-space is not being explored in the literature include

the following: (i) it is not applicable to linear decision models, (ii) its effect is notable

for polynomials, but these polynomials are not well used due to the explosive number of

expansion terms for high dimensional and high order problems, and (iii) its effect is also

notable for nonlinear decision models, but they are often hampered by local solutions which

render the effects non-conclusive.

3. A linear reciprocal-sigmoid model

3.1. The sigmoid function

The sigmoid activation function has been widely used in multilayer perceptron network

applications. The success of such applications come from two aspects of its property: (i) its

approximation capability has been well proven (see e.g. Hornik et al., 1989; Schürmann,

1996), and (ii) the convergence to local solutions is easily obtained in practice. For pattern

classification, the sigmoid transformation can pull trained objects apart making them possibly

linearly separable. We are thus motivated to explore into classification models adopting the

sigmoid and related functions.

The wide usage of the sigmoid-based models however, is complicated by the effort required

to fix the various learning hyper-parameters (e.g. number of layers, number of neurons in

each layer, momentum, learning rate and etc.) for the learning to converge to some acceptable

local solutions with good predictivity. In this section, observations on some properties of the

sigmoid function are provided and then in next section, a linear model, which carries much

of the approximation capability but at the same time reliefs much the effort to search for

appropriate local solutions among the various combination of hyper-parameters, is proposed.

The sigmoid function is given by

σ (x) = 1

1 + e−x
. (3)

Rearranging (3) gives e−x = (1 − σ (x))/σ (x), which can be substituted into the following

derivation:

σ (x1 + x2) = 1

1 + e−x1 e−x2

Springer

278 Mach Learn (2006) 65:273–308

= 1

1 +
(

1−σ (x1)
σ (x1)

) (
1−σ (x2)
σ (x2)

)
= σ (x1)σ (x2)

σ (x1)σ (x2) + (1 − σ (x1))(1 − σ (x2))
. (4)

Dividing both numerator and denominator by σ (x1)σ (x2), (4) can be re-written as

σ (x1 + x2) = 1

1 + ω
, (5)

where

ω = (1 − σ (x1))(1 − σ (x2))

σ (x1)σ (x2)

= 1 − σ (x1) − σ (x2) + σ (x1)σ (x2)

σ (x1)σ (x2)

= 1 − (σ (x1))−1 − (σ (x2))−1 + (σ (x1)σ (x2))−1. (6)

Using binomial series expansion, (5) can be expanded as

σ (x1 + x2) = (1 + ω)−1 = 1 − ω + ω2 − ω3 + ω4 − · · · . (7)

Equations (7) and (6) show that σ (x1 + x2) can be expressed in terms of products and powers

of (σ (x1))−1 and (σ (x2))−1. Collectively, the following can be written:

σ (x1 + x2) = α0 + α1(σ (x1))−1 + α2(σ (x2))−1 + α3(σ (x1)σ (x2))−1

+ α4(σ (x1))−2 + α5(σ (x2))−2 + α6(σ (x1)σ (x2))−2 + · · · , (8)

where αi , i = 0, 1, 2, . . . are some scalar coefficients. This analysis shows that the reciprocal

of sigmoid functions can be linearly combined by means of product and power terms, to

achieve the equivalent ‘shifting’ and ‘scaling’ effects for a sigmoid function containing the

nonlinear ‘shifting’ and ‘scaling’ parameters (i.e. a and b in σ (a(x − b))). An immediate

implication is that any scaled or shifted sigmoid function may be expanded as a series

consisting of linear combination of product and power terms of the reciprocal of a basis

sigmoid function. A collection of these series, which represent differently scaled and shifted

sigmoids, can thus be used for function approximation.

It is noted that the reciprocal of the sigmoid function is actually 1 + e−x . This means that

no reciprocal inversion is required to be performed on the term (1 + e−x) as in the case of

using the usual sigmoid function.

3.2. Linear combination of reciprocal-sigmoids

The property given in above subsection suggests certain approximation capability of the

reciprocal-sigmoid model since, in theory, it has been shown that standard multilayer feed-

forward networks with as few as one hidden layer using arbitrary squashing functions are

Springer

Mach Learn (2006) 65:273–308 279

capable of approximating any Borel measurable function from one finite dimensional space

to another to any desired degree of accuracy (see e.g. Hornik et al., 1989; Schürmann, 1996).

The full multivariate polynomial expansion provides a straight-forward means to span

the linear combination of product and power terms. However, the number of terms grows

exponentially with the number of inputs and the order of the system. To significantly reduce

the huge number of terms in multivariate polynomials, a Reduced multivariate polynomial

Model (RM) has been proposed by Toh (2003):

g
RM

(α, x) = αT p
RM

(x)

= α0 +
r∑

k=1

l∑
j=1

αk, j x
k
j +

r∑
k=1

αk

(
l∑

j=1

x j

)k

+
r∑

k=2

(
l∑

i=1

αk,i xi

) (
l∑

j=1

x j

)k−1

, l, r � 2. (9)

where x j , j = 1, . . . , l are the polynomial inputs, α0, αk, j , αk, αk,i , . . . are the weighting

coefficients to be estimated, and l, r correspond to input-dimension, order of system respec-

tively. The number of terms in this model can be expressed as K = 1 + r + l(2r − 1).

For this case using the reciprocal-sigmoid as basis function, the polynomial inputs x j are

replaced by the reciprocal-sigmoid basis functions:

φ(x j) = (σ (x j))
−1 = 1 + e−x j , j = 1, . . . , l. (10)

As can be seen from (9), the basic component of this polynomial model boils down to

construction of new pattern features which are sums of the original features, and combination

of these new and original features using power and product terms.

Table 1 lists the expansion terms of RM given by (9). It is noted that some parts of

(9) can be obtained from linear combination of other terms. These linear dependencies are

indicated in Table 1 by various corresponding markings, e.g. underlined term in column

three corresponds to underlined terms in other columns (e.g. column-two), over-braced term

in column three corresponds to over-braced terms in other columns (e.g. column-four), and

so on. By removing these linearly dependent cases from column three of Table 1, the RM2

model (a refinement from RM) is defined as follows:

g
RM2

(α, x) = αT p
RM2

(φ(x))

= α0 +
r∑

k=1

l∑
j=1

αk, jφ(x j)
k

+
r∑

k=2

(
l∑

i=1

αk,iφ(xi)

) (
l∑

j=1

φ(x j)

)k−1

, l, r � 2 (11)

where φ(·) is defined as in (10). Here, (11) will be called a reciprocal-sigmoid model as it

is composed of a linear combination of sum and product terms of reciprocal sigmoids. It is

noted that the total number of expansion terms of p
RM2

is given by K = 1 + l(2r − 1), which

Springer

280 Mach Learn (2006) 65:273–308

Table 1 Full view of terms in RM model (l = 3, r = 2, . . . , 5)

Order 2nd-term of (9) 3rd-term of (9) 4th-term of (9)

r = 2 x1, x2, x3, x2
1 , x2

2 , x2
3 (x1 + x2 + x3),

︷ ︸︸ ︷
(x1 + x2 + x3)2

︷ ︸︸ ︷
x1(x1 + x2 + x3),

︷ ︸︸ ︷
x2(x1 + x2 + x3),︷ ︸︸ ︷

x3(x1 + x2 + x3)

r = 3 x1, x2, x3, x2
1 , x2

2 , x2
3 , (x1 + x2 + x3),

︷ ︸︸ ︷
(x1 + x2 + x3)2,

︷ ︸︸ ︷
x1(x1 + x2 + x3),

︷ ︸︸ ︷
x2(x1 + x2 + x3),

x3
1 , x3

2 , x3
3 (x1 + x2 + x3)3︸ ︷︷ ︸ ︷ ︸︸ ︷

x3(x1 + x2 + x3), x1(x1 + x2 + x3)2︸ ︷︷ ︸,

x2(x1 + x2 + x3)2︸ ︷︷ ︸, x3(x1 + x2 + x3)2︸ ︷︷ ︸
r = 4 x1, x2, x3, x2

1 , x2
2 , x2

3 , (x1 + x2 + x3),

︷ ︸︸ ︷
(x1 + x2 + x3)2,

︷ ︸︸ ︷
x1(x1 + x2 + x3),

︷ ︸︸ ︷
x2(x1 + x2 + x3),

x3
1 , x3

2 , x3
3 , x4

1 , x4
2 , x4

3 (x1 + x2 + x3)3︸ ︷︷ ︸, (x1 + x2 + x3)4
︷ ︸︸ ︷
x3(x1 + x2 + x3), x1(x1 + x2 + x3)2︸ ︷︷ ︸,

x2(x1 + x2 + x3)2︸ ︷︷ ︸, x3(x1 + x2 + x3)2︸ ︷︷ ︸
x1(x1 + x2 + x3)3, x2(x1 + x2 + x3)3,

x3(x1 + x2 + x3)3

r = 5 x1, x2, x3, x2
1 , x2

2 , x2
3 , (x1 + x2 + x3),

︷ ︸︸ ︷
(x1 + x2 + x3)2,

︷ ︸︸ ︷
x1(x1 + x2 + x3),

︷ ︸︸ ︷
x2(x1 + x2 + x3),

x3
1 , x3

2 , x3
3 , x4

1 , x4
2 , x4

3 , (x1 + x2 + x3)3︸ ︷︷ ︸,
︷ ︸︸ ︷
x3(x1 + x2 + x3), x1(x1 + x2 + x3)2︸ ︷︷ ︸,

x5
1 , x5

2 , x5
3 (x1 + x2 + x3)4,

←−−−−−−−−−−
(x1 + x2 + x3)5 x2(x1 + x2 + x3)2︸ ︷︷ ︸, x3(x1 + x2 + x3)2︸ ︷︷ ︸

x1(x1 + x2 + x3)3, x2(x1 + x2 + x3)3,

x3(x1 + x2 + x3)3,
←−−−−−−−−−−−−
x1(x1 + x2 + x3)4,←−−−−−−−−−−−−

x2(x1 + x2 + x3)4,
←−−−−−−−−−−−−
x3(x1 + x2 + x3)4

has r terms less than that in (9). The simplicity of the classifier model can be seen from

the few lines of Matlab (The MathWorks, 2003) codes as shown in Appendix A.1. A XOR

learning example is included in Appendix A.2 for immediate test.

With this refined model RM2 in place, the following formulation for multiple-class prob-

lems is presented:

Proposition 1. Given m finite data samples {(xi , yi)|xi ∈ �l , yi ∈ �q , i = 1, . . . , m} with
the multiple-class (q-classes) output vectors packed as Y = [y1, . . . , ym]T ∈ �m×q . Let
p

RM2
: �l → �K in (11) be the model expansion function on the reciprocal-sigmoid ba-

sis φ(xi), i = 1, . . . , m with K � m. If the matrix P = [p
RM2

(φ(x1)), . . . , p
RM2

(φ(xm))]T

has full rank, then there is a minimum ε � 0 and an optimal solution �∗ = [α1, . . . ,αq]

such that ‖Y − P�∗‖2
2 ≤ ε.

Proof: The least-squares solution minimizing ‖Y − P�‖2
2 is �∗ = (PT P)−1 PT Y and the

full rank condition guarantees that the matrix PT P is invertible. Hence the proof. �

Although RM2 contains independent expansion terms, duplicate data samples can still

form dependent vectors. The full rank condition requires the data samples to be distinct in

some sense, i.e. they do not form dependent column vectors of P for K � m (K is the number

of polynomial terms and m is the number of data samples).

Springer

Mach Learn (2006) 65:273–308 281

This result shows the approximation capability for uncorrelated discrete data. When K =
m, an exact fit to pass through all data points is possible when the matrix P is not ill-

conditioned. It is also noted that the above results apply to the original polynomials as well

as adopting the reciprocal-sigmoid as basis function. We shall illustrate empirically in later

section that using the reciprocal-sigmoid basis function, which embeds much nonlinearity,

can reduce the number of expansion terms as compared to that using polynomials.

3.3. Relationship with generalized linear models (GLM)

Using the sigmoid activation function (3) as a perceptron unit taking multiple inputs, a percep-

tron network can be constructed and employed to learn binary observations for classification

(Bishop, 1995). Mathematically, a logistic regression perceptron model for learning binary

data can be considered as a Generalized Linear Model with binomial response and logit link

(Nelder & Wedderburn, 1972; McCullagh & Nelder, 1989; Hardin & Hilbe, 2001). Here,

the m independent observations yi (i = 1, . . . , m) are treated as a realization of a random

variable Yi ∼ B(ni , πi) with binomial denominator ni and probability πi (for 2-class prob-

lems, ni = 1, ∀i). A linear predictor function (the systematic component) is then used to fit

the logit (the link function) of the underlying probability πi (the random component) giving

rise to

logit(πi) = log
πi

1 − πi
= xT

i β, (12)

where xi is a vector of covariates (data inputs) and β is a vector of regression coefficients

(parameters). Solving for the probability πi in (12) yields

πi = 1

1 + e−xT
i β

, (13)

where (13) can be associated to (3) by putting πi = σ (xT
i β). The main difference between

a perceptron and a GLM is whether the underlying truth of data distribution is explicitly

assumed or not. While the GLM exploits statistical inference for analysis, the perceptron does

not explicitly assume data distribution and works on empirical evidences such as validation

or training/test errors. This empirical framework will be adopted in our evaluations.

As mentioned, the main problem with the above perceptron and GLM frameworks is the

parametric nonlinearity, and an iterative search is often required to solve forβ (see e.g. Dunn,

1999, 2000). In this work, the nonlinearity problem is solved by a simple re-formulation.

Instead of solving directly forβ in (13), σ (xTβ) is re-written in the form σ (β1x1 + · · · + βl xl)

that is analogous to (8). Here, it is seen that σ (β1x1) takes the place of σ (x1) in (8) and so on.

Since every variable x j is decoupled from all other variables xk, k �= j in (8), β here can be

absorbed into the parameter vector α during estimation. For example, ᾱ3(σ (β1x1)σ (β2x2))−1

can be written as α3(σ (x1)σ (x2))−1 using a re-parameterized α3 = ᾱ3(f (β1) f (β2))−1 for a

certain transformation function f obtained from f (βi)σ (xi) = σ (βi xi). We need not worry

about determining f and β’s in practice because only the global effect of α (α3 for this

particular example) is estimated.

The full multivariate polynomial (FM) can be utilized to realize the combinatorial terms

in (8). However, as mentioned, the implementation cost would be high because the number

of expansion terms grows exponentially with respect to the number of inputs and the order

of system. The RM2 model alleviates this problem by removing many expansion terms and

Springer

282 Mach Learn (2006) 65:273–308

replacing them with a few multinomial product terms. There is thus a certain difference

between (8) realized by FM and (8) realized by RM2 (11) due to this approximation. Under

the language of the GLM framework, the logit link has been approximated by the functional

inverse of the RM2 series expansion. This approximated link function and the loss function

(least squares objective in Proposition 1) are matched to facilitate convex and well-posed

estimation like a linear predictor. Empirical evidence regarding the classification capability

of this reciprocal-sigmoid classifier, which has been realized by RM2 series approximation,

shall be explored in the experiment section.

4. Learning of scaling-space features

Learning a classifier without over-fitting the data is an important issue in machine learning. In

this section, the well-used technique on weight decay regularization to stabilize the learning

process is presented prior to proposal of a scaling-space approach to further stabilize the

learning. The main reason for regularization is that it is a practical and useful means to

stabilize the solution which, in some way, relates to generalization. The feature scaling-

space learning will be detailed shortly.

4.1. Weight decay regularization

It is noted here that the linear least-squares estimation involves computation of inverse of

a matrix, the problem of multi-collinearity may arise if some linear dependence among the

elements of x are present. A simple approach to improve numerical stability is to perform a

weight decay regularization using the following error objective:

s(α, x) =
m∑

i=1

[yi − g
RM2

(α, xi)]
2 + b‖α‖2

2 = [y − Pα]T [y − Pα] + bαTα, (14)

where ‖ · ‖2 denotes the l2-norm and b is a regularization constant. Let g
RM2

(α, x) be the

output column vector of the model for m number of training samples and suppose there are

K number of polynomial weights, then P is the Jacobian given by

P =
(

∂g
RM2

(α, x)

∂αT

)
∈ �m×K . (15)

For two-class problems, minimizing the objective function (14) results in

α = (PTP + bI)−1 PT y, (16)

where y ∈ �m×1 and I is a (K × K) identity matrix. For multiple class problems, the solution

can be written as

� = (PTP + bI)−1 PT Y, (17)

since the matrix P is similar for all outputs and these multiple outputs can be stacked as Y
(i.e. Y = [y1, y2, . . . , yNC], NC being the number of pattern classes, see (Toh et al., 2004)

for more details). The addition of a bias term into the least-squares regression model is also

Springer

Mach Learn (2006) 65:273–308 283

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

35

Polynomial order

E
rr

o
r

ra
te

 (
%

)

FM
FM–Reg

Fig. 1 Average test error rates versus polynomial order. This example provides a comparison between regular-
ized (FM-Reg) and non-regularized (FM) full multivariate polynomials using Ripley’s synthetic data (Ripley,
1996). The error rates were obtained from 1000 runs of training the 100-example subset randomly selected
from the original 250-example training set and used the 1000-example test set for test error rates computation.
It is seen that regularization demonstrates significant improvement of numerical stability in this example.

termed as ridge regression (Neter et al., 1996). The effect of regularization can be seen from

the experiments as shown in Fig. 1.

Having learned � and with matrix Pt generated from test data, the classification function

given by (2) can be applied to the test output Ŷ = Pt� to determine the class label.

4.2. Feature scaling-space learning

Let x ∈ �l be a l-dimensional pattern feature. The feature scaling-space is defined as

{x, γ1x, γ2x, . . .} where γi , i = 1, 2, . . . are the scaling factors for each derived feature

γi x. In other words, for each data sample x, there corresponds additional scaled samples γi x
that can be used for training. In the proposed learning framework, a symmetric scaling is

adopted and defined as follows: γ1 = (1 − ρ) and γ2 = (1 + ρ) where 0 < ρ < 1. The final

feature scaling-space is thus the set of original and scaled samples containing {γ1x, x, γ2x}.
The training target vector contains replicates of the original target vector without scaling,

i.e. {y, y, y}. For testing, the original test inputs (i.e. without scaling) are used to predict the

classification outcome. Obviously, differently scaled test inputs can be used individually for

predicting the classification outcomes and these test outcomes can be aggregated to form the

final decision. As there exists vast combinations of such aggregation which take up much

computing effort, only the original test inputs will be used in this study.

Springer

284 Mach Learn (2006) 65:273–308

Table 2 Full view of terms in a scaled RM2 model (l = 3, r = 2, 3, 4)

Order 2nd-term of (11) 3rd-term of (11)

r = 2 γ x1, γ x2, γ x3, γ 2x2
1 , γ 2x2

2 , γ 2x2
3 γ 2x1(x1 + x2 + x3), γ 2x2(x1 + x2 + x3),

γ 2x3(x1 + x2 + x3)

r = 3 γ x1, γ x2, γ x3, γ
2x2

1 , γ 2x2
2 , γ 2x2

3 ,

γ 3x3
1 , γ 3x3

2 , γ 3x3
3

γ 2x1(x1 + x2 + x3), γ 2x2(x1 + x2 + x3),

γ 2x3(x1 + x2 + x3), γ 3x1(x1 + x2 + x3)2,

γ 3x2(x1 + x2 + x3)2, γ 3x3(x1 + x2 + x3)2

r = 4 γ x1, γ x2, γ x3, γ
2x2

1 , γ 2x2
2 , γ 2x2

3 ,

γ 3x3
1 , γ 3x3

2 , γ 3x3
3 , γ 4x4

1 , γ 4x4
2 , γ 4x4

3

γ 2x1(x1 + x2 + x3), γ 2x2(x1 + x2 + x3),

γ 2x3(x1 + x2 + x3), γ 3x1(x1 + x2 + x3)2,

γ 3x2(x1 + x2 + x3)2, γ 3x3(x1 + x2 + x3)2

γ 4x1(x1 + x2 + x3)3, γ 4x2(x1 + x2 + x3)3,

γ 4x3(x1 + x2 + x3)3

Notice that ρ = 0 corresponds to two redundant sets of data added to the original data

x. The effect is that a heavier weight would be given to least-squares error as compared

to the regularization bias when a regularized error objective is adopted. When ρ �= 0, this

approach can turn an under-determined system to an over-determined system where the

number of training samples is larger than the number of parameters. If however, x and

γi x are concatenated to form a large dimension feature (e.g. [xT , γ1xT , γ2xT , . . .]), under-

determined system can arise for cases with small number of training samples.

For multivariate polynomials, each scaling of the training feature by γ gives rise to a

nonlinearly scaled (hopefully independent) feature from the original one whenever γ is

raised to different powers in the polynomial expansion. For example, x2
1 will be nonlinearly

scaled by γ 2 in the second-order expansion. The result of such scaling of training samples,

even though it is uniform in the input space, could give rise to independent data samples in the

polynomial feature space. This increases the number of training samples without ‘distorting’

the original signal like those using noise injection (Skurichina et al., 2000; Grandvalet, 2000)

that may result in adding of infeasible samples. For RM2 formulation, the scaled expansion

terms are shown in Table 2 for r = 2, 3, 4.

5. Ripley’s synthetic data

In this section, Ripley’s synthetic data is used to evaluate the accuracy and computing aspects

of scaling-space learning on the reciprocal-sigmoid classifier and on the full multivariate

polynomial model. The data consists of a binary output indicating two pattern classes with

each sample containing two feature elements. According to (Tipping, 2001), a 100-example

training set (randomly selected from Ripley’s original 250) and a 1000-example test set was

used to demonstrate the decision boundary and generalization capability of RVM. It was

shown by Tipping (2000, 2001) that RVM produces comparable test error (slightly better)

with that of a SVM while utilizing a considerably small number of Gaussian kernel functions.

In all the experiments to follow, 1000 runs of training were performed using each 100-

example subset, which was randomly selected from the original 250-example training set.

The same set of randomly selected data for all 1000 runs was used in all compared algorithms.

This setup is to provide a good statistical picture regarding the performances, and especially

the generalization property.1 The feature scaling-space learning technique will be first demon-

strated that it can be applied to a conventional full multivariate polynomial model. Figure 2

1For the Ripley’s data, Tipping used a single run in Tipping (2001).

Springer

Mach Learn (2006) 65:273–308 285

1 2 3 4 5 6 7 8 9 10
9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

Polynomial order

E
rr

o
r

ra
te

 (
%

)
FM–Reg
FM–Reg–S

Fig. 2 Average (1000 runs) test error rates versus polynomial order. This example compares between FM-Reg
and FM-Reg-S, which shows that feature scaling-space learning provides possible room for stabilization of
the conventional full multivariate polynomial model at high model orders

shows the corresponding average error rates (from 1000 runs) plotted against each polynomial

order for the regularized full multivariate polynomial regression with and without scaling:

(i) FM-Reg: full polynomial with b = 0.1, and (ii) FM-Reg-S: full polynomial with b = 0.1

plus scaled input with ρ = 0.2 which was chosen empirically. These results show that the

scaling-space learning provides possible room for stabilization of FM at high model orders.

In the next set of experiments, the reciprocal-sigmoid classifier will be compared with

SVM, RVM and a Bagged FM-Reg. Both SVM and RVM adopt the polynomial kernel

because our reduced model for comparison is also a polynomial. The reciprocal-sigmoid

model expanded by RM2 with regularized scaling-space learning is abbreviated as RM-

InvSig-S. The non-scaled learning for the reciprocal-sigmoid model is abbreviated similarly

but without ‘-S’ attached. Both RM-InvSig-S and FM-Reg-S used a regularization setting

of b = 0.1. The Bagged FM-Reg, which aggregates (averages) 50 bootstrapped classifiers

from re-sampling the training data with replacement (Breiman, 1994), is abbreviated as FM-

Reg-Bagging. Figure 3 shows the average test error rates for 1000 runs of SVM, RVM,

FM-Reg-Bagging, RM-InvSig-S and FM-Reg-S over 10 model orders.

For SVM, in order to demonstrate the effect of different parameter tunings for the 10

model orders, four settings of (C, Gamma, Coeff)2 are used: (i) SVM-1 with (3,1,1); (ii)

2In Ma et al. (2002), C is the cost of constraint violation, Gamma and Coeff are the parameters of the

polynomial kernel which has the form of [Gamma∗ < X (:, i), X (:, j) > + Coeff]Degree. Degree is the order
of the polynomial.

Springer

286 Mach Learn (2006) 65:273–308

1 2 3 4 5 6 7 8 9 10
9

10

11

12

13

14

15

Polynomial order

E
rr

o
r

ra
te

 (
%

)

SVM–1
SVM–2
SVM–3
SVM–4
RVM–1
RVM–2
FM–Reg–Bagging
FM–Reg–S
RM–InvSig–S

Fig. 3 Average (1000 runs) test error rates versus polynomial order. A comparison of error performance
among SVM, RVM, FM-Reg-Bagging, FM-Reg-S and RM-InvSig-S over 10 model orders. This plot shows
that RVM, FM-Reg-Bagging and the feature scaling-space methods (FM-Reg-S and RM-InvSig-S) provide
good estimation stability over wide rage of model orders while SVM tends to have high test error rates at low
and high order models due to under-fitting and over-fitting

SVM-2 with (3,0.1,1); (iii) SVM-3 with (3,0.1,3) and (iv) SVM-4 with (1,1,1). The RVM-1

(using default settings: width = 0.5, maximum number of iterations = 500) in this figure has

only error rates for 1st-5th orders because matrix singularities are frequently encountered

for the experimented data set for higher orders. RVM-2 used a width of 1 with maximum

number of iterations equal 500 for all model orders.

The experiments show that SVM tends to have high test error rates at low and high order

models due to under-fitting and over-fitting. The RVMs, FM-Reg-Bagging, FM-Reg-S and

RM-InvSig-S maintained relatively consistent test error rates throughout all experimented

model orders. The average error rates for RM-InvSig-S and FM-Reg-S are seen to be con-

sistently lower (approx. 0.5–1.5%) than those of RVM and FM-Reg-Bagging for all model

orders.

The average error rates for RM-InvSig-S are compared to those from the original RM-

InvSig with similar parameter settings (i.e. b = 0.1) in Fig. 4. The thick line marked with ‘�’

(‘+’) in the figure indicates the average error rates for RM-InvSig-S (RM-InvSig). The width

of the light shaded tone on RM-InvSig indicates the standard deviation of error distribution.

The dark tone indicates the standard deviation for error rates of RM-InvSig-S. This figure

shows that up to 1.5% improvement of average test error over that of RM-InvSig can be

achieved by RM-InvSig-S.

Springer

Mach Learn (2006) 65:273–308 287

Fig. 4 Average (1000 runs) test error rates versus polynomial order. A comparison between RM-InvSig-S and
the original RM-InvSig without the use of feature scaling space. The plot shows that up to 1.5% improvement
of average test error over that of RM-InvSig can be achieved by RM-InvSig-S

Figure 5(a)–(b) shows the relative computing efforts for RVM, SVM, FM-Reg-Bagging,

RM-InvSig, RM-InvSig-S and FM-Reg-S in terms of CPU time running under simi-

lar computing platform (1.4 GHz Pentium-Centrino, Matlab environment; The Math-

Works, 2003). It is seen from this plot that for RM-InvSig-S, the increment of CPU

overheads over the original RM-InvSig is relatively small as compared to RVM over

SVM.

A training instance using a 5th-order polynomial for RM-InvSig, RM-InvSig-S and the

RVM are plotted in Figure 6. The test data with decision boundary is also included in the

figure. The decision boundaries at different decision thresholds (p = 0.25/0.75 and deci-

sion boundary at p = 0.50) for RVM, RM-InvSig and RM-InvSig-S are also shown in the

figures where it is seen that RM-InvSig-S has lower localized decision boundary than those

of RM-InvSig and RVM. In RVM, the relevance vectors control the localization of deci-

sion boundary whereas in RM-InvSig-S, the scaling of feature inputs affects the decision

boundary.

6. Experiments on UCI data

To gather more information about the effect of the proposed linear machine on real-world

problems, further experiments were performed on 40 benchmark UCI data sets (Newman

et al., 1998). These data sets were selected based on (Toh et al., 2004) where 2 out of the total

42 data sets were left out due to matrix ill-conditioning. The data sets and algorithm settings

are shown in Table 3. Both the RM-InvSig algorithm (reciprocal-sigmoid model given by

(11)) with its respective Scaled counterpart (RM-InvSig-S) will be evaluated. The original

polynomial expansion of RM2 is denoted as RM2.

Springer

288 Mach Learn (2006) 65:273–308

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

Polynomial order

C
P

U
 t
im

e
 (

se
co

n
d
s)

FM–Reg–Bagging

RVM–1
RVM–2

SVM–3

(a)

(b)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

Polynomial order

C
P

U
 t
im

e
 (

se
co

n
d
s)

SVM–1

SVM–2

SVM–4

RM–InvSig

RM–InvSig–SFM–Reg–S

Fig. 5 Total CPU times for 1000 runs versus polynomial order. This plot shows the relative computing efforts
among RVM, SVM, FM-Reg-Bagging, RM-InvSig, RM-InvSig-S and FM-InvSig-S in terms of CPU time
running under similar computing platform. It can be seen from this plot that for feature scaling-space, the
increment of CPU overheads for RM-InvSig-S over the original RM-InvSig is relatively small as compared
to RVM over SVM

6.1. Experimental setup

In all the following experiments, the regularization parameter was fixed at b = 0.0001 ac-

cording to Toh et al. (2004). Since the purpose here is to study the impact of introduction

of the reciprocal-sigmoid basis function and scaling-space learning into the RM model, the

polynomial order r was fixed following the RM-Tuned algorithm for each data set as seen in

Toh et al. (2004).3 The scaling parameter ρ was chosen from {0, 0.05, 0.10, . . . 0.45} based

on 10-fold validation using only the training set (see Table 3). Similar to (Toh et al., 2004), ten

runs of 10-fold stratified cross-validation were performed for all accuracy results concerned.

Both the RM-InvSig and the scaled RM-InvSig-S algorithms were experimented under same

settings stated above.

3In Toh et al. (2004), the polynomial order r was chosen from {1, 2, . . . , 10} based on cross-validation using
only the training set. The selected model order r was then used to compute the accuracies for all the 10 runs of
ten-fold tests. For the current RM-InvSig and RM-InvSig-S algorithms, r was selected similar to those chosen
values for RM-Tuned in order to study the impact of new basis function and scaling-space learning on test
accuracy.

Springer

Mach Learn (2006) 65:273–308 289

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 –1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

RVM Classification of Ripley’s synthetic data (training set)

Class 1
Class 2
Decision boundary
p=0.25/0.75
RVs

0

0.2

0.4

0.6

0.8

1

RM–InvSig–S Classification of Ripley’s synthetic data (training set)

RM–InvSig–S, p=0.5
RM–InvSig–S, p=0.25/0.75
RM–InvSig, p=0.5
RM–InvSig, p=0.25/0.75

(a) (c)

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1 –1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

RVM Classification of Ripley’s synthetic data (test set) RM–InvSig–S Classification of Ripley’s synthetic data (test set)

(b) (d)

Fig. 6 Classification of Ripley’s data: (a) decision boundary of RVM plotted on training set, (b) decision
boundary of RVM plotted on test set, (c) decision boundaries of RM-InvSig and RM-InvSig-S plotted on
scaling-space training set, (d) decision boundaries of RM-InvSig and RM-InvSig-S plotted on test set. p = 0.5
refers to decision boundary at threshold 0.5. These plots show that RM-InvSig-S has lower localized decision
boundary than those of RM-InvSig and RVM

6.2. Classifiers comparison in literature

For comparisons against performances of existing classification algorithms in the literature,

the classification results were directly taken from Lam et al. (2002), Lim et al. (2000),

Precup and Utgoff (2004), Li et al. (2004) since much similarity among the experimental

conditions (including ours) can be identified, besides the fact that the best known tuning

of their proposed methods have been obtained by the originators themselves. The selected

40 sets of UCI data are mainly based on those in Toh et al. (2004), Lam et al. (2002)

and Lim et al. (2000). For (Precup & Utgoff, 2004) and (Li et al., 2004), only data sets

common to the chosen 40 sets were compared. As details of experiments can be found in

the references, these comparative works are only briefly described below for immediate

reference.

Ref-I: In the recent work by Lam et al. (2002), the proposed best tuned algorithm ICPL

(Integrated Concept Prototype Learner, which integrates instance filtering and abstraction

techniques) was compared with four other algorithms namely, RT3 (an instance pruning

Springer

290 Mach Learn (2006) 65:273–308

Table 3 Summary of data sets and algorithm settings

RM-InvSig-S (b = 0.0001)
(i) (ii) (iii) (iv)

Database name #cases #feat #class #miss r ρ

1. Shuttle-l-control 279(15) 6 2 no 2 0.15

2. BUPA-liver-disorder 345 6 2 no 2 0

3. Monks-1 124(432) 6 2 no 4 0.45

4. Monks-2 169(432) 6 2 no 7 0

5. Monks-3 122(432) 6 2 no 2 0

6. Pima-diabetes 768 8 2 no 1 0.05

7. Tic-tac-toe 958 9 2 no 2 0

8. Breast-cancer-Wiscn 683(699) 9(10) 2 16 3 0.05

9. StatLog-heart 270 13 2 no 2 0.10

10. Credit-app 653(690) 15 2 37 1 0

11. Votes 435 16 2 yes 2 0.05

12. Mushroom 5644(8124) 22 2 attr#11 2 0

13. Wdbc 569 30 2 no 3 0.20

14. Wpbc 194(198) 33 2 4 1 0.35

15. Ionosphere 351 34 2 no 3 0.40

16. Sonar 208 60 2 no 1 0.05

17. Iris 150 4 3 no 4 0.10

18. Balance-scale 625 4 3 no 2 0.10

19. Teaching-assistant 151 5 3 no 9 0.05

20. New-thyroid 215 5 3 no 4 0.10

21. Abalone 4177 8 3(29) no 7 0.05

22. Contraceptive-methd 1473 9 3 no 5 0.15

23. Boston-housing 506 12(13) 3(cont) no 4 0

24. Wine 178 13 3 no 1 0

25. Attitude-smoking+ 2855 13 3 no 1 0

26. Waveform+ 3600 21 3 no 1 0.15

27. Thyroid+ 7200 21 3 no 3 0.20

28. StatLog-DNA+ 3186 60 3 no 3 0.05

29. Car 2782 6 4 no 3 0.05

30. StatLog-vehicle 846 18 4 no 6 0

31. Soybean-small 47 35 4 no 1 0

32. Nursery 12960 8 4(5) no 4 0.05

33. StatLog-satimage+ 6435 36 6 no 6 0.20

34. Glass 214 9(10) 7 no 2 0.25

35. Zoo 101 17(18) 7 no 1 0

36. StatLog-image-seg 2310 19 7 no 6 0

37. Ecoli 336 7 8 no 2 0.10

38. LED-display+ 6000 7 10 no 1 0.45

39. Yeast 1484 8(9) 10 no 6 0.05

40. Pendigit 10992 16 10 no 6 0

(i) Total number of instances, i.e. examples, data points, observations (given number of instances). Note: the
number of instances used is larger than the given number of instances when we expand those “don’t care”
kind of attributes in some data sets; (ii) Number of features used, i.e. dimensions, attributes (total number of
features given); (iii) Number of classes (assuming a discrete class variable); (iv) Missing features;
+ Accuracy measured from the given training and test set instead of 10-fold validation (for large data cases
with test set containing at least 1,000 samples);
Note: Data from the Attitudes Towards Smoking Legislation Survey—Metropolitan Toronto 1988, which was
funded by NHRDP (Health and Welfare Canada), were collected by the Institute for Social Research at York
University for Dr. Linda Pederson and Dr. Shelley Bull.

Springer

Mach Learn (2006) 65:273–308 291

technique), kNN (k-Nearest Neighbors), C4.5 (decision tree) and SVM-Poly (Support

Vector Machine using polynomial kernel). Their experiments used a single run of the 10-

fold stratified cross validation on 35 data sets from the UCI Machine Learning Repository.

Only the average classification accuracies and the data retention rates (defined as a ratio

of the number of prototypes learned over the number of training instances) were reported

and no CPU times recorded. Application of the above five algorithms in the reported 35

data sets resulted in the following ranking in terms of the average classification accuracy:

SVM-Poly (0.878), kNN (0.875), ICPL (0.863), RT3 (0.861) and C4.5(0.842). Both setups

of the proposed classifier model (RM-InvSig and RM-InvSig-S) will be compared with

these five algorithms using those 28 data sets with known and comparable settings. The

reference (Lam et al., 2002) will be denoted as Ref-I for convenient reading.

Ref-II: In Lim et al. (2000), a total of thirty-three old and new classification algorithms

(twenty-two belonged to the decision trees type including the C4.5, nine belonged to the

statistical type including the Nearest Neighbor and two belonged to the neural networks

type including the RBF) were compared using 16 data sets from the UCI Machine Learning

Repository. Extensive experiments were performed on these data sets and a comprehensive

analysis was presented regarding the error rates, ranks, training time, size of trees, and

scalability aspects for the compared algorithms. For the reported results, most data sets

used the average 10-fold validation error rates (a single run) except for those six data

sets 4 marked with a ‘+’ that used the given test set to compute the error rates. Their

results placed a statistical spline-based algorithm (acronymed as POL) at the top in terms

of average classification accuracy even though it was ranked third last in terms of training

time. The reference (Lim et al., 2000) will be denoted as Ref-II for convenient reading and

all 16 data sets will be used in the comparison.

Ref-III: Recently, Precup and Utgoff (2004) compared their proposed CLEF (a Construc-

tive Learning method) algorithm with five existing algorithms including C4.5, SVM-RBF

(using RBF kernel) and DNC(Dynamic Node Creation, a constructive neural network).

Except for the Monk-2 data set that used the training and test sets provided, all accuracy

results on the 20 data sets were reported using 10-fold stratified cross validation (a single

run). In terms of average classification accuracy, the following ranking was established:

CLEF (76.25%), SVM-RBF (75.81%), C4.5 (70.03%), DNC (69.39%), �-RT (67.51%)

and �-DNC (65.45%). As some of the data sets are either different from that in UCI but

with same name or different class grouping being used, only 9 data sets are found to be

common to those in Lam et al. (2002) and Lim et al. (2000) and they are also listed for com-

parison. The reference (Precup & Utgoff, 2004) will be denoted as Ref-III for convenient

reading.

Ref-IV: In Li et al. (2004), extensive experiments based on 10-fold cross-validation were

performed on 40 data sets for a few instance-based algorithms, namely DeEPs (Decision-

making by Emerging Patterns), kNN and C5.0. The study revealed that DeEPs outper-

formed kNN and C5.0 for majority of data sets but with slower computing speed than

those of kNN and C5.0. A few other classifiers are also compared, but due to different

partitioning, they are not listed here for comparison. Among the 40 data sets, only those

4According to Lim et al. (2000), the following six data sets are partitioned into two sets namely the training set
and the test set for experimentation: Attitude-smoking, Waveform, Thyroid, StatLog-DNA, StatLog-sat-image
and LED-display. These data sets are considered to be large (Lim et al., 2000) as their sizes are much larger
than 1000 and the test set sizes are all at least 1000. In these six cases, the error rates are estimated from the
test sets and these error rates are compared with those in Lim et al. (2000).

Springer

292 Mach Learn (2006) 65:273–308

19 sets in common to our 40 data sets were used for comparison. The reference (Li et al.,

2004) will be denoted as Ref-IV for convenient reading.

6.3. Results

(i) Comparing performance of RM-InvSig-S with that of RM-InvSig

Table 4 lists the accuracy statistics for RM-InvSig and RM-InvSig-S. The average test accura-

cies of RM-InvSig-S are plotted relative to those of RM-InvSig (accuracies of RM-InvSig-S

minus accuracies of RM-InvSig) in Fig. 7 (average accuracies are taken from 10 runs of

10-fold experiments). Those points indicated by � are data sets that encounter Matlab’s

(The MathWorks, 2003) reciprocal condition warning (RCOND Warning) during parame-

ter estimation. Here, it is seen that numerical ill-conditioning does not influence much the

accuracy of RM-InvSig-S relative to RM-InvSig.

The data sets are marked with their corresponding ρ settings as shown in Fig. 7. The

accuracy improvement ranges from near zero to about 4.3% for RM-InvSig-S over RM-

InvSig. Figure 8(a)–(b) show the lower (minimum) and upper (maximum) performance

ranges of the average relative accuracy from the 10 runs of 10-fold cross-validation. A

general performance improvement trend is observed from these plots for instances where the

training adopted the feature scaling-space method.

0 5 10 15 20 25 30 35 40
–0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

data set index

re
la

tiv
e
 a

cc
u
ra

cy

average

RCOND Warning
rho=0
rho=0.05, 0.10
rho=0.15, 0.20
rho=0.25, 0.30
rho=0.35, 0.40
rho=0.45

Fig. 7 Average relative accuracy of RM-InvSig-S with respect to RM-InvSig. The accuracy improvement
ranges from near zero to about 4.3% for RM-InvSig-S over RM-InvSig. Apart from the relative accuracy
results, the data sets are marked with their corresponding ρ settings in feature scaling-space learning

Springer

Mach Learn (2006) 65:273–308 293

Table 4 Classification accuracy statistics for RM-InvSig and RM-InvSig-S using ten runs of 10-fold cross
validation

RM-InvSig RM-InvSig-S

No Name Min Ave Max Std Min Ave Max Std

1 Shuttle-l-contr 0.9519 0.9552 0.9593 0.0026 0.9556 0.9600 0.9630 0.0028

2 BUPA-liver 0.7294 0.7391 0.7529 0.0073 0.7235 0.7382 0.7559 0.0090

3 Monk-1 0.7833 0.8142 0.8333 0.0149 0.7917 0.8175 0.8333 0.0142

4 Monk-2 0.7000 0.7550 0.7875 0.0289 0.7063 0.7550 0.7875 0.0266

5 Monk-3 0.8833 0.9033 0.9167 0.0093 0.8833 0.9033 0.9167 0.0093

6 Pima-diabetes 0.7645 0.7695 0.7750 0.0035 0.7658 0.7700 0.7763 0.0036

7 Tic-tac-toe 0.9453 0.9515 0.9579 0.0041 0.9832 0.9835 0.9842 0.0005

8 Breast-cancer-W 0.9687 0.9721 0.9776 0.0028 0.9687 0.9731 0.9776 0.0028

9 StatLog-heart 0.8222 0.8430 0.8630 0.0120 0.8185 0.8456 0.8593 0.0122

10 Credit-app 0.8625 0.8641 0.8672 0.0018 0.8625 0.8641 0.8672 0.0018

11 Votes 0.9500 0.9531 0.9548 0.0019 0.9500 0.9533 0.9548 0.0019

12 Mushroom 0.9957 0.9960 0.9963 0.0001 0.9977 0.9980 0.9982 0.0002

13 Wdbc 0.9482 0.9566 0.9607 0.0036 0.9536 0.9593 0.9625 0.0029

14 Wpbc 0.7944 0.8128 0.8389 0.0136 0.7889 0.8111 0.8444 0.0138

15 Ionosphere 0.8412 0.8568 0.8794 0.0122 0.8794 0.9000 0.9176 0.0116

16 Sonar 0.7250 0.7595 0.7900 0.0188 0.7250 0.7575 0.7800 0.0183

17 Iris 0.9667 0.9727 0.9800 0.0036 0.9800 0.9840 0.9867 0.0033

18 Balance-scale 0.8767 0.8900 0.8950 0.0048 0.8883 0.8958 0.9017 0.0037

19 Teaching-assist 0.5286 0.5557 0.5857 0.0177 0.5429 0.5600 0.5786 0.0112

20 New-thyroid 0.9238 0.9290 0.9333 0.0026 0.9238 0.9338 0.9476 0.0069

21 Abalone 0.6505 0.6611 0.6675 0.0061 0.6555 0.6632 0.6692 0.0035

22 Contraceptive-mthd 0.5418 0.5486 0.5527 0.0033 0.5534 0.5579 0.5637 0.0034

23 Boston-housing 0.7612 0.7765 0.7857 0.0084 0.7531 0.7765 0.7878 0.0097

24 Wine 0.9812 0.9869 0.9875 0.0019 0.9812 0.9869 0.9875 0.0019

25 Attitude-smoking+ 0.6950 0.6950 0.6950 0.0000 0.6950 0.6950 0.6950 0.0000

26 Waveform+ 0.8103 0.8103 0.8103 0.0000 0.8130 0.8130 0.8130 0.0000

27 Thyroid+ 0.9390 0.9390 0.9390 0.0000 0.9399 0.9399 0.9399 0.0000

28 StatLog-DNA+ 0.9064 0.9064 0.9064 0.0000 0.9250 0.9250 0.9250 0.0000

29 Car 0.8419 0.8454 0.8498 0.0023 0.8466 0.8516 0.8552 0.0025

30 StatLog-vehicle 0.7500 0.7962 0.8183 0.0201 0.7366 0.7951 0.8232 0.0256

31 Soyabean-small 0.9500 0.9500 0.9500 0.0000 0.9500 0.9500 0.9500 0.0000

32 Nusery 0.9062 0.9067 0.9073 0.0003 0.9066 0.9071 0.9075 0.0003

33 StatLog-satimage+ 0.8445 0.8445 0.8445 0.0000 0.8505 0.8505 0.8505 0.0000

34 Glass 0.6190 0.6457 0.6619 0.0146 0.6476 0.6590 0.6762 0.0083

35 Zoo 0.9400 0.9560 0.9700 0.0092 0.9500 0.9630 0.9800 0.0100

36 StatLog-image-seg 0.9013 0.9413 0.9494 0.0135 0.9446 0.9473 0.9489 0.0012

37 Ecoli 0.7847 0.8610 0.9789 0.0517 0.8576 0.8688 0.8788 0.0064

38 Led-display+ 0.7335 0.7335 0.7335 0.0000 0.7408 0.7408 0.7408 0.0000

39 Yeast 0.5899 0.5961 0.6014 0.0040 0.5932 0.5983 0.6041 0.0028

40 Pendigit 0.8285 0.9161 0.9504 0.0382 0.8750 0.9310 0.9496 0.0250

Average 0.8234 0.8391 0.8516 0.0085 0.8326 0.8446 0.8535 0.0064

+: Accuracy measured from the given training and test set instead of 10-fold validation.
RM-InvSig: Reciprocal-sigmoid model expanded by RM2 as shown in (11).
RM-InvSig-S: Scaling-space learning of reciprocal-sigmoid model expanded by RM2 as shown in (11).

Springer

294 Mach Learn (2006) 65:273–308

0 5 10 15 20 25 30 35 40
–0.02

–0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

data set index

re
la

tiv
e

 a
cc

u
ra

cy

minimum

RCOND Warning
rho=0
rho=0.05, 0.10
rho=0.15, 0.20
rho=0.25, 0.30
rho=0.35, 0.40
rho=0.45

0 5 10 15 20 25 30 35 40
–0.12

–0.1

–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

data set index

re
la

tiv
e

 a
cc

u
ra

cy

maximum

RCOND Warning
rho=0
rho=0.05, 0.10
rho=0.15, 0.20
rho=0.25, 0.30
rho=0.35, 0.40
rho=0.45

(a)

(b)

Fig. 8 Average minimum and maximum relative accuracies of RM-InvSig-S with respect to original RM-
InvSig’s minimum and maximum accuracies. These two plots supplement the average relative accuracy in
Fig.7 in terms of the lower and upper performance ranges

Springer

Mach Learn (2006) 65:273–308 295

0 5 10 15 20 25 30 35 40
–0.18

–0.16

–0.14

–0.12

–0.1

–0.08

–0.06

–0.04

–0.02

0

0.02

data set index

re
la

tiv
e

 a
cc

u
ra

cy
average

No Warning
RCOND Warning for RM–InvSig–S
RCOND Warning for RM2

Fig. 9 Average relative accuracy of RM-InvSig-S with respect to RM2. These results show that the perfor-
mance of RM-InvSig-S is comparable to RM2 and may degrade in some cases at similar order settings

(ii) Comparing performance of RM-InvSig-S with that of RM2

The average test accuracies of the RM-InvSig-S with respect to the original RM2 5 at similar

model-order settings are shown as relative values (% difference between accuracies of RM-

InvSig-S and RM2) in Fig. 9. It was found that out of the total 40 data sets experimented,

15 data sets showed better accuracy for RM-InvSig-S than that of RM2. Four data sets

had equal performances between RM-InvSig-S and RM2. Twenty-one data sets had poorer

performance for RM-InvSig-S against that of RM2. The average accuracy (for all 40 data

sets) of RM-InvSig-S was found to be 0.84% lower than that of RM2. These results show

that the performance of RM-InvSig-S is comparable to RM2 and may degrade slightly in

some cases at similar order settings.

Table 5 lists the number of parameters used in RM2 and re-tuned RM-InvSig and RM-

InvSig-S for those that used high order models.6 Here, it is seen that the re-tuning led to

accuracy improvement with respect to RM2 in some cases. The underlined numbers in the

third-last column in Table 5 are cases where RM-InvSig (and RM-InvSig-S which used

5RM2 is the model given by (11) without using the reciprocal-sigmoid as basis function, i.e. obtained from
replacing φ(x) by x in (11).
6For those cases where RM2 had selected a high order model for classification, a re-tuning process was
performed on RM-InvSig and RM-InvSig-S by cross-validation using only the training data to choose a new
model order such that the best validation performance was obtained. The selected model order was then used
to compute the accuracies for all the 10 runs of 10-fold tests. The purpose of this re-tuning is to check if
different performance can be obtained by introducing the reciprocal-sigmoid as basis function into RM2.

Springer

296 Mach Learn (2006) 65:273–308

Table 5 Number of parameters for re-tuned RM-InvSig, RM-InvSig-S and RM2

RM2 RM-InvSig RM-InvSig-S

Index Data set name acc Std r No. para acc Std r No. para acc Std

3 Monk-1 0.9908 0.0079 4 43 0.8142 0.0149 4 43 0.8175 0.0142

4 Monk-2 0.7675 0.0195 7 79 0.7737 0.0426 9 103 0.7644 0.0188

17 Iris 0.9760 0.0033 4 87 0.9787 0.0040 2 39 0.9767 0.0033

19 Teaching-assist 0.5914 0.0156 9 258 0.5543 0.0125 6 168 0.5521 0.0207

20 New-thyroid 0.9357 0.0093 4 108 0.9548 0.0105 6 168 0.9595 0.0065

21 Abalone 0.6662 0.0013 7 315 0.6667 0.0014 4 171 0.6628 0.0010

22 Contraceptive-mthd 0.5445 0.0046 5 246 0.5560 0.0037 3 138 0.5588 0.0044

23 Boston-housing 0.7835 0.0046 4 255 0.7765 0.0084 4 255 0.7765 0.0097

30 StatLog-vehicle 0.8224 0.0068 6 796 0.8143 0.0049 4 508 0.8182 0.0048

32 Nusery 0.9093 0.0004 4 228 0.9082 0.0003 2 100 0.9074 0.0003

33 StatLog-satimage 0.8645 0 6 2382 0.8555 0 4 1518 0.8425 0

36 StatLog-image-seg 0.9410 0.0008 6 1470 0.9406 0.0015 5 1204 0.9420 0.0018

39 Yeast 0.5965 0.0033 6 890 0.6000 0.0027 4 570 0.5980 0.0032

40 Pendigit 0.9573 0.0005 6 1770 0.9422 0.0006 3 810 0.9422 0.0005

RM2: RM2 model without adopting the reciprocal-sigmoid basis, i.e. obtained from replacing φ by x in (11).
RM-InvSig: Reciprocal-sigmoid model expanded by RM2 as shown in (11).

the same re-tuned model-orders as those in RM-InvSig) used fewer parameters than RM2

but with comparable accuracy performance. It is seen that for many cases, the number of

parameters used can be significantly fewer for RM-InvSig than that of RM2 while maintaining

comparable test accuracy.

(iii) Comparing performance of RM-InvSig-S with a kernel ridge regression algorithm

The performance of RM-InvSig-S is next compared to a kernel ridge regression algorithm

(see e.g. Shawe-Taylor & Cristianini, 2004) adopting the following kernel:

Ker(x, z) = (1 + φ(x) · φ(z))l , (18)

where φ(x1, . . . , xl) = [(1 + e−x1), . . . , (1 + e−xl)] and l is the input dimension. It is noted

that this kernel adopts a full multivariate polynomial expansion and its terms grow ex-

ponentially with respect to the order and number of inputs (Bishop, 1995; Schürmann,

1996). Although this kernel ridge regression algorithm has a much larger number of

expansion terms comparing to our case, which is linear with respect to the order or

number of inputs (see Section 3.2, K = 1 + l(2r − 1) for RM2), the use of a sim-

ilar reciprocal-sigmoid basis function provides an interesting ground for performance

comparison.

Table 6 shows the results from 10 runs of 10-fold experiments, which are performed under

similar conditions (b = 0.0001 and similar 10-fold partitioning used in previous experiments)

for the full polynomial kernel ridge regression for two settings: 3rd-order (FP-InvSig-3) and

lth-order (FP-InvSig-l). Here, it is seen that more than half of the experiments for FP-InvSig-l
encountered either memory problem or numerical ill-conditioning. Comparing the individual

data sets with those from RM-InvSig-S, Table 6 highlights those superior performance cases

by bold characters. It can be seen that 13 data sets from FP-InvSig-3 and 4 data sets from

FP-InvSig-l have equal or better average accuracy than RM-InvSig-S. The overall average

Springer

Mach Learn (2006) 65:273–308 297

Table 6 Classification accuracy statistics for FP-InvSig-3 and FP-InvSig-l using ten runs of 10-fold cross
validation

FP-InvSig-3 FP-InvSig-l

No Name Min Ave Max Std Min Ave Max Std

1 Shuttle-l-contr 0.9815 0.9859 0.9926 0.0036 0.9889 0.9930 0.9963 0.0026

2 BUPA-liver 0.7118 0.7279 0.7441 0.0114 0.6588 0.6885 0.7176 0.0172

3 Monk-1 0.8500 0.8683 0.8917 0.0133 0.7833 0.7967 0.8167 0.0107

4 Monk-2 0.6188 0.6706 0.6937 0.0205 0.6438 0.6769 0.7063 0.0200

5 Monk-3 0.8750 0.9025 0.9250 0.0154 0.6500 0.6983 0.7417 0.0258

6 Pima-diabetes 0.7395 0.7488 0.7632 0.0059 0.6105 0.6258 0.6487 0.0122

7 Tic-tac-toe 0.9832 0.9835 0.9842 0.0005 * * * *

8 Breast-cancer-W 0.9209 0.9301 0.9403 0.0054 * * * *

9 StatLog-heart 0.7037 0.7296 0.7519 0.0162 * * * *

10 Credit-app 0.8172 0.8281 0.8375 0.0062 * * * *

11 Votes 0.8738 0.8848 0.8976 0.0075 * * * *

12 Mushroom * * * * * * * *

13 Wdbc 0.8893 0.8998 0.9161 0.0084 * * * *

14 Wpbc 0.7056 0.7361 0.7556 0.0156 * * * *

15 Ionosphere 0.7441 0.7624 0.7824 0.0121 * * * *

16 Sonar 0.7950 0.8255 0.8450 0.0154 * * * *

17 Iris 0.9733 0.9760 0.9800 0.0033 0.9667 0.9733 0.9800 0.0030

18 Balance-scale 0.9050 0.9092 0.9117 0.0024 0.9000 0.9042 0.9083 0.0026

19 Teaching-assist 0.5214 0.5586 0.6071 0.0228 0.4714 0.5300 0.5714 0.0263

20 New-thyroid 0.9286 0.9457 0.9619 0.0088 0.9286 0.9362 0.9524 0.0065

21 Abalone * * * * * * * *

22 Contraceptive-mthd 0.5308 0.5453 0.5548 0.0086 * * * *

23 Boston-housing 0.7735 0.7820 0.7939 0.0060 * * * *

24 Wine 0.9438 0.9575 0.9688 0.0088 * * * *

25 Attitude-smoking+ 0.0377 0.4233 0.8993 0.3642 * * * *

26 Waveform+ 0.5230 0.5583 0.5860 0.0228 * * * *

27 Thyroid+ 0.2599 0.7016 0.9877 0.2925 * * * *

28 StatLog-DNA+ * * * * * * * *

29 Car 0.9347 0.9365 0.9390 0.0012 0.9718 0.9731 0.9747 0.0010

30 StatLog-vehicle 0.8171 0.8311 0.8415 0.0081 * * * *

31 Soyabean-small 0.9500 0.9500 0.9500 0.0000 * * * *

32 Nusery * * * * * * * *

33 StatLog-satimage+ * * * * * * * *

34 Glass 0.6571 0.6724 0.6857 0.0087 0.3952 0.4276 0.4619 0.0196

35 Zoo 0.9400 0.9660 0.9800 0.0120 * * * *

36 StatLog-image-seg 0.9312 0.9369 0.9411 0.0029 * * * *

37 Ecoli 0.8167 0.8563 0.9456 0.0345 0.7848 0.7952 0.8061 0.0079

38 Led-display+ 0.6449 0.7408 0.8303 0.0586 * * * *

39 Yeast 0.5959 0.5981 0.6007 0.0019 0.5669 0.5729 0.5784 0.0037

40 Pendigit * * * * * * * *

Average 0.7616 0.8038 0.8437 0.0302 0.7372 0.7566 0.7758 0.0114

+: Accuracy measured from the given training and test set instead of 10-fold validation.
∗: Either matrix size too large to be computed or singularity of matrix encountered.
Bold numbers: Have either equal or better average accuracy than RM-InvSig-S.
FP-InvSig-3: Reciprocal-sigmoid kernel expanded by 3rd-order full polynomials.
FP-InvSig-l: Reciprocal-sigmoid kernel expanded by lth-order full polynomials (l is the input feature
dimension).

Springer

298 Mach Learn (2006) 65:273–308

accuracies for FP-InvSig-3 and FP-InvSig-l are seen to be lower than that of RM-InvSig and

RM-InvSig-S.

(iv) Comparing performance of RM-InvSig-S with a GLM

Since the proposed model (11) can be related to logistic regression (12)–(13) in GLM, a

comparison between (11) and (12)–(13) would be interesting. Two versions of GLM are

considered: 1. a GLM which adopted the logit link with binomial distributions (GLM),7

and 2. the logit link GLM which was trained using scaling-space inputs (GLM-S). The pur-

pose here is to check whether scaling-space is beneficial to GLM. Both GLM and GLM-S

were experimented using GLMLAB from Dunn (1999, 2000) with maximum number of

iterations fixed at 20 (default). Table 7 lists the results from 10 runs of 10-fold experi-

ments, which were performed under similar partitioning conditions as in previous experi-

ments. Figure 10(a) shows the average relative accuracies of RM-InvSig and RM-InvSig-S

with respect to GLM, and Fig. 10(b) shows the average relative accuracy of GLM-S with

respect to GLM. These results show that both RM-InvSig and RM-InvSig-S outperform

the GLM in many data sets and that scaling-space inputs do not benefit GLM in many

cases.

(v) Comparing performance of RM-InvSig-S with others in literature

Apart from above comparisons, the average accuracy of RM-InvSig-S is next compared with

a few other results which reported extensive experiments. The comparison will be limited

to only non-aggregate type of classifiers since both RM-InvSig and RM-InvSig-S belong

to this type. Here it is noted that Ref-I through Ref-IV used only a single run of 10-fold

cross-validation whereas our experiments on RM-InvSig and RM-InvSig-S used ten runs

of 10-fold cross-validation. Table 8 shows the minimum, average and maximum accuracies

of RM-InvSig and RM-InvSig-S from the 10 runs of 10-fold cross-validation tabulated in

ranking order with respect to those reported average accuracies over those similar data sets.

These results suggest that RM-InvSig-S have comparable accuracy with the top classifiers

found in the literature.

(vi) Effect of data attributes on the proposed method

Having seen the accuracy aspect, the effect of sample size and feature dimension on RM-

InvSig and RM-InvSig-S will be studied. Figure 11(a) shows the distribution of average

accuracies over the total number of samples and the number of features of the data sets. From

the plot on top, no significant trend of accuracy distribution according to sample size can be

found. For the bottom plot, the maximum accuracy appears to have a mild decreasing trend

over the feature dimension.

Figure 11(b) shows the relative accuracy (average accuracy of RM-InvSig-S minus av-

erage accuracy of RM-InvSig) plotted over the ratio between sample number and feature

dimension. Here, it is seen that notable improvement of RM-InvSig-S over RM-InvSig oc-

7In order to observe the performance under similar ground with that of the reciprocal-sigmoid model, the
logistic regression model was implemented to learn multiple two-class problems inlined with (2) and (17)
for multi-category cases. While we limit our study within this multiple two-class platform for comparable
empirical error evaluations, the interested reader is referred to Agresti (2002) for an extended literature
regarding multinomial response models.

Springer

Mach Learn (2006) 65:273–308 299

Table 7 Classification accuracy statistics for GLM and GLM-S using ten runs of 10-fold cross validation

GLM GLM-S

No Name Min Ave Max Std Min Ave Max Std

1 Shuttle-l-contr 0.9667 0.9722 0.9778 0.0030 0.9667 0.9722 0.9778 0.0030

2 BUPA-liver 0.6794 0.6853 0.6912 0.0046 0.6765 0.6944 0.7088 0.0082

3 Monk-1 0.6167 0.6733 0.7000 0.0229 0.6250 0.6800 0.7000 0.0201

4 Monk-2 0.5437 0.5588 0.5813 0.0126 0.5687 0.5988 0.6375 0.0172

5 Monk-3 0.7083 0.7692 0.7917 0.0233 0.7583 0.7783 0.8000 0.0130

6 Pima-diabetes 0.7737 0.7779 0.7816 0.0028 0.7737 0.7779 0.7816 0.0028

7 Tic-tac-toe 0.6853 0.6915 0.6989 0.0044 0.6905 0.6981 0.7074 0.0052

8 Breast-cancer-W 0.9642 0.9688 0.9731 0.0027 0.9642 0.9690 0.9746 0.0035

9 StatLog-heart 0.8185 0.8341 0.8481 0.0076 0.8333 0.8400 0.8519 0.0066

10 Credit-app 0.8562 0.8609 0.8672 0.0036 0.8219 0.8470 0.8625 0.0169

11 Votes 0.9333 0.9436 0.9595 0.0069 0.9381 0.9452 0.9619 0.0069

12 Mushroom 0.9988 0.9991 0.9993 0.0002 0.9988 0.9991 0.9993 0.0002

13 Wdbc 0.9446 0.9516 0.9589 0.0053 0.9464 0.9552 0.9643 0.0050

14 Wpbc 0.7667 0.7983 0.8278 0.0167 0.7778 0.8006 0.8333 0.0160

15 Ionosphere 0.8735 0.8829 0.8971 0.0060 0.8647 0.8838 0.9000 0.0094

16 Sonar 0.7150 0.7415 0.7750 0.0172 0.6650 0.7320 0.7650 0.0252

17 Iris 0.9467 0.9633 0.9733 0.0068 0.9467 0.9633 0.9733 0.0068

18 Balance-scale 0.8633 0.8718 0.8767 0.0042 0.8617 0.8722 0.8783 0.0048

19 Teaching-assist 0.5143 0.5379 0.5500 0.0101 0.5143 0.5379 0.5500 0.0101

20 New-thyroid 0.9571 0.9595 0.9714 0.0044 0.9571 0.9614 0.9762 0.0058

21 Abalone 0.6474 0.6492 0.6512 0.0012 0.6401 0.6418 0.6442 0.0013

22 Contraceptive-mthd 0.5048 0.5102 0.5240 0.0052 0.5027 0.5071 0.5110 0.0026

23 Boston-housing 0.7592 0.7696 0.7796 0.0063 0.7592 0.7696 0.7796 0.0063

24 Wine 0.9688 0.9750 0.9812 0.0028 0.9688 0.9750 0.9812 0.0028

25 Attitude-smoking+ 0.6920 0.6920 0.6920 0.0000 0.6930 0.6930 0.6930 0.0000

26 Waveform+ 0.8523 0.8523 0.8523 0.0000 0.8543 0.8543 0.8543 0.0000

27 Thyroid+ 0.9542 0.9542 0.9542 0.0000 0.9527 0.9527 0.9527 0.0000

28 StatLog-DNA+ 0.8432 0.8432 0.8432 0.0000 0.8432 0.8432 0.8432 0.0000

29 Car 0.8025 0.8053 0.8079 0.0015 0.8025 0.8053 0.8079 0.0015

30 StatLog-vehicle 0.7829 0.7907 0.8000 0.0045 0.7829 0.7916 0.8012 0.0057

31 Soyabean-small 0.9500 0.9500 0.9500 0.0000 0.8500* 0.8825* 0.9250* 0.0225*

32 Nusery 0.8988 0.8996 0.9007 0.0005 0.8988 0.8996 0.9007 0.0005

33 StatLog-satimage+ 0.8185 0.8185 0.8185 0.0000 0.8185 0.8185 0.8185 0.0000

34 Glass 0.6190 0.6367 0.6524 0.0093 0.6143 0.6376 0.6524 0.0125

35 Zoo 0.9500 0.9800 0.9900 0.0134 0.9500 0.9800 0.9900 0.0134

36 StatLog-image-seg * * * * * * * *

37 Ecoli 0.8515 0.8609 0.8667 0.0046 0.7917 0.8517 0.9094 0.0368

38 Led-display+ 0.7415 0.7415 0.7415 0.0000 0.7428 0.7428 0.7428 0.0000

39 Yeast 0.5818 0.5851 0.5892 0.0020 0.5818 0.5851 0.5892 0.0020

40 Pendigit 0.9343 0.9351 0.9357 0.0004 0.9343 0.9351 0.9357 0.0004

Average 0.7885 0.8015 0.8149 0.0074 0.7848 0.8010 0.8176 0.0093

+: Accuracy measured from the given training and test set instead of 10-fold validation.
∗: Matrix too ill-conditioned and results may not be reliable.
Bold numbers: Have either equal or better average accuracy than RM-InvSig-S.
GLM: GLM adopting a logit link as in (12).
GLM-S: Scaling-space learning of GLM.

Springer

300 Mach Learn (2006) 65:273–308

0 5 10 15 20 25 30 35 40
–0.05

0

0.05

0.1

0.15

0.2

0.25

re
la

tiv
e
 a

cc
u
ra

cy

data set index

average

RM–InvSig – GLM
RM–InvSig–S – GLM

0 5 10 15 20 25 30 35 40
–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

data set index

re
la

tiv
e
 a

cc
u
ra

cy

average

RCOND Warning for GLM–S
rho=0
rho=0.05, 0.10
rho=0.15, 0.20
rho=0.25, 0.30
rho=0.35, 0.40
rho=0.45

(a)

(b)

Fig. 10 Average relative accuracy: (a) RM-InvSig (solid) and RM-InvSig-S (dashed) with respect to GLM.
The average relative accuracy at data 36 should be ignored as it was obtained based on comparison with a
poorly learned GLM due to matrix ill-conditioning, (b) GLM-S with respect to GLM. These results show that
both RM-InvSig and RM-InvSig-S outperform the GLM in many data sets and that scaling-space inputs do
not benefit GLM in many cases

Springer

Mach Learn (2006) 65:273–308 301

10
1

10
2

10
3

10
4

10
5

0.5

0.6

0.7

0.8

0.9

1

A
cc

u
ra

cy

Number of samples

0 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

A
cc

u
ra

cy

Number of features

10
0

10
1

10
2

10
3

10
4

–0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

log(Sample_number/Feature_number)

re
la

tiv
e

 a
cc

u
ra

cy
 (

R
M

–
In

vS
ig

–
S

 m
in

u
s

R
M

–
In

vS
ig

)

(a)

(b)

Fig. 11 Distribution of average accuracies: (a) accuracy of RM-InvSig-S versus sample size and feature
dimension: The dark line in the lower plot corresponds to the mean accuracy obtained from the multiple data
sets having the same number of features. The dashed and the dotted lines are the maximum and minimum
accuracies respectively; (b) average relative accuracy of RM-InvSig-S with respect to RM-InvSig versus the
ratio of sample size over feature dimension. These plots show the relationship between the accuracy and the
sample/feature sizes

Springer

302 Mach Learn (2006) 65:273–308

Table 8 Summary of average accuracy in rank order with respect to Ref-I, Ref-II, Ref-III and Ref-IV

Ref-I Ref-II Ref-III Ref-IV

RM-InvSig-S-max(0.889) RM-InvSig-S-max(0.812) RM-InvSig-S-max(0.902) RM-InvSig-S-max(0.896)

RM-InvSig-max(0.888) RM-InvSig-max(0.809) RM-InvSig-max(0.899) RM-InvSig-max(0.891)

SVM-Poly(0.886) RM-InvSig-S-ave(0.805) RM-InvSig-S-ave(0.893) RM-InvSig-S-ave(0.888)
kNN(0.883) POL(0.805) RM-InvSig-ave(0.890) DeEPs(0.886)

ICPL(0.881) RM-InvSig-ave(0.802) CLEF(0.884) RM-InvSig-ave(0.880)
RM-InvSig-S-ave(0.879) LOG(0.796) RM-InvSig-S-min(0.883) RM-InvSig-S-min(0.874)

RT3(0.878) RM-InvSig-S-min(0.795) RM-InvSig-min(0.878) C4.5(0.867)

RM-InvSig-ave(0.873) MDA(0.793) SVM-RBF(0.874) RM-InvSig-min(0.863)

RM-InvSig-S-min(0.867) QL0(0.792) C4.5(0.834) kNN(0.859)

RM-InvSig-min(0.856) LDA(0.792) DNC(0.808) –

C4.5(0.831) RM-InvSig-min(0.790) �-DNC(0.791) –

QL1(0.789) �-RT(0.780) –

– PDA(0.787) –

–
.
.
. – –

– QDA(0.699) – –

– T1(0.646) – –

RM-InvSig: Reciprocal-sigmoid model expanded by RM2 as shown in (11).
RM-InvSig-S: Scaling-space learning of reciprocal-sigmoid model expanded by RM2 as shown in (11).
-min: Minimum accuracy from ten runs of 10-fold cross-validation.
-ave: Average accuracy from ten runs of 10-fold cross-validation.
-max: Maximum accuracy from ten runs of 10-fold cross-validation.

curs within the range of [6,900] according to the sample number over feature dimension

ratio.

(vii) Decision landscapes

The classification capability of RM-InvSig-S can perhaps be inferred from its decision

landscape of biometrics data fusion (a 2-class problem; Toh, 2003). A highly localized

training may end-up in poor test results since the training data may not be globally rep-

resentative (over-fitting). Conversely, under-fitting of training data may occur. Figures 12

and 13 show the genuine and imposter classes distribution with decision boundaries and

decision landscapes corresponding to a two-layer Multilayer Perceptron (MLP) with 2 hid-

den nodes, a SVM using RBF kernel, a 6th-order RM2 and the proposed RM-InvSig-S

(6th-order). Except for a small shift in contour position and orientation due to local train-

ing solution, the decision landscape for logistic regression in this particular case appears

analogous to that of MLP and thus is not shown here. This phenomenon is understandable

because the logistic regression is indeed a single perceptron unit. It is seen from these figures

that RM-InvSig-S shares certain localization properties of the selected SVM-RBF and MLP

network.8

8The localization capability depends on the size of the network and kernel units. Good application of SVM
and MLP depends much on choice of model structures with balanced localization property. The chosen size
and structure of MLP and SVM are according to their good performance in combining the two biometrics
(Toh, 2003).

Springer

Mach Learn (2006) 65:273–308 303

Fig. 12 Decision boundaries for MLP, SVM-RBF, RM2 and RM-InvSig-S. The decision contours were
obtained at three sample thresholds (0.25, 0.5, 0.75) of normalized outputs. These plots show that RM-InvSig-
S shares certain localization properties of the selected SVM-RBF and MLP network

0
50

100

0

1

2

–1

0

1

fingerprint

SVM–RBF

voice

co
m

b
in

e
d
 s

co
re

0
50

100

0

1

2
0

0.5

1

fingerprint

MLP

voice

co
m

b
in

e
d
 s

co
re

0
50

100

0

1

2

0

0.5

1

fingerprint

RM2

voice

co
m

b
in

e
d
 s

co
re

0
50

100

0

1

2

0

0.5

1

fingerprint

RM–InvSig–S

voice

co
m

b
in

e
d
 s

co
re

Fig. 13 Decision landscapes for MLP, SVM-RBF, RM2 and RM-InvSig-S. These 3-dimensional plots show
that RM-InvSig-S shares certain localization properties of the selected SVM-RBF and MLP network

Springer

304 Mach Learn (2006) 65:273–308

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
a

ve
ra

g
e

 a
cc

u
ra

cy

data set index

RCOND Warning for RM–InvSig
RCOND Warning for FP–InvSig–3
RCOND Warning for GLM
RM–InvSig
FP–InvSig–3
GLM

Fig. 14 Average accuracies of RM-InvSig, FP-InvSig-3 and GLM. This plot provides an overview of the
performances of the baseline algorithms

6.4. Summary of results and comments

For an overview regarding the performances of the baseline algorithms, Fig. 14 shows the

average accuracies of RM-InvSig, FP-InvSig-3 and GLM. The data sets which have better,

equal and poorer performances for the scaling-space training over the original feature space

are summarized in Table 9. Here, it is seen that x (better accuracy count) is significantly

larger than z (poorer accuracy count) especially for scaling-space method (RM-InvSig-S)

versus original feature space (RM-InvSig), i.e. 72.5% versus 10%. The accuracy improve-

ment ranges from about near zero to about 4.3% for RM-InvSig-S over RM-InvSig. Apart

from having comparable or better average accuracy than FP-InvSig-3, FP-InvSig-l, GLM

and GLM-S, the performance of RM-InvSig-S is also shown to be comparable to the top

classifiers found in the literature. The good generalization performance (based on the test

accuracy results) of RM-InvSig and RM-InvSig-S as compared to the related GLM and

MLP may be attributed to the modified link or activation function resulted from RM2 series

approximation.

Here it is noted that due to different sensitivities for large and small feature values, the

scaling-space is only useful for small neighborhood values around the original feature space

(ρ ∈ [0, 0.5] according to the empirical observation). From the data attributes point of view,

a mild indication that the maximum accuracy may decrease with the feature dimension can

be observed. Also, the feature scaling-space appears to benefit RM-InvSig for a particular

range of data.

Springer

Mach Learn (2006) 65:273–308 305

Table 9 Summary of results

Method \ Number of data sets x y z x
x+y+z (%) y

x+y+z (%) z
x+y+z (%)

RM-InvSig-S vs RM-InvSig 29 7 4 72.5 17.5 10.0

RM-InvSig-S vs RM2 15 4 21 37.5 10.0 52.5

RM-InvSig-S vs FP-InvSig-3 27 3 10 67.5 7.5 25.0

RM-InvSig-S vs FP-InvSig-l 36 0 4 90.0 0 10.0

RM-InvSig-S vs GLM-S 31 0 9 77.5 0 22.5

RM-InvSig vs GLM 30 1 9 75.0 2.5 22.5

x : better performance, y: equal performance, z: poorer performance.
RM2: RM2 model without adopting the reciprocal-sigmoid basis, i.e. obtained from replacing φ by x in (11).
RM-InvSig: Reciprocal-sigmoid model expanded by RM2 as shown in (11).
RM-InvSig-S: Scaling-space learning of reciprocal-sigmoid model expanded by RM2 as shown in (11).
FP-InvSig-3: Kernel Ridge Regression using a 3rd-order model for the polynomial kernel as shown in (18).
FP-InvSig-l: Kernel Ridge Regression using a lth-order model for the polynomial kernel as shown in (18).
GLM: GLM adopting a logit link as in (12).
GLM-S: Scaling-space learning of GLM.

7. Conclusion

With a refinement of a polynomial formulation, a reciprocal-sigmoid �-machine-like model

is proposed for pattern classification. The model can be considered as an approximation

to logistic regression under the framework of Generalized Linear Models. Unlike logis-

tic regression, the classifier is linear in parameters and the solution for the model weights

can be computed in a single step. This deterministic solution relieves the problems of lo-

cal minima and recursive computation as in gradient-based search on a nonlinear model.

While this formulation is likely to use a smaller set of parameters as compared with one

without using the reciprocal-sigmoid as the basis function, the reciprocal-sigmoid clas-

sifier is shown to have good approximation capability when a full rank polynomial ma-

trix can be constructed from the training data. To stabilize the solution for high order

models, the classifier is trained using the feature scaling-space. Unlike bagging, boosting

and random subspace methods, the scaling-space learning uses only a single classifier for

decision.

Extensive experiments show that for both synthetic and physical data, feature scaling-

space training provides a clear indication of test accuracy improvement over that based

on the original feature space when an appropriate scaling parameter is selected. Main

reasons for the improved performance are attributed to (i) improved numerical condi-

tioning from an increased pool of training data, and (ii) appropriate biasing of deci-

sion hyper-surface from adjustment of the scaling parameter. The empirical evidence also

shows that the proposed classifier can be suitable for problems with low feature dimen-

sion, particularly, the scaling-space takes effect for those problems with ratio of sam-

ple number over feature dimension within [6, 900]. Besides translating the bagging effort

into a process of selecting a scaling parameter from the single-step least-squares train-

ing paradigm, the average accuracy of the reciprocal-sigmoid classifier learned by the

feature scaling-space is shown to be comparable to several top classifiers found in the

literature.

Springer

306 Mach Learn (2006) 65:273–308

Appendix

A.1. Matlab Codes for Generation of Regressor Matrix P

%------------------- Beginning of Function ---------------------%
function P = RM2invsig(order,X)
% Build regressor matrix P (mxK):
% order = desired order of approximation,
% X = input matrix (mxl), K = number of parameters to be est.
% m = number of data samples, L = input dimension.
[m,L] = size(X);
X = 1 + exp(-X); %inverse of sigmoid
MM1=[]; MM3=[]; Msum=sum(X,2);
for i=1:order

for k=1:L
M1(:,k)=X(:,k).^i;
if (i>1)

M3(:,k)=X(:,k).*Msum.^(i-1);
end

end
MM1=[MM1,M1];
if (i>1)

MM3=[MM3,M3];
end

end
P = [ones(m,1),MM1,MM3];
return;
%---------------------- End of Function ------------------------%

A.2. XOR Learning Example

%------------------- Beginning of Example ----------------------%
X = [0 0; 0 1; 1 1; 1 0]; % XOR inputs
y = [0; 1; 0; 1]; % XOR outputs
XXX = [0.95*X; X; 1.05*X]; % Scaling-space inputs
yyy = [y; y; y]; % Scaling-space outputs

order = 2; % order setting
P = RM2invsig(order,XXX); % generate matrix P
alpha=inv(P'*P)*P'*yyy; % solve for alpha

Pt = RM2invsig(order,X); % generate matrix P for test
t_train = Pt*alpha % trained output
%---------------------- End of Example ------------------------%

Acknowledgments The author would like to thank Professor Risto Miikkulainen and the anonymous review-
ers for their very constructive comments to improve the paper. Special thanks go to Dr Louis Shue for English
proof reading.

References

Agresti, A. (2002). Categorical data analysis, 2nd ed. New Jersey: John Wiley & Sons.
Bishop, C. M. (1995). Neural networks for pattern recognition. New York: Oxford University Press Inc.
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (ACM, 1992). A training algorithm for optimal margin classifiers.

In: Fifth Annual Workshop on Computational Learning Theory (pp. 144–152). Pittsburgh.
Breiman, L. (1994). Bagging predictors. Department of Statistics, University of California, Berkeley. Technical

Report No. 421.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

Springer

Mach Learn (2006) 65:273–308 307

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining &
Knowledge Discovery, 2(2), 121–167.

Duch, W., & Grudziński, K. (1999). Weighting and selection of features. In: Proceedings of the Workshop on
Intelligent Information Systems VIII (pp 32–36). Ustron, Poland.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York: Wiley & Sons.
Duda, R. O., Hart, P. E., & Stork, D. G. (2001) Pattern classification, 2nd ed. New York: John Wiley & Sons,

Inc.
Dunn, P. (2000). GLMLAB: Generalized linear models in MATLAB. In [http://www.sci.usq.edu.au/

staff/dunn/glmlab/glmlab.html]. Dept. of Mathematics & Computing, University of Southern Queens-
land. (Version 2.5).

Dunn, P. K. (1999). A graphical user interface to generalized linear models in MATLAB. The Journal of
Statistical Software, 4(4).

Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. Chapman and Hall.
Gordon, G. J. (2002). Generalized2 Linear2 Models. In: Advances in Neural Information Processing Systems

(NIPS 2002) (pp. 577–584). Vancouver, British Columbia, Canada.
Grandvalet, Y. (2000). Anisotropic noise injection for input variables relevance determination. IEEE Trans.

on Neural Networks, 11(6), 1201–1212.
Grandvalet, Y., & Canu, S. (2002). Adaptive scaling for feature selection in SVMs. Neural Information

Processing Systems.
Hardin, J., & Hilbe, J. (2001). Generalized linear models and extensions. LakeWay Drive: Stata Press.
Helzer, A., Barzohar, M., & Malah, D. (2004). Stable fitting of 2D curves and 3D surfaces by implicit

polynomials. IEEE Trans. Pattern Analysis and Machine Intelligence, 26(10), 1283–1294.
Hornik, K., Stinchcombe, M., & White, H. (1989). Multi-layer feedforward networks are universal approxi-

mators. Neural Networks, 2(5), 359–366.
Huang, G.-B. (2003). Learning capability and storage capacity of two-hidden-layer feedforward networks.

IEEE Trans. Neural Networks, 14(2), 274–281.
Huang, G.-B., & Babri, H. A. (1998). Upper bounds on the number of hidden neurons in feedforward net-

works with arbitrary bounded nonlinear activation function. IEEE Trans. Neural Networks, 9(1), 224–
801.

Juszczak, P., Tax, D. M. J., & Duin, R. P. W. (2000). Feature scaling in support vector data description. In: N.,
Japkowicz (Ed.), Learning from Imbalanced Data Sets (pp. 25–30). Menlo Park, CA: AAAI Press.

Lam, W., Keung, C.-K., & Liu, D. (2002). Discovering useful concept prototypes for classification based on
filtering and abstraction. IEEE Trans. Pattern Analysis and Machine Intelligence, 24(8), 1075–1090.

Li, J., Dong, G., Ramamohanarao, K., & Wong, L. (2004). DeEPs: A new instance-based lazy discovery and
classification system. Machine Learning, 54(2), 99–124.

Lim, T.-S., Loh, W.-Y., & Shil, Y.-S. (2000). A comparison of prediction accuracy, complexity, and training
time of thirty-three old and new classification algorithms. Machine Learning, 40(3), 203–228.

Lindeberg, T. (1990). Scale-space for discrete signals. IEEE Trans. Pattern Analysis and Machine Intelligence,
12(3), 234–254.

Ma, J., Zhao, Y., & Ahalt, S. (2002). OSU SVM classifier matlab toolbox (ver 3.00). In [http://eewww.eng.ohio-
state.edu/∼maj/osu svm/]. The Ohio State University.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models 2nd ed. London: Chapman and Hall.
Mitchell, T. M. (1997). Machine learning. Singapore, International Edition: The McGraw-Hill Companies,

Inc.
Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical

Society, Series A, 135, 370–384.
Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear regression models, 3rd

ed. Irwin, Chicago.
Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases.

In [http://www.ics.uci.edu/∼mlearn/MLRepository.html]. University of California, Irvine, Dept. of In-
formation and Computer Sciences.

Nilsson, N. J. (1965). Learning machines. New York: McGraw-Hill.
Osuna, E. E., Freund, R., & Girosi, F. (1997). Support Vector Machines: Training and Applications. MIT

Artificial Intelligence Laboratory and CBCL Dept. of Brain and Cognitive Sciences. (Technical Report:
A.I. Memo No. 1602, C.B.C.L. Paper No. 144).

Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78(9),
1481–1497.

Precup, D., & Utgoff, P. E. (2004). Classification using �-machines and constructive function approximation.
Machine Learning, 55(1), 31–52.

Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge University Press.

Springer

308 Mach Learn (2006) 65:273–308

Schürmann, J. (1996). Pattern classification: A unified view of statistical and neural approaches. New York:
John Wiley & Sons, Inc.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge University Press.
Skurichina, M., & Duin, R. P. W. (2002). Bagging, boosting and the random subspace method for linear

classifiers. Pattern Analysis and Applications, 5, 121–135.
Skurichina, M., Raudys, S., & Duin, R. P. W. (2000). K-nearest neighbours directed noise injection in multilayer

perceptron training. IEEE Trans. on Neural Networks, 11(2), 504–511.
Tax, D. M. J., & Duin, R. P. W. (2000). Data description in subspaces. In: Proc. 15th International Conference

on Pattern Recognition (ICPR), (Vol. 2, pp. 672–675). Barcelona, Spain.
The MathWorks (2003). Matlab and simulink. In [http://www.mathworks.com/].
Tipping, M. E. (2000). The relevance vector machine. In: S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.),

Advances in Neural Information Processing Systems, (Vol. 12, pp 652–658).
Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine. Journal of Machine

Learning Research, 1, 211–244.
Toh, K.-A. (2003). Fingerprint and speaker verification decisions fusion. In: International Conference on

Image Analysis and Processing (ICIAP) (pp 626–631). Mantova, Italy.
Toh, K.-A., Tran, Q.-L., & Srinivasan, D. (2004). Benchmarking a reduced multivariate polynomial pattern

classifier. IEEE Trans. Pattern Analysis and Machine Intelligence, 26(6), 740–755.
Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience Pub.
Vetter, T., Jones, M. J., & Poggio, T. (1997). A bootstrapping algorithm for learning linear models of ob-

ject classes. In Proc. International Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 40–46).

Springer

