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The theoretical study of the learning ability of machines was initiated in the sixties with the

works of Gold, Solomonoff, Vapnik and Chervonenkis among a few others. In almost half

a century, this discipline has developed into various directions and several sub-areas have

branched out. The notion of a unique theory of learning has disappeared in favor of a set of

machine learning theories.1 Two broad directions have been pursued: the study of tasks or

concepts (and their possible representations) that can be learned by a machine, and the study

of the properties of particular learning algorithms. Both are tied together since learnability

usually is defined as the existence of an algorithm that satisfies certain properties.

Different paradigms have been explored. They differ in the type of assumptions they make

about how the data is processed and generated: the data is either processed sequentially, i.e.,

one piece at a time (online learning, reinforcement learning) or as a set (off-line or batch

learning); it can be generated by a deterministic (possibly adversarial) or stochastic process

(probability distribution).

The most common paradigm is the one studied in Mathematical Statistics: the indepen-

dently and identically distributed (i.i.d.) off-line setting where a set of examples is assumed

to be sampled independently from a fixed (but unknown to the algorithm) distribution. This is

also the model at the heart of Statistical Learning Theory (Vapnik, 1982) and Valiant’s PAC

learning model (Valiant, 1984). This model has been largely explored with various slightly

different focuses, e.g., consistency (Devroye, Györfi, & Lugosi, 1996), rates of convergence

(Anthony & Bartlett, 1999; Boucheron, Bousquet, & Lugosi, 2005) or computational aspects

(Kearns, 1990; Kearns & Vazirani, 1994).
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since the physical device is of no relevance.
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To deal with the case where the examples are presented sequentially, another paradigm

called Online Learning Theory has been developed. It does not make any assumption about

how data is generated. It is often called the adversarial setting as one can imagine that the

data is generated by a malicious adversary whose goal is to maximize the errors made by

the learning algorithm. Useful references are (Cesa-Bianchi & Lugosi, 2006) and (Vovk,

Gammerman, & Shafer, 2005).

When examples are supposed to be presented sequentially and are discrete objects, an-

other paradigm called Inductive Inference or Computational Learning Theory2 should be

considered (see e.g., Jain et al., 1999). It is particularly well suited to the study of languages

and more generally to settings where the data generating process is strongly constrained (e.g.,

the number of examples is finite, only certain sequence of letters are valid, etc.).

The contributions to this special issue consider the statistical learning theory framework

where examples are not provided sequentially.

The paper “Suboptimal Behavior of Bayes and MDL in Classification under Misspecifica-

tion” by Peter Grünwald and John Langford focuses on the asymptotic consistency of several

(known) algorithms. They prove that these algorithms may not be consistent for classifica-

tion even in situations that appear naturally. The inconsistency comes from a misspecification

problem (i.e., the model used by the algorithm does not contain the true distribution gen-

erating the data). The key point here is that in the context of classification, the application

of Bayesian inference necessarily leads to misspecified probability models because there is

no direct (and exact) correspondence between probability distributions and classifiers. This

work brings new insights about the limitations of such algorithms and discusses possible

workarounds.

In the paper “A New PAC Bound for Intersection-Closed Concept Classes” by Peter

Auer and Ronald Ortner, the authors consider the PAC framework where one is interested

in the number of examples that are needed for an algorithm to achieve a given accuracy

in its predictions. Their result refines and extends several previous bounds: they prove an

improved bound for intersection closed concept classes (i.e., a class of binary-valued functions

closed by product) of finite Vapnik-Chervonenkis dimension (a combinatorial parameter

describing the richness of the class). As it turns out, investigating these refinements yields a

deeper understanding of the relationship between the structure of the classes of concepts and

their learning complexity. Besides the well-known VC property and the intersection-closed

property under which they obtain a better bound than previously known, they are led to

introduce a new combinatorial property which gives an even tighter bound that matches the

optimal one known for classes of hyper-rectangles. Although not quite the end of the story,

this paper is a significant additional step towards the characterization of distribution-free

sample complexity of concept classes.

The paper “Model Selection by Bootstrap Penalization for Classification” by Magalie

Fromont is deriving finite sample error bounds (equivalent to sample complexity bounds) for

model selection, that is the problem of automatically choosing the best class of concepts in a

collection of such classes. This problem originates in Vapnik’s Structural Risk Minimization

idea where it was proposed to minimize the sum of the minimal empirical error in the class and

a penalty term accounting for the complexity of the class. Vapnik originally proposed a penalty

based on the VC dimension. This was later refined and other sharper penalties involving

Rademacher averages (see e.g., (Boucheron, Bousquet, & Lugosi, 2005) for definitions and

2 Note the ambiguity in the naming of these paradigms. PAC-learning also focuses on computational aspects
and is sometimes referred as computational learning theory.
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examples) were proposed. Fromont presents another kind of penalty based on bootstrap

samples, thus making a step towards bridging the gap between theoretical (penalty-based)

and practical (bootstrap or cross-validation based) model selection.

In “Optimal Dyadic Decision Trees” by Gilles Blanchard, Christin Schäfer, Yves Rozen-

holc and Klaus-Robert Müller, the authors propose a comprehensive study of a new algorithm

that builds a dyadic partition of the space (a decision tree with the restriction of cutting in-

tervals exactly in the middle) for classification. This study involves both computational and

statistical aspects. In particular they show that the algorithm obtains (with very high probabil-

ity) a dyadic decision tree which is almost as good as the best such tree (given the distribution

of the data). They also show the optimality of this algorithm with respect to the learning of

certain Hölder classes of functions. Besides these statistical guarantees, the proposed algo-

rithm has the additional advantage of providing a simple and understandable model, which

is one of the foremost requirements in many applications areas.

In a slightly different setting the paper “A Framework for Statistical Clustering with

Constant Time Approximation Algorithms for K -Median and K -Means Clustering” by Shai

Ben-David attacks a problem that has been much less explored. Indeed, the bulk of the work

in Statistical Learning Theory has concerned the supervised setting (where examples are

pairs and the goal is to find a function that predicts the second element of the pair from the

first one) rather than the unsupervised one (where examples are simple objects and the goal

is to provide a description of their distribution). One reason is that it is much harder to give

formal definitions of the goal to be achieved in this setting. This paper provides an elegant

answer to this problem, and explores various aspects (statistical and computational) of the

defined framework.

Another paper dealing with the unsupervised setting is “Statistical Properties of Kernel

Principal Component Analysis” by Gilles Blanchard, Olivier Bousquet and Laurent Zwald

(edited by Nicolò Cesa-Bianchi). The main focus of this paper is the analysis of the conver-

gence in the statistical framework of the reconstruction error of the kernel PCA algorithm.

Unlike the clustering algorithms studied in the previous paper which aim at describing the

data via a set of clusters, kernel PCA aims at building a low dimensional description of the

data (i.e., it produces a small set of features that are non-linear functions of the data). The

main novelty is to use techniques that were first applied to the precise analysis of classifi-

cation algorithms in order to understand, in the non-linear (kernel-based) case, what is the

influence of the geometry of the feature space on the rates of convergence.

Finally, in “Feature Space Perspectives for Learning the Kernel” by Charles Micchelli

and Massimiliano Pontil, the authors consider the classical setting of regularization-based

algorithms which minimize, over a set of functions, a functional involving the empirical

error and a norm of the function. They go one step further by considering this minimization

over a collection of sets of functions with different associated norms. This problem relates

to the automatic choice of the kernel. The main result of the paper shows that a kernel can

be automatically tuned by solving a variational problem over the dual of a space of certain

continuous functions. Some examples (finitely many kernels, single feature kernels) are then

treated in detail showing the applicability and the generality of the main result.

These papers exemplify typical research activities in statistical learning theory from the

proof of theoretical bounds to the design of optimal algorithms. They show how diverse

theories can be when it comes to the analysis of machine learning. Although apparently

disparate, they all aim at using a theoretical framework to either design new algorithms

or analyze existing methods. In both cases, they share the same spirit: to understand the

nature of learning. From that respect, they should not be considered in isolation from other

fields that address a similar problem. Research fields like Information Theory (in particular
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compression and universal coding), Game Theory, Logic (Proof Theory and Model Theory

in connection with Inductive Logic Programming where concepts are represented using first

order logic), Language Theory, Statistical Physics, among others, provide many useful tools

to investigate the properties of machine learning algorithms. The variety of approaches also

shows that the nature of learning is still far from being understood.

Besides the simple and extensively explored setting of binary classification with i.i.d.

data for which a wealth of results has been obtained, many other problems starting from the

multi-class extension and going towards other more complex and realistic settings remain

largely under-investigated. Machine learning theories have therefore much to do. This is the

characteristic of a young field that we expect to be evolving at a fast pace in the coming years.

With the advent of new technologies such as sensor networks, pervasive computing or massive

storage systems, new settings and new data requiring novel computational approaches will

appear. We expect this practical changes to open further directions of research.
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