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Abstract We propose a model-based approach to the twofold problem of prediction and ex-
ploratory analysis of heterogeneous symbolic sequence collections. Our model is based on
seeking low entropy local representations joined together with a smooth nonlinear mixing
process. Low entropy components are desirable, as they tend to be both more interpretable
and more predictable. The nonlinear mixing in turn acts as a regulariser, and in addition,
it creates a topographic ordering of the sequence histories, which is useful for exploratory
purposes. The combination of these two modelling elements is performed through the gen-
erative probabilistic formalism, which ensures a flexible and technically sound predictive
modelling framework. Unlike previous generative topographic modelling approaches for
discrete data, the estimation algorithm associated with our model is designed to scale to
large data sets by exploiting data sparseness. In addition, local convergence is guaranteed
without the need for tuning optimisation parameters or making approximations to the non-
Gaussian likelihood. These characteristics make it the first generative topographic model
for discrete symbolic data with large scale real-world applicability. We analyse and discuss
the relationship of our approach with a number of models and methods. We empirically
demonstrate robustness against varying sample sizes, leading to significant improvements
in terms of predictive performance over the state of the art. Finally we detail an application
to the prediction and exploratory analysis of a large real-world web navigation sequence
collection.
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1 Introduction

Understanding high dimensional data through low dimensional representations is of prac-
tical interest in any field where multivariate data analysis is required. The main pur-
pose is to retain the informative structural patterns and relationships from the data in an
automated manner. The study of approaches to this problem has a long history, rang-
ing over several methodological frameworks, including neural networks (Kohonen 1999;
Kaski et al. 1998), statistical learning (Hastie et al. 2001), linear algebraic or spectral meth-
ods (Bengio et al. 2004) and probabilistic density modelling (Bishop et al. 1998a), to name
just a few. The solution is often given by some suitable (non-linear) transformation of the
multivariate data set. Smooth transforms preserve the local topological relationships and the
representation created by methods that utilise such transforms are referred to as topological
orderings.

While it is well-known that probabilistic generative density-based approaches provide a
flexible and technically sound framework of predictive model building—e.g. the Generative
Topographic Mapping (GTM) (Bishop et al. 1998a) has been a powerful tool of principled
data visualisation and prediction (Carreira-Perpiñán & Renals 1998)—much of the recent
advances have been concentrating on non-probabilistic formulations (Bengio et al. 2004;
Iwata et al. 2005), due to their appealing computational advantages. However, the lack of a
clear density formulation deprives such methods from the predictive abilities and the flex-
ibility of probabilistic model formulations (Roweis et al. 2002; Bishop et al. 1998b). In
consequence, they cannot straightforwardly serve predictive purposes and (without further
tweaking) their functionality is essentially limited to data exploratory tasks. This is a serious
limitation for two reasons: Obviously, one reason is efficiency, since one would need to use
different methods for different tasks. Secondly, even though visual data analysis is poten-
tially powerful, it holds the risk of being very subjective. Indeed, there is no objective quality
measure for visualisations alone and it is not straightforward to reason about data outside
the training set (Bengio et al. 2004). In consequence it is not straightforward to assess the
extent to which the representation patterns extracted from the data—and used in our efforts
to understand the data—are actually significant and generalise beyond the limited amount
of evidence gathered in a certain fixed set of data.

Hence, in our view, when both data prediction and data explanation are required, these
two functions should be conceptually closely interconnected and should ideally be based on
a common representation model. Examples where the automation of both explanatory and
predictive tasks are needed may be found from text and user modelling (Blei et al. 2003;
Hofmann 2000; Cadez et al. 2003) to various scientific data mining problems (Ramakrishnan
and Grama 2001). To give a concrete example, a site administrator would not only want
to visualise and explore a pool of navigation sequences produced (Cadez et al. 2003) but
also to make accurate predictions of the individual users’ preferences. Conversely, rather
than black-box prediction machines, one would often like to receive additional explanatory
information. This calls for multi-objective solution designs, and the generative probabilistic
formalism is well suited for this purpose.

However, to date, the computational complexity of existing generative model-based non-
linear data compression approaches (Bishop et al. 1998b; Roweis et al. 2002; Kabán and
Girolami 2001) renders them impractical to use with large amounts of high dimensional
data. This weakness is more pronounced in the case of non-Gaussian noise models (Bishop
et al. 1998b; Kabán and Girolami 2001; Tiño et al. 2004) such as those that are statistically
appropriate for discrete or symbolic data sets. The state of the art models of multiple sym-
bolic sequence collections that scale to realistic data sets are currently linear (Cadez et al.
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2003; Girolami and Kabán 2005). Their flexibility is therefore limited and they lack the ca-
pability to model any correlations or complex dependencies between their representational
components.

In this paper we develop a novel model of multiple symbolic sequences that addresses
the above concerns and allows us to build nonlinear models of large and sparse real-world
sequence collections that are suitable for both predictive and exploratory analysis. A short
preliminary version of our approach appears in (Kabán 2005). The combination of our mod-
elling elements is realised through the generative probabilistic formalism and this will be
presented in Sect. 2. Further alternative views and interpretations will be highlighted in
Sect. 3, where it will be shown that both the predictive and explanatory functionalities
achieved may be viewed as seeking low entropy representation components of the data,
corroborated with a smooth nonlinear mixing model. Indeed, low entropy components are
of interest, as each of these tend to be both interpretable and predictable. The nonlinear mix-
ing model in turn acts as a regulariser, and in addition, it produces a topographic ordering
of the sequence histories, useful for exploratory purposes. Various connections may be fol-
lowed with a number of previous approaches, and these will be elaborated upon in Sect. 4.
While the principle of topographic ordering is inherited from both density-based (Bishop et
al. 1998a) and channel-noise based (Hofmann 2000) models, our approach brings in a num-
ber of novel and unified advantageous features over previous topographic models: (1) The
parameters of our model are interpretable probabilistic quantities and as such, they offer
new explanatory information about the data and the predictive process. (2) Secondly, in
contrast with previous generative topographic models for discrete data, neither approxima-
tions to the non-Gaussian likelihood nor tuning of optimisation parameters is required, and
the estimation algorithm associated with our model is designed to scale to large data sets
by exploiting data sparseness. These characteristics confer it large scale real-world applica-
bility, and enables leveraging sound generative topographic modelling principles to large
realistic discrete data modelling and prediction problems for the first time. Section 5 em-
pirically demonstrates the robustness of our approach against varying sample sizes. Due to
this, significant improvements are obtained in terms of predictive performance over the state
of the art. We then detail the application of our approach to the prediction and exploratory
analysis of a large real-world web navigation sequence collection in Sect. 6, and conclude
in the last section.

2 A Predictive Topographic Model for Sparse Sequence Collections

Consider a set of independent symbolic sequences over a common state space and let us
denote the n-th instance of the collection by Sn, where n = 1, . . . ,N and N is the number of
sequences. Examples include sequences of words within text documents, sequences of ac-
tivity logs in traces left by users while interacting with an electronic environment, sequences
of events in a musical piece, etc. The simplest model to represent such data is the random
sequence model, employed in the popular ’bag of words’ representation of text documents.
If the temporal order contains important information, then Markov models may be of inter-
est. To keep the notation simple while still allowing some generality, we will adopt the first
order Markov assumption in this paper. Formally, a possible adaptation to either the 0-th
order case (bag of words) or to the higher order Markov case can be accomplished straight-
forwardly by removing or adding indices. We can also make a direct connection to popular
text document representation models, such as PLSA or LDA (Blei et al. 2003), essentially
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Fig. 1 Graphical representation
of the generative process. Nodes
represent random variables,
arrows denote conditional
dependencies and plates are
repetitive structures. A symbolic
sequence is generated by a
smooth nonlinear transform of a
continuous latent point x

by considering transitions (bigrams) being counted in sequences just as words are counted
in text documents. Throughout this work, we assume that all states are observable.

In order to devise a both predictive and explanatory model for representing the collection
of data sequences we begin with defining a latent space x ∈ [−1,1]L, L = 2—chosen to be a
bounded Euclidean space that will be useful for visualising the obtained data representation,
as in (Bishop et al. 1998b; Kabán and Girolami 2001). In a document modelling context,
this may be thought of as some conceptual or topical space. Further, assuming a prior latent
density p(x) (which may be uniform but not necessarily) we define a generative model in the
following way. The corresponding graphical representation is shown in Fig. 1. To generate
a sequence Sn,

• generate a point x in the latent space from the prior density p(x)

• project this point to a probability distribution over K fixed Gaussian kernels, by comput-
ing

φk(x) = exp(− 1
2σ 2 |yk − x|2)

∑
k′ exp(− 1

2σ 2 |yk′ − x|2)
for all k = 1 : K , where {yk} and K are fixed a priori. These are smooth nonlinear func-
tions of x that may also be intuitively thought of as a neighbourhood probability distrib-
ution associated with x .

• apply a stochastic translation to the above distribution, using the stochastic parameters of
the model, Pj (i|k), i.e. the probability of transitioning from j to i, to obtain Pj (i|x) ≡∑

k Pj (i|k)φk(x), for all i, j = 1, . . . , |S| (where |S| denotes the size of the state space).
• generate a sequence from the resulted probability transition model {Pj (i|x)}i,j=1,...,|S|. In

a document modelling context, these are probabilities of words or terms conditioned on a
particular topic.

For the sake of consistent notations later, the state space S will contain, besides the actual
symbol dictionary, an additional ‘start’ symbol, so that the first observed symbol of any
sequence is generated as a transition from the ‘start’ symbol. The width parameter above, σ ,
will be fixed to twice the maximum distance between neighboring centres yk , so that the
Gaussian kernels span a uniform density.

Some analogy with the GTM (Bishop et al. 1998a), and in particular the multinomial
latent trait model (LTM) (Kabán and Girolami 2001; Bishop et al. 1998b) is evident, and
this will be discussed in more detail later. The main formal difference is, though, that our
nonlinear ’basis’ functions φk(.) are designed to perform a transformation from the Euclid-
ean latent space into a (K −1)-dimensional simplex, rather than to another Euclidean space.
This will turn out to have important consequences in terms of both parameter interpretability
and scalability of the algorithm.
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2.1 Parameter Estimation and Inference

The probability of a sequence Sn = (s1n, s2n, . . . , stn, . . . , sTn,n) under the generative model
defined above is the following:

P (Sn) =
∫

dxp(x)

Tn∏

t=1

∑

k

P (st−1,n → stn|k)φk(x) (1)

=
∫

dxp(x)

|S|∏

i=1

|S|∏

j=1

{∑

k

Pj (i|k)φk(x)

}Nn
ij

(2)

where Nn
ij is the frequency of occurrence of the subsequence {j, i} in sequence Sn. (At t = 0,

we always have the ‘start’ symbol.)
To further place this model in context, we note that if φk(.) were identity functions

and p(x) was a Dirichlet, then (2) would reduce to a generative aspect model (Blei et al.
2003; Buntine 2002; Girolami and Kabán 2005) (or simplicial mixture) which has been a
quite popular modelling scheme recently. However, while this connection is insightful, we
will see that the mentioned differences have a major impact on the predictive performance.
Not only does the distribution of φ(x) offer more flexibility than a Dirichlet, but in addition,
due to the nonlinearity, our model is able to capture correlations in the latent space and this
results in robustness against finite sample sizes. This issue will be extensively demonstrated
in the later sections.

Now we turn to identifying the model, i.e. to infer x and estimate the parameters Pj (i|k)

from the data. For tractability reasons, it is convenient to discretise the latent space into
a regular grid of M points x1, . . . ,xM , in which case the latent prior becomes a multinomial
over the sample points, or a mixture of Dirac delta functions p(x) = ∑

m P (xm)δ(x − xm),
where typically we will work with M > K samples. As in GTM (Bishop et al. 1998a), we
may choose to fix the mixing coefficients P (xm) = 1/M , if we have reasons to believe that
a uniform latent density describes the data well. Alternatively, if we believe that there may
be regions of uneven data density, e.g. distinct clusters in the data, then we may estimate the
mixing coefficients from the data. The data consists of a set of sequences S1, S2, . . . , SN .

Performing an approximate integration by summing over the latent space samples, the
data likelihood is now the following.

P (Sn) =
∑

m

P (xm)
∏

i

∏

j

{∑

k

Pj (i|k)φk(xm)

}Nn
ij

. (3)

Using the latent samples, the complete data likelihood follows.

LC = P (Sn,x) =
∏

m

P (xm)δ(x−xm)
∏

i

∏

j

{∑

k

Pj (i|k)φk(x)

}Nn
ij

δ(x−xm)

. (4)

Adopting the EM methodology (McLachlan and Krishnan 1997), we maximise the expecta-
tion of the log of (4), taken w.r.t. the posteriors of the latent space samples rmn ≡ P (xm|Sn),
as a function of the model parameters. This is the following.

Q = E[logLC] =
∑

n

∑

m

rmn

{∑

i,j

Nn
ij log

∑

k

Pj (i|k)φk(xm) + logp(xm)

}

. (5)
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The posterior probabilities rmn are computed in the E-step, using the old parameters Pj (i|k)

and P (xm):

rmn =
∏

i

∏
j {

∑
k Pj (i|k)φk(xm)}Nn

ij P (xm)
∑

m′
∏

i

∏
j {

∑
k Pj (i|k)φk(xm′)}Nn

ij P (xm′)
(6)

followed by re-estimating Pj (i|k) (and optionally P (xm)), by maximising (5) in the M-step,
subject to the required constraints

∑
i Pj (i|k) = 1, ∀j = 1, . . . , |S|, ∀k = 1, . . . ,K and∑

m P (xm) = 1, while holding rmn fixed. The Lagrangian to be maximised in the M-step is
thus the following.

Q̃ = E[logLC] −
∑

j

∑

k

ujk

(∑

i

Pj (i|k) − 1

)

− v

(∑

m

P (xm) − 1

)

(7)

where ujk and v are Lagrange multipliers. Computing the stationary equations for the para-
meter Pj (i|k), we obtain

δQ̃

δPj (i|k)
=

∑

n

∑

m

rmnN
n
ij

φk(xm)
∑

k′ Pj (i|k′)φk′(xm)
− ujk = 0. (8)

Multiplying both sides by Pj (i|k) yields

Pj (i|k) = 1

ujk

Pj (i|k)
∑

n

∑

m

rmnN
n
ij

∑
k′ Pj (i|k′)φk′(xm)

φk(xm) (9)

where ujk is non-zero, and by summing both sides over i, we get

ujk =
∑

i

Pj (i|k)
∑

n

∑

m

rmnN
n
ij

∑
k′ Pj (i|k′)φk′(xm)

φk(xm).

If the r.h.s. of (9) is a contraction (in some metric), then the above can be solved by fixed
point iterations to give a unique optimal solution. This is indeed the case here, noting that
the expected log complete likelihood objective (5) is convex in the parameters1 Pj (i|k) and
the constraint is also convex—so there is only one optimum as long as rmn are held fixed—
and furthermore noting (see later in Sect. 3) that each fixed point iteration is guaranteed not
to decrease the objective. However, rather than carrying out this complete iterative M-step,
we can employ a partial M-step instead. That is, we are only required to improve, and not
necessarily to maximise the likelihood. In our implementation, we use one iteration of (9)
as a partial M-step and this is interleaved with the E-step (6) and possibly the re-estimation
of P (xm).

P (xm) = 1

N

∑

n

rmn (10)

1This is immediate, using the definition of convexity and applying Jensen’s inequality. Denoting yijm ≡∑
n rmnNn

ij
, aijk ≡ Pj (i|k) and φkm ≡ φk(xm), we have

∑
m

∑
ij yijm log

∑
k(αaijk + (1−α)bijk)φkm ≤

α
∑

m

∑
ij yijk log

∑
k aijkφkm + (1 − α)

∑
m

∑
ij yijk log

∑
k bijkφkm for any α ∈ (0,1) and any {bijk}

from the same space as {aijk}. Recall, the posteriors rmn are held constant at this point. Convexity does not
hold when rmn are also unknown.
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(unless we choose to keep the latter fixed at 1/M). Overall this corresponds to a generalised
EM procedure (McLachlan and Krishnan 1997) and is therefore guaranteed to converge
to a local optimum of the data likelihood (3). In our experiments, we typically observed
convergence within at most 35–40 iterations, in terms of a visually indistinguishable change
in the mapping (and usually in 25–30 iterations to a tolerance of 10−3, terms of the difference
between two consecutive log likelihood values).

2.2 Summary of the Algorithm

The following notation is now employed for summarising the obtained algorithm in matrix
form. The reshaped stochastic parameters Pj (i|k) will be organised into a matrix A of |S|2
rows and K columns. Further, the images of the latent space samples xm through φk(.) will
be the elements of a K ×M matrix Φ . Finally, the M ×N matrix R will contain the posterior
probabilities rmn, and α is the vector (P (x1), . . . ,P (xM))T of the mixing coefficients. The
bigram frequency counts from each data sequence, reshaped into a column of the data matrix
are denoted by D. Then our algorithm can be summarised as a loop till convergence, over
the following updates:

R ∝ exp{log(AΦ)T D + log(α)1}, (11)

A ∝ A 	 {[DRT ] 
 [AΦ]}ΦT , (12)

α = R1T /N (13)

where ∝ stands for proportionality, 	 denotes element-wise matrix multiplication, 
 de-
notes element-wise division and 1 is an N -dimensional row-vector of ones. The propor-
tionality in (12) should of course be understood block-wise, i.e. for each fixed j and k, the
transitions must satisfy

∑
i Pj (i|k) = 1.

2.3 Scaling

One of the important strengths of this approach is that the resulting algorithm can ex-
ploit data sparseness. If D is sparse, then the matrix multiplication in the numerator takes
O(NDM) where ND denotes the number of nonzero elements in D and M is the number of
samples used for approximating the uniform latent space. Further, the matrix Φ can also be
made sparse by zeroing small probabilities below some threshold and re-normalising (recall,
this matrix is fixed a priori), since distant neighbourhoods are unlikely by the model design.
Then the remaining matrix multiplications are also able to exploit the sparsity of Φ . (Indica-
tively, in the experiments reported, we experienced no harm by using a threshold of 0.01.)
Denoting the number of non-zero elements of Φ by NΦ , and the number of data features
by F (F = |S|2 if we work with first order transitions), the overall scaling of an E-step is
O(FNΦ + FND) and that of an M-step is O(NDM + F(NΦ + M + NΦ))—both are multi-
linear, and in the case of large data sets, the dominant term is expected to be ND . Therefore
to summarise, we can say that the scaling is linear in the number of non-zero entries in the
data matrix.

In contrast, existing forms of GTM (Bishop et al. 1998a) that are applicable to symbolic
data, i.e. the multinomial latent trait model (Bishop et al. 1998b; Kabán and Girolami 2001),
require numerical methods for nonlinear optimisation to be employed within M-steps. (The
concrete form of the associated stationary equation will be discussed in Sect. 4.1.) As dis-
cussed in (Bishop et al. 1998b), iterative re-weighted least squares (IRLS) could be applied,
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but is impractical when the symbol space is large, due to matrix inversions,2 which result in a
scaling of O(K3F). Data sparsity cannot help us to gain efficiency in this case. Additionally,
IRLS and certain other Newton-type optimisation methods are based on a local quadratic ap-
proximation of the log likelihood and are not guaranteed to monotonically increase the true
log likelihood. This may cause convergence and stability problems. A gradient-based par-
tial M-step was then suggested as a possible alternative (Bishop et al. 1998b; Kabán and
Girolami 2001). We can observe that the actual evaluation of the gradient term can make
use of sparse matrix multiplications (for the same reasons as above) and so this part of the
computation scales exactly the same as one of our M-steps. However, in addition to this, the
gradient procedure also requires a suitable learning rate parameter to be set, which is a seri-
ous practical limitation. Convergence may be very slow (if the learning rate is small) or not
happening at all (if the learning rate is too large) (Bishop 1995). The local convergence guar-
antee can be met by setting the learning rate cf. the Robbins–Monro criterion, but this makes
the progress towards convergence prohibitively slow and hence the overall computation time
is substantially increased. One could of course employ line search methods (Kelley 1995;
Bishop 1995) (although this has not been specifically discussed in the multinomial GTM
literature), which may be expected to be more efficient. However, as it will be seen later
in the experiments, the overall time required to convergence is still inhibiting in the case
of large realistic data sets. The high dimensional and unconstrained parameter space of
multinomial GTM appears to be more difficult to search than that of models with a posi-
tively constrained parameter space. This may be one of the reasons why linear models, such
as PLSA and LDA (Blei et al. 2003), are more popular in the literature for modelling large
discrete multinomial data sets. Another reason is certainly the lack of direct interpretability
of the parameters.

In turn, our approach presented in the previous section does not require any learning
rate parameter to be tuned. Note also that we did not need to make approximations to our
data likelihood definition. Yet, a monotonic increase in log likelihood towards a local op-
timum is guaranteed within a nice and sound probabilistic generative framework. Despite
the sampling-based inference employed, and the non-linearity of our model, our algorithm
scales to large data sets and can exploit the sparseness of the data. Our parameters are also
directly interpretable as probabilities. Hereafter, we will refer to this scalable approach as
the Sparse Sequence-GTM (SGTM). We now detail the use of this approach for both visu-
alisation and prediction.

2.4 Visualisation

As in (Bishop et al. 1998b; Kabán and Girolami 2001), the posterior expectations of the
latent variable, E[x|Sn] ≈ ∑

m xmrmn may be employed to obtain 2D visualisation plots of
the data collection, as a whole. Each sequence will correspond to one point in the latent
space and the proximity relations between points will necessarily reflect those of the se-
quences via the model likelihood definition (3): The log of the likelihood term in (3), i.e.
∑

ij Nn
ij log

∑
k Pj (i|k)φk(xm) by definition represents the negative Kullback–Leibler diver-

gence (Cover and Thomas 1991) between the n-th observed sequence and the m-th com-

2Even if the off-diagonal elements of the class-conditional Fisher information matrices are discarded, a sep-
arate non-diagonal K × K matrix needs to be inverted for each feature.
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ponent model, up to constants.3 This is indeed the canonical divergence between Markov
chains and it has been previously employed in (Hollmén et al. 1999) in a somewhat heuris-
tic manner within a self-organising map of Markov chains. In contrast, here the Kullback–
Leibler divergence falls out naturally from our generative model definition.

2.5 Prediction

The great benefit of having a generative model for multiple sequences is that once the pa-
rameters of the model are estimated from a collection of training sequences, we can make
predictions for a previously unseen sequence, based on its history and our model. Assume Sn

is a test sequence unseen at training. Then the predicted next symbol of Sn is computed as
follows.

P (snext,n|Sn) =
∫

dxPslast,n (snext,n|x)P (x|Sn)

=
∫

dx
∑

k

Pslast,n (snext,n|k)φk(x)P (x|Sn)

=
∑

k

Pslast,n (snext,n|k)E[φk(x)|Sn]

≈
∑

k

Pslast,n (snext,n|k)
∑

m

φk(xm)rmn. (14)

It is insightful to observe that essentially this is a convex combination of individual pre-
diction probabilities made by each component model in turn, weighted by the expectation
E[φk(x)|Sn]. It should be mentioned that even though each of these component models
were first order Markovian throughout this paper, the entire history enters into the men-
tioned posterior expectation. In consequence there is no single Markovian model of any
order that could replace the model of multiple sequences.

Formally, the same is true for simplicial mixtures for multiple sequences (Girolami and
Kabán 2005) and mixtures of multiple sequences (Cadez et al. 2003), these being the only
existing probabilistic models formulated explicitly for Markovian sequence collections to
the best of our knowledge. However, because these models are linear and so they do not
model any correlations between the components, then their posterior distributions typically
tend to be sharper than those of a topographic model. That is, fewer components participate
in ‘explaining’ the sequence history—in the case of mixtures, essentially just one. In turn, in
our topographic model, the inferred position of a test sequence on a continuous topographic
space encodes its relative position to the sequences seen at training. We expect this will
regularise and improve the predictions. In the experimental sections we will demonstrate
that this is indeed the case.

3Denoting ĉj = ∑
i Nn

ij
, p̂ij ≡ Nn

ij
/ĉj and p̂.j ≡ (p̂1j , p̂2j , . . . , p̂|S|j ), we have

∑

ij

Nn
ij log

∑

k

Pj (i|k)φk(xm) =
∑

j

ĉj

∑

i

p̂ij log
∑

k

Pj (i|k)φk(xm)

=
∑

j

ĉj

[

−KL

(

p̂.j ||
∑

k

Pj (.|k)φk(xm)

)

− H(p̂.j )

]

,

where both the data entropy H(p̂.,j ) and the term ĉj are constants w.r.t. the model parameters.
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3 Alternative Views and Analysis of Representation

From (3), the formulated model can essentially be seen as a constrained mixture, where the
mean parameter of the k-th mixture component is the following.

μij,m =
∑

k

Pj (i|k)φk(xm). (15)

Observe these are proper probabilities too:
∑

i μij,m = 1 ∀j,m. Thus, once the parame-
ters Pj (i|k) are estimated, prototypical representations (or local averages) are also obtained
as (15), by the stochastic translation of the component parameters A = {Pj (i|k)}i,j,k via Φ .
Contrarily to GTM and LTM, however, the parameters of the model, A, are now also read-
ily interpretable probabilities. Moreover, in this section we show that they are in fact low
entropy components of the data.

As an illustration, the left hand plots of Fig. 2 show the prototypes (analogous to
reference-vectors in the SOM (Kaski et al. 1998)) created by the proposed algorithm from a
set of grey-scale face images (Roweis et al. 2002). For the sake of this example, each image
was taken as a histogram of grey levels over the pixel locations—i.e. the grey level of each
pixel is treated analogously to the observed count for a symbol associated with that pixel.
A 10 × 10 latent grid has been utilised and subsequently sub-sampled to display each third
prototype. The right-hand plots of Fig. 2 show the parameters of the model, A (suitably
reshaped), sub-sampled from a K = 5 × 5 grid. As already mentioned in the text after (2),
these are somewhat analogous to the component parameters of the so-called aspect models
(Hofmann 2000; Blei et al. 2003). They are much sparser compared to the mean parame-
ters μm. In the given face image example, they seem to retain the main characteristics of the
face expressions only. To see why this is so, we will start from highlighting an alternative
view of the presented model.

Since for each latent point x , the nonlinear mapping φ.(x) creates a conditional multino-
mial probability φk(xm) = P (y = yk|x = xm) we may interpret the set of centres yk as the
discretisation of another continuous latent variable. Then the complete data likelihood with
two latent variables may be written as the following.

L′C = P (Sn,x,y) =
∏

m

P (xm)δ(x−xm)
∏

i,j,k

{Pj (i|k)φk(x)}Nn
ij

δ(x−xm,y−yk)
. (16)

Fig. 2 Illustration of parameter
interpretability: Prototypes μm

(left) versus low entropy
components P(.|k) (right).
White = 1, black = 0
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Fig. 3 Plate diagram of the
alternative view of our generative
model, with two latent variables
x and y

In this view, the expected complete data log likelihood is:

E[logL′C] =
∑

n,m

rmn

{∑

i,j,k

rkmijN
n
ij logPj (i|k)φk(xm) + logp(xm)

}

(17)

where, as before, rmn ≡ P (xm|Sn) and using a similar notation, we have in addition the
posterior rkmij ≡ P (yk|xm, stn = i, st−1,n = j).

There is an intuitive generative process associated to this alternative view, having analo-
gies to the ‘noisy channel’ (Hofmann 2000; Hofmann and Buhmann 1998) based coding and
data transmission models. From this analogy, our model may also be seen as one possible
probabilistic generative version of noisy channel coding. (Note that neither (Hofmann 2000)
nor (Hofmann and Buhmann 1998) are probabilistic models with a generative semantics.)
The generative process associated with (16) is the following and the corresponding plate
diagram is detailed in Fig. 3.

• generate a point x in the latent space from the prior density p(x). (This point is sequence-
specific.)

• for each time point till the length of the sequence, t = 1, . . . , Tn.
– generate a situated point yk in the second latent space, conditioned on x , with the

‘channel noise’ probability P (k|x) = φk(x). (This point is symbol-specific.)
– generate the next symbol st from the k-th component generator model, i.e. with proba-

bility Pst−1(.|k).

A somewhat similar generative process has been proposed in (Keller and Bengio 2004)
in the context of text document modelling, where the sequence-specific hidden variable is
associated with higher level themes whereas the symbol-specific latent variables are meant
to signify topics within a theme. The difference is that unlike (Keller and Bengio 2004), we
require that topics descending from a theme must be in the topographic neighbourhood of
that theme with high probability. Thus, the sharing of topics is constrained, ensuring that
each theme will encompass a different distribution of topics.

We may perform the model identification starting from the above alternative formulation
of the model. To maximise (17), the posterior probabilities rmn and rkmij are both computed
in the E-step. Using Bayes theorem and marginalising over y the E-step equation for com-
puting rmn is identical to (6), and using Bayes theorem once more to compute rkmij , we
have

rkmij = Pj (i|k)φk(xm)
∑

k′ Pj (i|k′)φk′(xm)
. (18)
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Now, maximising (17) in the M-step, w.r.t. to the parameters and subject to the required
constraints amounts to maximising the following Lagrangian

Q̃′ = E[logL′C] −
∑

j

∑

k

ujk

(∑

i

Pj (i|k) − 1

)

− v

(∑

m

P (xm) − 1

)

(19)

where, as before, ujk and v are Lagrange multipliers. The stationary equations for the para-
meters Pj (i|k) follow as

δQ′

δPj (i|k)
=

∑

n

∑

m

rmnrkmijN
n
ij

1

Pj (i|k′)
− ujk = 0. (20)

Multiplying both sides by Pj (i|k) we obtain a closed form solution

Pj (i|k) = 1

ujk

∑

n

∑

m

rmnrkmijN
n
ij (21)

and by summing both sides over i, the normalisation constant is now

ujk =
∑

i′

∑

n

∑

m

rmnrkmi′jN
n
i′j . (22)

From the theory of the EM algorithm we know that both (5) and (17) are so-called aux-
iliary functions (McLachlan and Krishnan 1997) to the same data likelihood (3). That is,
each E and M step is guaranteed not to decrease the data likelihood (3) and a local maxi-
mum of either (5) or (17) is also a local maximum of (3).

It is interesting to note that by replacing (18) into (21), and rearranging, the fixed point
update (9) is recovered. Hence (as already anticipated in Sect. 2) each fixed point iteration of
the form (9) is also guaranteed not to decrease the data likelihood—which in turn completes
the arguments used for the convergence claims made for the algorithm given in the previous
section (see Sect. 2). It is also obvious that from an efficient implementation point of view,
the algorithmic form given previously is more convenient since the posterior probabilities
of y need not be explicitly computed and stored.

However, the alternative view presented here not only offers a hierarchical interpretation
of the model as an insight, but it will also be used to shed light on the observed low-entropy
characteristic of the model parameters Pj (i|k), as well as on the topographic organisation
ability of the model. This is what we analyse in the sequel. To begin with, let us rewrite the
expected complete log likelihood (17), with the use of the M-step equations (21) and (10).

E =
∑

k

∑

j

{

ujk

∑

i

Pj (i|k) logPj (i|k)

}

+
∑

m

{∑

k

[∑

n

∑

i,j

rmnrkmijN
n
ij

]

logφk(xm)

}

+ N
∑

m

P (xm) logP (xm) = Term1 + Term2 + Term3. (23)

In (23), ujk , Pj (i|k) and P (xm) are all functions of rmn and rkmij . Naturally, when P (xm) is
fixed to uniform, then the last term becomes a constant.
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3.1 Low Entropy Components

Now let us observe that the first of the above terms is the negative of a weighted sum of
entropies. Using the shorthand a

j

ik ≡ Pj (i|k), and a
j

k ≡ Pj (.|k), the first term reads as

Term1 = −
∑

k

∑

j

ujkH [aj

k ] (24)

where the entropy (Cover and Thomas 1991) is defined as H(a
j

k ) = −∑
i a

j

ik loga
j

ik and
the dependencies on rmn and rkmij are implicit. From (22), we also have the meaning of
the weighting factors: each ujk represents the expected number of symbols ‘explained’ by
the k-th generator in the context of j . A maximisation of this term would signify that the
generators that contribute more, must have lower entropies. Since by definition the entropy
of a distribution is a measure of uncertainty, low entropy component models are interesting,
because they tend to be both more interpretable and more predictable.

3.2 Topographic Organisation

The second term is concerned with the distribution of the K symbol-level generators, for

each latent point xm. Rearranging this term by denoting pkm ≡
∑

nij rmnrkmij Nn
ij

cm
where cm ≡

∑
k′

∑
nij rmnrk′mijN

n
ij = ∑

nij rmnN
n
ij = ∑

n rmnTn, we obtain:

Term2 =
∑

m

cm

{∑

k

pkm logφk(xm)

}

=
∑

m

cm{−KL(p.m||φ · (xm)) − H(p.m)} (25)

where KL(.||·) is the Kullback–Leibler divergence (Cover and Thomas 1991) between the
distribution of the expected probability of symbols explained by the various K basis func-
tions, p.m, and the pre-defined Euclidean neighbourhood probability distribution φ · (xm) as-
sociated with xm, defined as KL(p.m||φ · (xm)) = ∑

k pkm log pkm

φk(xm)
. The last term of (25) is

the entropy of the distribution of symbol-level generators associated with a latent point xm.
The weighting factor cm again represents a notion of importance of the latent point xm in
terms of the expected total number of symbols of sequences ‘explained’. Naturally, both pkm

and cm are functions of rmn and rkmij , and the explicit dependence on these quantities was
omitted in the notation for brevity.

From (25) we can see that a larger value of Term2 implies that for each xm the assign-
ments of generators k = 1, . . . ,K are such that: (i) Even if the symbols of each sequence
may be generated from different generators k = 1, . . . ,K (shared by other sequences too),
those which are situated around the sequence-specific latent point xm must be more prob-
able; (ii) Each xm should have a small number of active generators associated with it.
The former property is a key difference from generative aspect models (Blei et al. 2003;
Girolami and Kabán 2005), where the generators are allowed to interleave without con-
straints. In turn, this constraint has the effect of a topographic ordering of sequence histories
that is useful both for its regularising effect and for explanatory data organisation. These
issues will be demonstrated in more detail in the experimental section.
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3.3 The 2D Latent Density

The last term of (23) is again a negative entropy, weighted by the total number of data
instances N .

Term3 = −H [α] × N (26)

where α is now a function of rmn. A higher value of this term implies the creation of regions
of varying density in the latent 2D space.

3.4 Putting all Together: A Multi-Objective Optimisation View

We may view the above three terms together as a tradeoff of multiple objectives being max-
imised simultaneously during the EM iterations. Indeed, if we were to start off from max-
imising the objective (23) as a function of rmn and rkmij , subject to these having to be the
expectations of some discrete assignments and additionally, subject to the two constraint
definitions (21) and (10), then solving the associated discrete search problem for the pairs
xm and yk over the finite set when m = 1, . . . ,M and k = 1, . . . ,K by the mean field trick
(Peterson and Söderberg 1989) (given in the Appendix for completeness), yields, after some
straightforward algebra, exactly the EM algorithm (6) & (18) & (21) & (10). By implication,
the generalised EM solution (11–13) implicitly optimises the same objective.

In conclusion, in this section we have shown that (1) the minimisation of the component
parameter entropies is implicitly part of the objective, thus the representation will tend to
create low entropy parameters. (2) At the same time, it will try to organise the latent point
assignments in a locally topography preserving manner. (3) Finally, if the uniformity of the
latent distribution is not imposed, then rather than using the entire latent space uniformly,
the latent point assignments will have the flexibility to create regions of high density, that
may reflect a clustered structure in the data.

4 Relation to Previous Topographic Models

4.1 Natural Parameter Based Modelling: Relation to Multinomial GTM

As already mentioned, the proposed approach, in its form presented in Sect. 2, is concep-
tually related to the multinomial latent trait GTM model (Bishop et al. 1998b; Kabán and
Girolami 2001). However, there is an important structural difference in that the latter pro-
ceeds at modelling the natural parameters of the multinomials

μm = g(Aφ(xm)) (27)

and so the mapping from the Euclidean space to the space of probabilities is achieved
through the inverse-link function g(θim) = exp(θim)/

∑
i exp(θim). Consequently, the pa-

rameter matrix of the multinomial GTM is still in an Euclidean space and therefore it is
not interpretable. By contrary, as we have seen, the proposed approach models the mean
parameter directly (15). Thus, our model parameters live in the space of probabilities and
as such, they can readily be interpreted as probabilities and low-entropy components of the
data.

Secondly, this difference also implies that unlike the positively constrained parameter
space in SGTM, the parameter space of multinomial GTM is unconstrained. Such extent
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of flexibility may not be required for the case of high dimensional sparse data (which will
typically exhibit a high degree of redundancy). In turn, the unconstrained parameter space
is more difficult to search. Specifically, due to the nonlinear inverse link, in each M-step,
a nonlinear equation of the following form needs to be solved (Kabán and Girolami 2001).

DRT ΦT = g(AΦ)GΦT (28)

where the matrix notations used are as before, and the matrix G is diagonal with elements∑
n rmn (Kabán and Girolami 2001). Clearly, there is no closed form solution to this equa-

tion. As discussed in Sect. 2.3, existing developments are somewhat lacking in terms of
computational efficiency. Care must also be taken about the tradeoff between the conver-
gence guarantee of the optimisation and a possibly long convergence time. Such problems
are not encountered with our SGTM model definition.

4.2 Dealing with Very High Dimensions: Relation to ProbMap

In this subsection we develop a simple extension of the proposed model for the case of
excessively large state spaces. The main purpose here is to highlight a close relation with
the ProbMap model of (Hofmann 2000). It should be mentioned, however that neither our
extension nor ProbMap are fully generative.

We note that although due to its constrained nature, our model is able to deal with fairly
high dimensions—as our early results on text modelling over a dictionary size of nearly ten
thousand words have demonstrated (Kabán 2005)—when excessively increasing the data
dimensionality (size of the state space), the converged posteriors may become very sharp.
This is due to the fact that in the absence of sufficient amounts of data (compared to the
dimensionality of the problem), the mixture of Dirac deltas prior dominates.

Retaining the discretisation of the latent space, which is desirable for tractability reasons,
in this subsection we will adopt a simple form of modular mixture (Attias 2001; Blei et al.
2003) approximation in order to make our model able to deal with very high dimensional
problems. This essentially introduces a convex linear interpolation among the centres of the
Dirac deltas with the aid of an additional random variable that defines a distribution over
the latent space samples π = P ({x1:M}). The data distribution conditioned on π , where∑

m πm = 1, will be defined as follows.

p(Sn|π) =
∏

i,j

{∑

k

Pj (i|k)ϕk(π , {x1:M})
}Nn

ij

(29)

with

ϕk(π , {x1:M}) =
∑

m

πmφk(xm). (30)

The posterior expectations for visualisation and prediction, as per Sects. 2.4. and 2.5),
will now both depend on the posterior expectations of π :

E[x|Sn] =
∑

m

xmP (xm|Sn) =
∑

m

xm

∫

P (xm|π)q(π |Sn)dπ (31)

=
∑

m

xmEq(π |Sn)[πm] =
∑

m

xmE[πm|Sn] (32)
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where q(π |Sn) denotes the (approximate) posterior of π employed for the inference of π

and P (xm|π) = πm. Clearly, each observation will have its own posterior over the mix-
ing coefficients, q(π |Sn), and consequently its own posterior expectation E[πm|Sn]. Analo-
gously,

E[φk(x)|Sn] =
∑

m

φk(xm)E[πm|Sn]. (33)

Defining an appropriate prior distribution for the convex coefficients p(π) analytically
is, however, not straightforward. Due to the special structure induced by the neighbourhood
probabilities and the mapping from an Euclidean space to the space of probabilities, we
found in our experiments that a Dirichlet is inappropriate in this case. For this reason, as
well as since our scope in this section is mainly to arrive at a connection with the ProbMap
method of (Hofmann 2000), here we will adopt a noninformative uniform prior for π and
perform a simple Maximum a Posteriori/Maximum Likelihood point-estimation. That is,
we approximate q(π |Sn) ≈ δ(π − πML

n ) and so Eδ(π−πML
n )[πk] = πML

kn . Now, for each Sn,
πML

n , needs to be estimated.
As before, we organise the parameters {Pj (i|k)} into a matrix A and in addition we

also organise the point estimates πML
mn into an M × N matrix Υ . Solving for all stationary

equations for both sets of variables, subject to the required constraints (
∑

i Pj (i|k) = 1 and∑
m πML

mn = 1) we arrive at the convergent alternating iterative algorithm below, written in
matrix notation.

Υ (new) ∝ Υ (old) 	 {AT [D 
 (AΦΥ (old))]}, (34)

A(new) ∝ A(old) 	 {[D 
 (A(old)ΦΥ )]Υ T }. (35)

The posterior statistics required in (32) for visualisation in this case reduce to comput-
ing E[x|Sn] = ∑

m xmE[πm|Sn] ≈ ∑
m xmπML

mn , and E[φk(x)|Sn] ≈ ∑
m φ(xm)πML

mn , where
πML

mn are newly estimated for previously unseen data instances, while maintaining the para-
meters Pj (i|k) fixed. This is essentially the empirical Bayes methodology (Bernardo and
Smith 2001; Blei et al. 2003), i.e. the distribution of π is defined by the set of samples esti-
mated from the data. The sample estimates obtained from the training set may also be used
for computing the likelihood of new data points under the model.

Now let us observe that making abstraction from the continuous latent variables, and
inspecting (34–35) formally, these are identical to Hofmann’s ProbMap (Hofmann 2000)
(written in matrix form). ProbMap (Hofmann 2000) is not a generative model, therefore its
functionality is restricted to organising data for exploratory purposes. The way to assess its
generalisation abilities is not well defined. However, from the analysis made in this section,
the empirical Bayes procedure may in principle be used to extend its functionality.

4.3 Joint Clustering and Visualisation: Relation to Parametric Embedding

Parametric Embedding (PE) (Iwata et al. 2005) is a recently proposed technique that takes
class membership probabilities obtained e.g. from a clustering algorithm and visualises
them in 2D. It is not a generative model, so it has no predictive abilities, instead, it was
devised for the sole purpose of visualisation. By contrary, in our approach, the visuali-
sation function is built into the model on the grounds of a predictive model with gener-
ative semantics. However there are some structural analogies that could be followed be-
tween these two approaches. For this section, the models are assumed to be zeroth order
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i.e. P (stn|st−1,n, k) = P (stn|k). Let us inspect the log of the likelihood term in our model
formulation (1),

∑

n

logP (Sn|x) =
∑

n

∑

t

log
∑

k

P (stn|k)φk(x) (36)

where t is a data feature and P (skt |k) is now a multinomial probability parameter, how-
ever an arbitrary distributional form may be defined instead, if needed. Further, k may be
thought of as a cluster variable. To see the connection with PE more formally, let us de-
couple (36) into two separate objectives, by replacing φk(x) by a ‘dummy’ probabilistic
variable P (k|Sn), which we then require to be close in Kullback–Leibler sense to φk(x).
The modified expression is now:

∑

n

∑

t

log
∑

k

P (stn|k)P (k|Sn) −
∑

n

∑

k

KL(P (k|Sn)||φk(x)) (37)

where as before,

φk(x) = exp(− 1
2σ 2 |yk − x|2)

∑
k′ exp(− 1

2σ 2 |yk − x|2) .

Now the first term is clearly a clustering objective, identical to the log of the likelihood term
in of aspect-style of models, e.g. Latent Dirichlet Allocation (LDA) (Blei et al. 2003) or
Multinomial PCA (MPCA) (Buntine 2002), whereas the second term is identical to the PE
objective (Iwata et al. 2005). However, PE proposes to fully decouple these two tasks, by
completing the optimisation of the first objective before optimising the second. This has the
advantage of a full modularity, at the expense of sub-optimality due to accumulating errors.
For instance, if a data set has no clear clusters or simply the cluster membership estimates
P (k|Sn) happen to be a poor summary of the data, then the subsequent PE visualisation
is compromised. In turn, our approach implicitly optimises for both the above objectives
simultaneously.

A further difference may be followed on the algorithmic level. The estimation of PE
proceeds by considering both yk and x as parameters and optimising. Instead, we obtain
posterior distributions over the discrete samples from our generative latent variables, which
may then used both for making inferences or predictions about previously unseen data in-
stances, and to produce data summaries for visualisation. The former is not possible with PE,
in its existing form.

The experimental section will provide detailed assessment of the generalisation perfor-
mance of our approach and its robustness against small sample sizes of various kind and
comparisons with existing models of multiple sequences will be made on this ground. In
addition, as a byproduct of our model design, we also obtain interpretable parameters and
intuitively meaningful visual representations, which, necessarily provide explanations of the
data that are reflecting its predictive encoding. Experimental comparisons with other visu-
alisation methods would, however, not be straightforwardly fair and are therefore outside of
our scope. This is primarily either or both because the existing visualisation methods were
not devised for multiple sequence data sets, or because they were not devised as predictive
models. We believe there would be little basis for objective comparison in this sense. More-
over, there is no universally valid objective criterion for comparing visualisation plots, while
there are well defined criteria for measuring the predictive performance, that we can use by
exploiting the generative nature of our model.
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5 Numerical Simulations: Prediction and Explanatory Representation

A toy experiment will illustrate the working of our method first. The data was generated
from a 10 × 10 uniform grid of points in the 2D latent space xm ∈ [−1,1]2, passed through
a 4 × 4 set of functions φk(xm), k = 1, . . . ,16 and mixed with some (4 × 4) randomly gen-
erated and sufficiently low entropy parameters Pj (i|k) over a common state space of seven
symbols. From each of the resulting 100 transition matrices P.(.|xm),m = 1, . . . ,100 from
this manifold of transition matrices, one sufficiently long sequence was drawn (we used ran-
dom lengths Tn ∈ [5000,9000]). These 100 sequences were then fed into our algorithm. Fig-
ure 4 shows examples of the obtained posterior expectations corresponding to local optima
obtained in two independent runs with fixed uniform priors and a run with estimated priors.
We can see the local topology has been well recovered. As discussed earlier, we have no
uniqueness guarantees when both the latent points and the component transitions (the model
parameters) are unknown, and so (similarly to GTM) different local optima will produce
slightly different results. However, the local topology will be preserved due to the smooth-
ness of the generative mapping, which is a useful property for data visualisation. Moreover,
we now turn to demonstrate and objectively asses its beneficial role for prediction.

The next set of experiments studies the predictive capabilities of our algorithm and the
effects of finite sample sizes on the performance. We vary both the average sequence lengths
and the number of sequences available for training.

For each experimental setting, we generated 1500 sequences from a set of 3 generator
processes over a symbol dictionary of 5 symbols. The actual generator models are shown
on Fig. 5.

In order not to favour our model over competing approaches, the following two extreme
generation procedures have been employed: (1) a mixture of Markov Chains (MMC) (Cadez
et al. 2003), i.e. a model having a mixture of delta prior over K different Markov chain gen-
erators, and (2) a simplicial mixture of Markov chains (SMMC) (Girolami and Kabán 2005),

Fig. 4 Examples of recovered posterior mean mapping from 10 × 10 toy sequences generated from the
model: a fixed uniform prior; b estimated priors. In all runs, the local topology is well preserved

Fig. 5 The three generator
Markov transitions that were
used to create the synthetic data
sets. Darker encodes higher
probability, and each row sums to
one



Mach Learn (2007) 68: 63–95 81

Fig. 6 Examples of sequences generated over a state space of five symbols. Each row is a sequence of
varying length and each symbol is represented by a unique colour

employing a uniform Dirichlet prior over K different Markov chain generators. A few in-
stances of the resulted data sequences are shown in Fig. 6 for illustration. It can easily be
observed that in the case of MMC sequences, one can visually tell apart the trajectories
of the three groups of sequences. Indeed, since each sequence is entirely generated by one
of the generator models, all sequences generated from the same generator model have the
similar characteristic dynamic patterns. By contrary, the SMMC trajectories result from in-
terleaving all three generators in uniform instance-specific proportions, and so there is no
natural grouping among the set of trajectories.

Six data sets have been generated from the above two models: (i) Long sequences (rel-
ative to the dictionary size), with lengths evenly distributed between a minimum length of
18 symbols up to a maximum length of 400 symbols; (ii) Medium length sequences, hav-
ing lengths between 10 to 40 symbols; (iii) Short sequences, with lengths between 4 to 15
symbols—all these from both the MMC and SMMC generation procedures respectively, to-
talling six data sets. Further, in order to also assess the issue of sensitivity w.r.t. the training
set size, each of these data sets have been considered in two different instances: In a first
instance, 90% of the data has been employed for estimating the model, the remaining data
being utilised as out of sample sequences for testing. In a second instance, only 10% of the
data has been used for training and the remainder 90% was used for testing.

From each of these data settings, two variants of our topographic model—with fixed
uniform prior, and with estimated prior—were estimated, along with MMC (Cadez et al.
2003) and SMMC (Girolami and Kabán 2005) models. For the latter, we used the variational
estimation procedure described in (Girolami and Kabán 2005; Blei et al. 2003) (since the
SMMC model is known to be intractable). For each experiment, 15 independent, randomly
initialised parameter estimation runs, across 10 disjoint folds have been performed and the
number of components tested ranged on a quasi logarithmic scale between 2 and 50. The
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results are summarised in Fig. 7, in terms of out-of-sample log likelihoods, over a range
of model orders listed on the log 10 scale. In the case of SGTM, the out of sample log
likelihood is computed as the log of (3), from held out subsets of sequences. For MMC
and SMMC, the associated expressions are those in (Cadez et al. 2003) and (Girolami and
Kabán 2005) respectively. The performance of Global Markov chains (Sarukkai 2000) of
various order are also shown for comparison. The latter uses a single Markov chain (of some
order) to modelling the entire collection of sequences in a data set, and thus the variability
of individual sequences can only be accounted for by increasing the order of the Markov
chain.

Since no detailed and controlled assessment of the sample size requirements of the earlier
methods (MMC and SMMC) are found in the literature, it is useful to first summarise the rel-
evant findings regarding these two algorithms before using them as a basis for comparisons
to our SGTM.

• MMC is more prone to overfitting due to small number of sequences in the training set,
while being more robust against the issue of short sequences. SMMC, in turn, is more
prone to overfitting due to shortness of sequences, however it is more robust against the
issue of small number of training sequences. The reasons for this may be traced back to
the definition of these two models and the algorithmic details of the associated estimation
procedures.

• Unsurprisingly, from the last two columns of plots, in the case of mixture data (i.e. well
separated clusters) the performance of both MMC and SMMC algorithms behave simi-
larly and there was no statistically significant difference between the best results at the 5%
level as tested by the Wilcoxon rank-sum test, except in the case of very short sequences
where SMMC overfits earlier than MMC.

• While global Markov chains of sufficiently large order are able to outperform both MMC
and SMMC of first order models on the mixture data, this is not the case on simplicial
mixture data. Of course, this observation may be data dependent (e.g. in the case of a
large state space, the high order global model may overfit more easily).

Remember both these existing state-of-the-art predictive models of multiple sequences
are linear. Therefore their flexibility is limited and their abilities are rather complementary.
Our topographic model is in turn nonlinear, which is expected to be an advantage. From the
comparison the main empirical findings regarding our SGTM are summarised as follows.

• Firstly, the predictive performance of SGTM with estimated prior is comparable with
the best out of the MMC and SMMC estimates. This is because unlike the latter linear
models, the correlation structure between latent points is part of the modelling. So, for
example in the case of a short sequence, SGTM is able to automatically complement the
information with that coming from correlated other sequences. Further, in the case of a
small number of sequences in the training set, the model is able to populate the clusters
with partial memberships from neighboring clusters.

• Secondly, SGTM with a fixed uniform prior significantly outperforms all other models on
simplicial mixture data while it is significantly suboptimal on mixture data.

Naturally, if the mixing is ‘diverse’, then the uniform latent density is the best suited and
having this fixed rather than estimating it provides an advantage. In turn, if there are clearly
distinct clusters in the data set, then assuming a uniform spread is suboptimal from the pre-
dictive density modelling point of view since it suffers from underfitting. In this latter case,
SGTM is still well suited for visualisation purposes but less suited as a predictive model.
To illustrate this point, Fig. 8 shows the posterior mean visualisation of one of the mixture
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Fig. 7 Comparative results of the predictive generalisation performance as evaluated on generated data sets.
On all plots, the out-of-sample log likelihood is given (on the vertical axis) versus the number of components
on the log 10 scale (on the horizontal axis)—higher value indicates better generalisation. The error bars give
one standard error over ten non-overlapping folds. The acronyms are the following: ‘SM’: data generated from
a simplicial mixture (leftmost two columns); ‘M’: data generated from a mixture (rightmost two columns);
‘n% tr’: the percentage of sequences used for training (the remainder were used for testing). The average
length of the sequences decreases from the top row to the bottom. MMC, SMMC and the two versions of
SGTM (with fixed uniform prior (1/M) and with estimated prior mixing coefficients respectively) all utilise
first-order Markovian components. The straight lines stand for global Markov models of varying order on
each plot, these are given up to the order that still improves over the previous one. (The competing models
are made with different line styles and also in different colors for enhanced clarity in case of colour viewing)
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Fig. 8 Right: Posterior mean visualisation obtained by SGTM with fixed uniform prior, on the set of medium
length sequences generated from a mixture of three Markov chains. Left: Posterior mean visualisation of the
same data set, with SGTM with estimated mixing coefficients

data sets (the medium length sequences) obtained from a SGTM with fixed uniform prior.
The cluster structure is well displayed. However, if SGTM with estimated prior probabilities
is employed, then the spread of the three clusters shrink—so we see less details within the
clusters but the obtained summary correctly reflects the generative distribution of the data.
As we have seen, this is seconded by the increased predictive performance.

The above considerations regarding the influence of the latent prior are useful from the
methodological point of view, since knowing the implications of our modelling choices
enables us to employ them in an appropriate way and in accordance with the applications
purposes. It should also be highlighted, however, that in the case of real-world data, we may
mostly expect intermediate cases rather than clearly distinct clusters or uniformly diverse
data—for example, it is unlikely that a population of web users will produce well separated
clusters of homogeneous behaviour. It is also unlikely that the spread or variation is exactly
uniform. Therefore it is not surprising to find that on such data the predictive performance
of the two versions of SGTM (with fixed uniform prior or with estimated prior) is not very
different from each other. However, in the light of the results above, we expect to achieve
equal or higher accuracy using SGTM than the best out of the existing linear models (MMC
and SMMC) on data collections of multiple sequences.

6 Application to Preference Prediction and Exploratory Analysis of Web Navigation
Sequences

The organisation and exploratory analysis of the dynamic behaviour of individuals in the
context of web environments is a major challenge for automated data analysis research. Such
investigations are quite recent (Cadez et al. 2003; Girolami and Kabán 2005) and motivated
by the availability of vast quantities of user traces and the opportunity for creating predictive
profiles as well as creating tools that allow e.g. a site administrator to explore large sets of
navigation sequences. The possibility of visual exploration in this context has been proposed
in (Cadez et al. 2003), where an approach employing mixture based clustering of first order
Markov chains has been explored.
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However, in a mixture model, the relation between clusters is not modelled, and in the
case of a large site collection, with several thousands of browsing users, it would be imprac-
tical to expect the site administrator to examine all clusters individually in order to obtain
an overview of the ongoing activity or to locate behaviours of interest. In addition, brows-
ing behaviours that are common to all clusters of users, and are therefore less interesting,
will end up being present on all cluster prototypes, making the visual analysis difficult. In-
deed, in the mentioned work, such problems have been noticed and the ad-hoc constraint of
fixing the initial state in each cluster has been employed in order to aid visual inspection.
This of course came at the expense of a suboptimal predictive model as reflected by the out
of sample log likelihood. On other hand, previous work reported in (Girolami and Kabán
2005) suggests that a distributed model may in fact describe a collection of heterogeneous
behaviours more realistically.

Here we investigate our approach for organising the same set of web navigation se-
quences, msnbc.com ,4 used in (Cadez et al. 2003), the subset investigated in (Girolami
and Kabán 2005), as well as a number of comprehensive intermediate settings. The data set
comprises over a million of sequences that share a common state space of the following
17 page categories: ‘frontpg’, ‘news’, ‘tech’, ‘local’, ‘opinion’, ‘onair’, ‘misc’, ‘weather’,
‘msnnews’, ‘health’, ‘living’, ‘business’, ‘msnsport’, ‘sports’, ‘summary’, ‘bbs’ and ‘travel’.
The vast majority of these sequences is very short—the average sequence length was found
as 8.056. So in the light of the controlled empirical study of the previous section, we may
expect with a random sample to find ourselves in the situation of a ‘large’ number ‘short’
sequences, in principle.

We begin with assessing the prediction and generalisation performance of our model.
To this end, we constructed both selected subsets of rich sequences and random subsets of
various sizes. These are summarised in Table 1.

We report 10-fold cross-validated predictive perplexity results on the first five data sets
listed in Table 1, since these contain a relatively small sample size. The predictive perplexity
measures the uncertainty of predictions and is computed as exp{− 1

Ntest

∑Ntest
r=1 logP (snext|Sr)}

(lower values are better). The results of MMC, SMMC and first-order global Markov chains
are shown on Fig. 9. The graph for WEB9 is identical to that reported in (Girolami and
Kabán 2005), and usefully serves as a basis for the comparisons. From Fig. 9 we can see
that by increasing the training set size, all methods improve their performance to some ex-
tent. However, MMC benefits more from increasing the number of sequences available for
training whereas, SMMC benefits more from the length (richness) of the sequences. The

Table 1 Data sets constructed
from msnbc.com, used in the
reported experiments: WEB9 and
WEB7 are selected ‘rich’
sequences, which includes only
users who visited at least 9 (or 7
respectively) out of the overall 17
different page categories. The
remainder are randomly chosen
subsets. WEBtrain and WEBtest
are training and independent test
sets of the size used by (Cadez
et al. 2003)

Name Nr sequences Nr transactions Avg length

WEB9 1480 119 667 80.856

WEB7 5800 246 360 42.476

WEB-1500 1500 20 799 13.866

WEB-5000 5000 51 665 10.333

WEB-10000 10 000 96 384 9.638

WEBtrain 100 000 801 745 8.018

WEBtest 88 181 714 280 8.1

4http://kdd.ics.uci.edu/databases/msnbc/msnbc.html.



86 Mach Learn (2007) 68: 63–95

Fig. 9 Comparative predictive perplexity results of MMC and SMMC on weblog sequence collections from
msnbc.com, of various sizes. SMMC benefits more from ‘richer’ sequences whereas MMC benefits more
from a larger number of sequences. For each data collection under study, the best performing method is taken
over to Fig. 10 to be compared with SGTM

Fig. 10 SGTM compared with the best performing previous method, for each of the five sequence collections
tested. SGTM significantly outperforms the previous winner on each of these data sets

differences were found statistically significant at the 5% level based on the nonparamet-
ric rank sum test, and these results are in accordance with our findings on the synthetic
simulations, presented in the previous section. More interestingly, Fig. 10 shows the predic-
tive perplexity results of SGTM in comparison with the best performing method retained
from Fig. 9, for each data set under consideration. Clearly, SGTM outperforms the previ-
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Fig. 11 Out of sample log
likelihood against model order
obtained by SGTM estimated
from WEBtrain and tested on
WEBtest. Both versions of
SGTM outperform the
constrained mixture employed in
(Cadez et al. 2003) and are at
least as good as an unconstrained
mixture

ous winners in all situations tested, in a statistically significant manner. The two variants
of SGTM—employing a fixed uniform prior or estimating the mixing coefficients—have
performed similarly on these data (no statistically significant differences), and the former is
shown on the plots.

Finally to compare against the results of (Cadez et al. 2003), we have taken the train-
ing set of 100 000 sequences WEBtrain, drawn at random from the entire data set, totalling
801 745 page requests and the independent test set WEBtest, of 88 181 sequences totalling
714 280 page requests. Since the vast majority of these sequences is very short, the SMMC
overfits immediately and is not shown on the figure. Figure 11 depicts the out of sample log
likelihood as obtained on the independent test set comparatively for SGTM, the constrained
mixture of (Cadez et al. 2003) (fixing the initial state in each cluster to aid visualisation), an
unconstrained mixture and a baseline global first order Markov model. Clearly, our method
outperforms the mixture with constrained initial states of (Cadez et al. 2003) and approaches
an unconstrained mixture in terms of predictive performance. We can thus be confident that
the advantages of our model in terms of visualisation and parameter interpretability do not
produce a limitation of its predictive power on this data. Our model requires more compo-
nents than MMC, though, since we have seen it is a constrained mixture. This is because
unlike unconstrained mixtures, it allows us to create detailed topographically ordered sum-
mary mappings of the data collection and these may be used for exploratory analysis.

We now demonstrate that our model also creates a meaningful, topographically ordered
visual summary of the recorded dynamic activity, and is therefore more convenient to use by
e.g. a site administrator, against an unconstrained mixture. Figure 12 shows the full map of
sequences created from the 100 000 sized data set. For equidistant points on the latent space,
the 15 highest probability sequences are shown in colour-coding, where each colour stands
for one page category. The topographical principle that is induced, originally proposed by
Kohonen (Kaski et al. 1998), provides a proximity constraint that has proved intuitive and
useful in hundreds of applications in the past (Kaski et al. 1998). Indeed, our eyes are sen-
sitive not just to individual colours but also to reasonably low-entropy patterns or textures,
therefore our hope is that visualising temporal activity in terms of proximity structures may
be useful.
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Fig. 12 Topographical display obtained from a random sample of 100 000 sequences from the msnbc.com
web navigation data set. The top matching sequences are shown at equidistant points of the latent space of x .
for each prototype. Sequences are in rows, and the colors encode symbols (page categories). Blank lines
separate the sequences of neighboring latent point locations

In addition, Fig. 13 shows a fragment (three columns) of the component-level represen-
tation created. On the right, the probability transitions associated with the model parameter
components are shown. As discussed in Sect. 3, these are low-entropy components of be-
haviour, different from cluster prototypes (the latter being local averages). On the left, the
top matching 15 actual user sequences are listed for each aspect. Using these, we can follow
a gradual shift of interest on this fragment of the representation. E.g. from top toward the
bottom, the strong interest in the ‘frontpage’ of the site (1-st page category) shifts through
a repetitive user behaviour toward a pronounced interest in ‘news’ (2-nd page category),
corroborated with a more dynamic browsing activity. On the horizontal axis in the first row
the interest shifts from ‘frontpage’ to ‘sports’ and ‘health’. These trends can be more easily
followed by looking at the transition plots. However, from the listing of the actual sequences
we can see how represented, how homogeneous or inhomogeneous these behavioural com-
ponents are, and we can recognise groups of similar behaviours by the specific combinations
of patterns and colours. The topographic organisation is most apparent in both views.
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Fig. 13 A fragment from the component-level topographical display of the same msnbc.com web navi-
gation data set. The top matching sequences are shown for each component on the left. On the right, grey
levels encode the associated transition probabilities between the 17 page categories. Darker stands for higher
probability

It should also be noted that, as expected, the prototype-level transition behaviours are
far not as informative. This is simply because behavioural patterns that are common to all
clusters appear on all prototypes, making it difficult to distinguish the distinctive features.
This is a problem for the mixture-based visualisation method of (Cadez et al. 2003). To
illustrate this, a fragment of the mixture-level transitions is shown on Fig. 14.

The habit of repeating the previous page category request is present everywhere. We thus
conclude that the entropy-minimising characteristic in our model is quite important for pa-
rameter interpretability. It is a unique feature of the proposed model that it is able to produce
such low-entropy components of the data, simultaneously with a 2D nonlinear compression,
while additionally also being a well-performing predictive model, able to generalise to new,
previously unseen data—as demonstrated by both the out of sample likelihood values and
the predictive perplexity measures.

Finally, our model also induces probabilistic profiles for each individual sequence, in
the form of two posterior distributions (over the latent space of cluster prototypes and over
the space of low entropy components respectively). These may be used to understand some
of the relationships between users. Figure 15 shows three examples. In the first example,
a fairly long activity sequence induces a relatively sharp cluster-posterior. In the second
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Fig. 14 Fragment from the
prototype-level transitions

Fig. 15 Three individual user
profiles over the two latent spaces

example we have a multi-modal profile that encodes more interesting relationships based on
multiple interests. In both these examples, the component-level posterior produces smoothed
versions of the cluster-level posterior. In the third example in turn we have a very common
activity, therefore the cluster-posterior is very broad. By contrary, the component-posterior
shrinks—this is because the model parameters tend to separate common behaviours into
fewer components.

The computation time required to convergence is now assessed experimentally. Subsets
of data with increasing size have been created and the CPU time has been measured against
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Fig. 16 Experimental comparison of the computation time to convergence to a tolerance of 10−3 (left) and
10−4 (right), in varying data size conditions

the number of non-zero entries in the data, on a standard desktop computer (Intel Pen-
tium 2 GHz). The tolerance criterion used was the difference between consecutive log like-
lihood values. Figure 16 shows the results comparatively, for the tolerance of 10−3 and 10−4

respectively. The competing methods in this comparison are SGTM, SMMC and multino-
mial Latent Trait GTM. For the latter, the efficiency of the M-steps depends on the nonlinear
optimisation used and their parameters. (The E-steps enjoy the same scaling as in SGTM.)
We skip showing results from IRLS and gradient ascent, for poor efficiency. Instead, to be
as fair as possible, for this comparison we implemented more efficient versions: A version
uses partial M-steps employing Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimisation
(Kelley 1995) with polynomial line search,5 where the number of inner iterations was set
to 5 (determined empirically). A second version employs partial M-steps computed by con-
jugate gradients together with a fairly sophisticated set of searches;6 again the number of
line searches was set to 5. In both implementations, we also took advantage of that the prod-
uct DRT in (28) only needs evaluated once before entering into the numerical optimisation
routine. Still, the time taken to convergence is far longer than for the competing methods.

The results are shown in Fig. 16. In all cases, two model orders were tested (K = 9 and
K = 64) and the number of 2D latent samples was fixed to 100 throughout. The markers
show CPU times averaged over 10 independent random restarts, and the straight lines rep-
resent the regression lines fitted to the set of outcomes (and passing through the origin of
course), for each method. As expected, our SGTM method, similarly to SMMC, scales in-
deed linearly with the number of non-zero entries in the data. The plot also shows that there
is little increase in computation time when increasing the model order K in our model. This
is partly because there is little variation in the level of sparsity of the matrix Φ when K

is varied. We also observed that the average number of iterations required to convergence
stayed roughly the same when varying either the model order or the data set size, for SGTM.
(For the largest data set, SGTM needed 25.1 EM loops in average for achieving the tolerance

5Matlab routine by Kelley, T.C., available from: http://www.siam.org/books/kelley/fr18/matlabcode.php.
6Matlab routine by Rasmussen, C.E., available from: http://www.kyb.tuebingen.mpg.de/bs/people/carl/
code/minimize/.
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of 10−3 and 72.3 EM loops for the tolerance of 10−4.) Overall, at both model orders consid-
ered, and with both tolerance thresholds, the scaling of our method was comparable to that
of a SMMC with 9 components. SMMC in turn requires more time to converge when the
model order increases. Clearly, the multinomial GTM has been the most computationally
demanding method in this comparison (despite the optimisation method being chosen with
care)—which means, this model is essentially limited to relatively small or medium size
data sets in practice. This is partly because the M-step computations are longer due to the
search for step sizes, and partly because the number of EM loops needed for convergence
to a given tolerance was significantly larger—in average, the EM loops needed were almost
4 times larger than those needed by SGTM for the tolerance of 10−3, and more than 5 times
larger for the tolerance of 10−4. More work would be needed to develop more efficient algo-
rithms for this model before we could make realistic comparisons, in terms of generalisation
and prediction ability, between the natural parameter based modelling of multinomial GTM
with that of the mean parameter based modelling of SGTM.

7 Conclusions

In this paper we presented a theoretically principled, computationally efficient and intu-
itively simple topographic generative model for sparse symbolic sequence collections. Be-
sides being stable and scalable to large and sparse data sets, the proposed approach is robust
against finite sample sizes, and improves prediction in comparison with the state of the art,
on both synthetic and real-world data. It is also able to create a compact compression of
the histories, in a locally topology-preserving manner, which is useful for visualisation and
exploratory analysis. In addition, the model parameters are also interpretable probabilities,
which may be understood as low-complexity component models of the data collection.

We have discussed the relationship of our model with a number of related topographic ap-
proaches, we have analysed its representation tendency towards low-entropy parameters, we
have empirically assessed its predictive performance in comprehensive comparisons and we
have demonstrated an application of our approach to the prediction and exploratory analysis
of large real-world web navigation sequence collections. Our nonlinear model has been able
to outperform the state of the art in all experimental settings in terms of predictive mod-
elling, and at the same time has revealed simple intuitive structures behind the apparently
high-entropy activity recordings. Further work may include a formal analysis of the sample
size requirement properties, a more detailed analysis of the convergence speed e.g. follow-
ing (Salakhutdinov et al. 2003; Celeux et al. 2001), algorithmic extensions to models with
deeper memory, as well as possibly applications to other areas, such as for example, model
based multi-task reinforcement learning.

Appendix

This appendix provides the details of obtaining the discrete assignment of latent points as-
sociated with the objective (23) of Sect. 3. As highlighted in the main text, the first and third
of the terms of this expression are negative weighted sums of entropies, and the second term
contains a sum of divergences between the distribution over the symbol-level latent gener-
ators and the pre-wired neighbourhood probability distribution of these generators, relative
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to sequence-specific latent points. The discrete optimisation objective associated with (23)
is the following.
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∑
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To solve this by the mean field approach, the following objective needs to be maximised
(called the free energy function) (Wu and Chiu 2001; Peterson and Söderberg 1989).

ψ(rmn, rkmij , emn, ekmij )
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∑
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β

∑

mij

log
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k

exp(ekmij ) (38)

where rmn = P (δmn = 1) and rkmij = P (δkmij = 1) are the probabilities of the discrete as-
signments and {emn} and {ekmij } are two sets of dummy auxiliary variables used for carrying
out the mean field optimisation, and β is the so-called inverse temperature, which may be
increased during the iterations as in simulated annealing. We disregarded this parameter
here, setting it to one, since our scope for now is mainly to show the connection to our EM
algorithm previously derived.

The stationary point of (38) gives the following equations:

∂ψ(rmn, rkmij , emn, ekmij )

∂rmn

= 0 ⇒ emn = ∂E(rmn, rkmij )

∂rmn

, (39)

∂ψ(rmn, rkmij , emn, ekmij )

∂emn

= 0 ⇒ rmn = exp(emn)
∑

m′ exp(em′n)
(40)

and similarly,

∂ψ(rmn, rkmij , emn, ekmij )

∂rkmij

= 0 ⇒ ekmij = ∂E(rmn, rkmij )

∂rkmij

, (41)



94 Mach Learn (2007) 68: 63–95

∂ψ(rmn, rkmij , emn, ekmij )

∂ekmij

= 0 ⇒ rkmij = exp(ekmij )
∑

k′ exp(ek′mij )
(42)

where the constant terms were ignored from (39) and (41), since they cancel in (40) and (42)
respectively. Detailing the above equations we obtain (6) & (18) identical to the E-step of
the EM algorithm derived in Sect. 3 of the main text. Further, using the constraints amounts
exactly to the M-step equations (21) & (10). In consequence, the iterative mean-filed solution
of the above constrained discrete optimisation problem yields exactly the same algorithmic
solution as the EM iterations (6) & (18) & (21) & (10) given in the text.
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