Mach Learn (2007) 68: 35-61
DOI 10.1007/s10994-007-5009-7

Invariant kernel functions for pattern analysis
and machine learning

Bernard Haasdonk - Hans Burkhardt

Received: 20 June 2006 / Accepted: 2 March 2007 /
Revised: 25 February 2007 / Published online: 4 May 2007
Springer Science+Business Media, LLC 2007

Abstract In many learning problems prior knowledge about pattern variations can be for-
malized and beneficially incorporated into the analysis system. The corresponding notion of
invariance is commonly used in conceptionally different ways. We propose a more distin-
guishing treatment in particular in the active field of kernel methods for machine learning
and pattern analysis. Additionally, the fundamental relation of invariant kernels and tra-
ditional invariant pattern analysis by means of invariant representations will be clarified.
After addressing these conceptional questions, we focus on practical aspects and present
two generic approaches for constructing invariant kernels. The first approach is based on a
technique called invariant integration. The second approach builds on invariant distances.
In principle, our approaches support general transformations in particular covering discrete
and non-group or even an infinite number of pattern-transformations. Additionally, both en-
able a smooth interpolation between invariant and non-invariant pattern analysis, i.e. they
are a covering general framework. The wide applicability and various possible benefits of
invariant kernels are demonstrated in different kernel methods.

Keywords Invariance - Kernel methods - Pattern recognition - Pattern analysis - Invariant
features

Editor: Phil Long.

B. Haasdonk (B<)

Applied Mathematics Department, Albert-Ludwigs-University Freiburg, Hermann-Herder-Str. 10,
79104 Freiburg, Germany

e-mail: haasdonk @mathematik.uni-freiburg.de

H. Burkhardt

Computer Science Department, Albert-Ludwigs-University Freiburg, Georges-Kohler-Allee 52,
79110 Freiburg, Germany

e-mail: burkhardt@informatik.uni-freiburg.de

@ Springer

36 Mach Learn (2007) 68: 35-61

1 Introduction

Machine learning, pattern analysis and pattern recognition all benefit largely from the ac-
tive field of kernel methods, which has developed to state-of-the-art during the last decade,
cf. (Scholkopf and Smola 2002; Shawe-Taylor and Cristianini 2004). Numerous kernel
methods and kernel functions have emerged which hereby enhance the flexibility, applica-
bility and manifoldness of these methods. The famous no free lunch and ugly duckling theo-
rems state formally, that prior knowledge or assumptions of a problem at hand must be incor-
porated into the solution, e.g. (Duda et al. 2001). Without prior knowledge, no best classifi-
cation system or best pattern representation exist. Also empirical studies uniformly demon-
strate the importance of prior knowledge for the generalization ability of pattern analysis
systems. We focus on a traditional type of problem specific prior knowledge, namely knowl-
edge about pattern variations or invariances. This means that certain transformations of the
objects under investigation are known, which leave the inherent object meaning unchanged.
In classical pattern recognition this is solved by a pattern pre-processing step of invariant
feature extraction. In view of the new armada of kernel methods, it is valuable to ask for
general ways to incorporate the invariance knowledge into kernel functions and to under-
stand, how this conceptionally extends the traditional invariant feature approach. These will
be the main topics of the present study.

1.1 Goals and Paper Organization

We will briefly list some desired properties of a general approach for incorporating invari-
ance knowledge.

1. Various Kernel Methods: The approaches should not be learning-task-specific, especially
not restricted to support vector machines (SVMs) or other optimization-based techniques.
In principle, the approaches should support arbitrary learning methods implicitly working
in a kernel-induced feature space.

2. Various Kernel Types: The approaches should be applicable to various kernel functions. In
particular, arbitrary distance-based or inner-product-based kernels should be supported.

3. Various Transformations: The methods should allow to model both infinite and finite sets
of transformations. The transformations should comprise group- and non-group transfor-
mations, discrete and continuous ones.

4. Adjustable Invariance: The extent of the invariance should be explicitly adjustable from
the non-invariant to the totally invariant case hereby smoothly interpolating between
invariant and non-invariant pattern recognition.

5. Applicability: The applicability on real world problems should be possible with respect
to both computational demands and good generalization performance. At least standard
benchmark datasets must be possible to treat. The methods should compete with or out-
perform existing approaches.

These points will be addressed and satisfied by the proposed approaches. In the following
we concentrate explicitly on methods modifying the learning method by designing suitable
kernel functions. Hereby we automatically obtain full generality according to point 1 above.

The article will first provide the required notions related to kernel methods and invari-
ance in the next section. The fundamental relation of invariant kernels and invariant features
is explained. The consecutive Sect. 3 proposes two generic methods for obtaining invariant
kernel functions and comments on the basic properties. The first one is denoted transforma-
tion integration kernels, the second one invariant distance substitution kernels. Experimen-
tal applicability of the concepts are presented in Sect. 4 with various kernel methods. We

@ Springer

Mach Learn (2007) 68: 35-61 37

comment on the real world applicability in different applications, which are extended by the
present general framework. We conclude with Sect. 5.

1.2 Related work

Some existing methods rely on finitely many explicit pattern transformations, so they lack
some generality as demanded in goal 3. The virtual support vector (VSV) method (Scholkopf
et al. 1996) is a two step method designed for a special kernel method, namely SVM (addi-
tionally restricting goal 1): First an ordinary training is performed, then the set of resulting
support vectors (SVs) is extracted, which usually has a largely reduced size, this set of SVs is
multiplied by application of the finitely many transformations, finally a second SVM train-
ing is performed on this extended set of samples. The advantage of training set modification
is that no kernel modification is required. All standard kernels can be applied. Particularly,
positive definiteness is guaranteed. This is the reason for the VSV method to be the most
widely accepted method for invariances in SVMs.

Instead of performing these transformations before training, the jittering kernels ap-
proach performs them during kernel evaluation (DeCoste and Scholkopf 2002). Starting
with an arbitrary kernel function k, the computation of the jittered kernel k; (x, x") is done
in two steps, where we denote the set of transformed patterns of x with 7,: Firstly, deter-
mine the points minimizing the distance of the sets @ (7) and @ (7,/) in the kernel induced
feature space by explicitly performing all transformations and computing the squared dis-
tances. Secondly, take the original kernel at these minimizing points. This scheme nicely
reflects the idea of operating in the kernel-induced feature space. It is, however, only well-
defined for kernels with k(x, x) = const like distance-based kernels. For other kernels, e.g.
the linear or polynomial, the definition is not proper as occasionally multiple minima (i, i’)
of the distance minimization problem can occur. This additionally restricts the generality
with respect to goal 2.

Another relevant study focusing on the theoretical question of invariance in kernel func-
tions is (Burges 1999). Under the assumption of differentiable transformations, the require-
ment of invariance results in partial differential equations (PDEs), which must be solved
to obtain invariant kernel functions. This is a highly nontrivial task as many integrals have
to be determined. For academic examples of vectors with few entries this seems to be ap-
plicable. However, even for small sized image data, the method is far from being practically
applicable, missing goal 5.

Many approaches rely on differentiable transformations (limiting target 3) and do not
use the precise transformations but make use of linear approximations resulting in tangent
vectors. Directly involving these tangents into arbitrary distance-based kernels results in tan-
gent distance kernels (Haasdonk and Keysers 2002), inserting into a Gaussian rbf can alter-
natively produce tangent vector kernels (Pozdnoukhov and Bengio 2004). Further methods
such as the invariant hyperplane (Scholkopf et al. 1998), the nonlinear extension called in-
variant SVM (Chapelle and Scholkopf 2002), the invariant simple SVM (Loosli et al. 2005)
or the kernel Fisher discriminant (Mika et al. 2000) concentrate on a specific kernel method
(limiting goal 1). The majority of these modify the method’s specific optimization target us-
ing the tangents of the training samples in the so called tangent covariance matrix. Hereby,
they alter the hyperplane in such a way, that it globally fits optimally to all local invariant
directions. This turns out to be equivalent to a pre-whitening in feature space along those
directions which align best to all local invariance directions simultaneously. However, this
pre-whitening involves (kernel) PCA and appears to be computationally very hard in the
nonlinear case.

@ Springer

38 Mach Learn (2007) 68: 35-61

Other conceptionally appealing methods consist of sophisticated new optimization prob-
lems, which encode the sets of transformed samples. By enforcing separability constraints
as in the SVM, new classifiers are produced. For instance, assuming polyhedral sets results
in the approach of the knowledge-based SVM (Fung et al. 2004). If alternatively polyno-
mial trajectories of the patterns are assumed, the resulting infinitely many constraints are
condensed in a semi-definite programming (SDP) problem (Graepel and Herbrich 2004).
These problems are more complex, but can still be solved for small sizes, however they are
problematic for real world applications as desired in goal 5.

Basically, (Scholkopf and Smola 2002) distinguishes between methods for introducing
transformation knowledge into the object representation, the training set or the learning
method itself. Although this is an intuitive categorization, certain methods can be interpreted
in multiple of these categories. For instance, as explained above, the invariant hyperplane
method can be seen as modifying the object representations by a pre-whitening operation,
but it was initially motivated as modifying the learning target of a SVM. In (Leen 1995) it is
argued that also the extension of the training set is in general equivalent to adding a suitable
regularization term into the learning target.

2 Notions and conceptional relations

In this section we will introduce the notions and notation related to kernel methods and
invariance. We will explain, why different types of invariance are relevant in case of ker-
nel functions and should be distinguished. We discuss the relation of invariant kernels and
traditional methods such as invariant feature extraction and template matching.

2.1 Kernel methods

Kernel methods are meanwhile well established approaches for general machine learning
tasks. We refer to (Shawe-Taylor and Cristianini 2004; Scholkopf and Smola 2002) and
their bibliographic references for details on the notions and concepts.

The general assumption is the availability of observations or objects x stemming from
some pattern space X. If the space occasionally is a vector space, the vectorial objects
will be denoted boldface x € X. In general, kernel methods are not restricted to vectorial
representations of the objects in contrast to many traditional methods. Instead a wide range
of structured or unstructured data types, e.g. general discrete structures (Haussler 1999),
data-sequences (Watkins 2000), strings (Lodhi et al. 2002), weighted automata (Cortes et
al. 2003), dynamical systems (Vishwanathan et al. 2005) etc. can be processed. The main
notion is that of a kernel function on the pattern space. We restrict ourselves to real valued
kernels, as the resulting applications only require those, though complex valued definitions
are possible, cf. (Berg et al. 1984).

Definition 1 (Kernel, Kernel Matrix) A function £k : X x X — R which is symmetric
is called a kernel. Given a set of observations x; € X, i = 1,...,n the matrix K :=
(k(x;, xj))f"j:1 is called the kernel matrix.

We emphasize that this use of the notion kernel is wider than frequently used in litera-
ture, which often requires positive definiteness, defined below. As we also will discuss non
positive definite functions to be used, we extend the notion kernel also covering these cases.

@ Springer

Mach Learn (2007) 68: 35-61 39

Definition 2 (Definiteness) A kernel k is called positive definite (pd), if for all n and all sets
of data points (x;)]_, € A" the kernel matrix K is positive semi-definite, i.e. for all vectors
v € R" holds v/’ Kv > 0. If this is only satisfied for those v with 1,{v =0, then £ is called
conditionally positive definite (cpd). A kernel is indefinite, if a kernel matrix K exists, which
is indefinite, i.e. vectors v and v’ exist with v Kv > 0 and v"Kv' < 0.

We denote some particular inner-product- and distance-based kernels by

kinx, x) i= (x, X'), Kx, x):=—|x—x|#, Bel0,2],

KPol(x, X)) i= (1 + p(x,X))?, kP (x, X)) = e”’”"”‘/”z, peN, yeR,.

Here, the linear k", polynomial k*°' and Gaussian radial basis function (rbf) k™ are pd
for the given parameter ranges. The negative distance kernel k™ is cpd, which is completely
sufficient for application in certain kernel methods such as support vector machines (SVMs),
cf. (Berg et al. 1984; Scholkopf 2001).

In general, a kernel method is a nonlinear data analysis method for patterns from the
set X', which is obtained by application of the kernel trick on a given linear method: As-
sume some analysis method operating on vectors x from some Hilbert space 7, which only
accesses patterns x in terms of the bilinear inner product (x, x'). Examples of such meth-
ods are principal component analysis (PCA), linear classifiers like the large margin hyper-
plane, the perceptron or Fisher linear discriminant, but also more expressive methods like
the k-nearest-neighbor classifier, etc. If we assume some nonlinear mapping @ : X — H,
the initial analysis method can be applied on the images @ (x) as long as the inner prod-
ucts (@ (x), @ (x')) are available. This results in a nonlinear analysis method on the original
space X. The kernel trick now consists in replacing these inner products by a kernel function
k(x,x") :=(®(x), @(x)): As soon as the kernel function k is known, the Hilbert space H
and the particular embedding @ are no longer required. For suitable choice of kernel func-
tion k, one obtains methods, which are very expressive due to the nonlinearity and cheap
to compute, as explicit embeddings are omitted. The resulting methods are the meanwhile
well known kernel principal component analysis, support vector machine, kernel percep-
tron, kernel Fisher discriminant, etc.

The question, whether a given kernel allows a representation in a Hilbert space as
k(x,x") = {(®(x), @(x)) is interestingly completely characterized by the positive definite-
ness of the kernel. Various methods of explicit feature space construction can be given. The-
oretically most relevant is the embedding in a so called reproducing kernel Hilbert space
(RKHS), which enables the embedding of the whole space X into a Hilbert space of func-
tions, cf. (Scholkopf and Smola 2002, Sect. 2.2.2) for details.

Definition 3 (Reproducing Kernel Hilbert Space Embedding) For any given positive defi-
nite kernel k on the nonempty set X the mapping @ : X — RY with @ (x) := k(x, -) defines
a pre-Hilbert space H := span(® (X)) with inner product

<Zaik<x,~, 9 D_bik(;, '>> =)_aibjk(xi, x)).
i J iJj

The completion of this space with respect to the induced norm yields a so called reproducing
kernel Hilbert space (RKHS) H with reproducing kernel k.

@ Springer

40 Mach Learn (2007) 68: 35-61

The notion reproducing kernel is motivated as k satisfies the so called reproducing prop-
erty (k(x,-), f) = f(x) for any f € H. For the embedded points @ (x) this results in
(P (x), D(x")) = (k(x,-),k(x', ")) =k(x, x") for all x, x’.

By the kernel trick, various kernel methods have been developed and successfully applied
during the last decade. This enables a wide variety of analysis and learning algorithms, once
a suitable kernel is chosen for the data. This modularity of choice of kernel function and
choice of learning method is a major feature of kernel methods. Additionally, this empha-
sizes the importance of the kernel choice: The only view on the data, which the analysis
algorithm obtains, is the kernel matrix K, i.e. the kernel evaluated on all pairs of input ob-
jects. Therefore, the kernel matrix is very reasonably denoted an information bottleneck in
any such analysis system (Shawe-Taylor and Cristianini 2004). Hence, a good solution for
any learning task will require a well designed kernel function based on the available problem
specific prior knowledge.

2.2 Variants of invariance

The prior knowledge that we assume is a structural assumption on the generation of the
patterns. We restrict to the knowledge of a set of transformed patterns for each sample with
the assumption that these patterns have equal or similar meaning as the original pattern itself.
So, replacing an individual point by one of its transformed patterns should keep the output
of the analysis or learning task roughly unchanged. As argued in the preceding section under
goal 3, these transformations can be of different kind, which are all covered by the following
formalization:

Definition 4 (Transformation Knowledge) We assume to have a set T of transformations
t : X — X including the identity mapping which define a set of transformed patterns T, :=
{t(x) |t € T} C X for any x. These patterns are assumed to have identical or similar inherent
meaning as the pattern x itself.

At this point we do not put any further assumptions on 7'. In particular, we do not as-
sume an explicit parameterization of these sets, nor assume that they are finite. We neither
require specific relations between the 7., 7, of different patterns. They may be disjoint,
may be equal or may intersect. Of course for computationally dealing with these sets, one
must assume countability of the sets, characterization of the sets by constraints or explicit
parameterization of the transformations.

A traditional way in pattern analysis for involving such transformation knowledge is so
called tremplate matching, which means that all patterns are explicitly transformed and the
best fitting match between two transformed objects is used in the analysis task. Another
method omitting these explicit transformations is to perform a pre-processing step by map-
ping the objects into an invariant representation in some real vector space H. Instead of
working on the original patterns, the transformed samples are taken as a basis for investiga-
tion. This step is called feature extraction.

Definition 5 (Invariant Function, Single Argument) We call a function f : X — H invariant
with respect to T, if for all patterns x and all transformations ¢ € T holds f(x) = f(¢(x)).
The vector f(x) is then called an invariant representation or invariant feature vector of x.

To emphasize the invariance of an arbitrary function f(x), we will occasionally denote
it /(x). In traditional invariant pattern recognition, this notion is used for transformation

@ Springer

Mach Learn (2007) 68: 35-61 41

groups T = G, cf. (Schur 1968; Schulz-Mirbach 1995; Wood 1996). In this case the pattern
space X is nicely partitioned into equivalence classes T, which correspond to the orbits of
the patterns under the group action. Then, invariants are exactly those functions, which are
constant on each equivalence class. Various methods for constructing such invariant features
are known, e.g. normalization approaches like moments (Canterakis 1999), averaging meth-
ods (Schulz-Mirbach 1994) or differential approaches. For a general overview of invariance
in pattern recognition and computer vision we refer to (Burkhardt and Siggelkow 2001;
Mundy et al. 1994).

Learning targets can often be modeled as functions of several input objects, for instance
depending on the training data and the data for which predictions are required. For such
functions different notions of invariance are used in literature, each with its own practi-
cal relevance. Thus, a more distinguishing treatment of the notion invariance is required in
particular for kernel methods. Therefore, we introduce discriminating extensions of Defini-
tion 5, which will be used throughout the presentation.

Definition 6 (Invariant Function, Several Arguments) We call a function f : X" — H

(1) simultaneously invariant with respect to T, if for all patterns xy, ..., x, € X and trans-
formations ¢ € T holds

JOo o x) = @), ..o ().

(ii) totally invariant with respect to T, if for all patterns x, ..., x, € X and transformations
t1,...,t, € T holds

J @, x) = f(a), . 1 (X))

Obviously, for the case of a function with a single argument, both definitions corre-
spond to the invariance according to Definition 5. The first notion (i) is used in (Schur
1968) for polynomial functions under group transformations. In general, this is a com-
mon understanding of invariance. The function does not change if the whole space X is
globally transformed, i.e. all inputs are transformed simultaneously with an identical trans-
formation. For example, the Euclidean distance is called translation invariant, the stan-
dard inner product rotation invariant (Veltkamp 2001; Scholkopf and Smola 2002). From
a practical viewpoint, this type of invariance is useful, as it guarantees that the function
is independent of the global constellation of the data. By this it is unaffected, e.g. by
changes of the experimental setup: A simultaneously translation-invariant system can op-
erate on data without pre-processing like centering. A simultaneously scale-invariant sys-
tem will produce the same output on differently scaled datasets, making a uniform scale-
normalization superfluous, etc. So, these transformations can be ignored in the consecutive
analysis chain. Some more studies investigate the behavior of an SVM concerning uniform
global transformations. For instance, (Joachims 1999, Lemma 2) states that the SVM so-
lution is invariant with respect to global addition of real values ¢ to the kernel function.
The simultaneous rotation invariance of the Euclidean inner product and the additional
translation invariance of the induced distance transfers to similar transformation behavior
for resulting SVM solutions with various distance or inner product kernels, cf. (Abe 2003;
Sahbi and Fleuret 2002).

This notion of simultaneous invariance, however, does not capture the transformation
knowledge as given in Definition 4: It only guarantees to remain constant under global

@ Springer

42 Mach Learn (2007) 68: 35-61

transformation of the whole input space. However, if we only translate/rotate one of the sev-
eral patterns, the Euclidean distance and the inner product will in general change. Therefore,
we introduce the notion (ii) of fotal invariance to denote functions, which are guaranteed to
maintain their value, if any single argument is (or equivalently all simultaneously are) trans-
formed independently. Note that this is equivalent to the statement that they are invariant
as functions of one argument fixing the remaining ones arbitrarily. The total invariance (ii)
implies the simultaneous invariance (i). Further variations of invariance exist in invariant
theory, such as relative versus absolute invariance, covariance, semi-invariance, etc. (Schur
1968). These notions, however, are not relevant in the sequel.

Note that the requirement of precise invariance is frequently too strict for practical prob-
lems. The points within 7, are sometimes not to be regarded as identical to x, but only
as similar, where the similarity can even vary over 7,. Such approximate invariance is
called transformation tolerance (Wood 1996), probabilistic invariance (Lenz 1991), quasi-
invariance (Binford and Levitt 1993) or denoted additive invariance (Burges 1999). A well-
known and intuitive example is optical character recognition (OCR): The sets 7, of ‘similar’
patterns might be defined as rotations of the pattern x under small rotation angles. Exact in-
variance is not wanted with respect to these transformations. An invariant function f will
not only be constant on the set of small rotations of a pattern, but by transitivity it must
be constant for all rotations. This results in the characters M/W, Z/N, 6/9 etc. not being
discriminable.

We want to cover both the exact invariance and these transformation tolerant cases.
Therefore, in all cases where exact invariance is wanted and the sets 7, form a partition
of X, the proposed tools will result in totally invariant functions. Additionally, they will
allow to relax the strict invariance if required, such that they smoothly can interpolate to the
non-invariant case, where a given base-kernel is reproduced. Hereby the invariance degree
can be adjusted.

2.3 Relation of invariant kernels and features

Conceptionally more interesting than relating different invariant kernel types is the relation
of invariant kernel functions to traditional elements of invariant pattern analysis. Specifi-
cally, we address the relation to invariant features and template matching. The main fun-
damental insight is that totally invariant kernels and invariant representation have a direct
correspondence.

Proposition 7 (Correspondence of Invariant Features and Kernels) Let T be a set of trans-
formations on the space X including the identity.

(1) Any invariant function I (x) induces a positive definite and totally invariant kernel by
the standard inner product k(x, x") := (I (x), I (x")).

(ii) For every positive definite and totally invariant kernel there exists an invariant function
I mapping to some Hilbert space H such that k is the inner product between trans-
formed patterns, i.e. k(x,x") = (I (x), [(x")) forall x,x" € X.

Proof Part (i) is trivially satisfied, as the inner product in a Hilbert space is a symmetric
positive definite function and the resulting k is totally invariant by invariance of /:

k(t(x), ' (x") = (I (¢ (x)), I(t'(x"))) = (1 (x), I (x))) = k(x, x").

Part (ii) is a consequence of the existence of a RKHS H for k& with corresponding mapping @
according to Definition 3. As k is assumed to be totally invariant and 7 includes the identity,

@ Springer

Mach Learn (2007) 68: 35-61 43

sample—wise
precomputations

+

kernel
evaluation D """""""

invariant features invariant kernel template matching
+ ordinary kernel maxy y k(t(z;), t (z;))
k(I (zi), I(x;))

Fig. 1 Qualitative complexity comparison of totally invariant kernels covering the whole spectrum from
invariant feature extraction to template matching. The computational weight is shifted from sample-wise
precomputations to the kernel evaluation

we have k(¢ (x), id(x")) —k(x, x") = 0 which implies (@ (¢ (x)) — @ (x), @ (x")) =0 for all x'.
As every x € H is the limit of a sequence in span(® (X)) we obtain (P (¢(x)) — @ (x),x) =0
for all x. This implies @ (¢(x)) = @(x), so I (x) := @ (x) is the wanted invariant transfor-
mation. O

So, invariant kernels and invariant representations are basically different views on identi-
cal concepts. However, the kernel trick is the reason, why invariant kernels can be practically
more general and advantageous: Invariant kernels do not require to explicitly compute the
invariant feature representations. If the invariant feature representation is very high or even
infinite dimensional, which prevents practically accessing these spaces, the corresponding
invariant kernel can enable to work with these spaces, despite of the dimensionality. In
particular some instances of the transformation integration kernels described in the next
section are an effective mean to operate on theoretically ideal complete sets of invariants,
which have up to now not been accessible for real applications due to their high dimensional
feature space.

A second conceptional relation of invariant kernels to invariant features and template
matching can be found and is illustrated in Fig. 1. The basic operation of pairwise com-
parisons of objects with either of these methods can be divided into a stage of sample-wise
precomputations and a stage where the precomputed quantities are combined to obtain the
final pairwise similarity measure, i.e. the kernel evaluation. The main difference between the
approaches can be seen in the distribution of the computational load indicated by the area
of the blue rectangles. In the left it can be seen, that the main contribution is the expensive
computation of invariant features, whereas the kernel evaluation is quite cheap by usually
few arithmetic operations in the simple standard kernels. In case of template matching on
the right, merely few precomputations are possible, the computational load is concentrated
on the evaluation of the kernel, which involves matching all transformed patterns against
each other. Invariant kernels between those extremes allow some sample-wise precomputa-

@ Springer

44 Mach Learn (2007) 68: 35-61

tions of (possibly non-invariant) quantities and require some more than trivial computations
for kernel evaluation than the simple kernels. The main statement of this comparison is,
that totally invariant kernels nicely interpolate between the well-known methods of invari-
ant features applied in ordinary kernels and the other extreme of template matching. Totally
invariant kernels are therefore conceptionally covering but also extending these traditional
methods.

3 Constructing invariant kernels

After these conceptional considerations, we deal with applicational aspects of invariant ker-
nels for the remainder of the presentation. This section proposes two generic methods for
producing invariant kernels from a multitude of given base-kernels. This satisfies goal 2
stated in the introductory section. We discuss their properties, in particular the adjustable
invariance with respect to a multitude of transformations aiming at goals 3 and 4.

3.1 Transformation integration kernels

The motivation for the first invariant kernel construction method stems from a technique
which produces invariant features, the so called Haar-integral invariants or features. These
are invariant functions, which can be derived by an averaging procedure (Schulz-Mirbach
1994, 1995). In this approach, the transformations 7" are assumed to be structured as a group
G with invariant measure dg, the so called Haar-measure, which exists for locally compact
topological groups and finite groups, cf. (Nachbin 1965). Based on this, invariant feature
representations of patterns are generated by integrating simple non-invariant functions /
over the known transformation group (Schulz-Mirbach 1994). This results in Haar-integral
invariants defined as

f) 2/ h(g(x))dg,)]
G

where & is chosen such that the integral exists and is finite for all x. It is intuitively clear
and can be rigorously proven (Nachbin 1965, p. 64) that f(x) is an invariant function in the
sense of Definition 5. Extending this concept of integration over transformations to kernel
functions is the main motivating idea for the transformation integration kernels. This results
in kernel functions, which are positive definite, have arbitrarily wide adjustable invariance
and can capture simultaneously various continuous or discrete transformations as desired.
The following is a slight generalization of the presentation in (Haasdonk et al. 2005), here
we omit the requirement of having a transformation group.

Definition 8 (TT-Kernels) Let 7 be a set of transformations operating on the set X with
measure d¢. Let k be a kernel on X" such that for all x, x’

kn(x,x’)://k(t(x),t’(x’))dtdt’ 2)
TJr

exists and is finite. We denote this function the transformation integration kernel (TI-kernel)
of k with respect to T .

The requirement of the integrability of k is practically mostly satisfied, e.g. after finite
discretization of 7. But the definition also covers infinite cases. For instance, a general

@ Springer

Mach Learn (2007) 68: 35-61 45

Fig. 2 Geometric interpretation

of TI-kernels. a Original pattern d

space X, b kernel-induced 4 T ’6(T)
x

feature space @ (X) C H M
AN

N\

a) & b)

assumption is to have transformations 7 (X, p), where the patterns stem from some real vector
space and can be parameterized by a real parameter vector p from some compact set. If # and
k are continuous and dt is the Lebesgue measure, the integrand is bounded and continuous
for all x, X', so the integral exists and is finite. If and k are polynomial, the integrals can
even be analytically solved with integration by parts.

The motivation of the integral (2) is demonstrated in Fig. 2 in two ways: (a) in the original
pattern space X and (b) in a k-induced feature space H. For simplicity, we assume the
measure to be normalized to d¢(T) = 1. In the left plot, two patterns x, x are illustrated in
the pattern space X with their sets of transformed patterns 7, and 7,- indicated by rectangles.
The TI-kernel generated by k is the kernel average over all pairwise combinations of 7,
and T, .

In the right sketch (b), the interpretation of the kernel in the feature space H is given:
Instead of averaging over k(x, x’), the integration kernel is the inner product of the average
(indicated by a bar) of the sets @ (7/), @ (T,), respectively, due to

< f b (t(x))dt, / <1>(r’<x/>)dz’>= / / (D (x)). B () dredr’
T T TJT
= / / k(t(x), ' (x"))dtdt' = kri(x, x). 3)
TJT

Interestingly, these kernels turn out to be very convenient, as definiteness properties of
the base kernel k are transferred. In particular, the TI-kernels are (c)pd if the base kernel is
(c)pd. The argumentation is identical to the case of group transformations (Haasdonk et al.
2005).

For these kernels, the practical gain by the kernel trick as mentioned in the previous
section can be demonstrated. It is known, that for finite transformation groups G with ny
elements complete sets of Haar-integral invariants can be generated. This is obtained by
using all monomials up to degree ny as functions s in (1) (Schulz-Mirbach 1995, Satz
3.5). Until now, this result was mainly a theoretical upper bound, as computation of these
exponentially many features is infeasible. It can be shown, that the TI-kernel of k(x, x") =
({x,x’) + 1)"T exactly is operating on this complete set of invariant features. Therefore, the
TI-kernels are indeed an efficient way to implicitly operate with high dimensional vectors of
invariant features. For details on this argumentation, we refer to (Haasdonk 2005a, Sect. 5.6).

The integration kernels allow various ways of time complexity reduction. As argued be-
fore, suitable caching strategies can accelerate the computation procedure, e.g. caching the
transformed patterns throughout the computation of the kernel matrix. Additionally, various
transformations allow the reduction of the double integral to a single integral, which is a
reduction of the complexity by one square-root (Haasdonk et al. 2005).

@ Springer

46 Mach Learn (2007) 68: 35-61

3.2 Invariant distance substitution kernels

A second generic method for constructing totally invariant kernels can be obtained by in-
volving invariant distances. Assuming some distance function d on the space of patterns
X enables to incorporate the invariance knowledge given by the transformations 7' into a
new dissimilarity measure. Hereby, for a distance function we only require symmetry, non-
negativity and zero-diagonal. So in particular the triangle inequality does not need to be
valid. The invariant distance computation is then based on minimizing the distance between
the sets of transformed samples. Similar formalizations of such distances are widely avail-
able (Vasconcelos and Lippman 1998; Simard et al. 1998; Keysers et al. 2000). In particular
this notion of invariant distance covers many specific examples in literature. In particular
tangent distance (TD) (Simard et al. 1993), the image distortion model (IDM) (Keysers et
al. 2000), general deformation models (Keysers et al. 2004), dynamic time warping (DTW)
(Rabiner and Juang 1993), Fréchet distance (Alt and Guibas 1999), invariant distances be-
tween point sets (Werman and Weinshall 1995) or two-sided manifold distance (Fitzgibbon
and Zisserman 2003).

Definition 9 (Invariant Distances) For a given distance d on the set X’ and some cost func-
tion 2: T x T — R, with 2(t,¢) =0 & ¢t =t = id, we define the two-sided invariant
distance as

dys(x,x") := iprd(t(x),t/(x/))+)L.Q(t,t/). “)

Note, that the resulting distance measure again is guaranteed to be symmetric, nonnega-
tive and will have a zero-diagonal.

The motivation for this formalization is illustrated in Fig. 3. We again see two patterns
x, x" and their corresponding sets of transformed patterns as blue rectangles. We additionally
plot the transformed samples #(x) and #'(x’) which are obtained from the minimization
process in (4) for different values of A. If the points within each set are assumed to have
identical meaning, a dissimilarity measure should incorporate this by rather measuring the
distance of the sets Ty, T, than the original point-distance. The distance of point-sets is
usually defined by taking the infimum over distances of point-pairs, which results in the first
term of (4), or equivalently, setting A = 0 as indicated in plot (a).

However, in general, not all points in the set of transformed patterns 7 have exact iden-
tical meaning, the likeliness of 7 (x) to x will decrease with the extent of the transformation.
This ’unlikeliness’ of large transformations can be modeled by a nonnegative cost term
£2(t,t) in (4). By increasing A, unlikely large transformations are penalized and a larger
distance value is allowed as indicated in plot (b). For . — 0o we obtain the case (c), where
the original distance measure is reproduced.

With the notion of invariant distance we can define the invariant distance substitution
kernels as follows:

Definition 10 (IDS-Kernels) For any distance-based kernel k, i.e. k(||x —X'||), and invariant
distance measure dog we call kips(x, x') := k(dos(x, x)) its invariant distance substitution
kernel (IDS-kernel). Similarly, for an inner-product-based kernel k, i.e. k({x,x’)), we call
ky(x,x") :=k({x, x")9) its IDS-kernel, where O € X is an arbitrary origin and a general-
ization of the inner product is given by the function

1
(2, x)% = =5 (das(x, XY} = das(x, 0)* — dos(x', 0)%). (&)

@ Springer

Mach Learn (2007) 68: 35-61 47

a) b) c)

Fig. 3 Illustration of the invariant distance with varying A. a Total invariance by A = 0, b approximate
invariance by A > 0, ¢ no invariance by A = oo

This notation for the inner product reflects the fact that in case of d,s being the L?-norm
in a Hilbert space X, (x, x')}? corresponds to the inner product in this space with respect to
the origin O. Note that this is only a formal definition, usual properties like bilinearity are
not defined. Still a suitable interpretation as an inner product exists after suitable embeddings
into pseudo-Euclidean spaces, cf. (Haasdonk 2005a).

So the notion distance substitution in case of inner-product-based kernels is also reason-
able as indeed distances are substituted. Note that these kernels are well-defined for these
inner-product-based cases in contrast to the jittering kernels, cf. the comments in the in-
troductory section. In particular, for the simple linear, negative-distance, polynomial and
Gaussian kernels the IDS kernels are well-defined. Of course, more general distance- or
dot-product-based kernels exist and corresponding IDS-kernels can be constructed, e.g. sig-
moid, multiquadric, B,-spline, exponential, rational quadric, Matern kernels (Scholkopf and
Smola 2002; Genton 2001), etc.

Frequently, it can be difficult to construct all possible variations 7, of an object x
by explicit transformations, e.g. if the sets 7, are infinite or the required number of
transformation parameters is high. Practical approaches for computation therefore re-
quire further structural assumptions on the sets 7, in order not to perform the trans-
formations explicitly. This is the most important point for practically employing these
kernels, as immense complexity reductions compared to matching are possible. For in-
stance, if some recursive formulation of the transformations in 7" can be defined, meth-
ods like dynamic programming can be applied to implicitly operate on the exponentially
many transformations. An example of this is the DTW distance (Rabiner and Juang 1993;
Bahlmann et al. 2002), which is a totally invariant distance measure in our terms and applied
in online handwriting recognition (Bahlmann et al. 2002). This distance measure can be de-
termined in a complexity, which scales quadratically with the length of the point sequences
in contrast to an exponentially growing complexity for matching. If in other cases the set T is
composed of exponentially many combinations of transformations, which operate locally on
independent parts of the pattern x, efficient computation can be performed by sequentially
addressing the different object parts and their local transformations. An example for this is
the IDM (Keysers et al. 2000) for images, which can be evaluated in complexity growing
linear in the number of pixels. If in other cases the assumption of linear representation of the
sets T, holds, projection methods can be used to perform the exact minimization over in-
finitely many transformations very efficiently. For instance, the TD-kernels (Haasdonk and
Keysers 2002) can be evaluated in a complexity growing only polynomial with the dimen-
sion of the transformation set. An additional computational benefit of the IDS-kernels is the

@ Springer

48 Mach Learn (2007) 68: 35-61

possibility to precompute the distance matrices. By this, the final kernel evaluation is very
cheap and ordinary fast model selection can be performed.

An important property worth noting is, that the IDS-kernels in general are indefinite,
even if the base-kernel was pd. This results from the fact, that the invariant distances fre-
quently are not Hilbertian metrics, e.g. they violate the triangle inequality. This should
be kept in mind, if they are involved in learning algorithms. For certain kernel meth-
ods this is no problem, e.g. kernel principal component analysis can work with both pd
or indefinite kernels, the SVM is known to tolerate indefinite kernels (Haasdonk 2005a)
and further kernel methods are developed, which can work with such kernels, (Ong et al.
2004).

We want to conclude this section with mentioning a relation to an existing method. It
can be shown that the IDS-kernels for A = 0 generalize the jittering kernels in case of
finite 7 and distance-based invertible functions k(|| - ||), which monotonically decrease
with || - ||. This particularly comprises k™ and k™. Still, the IDS-kernels are more gen-
eral: They allow for regularization, they can capture infinitely many transformed patterns,
by suitable distance measures, which is not possible by explicit discrete jittering, and they
naturally extend to linear/polynomial kernels, where the jittering kernels are not well de-
fined.

3.3 Adjustable invariance

The IDS and TI-kernels are conceptionally an elegant seamless connection between non-
invariant and invariant data-analysis: The size of 7' can be adjusted from the non-invariant
case T = {id}, which recovers the base kernel, to the fully invariant case, where T equals a
transformation group T = G. This can both be stated theoretically and demonstrated exper-
imentally.

Proposition 11 (Adjustable Invariance of TI-Kernels)

(1) If T ={id} and dt satisfies dt(T) = 1, then ky; = k.
(i) If T is a transformation group and the measure dt is the invariant Haar-measure then
the resulting integration kernel kry is totally invariant.

Proof Statement (i) is obvious. For (ii) it is sufficient to argue, that variation of a single
argument maintains the value of kry. This is true, as the TI-kernels are Haar-integral features
if T = G for some group G, dt is the corresponding Haar-measure dg and one argument is
fixed:

le(x,x/)=/ h(g(x)dg with h(x) :=/ k(x,g'(x))dg'.
G G

For such Haar-integral features, the invariance is known, cf. (Nachbin 1965, p. 64), which
particularly implies the desired one-sided invariance kt1(g(x), x") = kr(x, x'). O

Similar statements can be made for the IDS-kernels, these however offer two possibilities
for controlling the invariance extend and hereby interpolating between the invariant and non-
invariant case. Firstly, the size of T can be adjusted, secondly, the regularization parameter
A can be increased to reduce the invariance. The proof of the following is omitted, as it can
easily be obtained from the definitions.

@ Springer

Mach Learn (2007) 68: 35-61 49

Proposition 12 (Adjustable Invariance of IDS-Kernels)

(1) If T = {id} and d is the ordinary Euclidean distance, then kips = k.
(i) If d is the ordinary Euclidean distance, then lim,_, o, kips = k.
(iii) If A =0and T is a transformation group, then kips is totally invariant.

We give simple illustrations of the proposed kernels. From the multitude of possible dis-
tance and inner-product-based kernels we restrict to well known representatives, the linear
k'™ and Gaussian k™' kernel as other kernels like the polynomial, exponentials, etc. behave
very similarly. We treat the TI- and IDS-kernels in parallel to emphasize and comment on
similarities and differences. For the illustrations, our objects are simply points in two di-
mensions and several transformations of the points define sets of points to be regarded as
similar. These transformations will comprise discrete, continuous, linear, nonlinear, highly
nonlinear transformations and combinations thereof. This demonstrates the achievement of
goal 3. All plots generated in the sequel can be reproduced by the MATLAB library KerMet-
Tools (Haasdonk 2005b), which is designed for working with invariant kernels in different
kernel methods. This 2D scenario is not only an academic problem setting, but might be
relevant in image-based applications: For instance, interest point extractors are fundamental
ingredient in many image analysis systems. These produce two-dimensional points which
are subject to the same geometric coordinate-transformations as the object displayed in the
image.

We start with the total invariance of all proposed kernels in both discrete and continu-
ous cases. We fix one argument x’' (denoted with a black dot) of the kernel, and the other
argument X is varying over the square [—1, 2]? in the Euclidean plane. We plot the different
resulting kernel values k(x, xX") color coded. The upper row of Fig. 4 illustrates the non-
invariant linear kernel in (a) and the corresponding y-axis-reflection invariant versions, the
IDS-kernel in (b) and the TI-kernel in (c). The invariance is clearly obtained, though being
qualitatively different. The lower row demonstrates that the invariance is also obtained for
continuous transformations, here the rotation. The non-invariant Gaussian in (d) is made
invariant by its IDS- and TI-kernels in subplot (e) and (f), respectively. The qualitative dif-
ference is, that the circle with maximum values of the IDS-kernel precisely captures the set
of rotated patterns T, whereas the circle with maximum values of the TI-kernel is slightly
smaller. Overall, total invariance is perfectly obtained in all cases.

In addition to the total invariance, we claimed that the invariance can be adjusted to ap-
proximate invariance. We will demonstrate this in the remainder of the section. We focus
on a linear shift along a certain slant direction while increasing the transformation extent.
Figure 5(a) demonstrates the behavior of the linear IDS-kernel, which perfectly aligns to
the transformation direction. Interestingly, the TI-kernel of the linear kernel cannot capture
invariance with respect to this highly symmetric linear transformation, illustrated in (b).
This can easily be explained by the feature-space interpretation in Fig. 2(b) as the mean
of T, always is identical to x. This problem does not appear for non-symmetric transfor-
mations. To demonstrate this, we choose a highly nonlinear transformation of the points,
namely the shift along a sine curve in Fig. 6. It is obvious how both the IDS-kernel (a)
and the TI-kernel (b) of the linear kernel are completely nonlinear due to the construction
rules. In both cases, the invariance along the sine curve can be smoothly adjusted by in-
creasing T from left to right. Similar behavior is observed for other inner-product-based
kernels.

Corresponding illustrations of the distance based kernel k™' are given in Fig. 7 where
the adjustability of the IDS-kernel (a) and TI-kernel (b) are illustrated. It is striking, that the

@ Springer

50 Mach Learn (2007) 68: 35-61

e) f) [

Fig. 4 Total invariance with respect to discrete and continuous transformations of inner-product- and

distance-based kernels. a Non-invariant linear kernel klm, b reflection-invariant kernel k}BS’ ¢ reflec-

tion-invariant kernel k%i‘, d non-invariant Gaussian k‘bf, e rotation-invariant kernel kf]bDfS, f rotation-invariant
rbf

kernel Ky

Fig. 5 Adjustable invariance of linear kernel Klin with respect to linear transformation. a IDS-kernels with
increasing transformation extent, b TI-kernels

captured transformation range is much larger and more accurate for the IDS-kernels. In the
nonlinear transformation case of Fig. 8 the situation is very similar. Again the maximum
values of those kernels perfectly fit along 7y and even beyond until precisely twice the
range of 7.

The IDS-kernels have a second means for controlling the invariance extend, namely in-
creasing the regularization parameter A. This gives similar results as decreasing the trans-
formation extent, but the A-variation is also applicable for discrete transformations such as

@ Springer

Mach Learn (2007) 68: 35-61 51

/ \ I.l 1\ W \
¥ V VALY VALY

L L

]ﬂ|.ln‘ ““l.““l.““l.

Fig. 6 Adjustable invariance of linear kernel Kin with respect to highly nonlinear transformation.
a IDS-kernels with increasing transformation extent, b TI-kernels

b)

Fig. 7 Adjustable invariance of Gaussian kernel k™f with respect to linear transformation. a IDS-kernels
with increasing transformation extent, b TI-kernels

reflections, cf. Fig. 9. The figure additionally demonstrates the invariance with respect to
combined transformations.

3.4 Comment on simultaneous invariance

Due to our definition of transformation knowledge, we are mostly interested in totally in-
variant kernels. As noted earlier, other notions like simultaneous invariance can also make
sense, if a data normalization step is to be prevented. As total invariance implies simulta-
neous invariance, the presented kernels are similarly simultaneous invariant. But also some
simple modifications of the TI- and IDS-kernels can be defined, which result in more general
simultaneous invariant kernels.

@ Springer

52 Mach Learn (2007) 68: 35-61

Fig. 8 Adjustable invariance of Gaussian kernel k™! with respect to highly nonlinear transformation.
a IDS-kernels with increasing transformation extent, b TI-kernels

Fig. 9 Adjustable invariance of Gaussian kernel kIr]b)fS with respect to simultaneous discrete and continuous
transformation by increasing regularization parameter A

Proposition 13 (Simultaneous Invariant Modifications) Let us define alternatively to (2)
and (4)

kri(x, x") :/k(t(x),t(x’))dt and drs(x,x') = iand(t(x),t(x/)) + A82(t,1).
T te

If we again assume that T is a transformation group
(1) The kernel kry is simultaneously invariant.

(ii) For all distance-based kernels k, the IDS-kernel kips is simultaneously invariant.

Note that the simultaneous invariance in general does not transfer to inner-product-based
IDS-kernels. From now on, we only regard totally invariant kernels and their adjustable
invariant modifications.

4 Application in kernel methods

Until now, we only commented on and illustrated the kernel functions themselves. In this
section we want to demonstrate, that they are applicable in various kernel methods ranging

@ Springer

Mach Learn (2007) 68: 35-61 53

Fig. 10 Illustration of kernel nearest-neighbor -classification with rbf-kernel. a No invariance,
b scale-invariance in IDS-kernel, ¢ scale-invariance in TI-kernel

from classification, feature-extraction to novelty detection. This is an empirical demonstra-
tion of goal 1 in the introduction. In addition to the applicability, we will point out several
benefits of invariant kernels compared to the non-invariant ordinary ones. The following
algorithms are also implemented in the MATLAB library KerMet-Tools (Haasdonk 2005b)
used for the plots in the preceding section.

4.1 Kernel nearest-neighbor classification

A simple kernel method is the kernel nearest-neighbor algorithm for classification. De-
spite the theoretical benefits of the standard nearest-neighbor algorithm (Duda et al. 2001,
Sect. 4.5) (no training stage, asymptotic upper error bound in terms of the Bayes er-
ror, no parameters) the kernelized algorithm is not widely used. The kernelization hereby
simply results from computing a distance measure from a given kernel by d(x,x’)> =
k(x,x) — 2k(x,x") + k(x’, x"). One reason for this rare use is that for simple kernels the
result is identical to the standard nearest-neighbor. In particular for the linear kernel and
certain distance based kernels such as the Gaussian and negative distance kernel, this is the
case as exemplified for a checkerboard pattern in Fig. 10, where plot (a) is the result of
the kernel 1-nearest-neighbor algorithm with the k™ kernel. So kernelization indeed has no
benefit for these simple kernels. For invariant kernels the situation however changes: The
simple structure of a base kernel can be remarkably made more complex, such that kernel
nearest-neighbor indeed makes sense. In Fig. (b) and (c) we assume that the transformation
knowledge consists of a certain scaling indicated by the black lines. These transformations
are obviously complementary to the information in the training data. The classification re-
sult for the IDS-kernel in (b) and the TI-kernel in (c) clearly captures this scale invariance,
while the checkerboard data still is classified correctly. The IDS-kernel seems to be slightly
advantageous over the TI-kernel as again the extent of the invariance is slightly larger than
for the latter. In particular we see by this initial example, that the invariance properties of
the kernel function transfer to the analysis method.

4.2 Kernel PCA feature extraction

The next method for demonstration is the kernel principal component analysis (KPCA) al-
gorithm, cf. (Scholkopf et al. 2000). Traditional PCA searches for the directions of maximal
variance of a dataset and projects points into this new coordinate system, these coordinates
then are the features of a newly observed point. Hence, in two dimensions maximal 2 fea-
tures can be extracted. This changes with the kernelized version, here the number of relevant
features is bounded by the number of training samples, which can be remarkably higher

@ Springer

54 Mach Learn (2007) 68: 35-61

a)

Fig. 11 Illustration of the first principal component of KPCA analysis. a Non invariant negative distance

kernel k", b rotation invariant k{‘]gs, ¢ rotation invariant k-‘}‘li

b)

than the dimension-restriction. We focus on two clusters of 4 points in Fig. 11 while using
the indefinite k™ kernel. The non-invariant KPCA correctly finds the illustrated principal
component projection (a), which separates the two clusters. If we however assume to have
knowledge about rotation invariance, the clusters should more reasonably be separated by
proximity of their transformation circles. This is nicely obtained for the IDS-kernel in (b)
and the TI-kernel in plot (c). This is another interesting relation to the traditional method
of invariant feature construction: Kernel methods with invariant kernels can be used to con-
struct invariant features, which are then available for arbitrary (non-kernel-based) analysis
methods.

4.3 Enclosing hypersphere

As a further kernel method we choose an unsupervised method for novelty detection, which
is the optimal enclosing hypersphere algorithm, cf. (Shawe-Taylor and Cristianini 2004).
With the linear kernel, this algorithm searches for the best fitting sphere around a data dis-
tribution while the fraction of outliers can be specified in advance. As illustrated in Fig. 12
we choose 30 points randomly lying on a sine-curve, which are interpreted as normal ob-
servations. We randomly add 10 points on slightly downward/upward shifted curves and
want these points to be detected as novelties. So the outlier rate is 25% and this rate can
be set in advance in the v-formulation of the algorithm. Plot (a) indicates that the linear
kernel nicely results in an ordinary sphere, which however gives 5 false alarms, i.e. nor-
mal patterns detected as novelties, and 4 missed outliers, i.e. outliers detected as normal
patterns. As soon as we involve the sine-invariance into the IDS-kernel in (b) or the TI-
kernel in (c) we consistently obtain O false alarms and 0 misses. To demonstrate that this is
not a singular random tendency, we performed this experiment 20 times resulting in false
alarm rates with standard-deviation intervals of 4.75 £ 1.1180, 0 & 0 and 0.1000 £ 0.3078
for the kernels corresponding to plots (a), (b) and (c). The miss rates correspondingly are
4.3500 £ 0.9333, 0.4000 £ 0.5026 and 0.2500 £ 0.4443. So single misses/false alarms are
possible with the invariant kernels, but overall they almost perform perfect in contrast to
the non-invariant kernel. This is an example, where the invariance knowledge already was
present in the dataset, but explicit formalization still gives a remarkable performance gain
in terms of recognition or detection accuracy. Similar observations can be made with other
predictive kernel-methods.

4.4 Kernel perceptron

In this example we want to focus on another aspect, namely the convergence speed in online-
learning algorithms. The folklore representative is the perceptron algorithm, which can also

@ Springer

Mach Learn (2007) 68: 35-61 55

a). b). c).

Fig. 12 Illustration of novelty detection experiments. a Non-invariant linear kernel, b sine-invariant kH')“S,

CH . lin
¢ sine-invariant k-y

a>- b)- c>-

Fig. 13 Kernel Perceptron results with polynomial kernel kPOl of degree 2. a Non-invariant kernel, b reflec-

. . . 1 . . . 1
tion-invariant kaOS, ¢ reflection-invariant k-lﬁ)

be kernelized, cf. (Herbrich 2002). As an example we take the polynomial kernel kP of
degree 2 and want to separate two random point sets of 20 points each lying uniformly dis-
tributed within two horizontal rectangular stripes indicated in Fig. 13. We want to investigate
the effect of explicitly incorporating the reflection invariance of the problem into the kernel.
The dataset is clearly separable with polynomials of degree 2, as is obtained by the non-
invariant kernel in (a). Similar well separation is obtained by the reflection invariant kernels
kaOls in (b) and k%" in (c). Thus, accuracies are not interesting in this example, but another al-
gorithmic aspect, namely the number of updates required before the solution is obtained. For
the non-invariant kernel, the algorithm requires 18 update steps, while the invariant kernels
converge much faster after 9 (IDS) or 11 (TI) updates. Again, this result is not a singular ran-
dom outcome, but can be found systematically. We performed the random data distribution
and the convergence analysis 20 times, which results in the one-standard-deviation intervals
of 21.0000 % 6.5855, 11.5500£4.5361 and 12.5500 £2.3050 updates for the non-invariant,
the IDS- and the TI-kernel, respectively. So indeed, the explicit invariance knowledge leads
to improved convergence properties.

4.5 Support vector machine

We want to conclude the 2D experiments with aspects which are demonstrated on the well
known SVM for classification. We want to investigate the effect of invariance knowledge on
the resulting model complexities. For this we take two random sets of 20 points distributed
uniformly on two concentric rings, cf. Fig. 14. We will involve rotation invariance explicitly
by taking T as rotations by angles ¢ € [—m/2, w/2]. We clearly see, that the problem is
separable by a standard SVM with Gaussian kernel in (a) and its corresponding invariant

@ Springer

56 Mach Learn (2007) 68: 35-61

a) J c)

Fig. 14 SVM model simplification by invariance. a Non-invariant k™ b rotation invariant k{gfs, ¢ rotation

: . rbf
invariant kg

b)

versions (b) IDS-kernel and (c) TI-kernel. The main difference in addition to some clearly
captured invariance is the model size in terms of number of support vectors (SVs). This is a
determining factor for the required storage, number of test-kernel evaluations and other theo-
retical statements like error estimates. In the example we obtain 14 SVs for the non-invariant
case, where the IDS-kernel only returns 4 SVs and the TI-approach results in 8 SVs. Again,
this is not only a singular observation, repeated evaluation over random drawings of the data
yield similar results. So again there is a clear improvement by involving invariance, in this
case expressed in the model size.

As the SVM is the most familiar algorithm of the presented examples, we additionally
want to discuss the generalization aspect here. From theoretical considerations it is well
known, that the number of support vectors ngy of a SVM trained on n samples, denoted as
fu» can be related to the generalization error R[f,_;] of a SVM trained on n — 1 samples.
For instance, the fraction of support vectors ngy/n is an upper bound on the leave-one-out
error Rpoo and the latter is an unbiased estimate of the true risk of a learning machine,
cf. (Scholkopf and Smola 2002, Theorem 12.9) and references therein. This bound can be
formulated as E,_; (R[f,—1]) = E.(Rrool fu]) < E,(nsy)/n, where the expectations are to
be taken over n — 1 resp. n independently drawn samples. So a low expected value of ngy for
a SVM trained on n samples is a guarantee for a low expected value of the true risk for the
SVM trained on all possible n — 1 samples. This is only an averaged statement, the estimate
does not regard the variance of the true risk and the number of training samples on both
sides is differing. So the practical use of this estimate is limited, but still it indicates, that the
LOO-error or the fraction of SVs is an informative quantity for assessing the generalization
ability of a SVM.

Another quantity, the geometrical margin y := 1/||w| of a SVM can also be related to
generalization ability. Intuitively it is clear, that the margin alone cannot be used directly
for comparing different kernels, but the scaling of the data has to be respected. The margin
can always be increased by upscaling the data, i.e. the kernel function. So a certain data-
dependent scaling must be performed for comparing different kernels. Examples are radius-
margin quantities, which emerge from VC capacity bounds e.g. (Scholkopf and Smola 2002,
Theorem 5.5). Alternatively, the trace of the kernel matrix can be used to effectively esti-
mate a data-dependent scaling factor, which allows to derive generalization bounds from
the margin. For instance (Shawe-Taylor and Cristianini 2004, Theorem 7.22) states, that the
generalization error of a SVM with bias can be bounded by an estimate which is dominated
by the term 44/tr(K)/(ny).

In addition to these formal indicators, the most practical indicator for the generalization
ability is certainly the test-error on an independent test-set.

@ Springer

Mach Learn (2007) 68: 35-61 57

Table 1 Detailed experimental SVM results averaged over a random drawing of 20 training datasets

Non-invariant k™™ Rotation invariant kfgfs Rotation invariant kfrblf
Test error 0.048 £+ 0.037 0+0 0.001 £ 0.003
Fraction of SVs ngy /n 0.410 £ 0.042 0.085 £0.019 0.188 £0.025
Trace-margin ratio %«/tr(K) 12.68 £2.25 10.67 £1.26 10.17 £ 1.40
Table 2 Test-error rates on USPS digits dataset
Base method Type of invariance Test-error Reference
k-NN no invariance, USPS+ 5.9% (Simard et al. 1993)
SVM no invariance, k™°f 4.5% (Haasdonk et al. 2005)
SVM VSV, x/y-shift, kP°! 3.2% (Scholkopf et al. 1996)
SVM x/y-shift kibF 3.2% (Haasdonk et al. 2005)

We have assessed these quantities empirically for the given example of rotational invari-
ance in SVM and have performed 20 training runs with the non-invariant and both invariant
Gaussian rbf-kernels. We list the test-error, the fraction of support vectors and the trace-
margin ratio in Table 1. The test-error is obtained by drawing 100 i.i.d. points and classi-
fying these by all trained classifiers. In addition to the average values, the table lists the
one-standard-deviation intervals.

It is clearly visible, how the use of invariance improves all of the considered generaliza-
tion indicators. The test error is consistently decreased by the invariant kernels. The frac-
tion of SVs is lowered and the trace-margin ratio is also effectively reduced. These findings
demonstrate and support the main benefit of invariant kernels in practice: The generalization
ability can very well be expected to improve.

4.6 Real world applications

In this paper we restrict our considerations to the conceptional aspects and the 2D-examples
of the preceding section. However, the real world applicability of the kernels can also be
demonstrated. Existing work and work in progress is covered by the framework presented
here. The Haar-integration kernels of (Haasdonk et al. 2005) are a special case, namely
restriction to transformation groups, of the general TI-kernels presented here. In that study,
the real world applicability was demonstrated on SVM classification in an optical character
recognition problem, where geometric transformations of the letters were involved. The
USPS dataset was used, which consists of 7291 training and 2007 test-patterns of 16 x 16
grey-value images of 10 digit classes. We give some reference results in Table 2. For further
details on this widely used dataset and further literature results we refer to (Scholkopf and
Smola 2002). The non-invariant k-nearest-neighbor method (with an extended training set
called USPS+) and the SVM approach are clearly outperformed by incorporating invariance
by the virtual support vector method or the TI-kernels. Overall, error-rates of 3.2% were
obtained with the TI-kernels, which are comparable to those of the VSV-method. Certain
acceleration methods resulted in training/testing speed outperforming/being comparable to
the VSV-method.

@ Springer

58 Mach Learn (2007) 68: 35-61

Table 3 LOO-error rates on Raman-spectra dataset

Base method Type of invariance LOO-error Reference

k-NN no invariance 21.06% (Peschke et al. 2006)
k-NN baseline-shift + scaling, kil 9.00% (Peschke et al. 2006)
SVM no invariance k™f 4.20% (Haasdonk 2005¢)
SVM baseline-shift 4 scaling, k{gfs 2.91% (Peschke et al. 2006)

Examples of the IDS-kernels are given in (Haasdonk and Keysers 2002; Bahlmann et al.
2002; Peschke et al. 2006). In the first reference, an invariant distance called tangent dis-
tance was involved in the USPS handwritten digit recognition task. The results presented
there have meanwhile been improved to slightly outperform the VSV-method, cf. (Haas-
donk 2005c¢). The second reference (Bahlmann et al. 2002) involves another invariant dis-
tance measure called dynamic time warping distance in the problem on online-handwriting
recognition. Here, the infinite sets 7, of time-reparameterizations of point-sequences can be
efficiently dealt with by dynamic programming. A recent application of invariant distances
can be found in the field of bacteria recognition based on Raman-spectroscopic measure-
ments (Peschke et al. 2006). The dataset used in this study consists of 2545 spectra of 20
classes, each consisting of 1833 intensity measurements. Chemometrically relevant pattern
variations can be formulated and the invariant distances can efficiently be computed by pro-
jections on linear subspaces. The transformations, which are considered, involve an intensity
scaling by multiplication and a base-line-shift by adding Lagrange-polynomials. We give the
main results concerning the LOO-errors in Table 3, which again demonstrate, that the non-
invariant k-nearest-neighbor and SVM approaches are clearly improved by involving the
invariance by the IDS-kernels.

We refrain from further specific details on applications, but summarize, that the kernels
give state-of-the-art results and are real-world applicable as soon as the transformation sets
T, are reasonably defined, such that fast computations are possible by omitting most of the
pairwise explicit pattern transformations.

5 Conclusion

We exemplified that the notion of invariance is used in qualitatively different meanings
in machine learning and pattern analysis and especially in kernel method research. We
therefore have distinguished different notions and focused on totally invariant kernels. We
clarified the conceptional relation of such kernels to traditional pattern analysis by demon-
strating that invariant kernels and invariant features have direct correspondences. In par-
ticular the main insight is that invariant kernels are practically more general than invariant
features as they enable practical operation with high or infinite dimensional feature rep-
resentations. Additionally, these kernels conceptionally cover and interpolate between the
opposite traditional methods of invariant feature extraction and template matching. In ad-
dition to these conceptional relations, we proposed two generic practical methods for con-
structing invariant kernel functions under the assumption of very general transformation
knowledge, which is mostly restricted in literature. The approaches support discrete, contin-
uous, infinite and even non-group transformations. The approaches offer intuitive ways of
adjusting the total invariance to approximate invariance until recovering the non-invariant

@ Springer

Mach Learn (2007) 68: 35-61 59

case. By this they build a framework interpolating between invariant and non-invariant ma-
chine learning. In particular, both realize the goals formulated in Sect. 1. The main differ-
ence between the TI and the IDS-kernel approach seems to be that the former results in
positive definite kernels, while the latter in general yields indefinite functions. The IDS-
kernels, however, capture the invariance more accurately and the other benefits also turn
out to be consistently better expressed. So overall, the IDS-kernels seem to be the first
choice for invariance in kernel methods. If the desired kernel method turns out to have
problems with indefinite kernels, the TI-kernels can be taken as a valuable alternative. Var-
ious practical possible benefits of invariant kernels have been demonstrated. In addition to
the model-inherent invariance, when applying such kernels, further advantages can be the
convergence speed in online-learning methods, model size reduction in SV approaches, or
improvement of prediction accuracy. The latter the most relevant point in practice, and we
exemplified that this improvement in generalization ability is supported by various error
indicators.

Current perspectives in invariant kernel methods are investigation of further acceleration
methods for the proposed kernels. Additionally, the use of indefinite kernels in machine
learning is not completely understood. New algorithms are to be developed and existing
algorithms must be investigated on suitability. Another interesting option is the construction
of approximate invariant feature representations by kernel-methods for feature extraction,
e.g. KPCA.

References

Abe, S. (2003). On invariance of support vector machines. In Proceedings of the 4th international conference
on intelligent data engineering and automated learning.

Alt, H., & Guibas, L. J. (1999). Discrete geometric shapes: Matching, interpolation, and approximation—
a survey. In Handbook of computational geometry (pp. 121-153). North-Holland: Elsevier.

Bahlmann, C., Haasdonk, B., & Burkhardt, H. (2002). On-line handwriting recognition with support vector
machines—a kernel approach. In Proceedings of the Sth international workshop on frontiers in hand-
writing recognition (pp. 49-54).

Berg, C., Christensen, J. P. R., & Ressel, P. (1984). Harmonic analysis on semigroups. Theory of positive
definite and related functions. In Graduate texts in mathematics. New York: Springer.

Binford, T. O., & Levitt, T. S. (1993). Quasi-invariants: Theory and explotation. In Proceedings of DARPA
image understanding workshop (pp. 819-829).

Burges, C. J. C. (1999). Geometry and invariance in kernel based methods. In B. Scholkopf, C. J. C. Burges
& A.J. Smola (Eds.), Advances in kernel methods—support vector learning (pp. 89-116).

Burkhardt, H., & Siggelkow, S. (2001). Invariant features in pattern recognition—fundamentals and applica-
tions. In Nonlinear model-based image/video processing and analysis (pp. 269-307). New York: Wiley.

Canterakis, N. (1999). 3D Zernike moments and Zernike affine invariants for 3D image analysis and recog-
nition. In Proceedings of the 11th Scandinavian conference on image analysis.

Chapelle, O., & Scholkopf, B. (2002). Incorporating invariances in nonlinear support vector machines. In
Advances in neural information processing systems (Vol. 14, pp. 609-616).

Cortes, C., Haffner, P., & Mohri, M. (2003). Rational kernels. In Advances in neural information processing
systems 15.

DeCoste, D., & Scholkopf, B. (2002). Training invariant support vector machines. Machine Learning, 46(1),
161-190.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed.). New York: Wiley.

Fitzgibbon, A. W., & Zisserman, A. (2003). Joint manifold distance: A new approach to appearance based
clustering. In Proceedings of the IEEE computer society conference on computer vision and pattern
recognition.

Fung, G. M., Mangasarian, O. L., & Shavlik, J. W. (2004). Knowledge-based support vector machine classi-
fiers. In Advances in neural information processing systems (Vol. 16).

Genton, M. G. (2001). Classes of kernels for machine learning: A statistics perspective. Journal of Machine
Learning Research, 2,299-312.

@ Springer

60 Mach Learn (2007) 68: 35-61

Graepel, T., & Herbrich, R. (2004). Invariant pattern recognition by semidefinite programming machines. In
Advances in neural information processing systems (Vol. 16).

Haasdonk, B. (2005a). Feature space interpretation of svms with indefinite kernels. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27(4), 482-492.

Haasdonk, B. (2005b). KerMet-tools: A MATLAB invariant kernel method toolbox. Software available at
http://Imb.informatik.uni- freiburg.de/people/haasdonk/KerMet-Tools.

Haasdonk, B. (2005c). Transformation knowledge in pattern analysis with kernel methods—distance and
integration kernels. PhD thesis, Computer Science Department, University of Freiburg, Germany.

Haasdonk, B., & Keysers, D. (2002). Tangent distance kernels for support vector machines. In Proceedings
of the 16th international conference on pattern recognition (Vol. 2, pp. 864—-868).

Haasdonk, B., Vossen, A., & Burkhardt, H. (2005). Invariance in kernel methods by Haar-integration kernels.
In Proceedings of the 14th Scandinavian conference on image analysis (pp. 841-851).

Haussler, D. (1999). Convolution kernels on discrete structures. Technical report UCS-CRL-99-10, UC Santa
Cruz.

Herbrich, R. (2002). Learning kernel classifiers. Cambridge: MIT.

Joachims, T. (1999). Estimating the generalization performance of a SVM efficiently. Technical Report LS8
Report 25, University of Dortmund, Germany.

Keysers, D., Dahmen, J., Theiner, T., & Ney, H. (2000). Experiments with an extended tangent distance. In
Proceedings of the 15th international conference on pattern recognition (Vol. 2, pp. 38-42).

Keysers, D., Gollan, C., & Ney, H. (2004). Local context in non-linear deformation models for handwritten
character recognition. In Proceedings of the 17th international conference on pattern recognition.

Leen, T. K. (1995). From data distributions to regularization in invariant learning. In Advances in neural
information processing systems (Vol. 7).

Lenz, R. (1991). Group theoretical feature extraction: Weighted invariance and texture analysis. In Proceed-
ings of the 7th Scandinavian conference on image analysis (pp. 63-70).

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., & Watkins, C. (2002). Text classification using
string kernels. Journal of Machine Learning Research, 2, 419-444.

Loosli, G., Canu, S., Vishwanathan, S., & Smola, A. (2005). Invariances in classification: An efficient SVM
implementation. In Proceedings of the 11th international symposium on applied stochastic models and
data analysis.

Mika, S., Ritsch, G., Scholkopf, B., Smola, A., Weston, J., & Miiller, K.-R. (2000). Invariant feature extrac-
tion and classification in kernel spaces. In Advances in neural information processing systems (Vol. 12).

Mundy, J. L., Zisserman, A., & Forsyth, D. (1994). Applications of invariance in computer vision. In Pro-
ceedings of the of 2nd joint European—US workshop, 1993. New York: Springer.

Nachbin, L. (1965). The Haar integral. Princeton: Van Nostrand.

Ong, C. S., Mary, X., Canu, S., & Smola, A. J. (2004). Learning with non-positive kernels. In Proceedings of
the 21st international conference on machine learning (pp. 639-646).

Peschke, K., Haasdonk, B., Ronneberger, O., Burkhardt, H., Rosch, P., Harz, M., & Popp, J. (2006). Using
transformation knowledge for the classification of Raman spectra of biological samples. In Proceedings
of the 4th IASTED international conference on biomedical engineering (pp. 288-293).

Pozdnoukhov, A., & Bengio, S. (2004). Tangent vector kernels for invariant image classification with SVMs.
In Proceedings of the 17th international conference on pattern recognition.

Rabiner, L., & Juang, B. (1993). Fundamentals of speech recognition. New York: Prentice Hall.

Sahbi, H., & Fleuret, F. (2002). Scale-invariance of support vector machines based on the triangular kernel.
Technical Report RR-4601, INRIA.

Scholkopf, B. (2001). The kernel trick for distances. In Advances in neural information processing systems
(Vol. 13, pp. 301-307).

Scholkopf, B., & Smola, A. J. (2002). Learning with kernels: Support vector machines, regularization, opti-
mization and beyond. Cambridge: MIT.

Scholkopf, B., Burges, C., & Vapnik, V. (1996). Incorporating invariances in support vector learning ma-
chines. In Proceedings of the 6th international conference on artificial neural networks (pp. 47-52).
Scholkopf, B., Simard, P., Smola, A., & Vapnik, V. (1998). Prior knowledge in support vector kernels. In

Advances in neural information processing systems (Vol. 10, pp. 640-646).

Scholkopf, B., Smola, A., Williamson, R., & Bartlett, P. (2000). New support vector algorithms. Neural
Computation, 12, 1083-1121.

Schulz-Mirbach, H. (1994). Constructing invariant features by averaging techniques. In Proceedings of the
12th international conference on pattern recognition (Vol. 2, pp. 387-390).

Schulz-Mirbach, H. (1995). Anwendung von Invarianzprinzipien zur Merkmalgewinnung in der Mustererken-
nung. PhD thesis, Technical University Hamburg-Harburg, Germany.

Schur, I. (1968). Vorlesungen iiber Invariantentheorie. Berlin: Springer.

@ Springer

Mach Learn (2007) 68: 35-61 61

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge: Cambridge
University Press.

Simard, P. Y., LeCun, Y. A., & Denker, J. S. (1993). Efficient pattern recognition using a new transformation
distance. In Advances in neural information processing systems (Vol. 5, pp. 50-58).

Simard, P. Y., LeCun, Y. A., Denker, J. S., & Victorri, B. (1998). Transformation invariance in pattern
recognition—tangent distance and tangent propagation. In Neural networks: Tricks of the trade (pp. 239—
274).

Vasconcelos, N., & Lippman, A. (1998). Multiresolution tangent distance for affine-invariant classification.
In Advances in neural information processing systems (Vol. 10).

Veltkamp, R. C. (2001). Shape matching: Similarity measures and algorithms. Technical Report UU-CS-
2001-03, Department of Computing Science, Utrecht University, The Netherlands.

Vishwanathan, S. V. N., Vidal, R., & Smola, A. J. (2005). Binet—Cauchy kernels on dynamical systems.
Technical report PA005796, National ICT Australia.

Watkins, C. (2000). Dynamic alignment kernels. In Advances in large margin classifiers (pp. 39-50). Cam-
bridge: MIT Press.

Werman, M., & Weinshall, D. (1995). Similarity and affine invariant distances between 2D point sets. [EEE
Transactions on Pattern Analysis and Machine Intelligence, 17(8), 810-814.

Wood, J. (1996). Invariant pattern recognition: A review. Pattern Recognition, 29(1), 1-17.

@ Springer

	Invariant kernel functions for pattern analysis and machine learning
	Abstract
	Introduction
	Goals and Paper Organization
	Related work

	Notions and conceptional relations
	Kernel methods
	Variants of invariance
	Relation of invariant kernels and features

	Constructing invariant kernels
	Transformation integration kernels
	Invariant distance substitution kernels
	Adjustable invariance
	Comment on simultaneous invariance

	Application in kernel methods
	Kernel nearest-neighbor classification
	Kernel PCA feature extraction
	Enclosing hypersphere
	Kernel perceptron
	Support vector machine
	Real world applications

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

