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Abstract In many online applications of machine learning, the computational resources
available for classification will vary from time to time. Most techniques are designed to op-
erate within the constraints of the minimum expected resources and fail to utilize further
resources when they are available. We propose a novel anytime classification algorithm,
anytime averaged probabilistic estimators (AAPE), which is capable of delivering strong
prediction accuracy with little CPU time and utilizing additional CPU time to increase clas-
sification accuracy. The idea is to run an ordered sequence of very efficient Bayesian proba-
bilistic estimators (single improvement steps) until classification time runs out. Theoretical
studies and empirical validations reveal that by properly identifying, ordering, invoking and
ensembling single improvement steps, AAPE is able to accomplish accurate classification
whenever it is interrupted. It is also able to output class probability estimates beyond simple
0/1-loss classifications, as well as adeptly handle incremental learning.

Keywords Anytime learning - Anytime classification - Probabilistic prediction - Bayesian
classifiers - Ensemble methods

1 Introduction

In many applications, learning must be performed under strong computational resource con-
straints. The available resources are typically fixed and computations often must be com-
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pleted within strict elapsed time limits in order to be useful. In particular, interactive systems
must complete their task within a few seconds in order to gain and retain user acceptance.
Some of the many examples of such applications include information retrieval (Baeza- Yates
and Ribeiro-Neto 1999), recommender systems (Resnick and Varian 1997), user model-
ing (Webb et al. 2001) and online fraud detection (Chan et al. 1999).

While the total available resources remain constant, typically the number of simultane-
ous jobs that must be processed by a system varies from time to time. Hence, the potential
computational resources available per job will fluctuate. Further, the complexity of individ-
ual jobs may vary considerably, for example, due to differences in the amount of available
information. However, the limits on acceptable elapsed processing time per job are likely to
remain invariant.

These constraints imply a complex optimization problem for the system designer.
From anecdotal evidence, we believe that the standard response is to develop as effi-
cient a learner as will provide acceptable accuracy (or whatever other performance met-
rics are sought to be optimized); to estimate or observe the resource requirements of
this learner under peak loads; and then to provide the necessary resources for it to per-
form within the required elapsed time constraints under peak loads. We believe that
this is one of the reasons for the popularity of naive Bayes (NB) (Langley et al. 1992;
Mitchell 1997) in many such online applications. NB provides relatively high accuracy with
low computational requirements (Lewis 1998).

Under such a scenario, it is clear that the available computational resources will be
under-utilized outside peak periods. As a result, less accurate classification may occur than
might be achievable within the available resources if a less efficient but more accurate
learner were employed. Accordingly we propose the anytime averaged probabilistic esti-
mator (AAPE), an algorithm that addresses the issue of utilizing such varying and uncer-
tain resources to improve classification. AAPE invokes an ordered sequence of very effi-
cient Bayesian probabilistic estimators, particularly naive Bayes (NB) (Langley et al. 1992;
Mitchell 1997) and superparent-one-dependence estimators (SPODEs) (Keogh and Pazzani
2002), until time runs out. The classification can stop anywhere in the ordered sequence of
SPODEs. The probabilistic estimators used up to that point compose an ensemble which
will carry out the classification.

2 Problem definition and road map

We address the problem of classification learning using varying and uncertain computational
resources. We assume m attributes (X ... X,,) and k class labels (c; ...c;). The training

data are a set of labeled instances, D = ((y, X1), ..., (y:, X;)), where each y; € {cy, ..., ¢}
and each x; is a vector of attribute values (x1, ..., x,,). The test data are a set of unlabeled
instances, D’ = ((x1), ..., (X;)). Classification needs to predict the class label of each test

instance given the evidence collected from the training data.

The computation of classification learning occurs at two distinct times, training time and
classification time. We consider four distinct computational resources, training time (tt),
training space (ts), classification time (ct) and classification space (cs). We assume a budget
set for each of these resources consisting of a contract and an anytime component (Bernstein
et al. 2002). The former is specified in advance of computation and is guaranteed. The latter
is unknown beforehand, and the classifier is only notified when it has been exhausted. At
one extreme there may be no anytime budget, in which case the system is working within
known resource constraints. At the other extreme there may be no contract budget, in which
case the system might exhaust its resources at any time.
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The types of algorithms that are appropriate for tackling classification learning under
resource constraints will differ radically as the contract budgets and expectations about the
anytime budgets vary for each of the four computational resources. Rather than seeking to
develop algorithms that are appropriate to any such configuration, we address here one spe-
cific dimension, the classification time. We believe this approach has wide practical applica-
tion and is typical of many of the online applications in which NB is currently employed. In
this context, constraints on training space and time are not a major issue, because models are
only developed off-line infrequently, and then employed many times. Further, constraints on
classification space do not apply to the model, because a single model can be shared be-
tween all jobs, and hence the constraints relating to the classification space for a particular
job relate only to its additional space requirements. Finally, we assume that the contract por-
tion of the classification time budget is sufficient to allow standard NB classification to be
performed.

Our road map to achieving anytime classification is illustrated in Fig. 1. Identifying and
ordering single steps take place in training time while invoking and ensembling single steps
take place at classification time.

3 Identifying single improvement steps

The first task in creating an anytime classification system is to identify single improvement
steps, each of which is a small computational task with respect to the work needed to solve
the problem (Grass and Zilberstein 1996). The system invokes improvement steps until the
available time is exhausted. In principle, to minimize the risk that a single step is interrupted,
each step should be the smallest task possible.

In the context of this paper, the goal is to improve classification accuracy. Candidate sin-
gle improvement steps are k-dependence estimators (Sahami 1996). A k-dependence esti-
mator is a Bayesian probabilistic classifier where each attribute depends upon at most k other
attributes in addition to the class. In order to abide by the ‘smallest task possible’ principle
and considering that the computational expense increases while k grows bigger, we here
only employ naive Bayes (0-dependence estimators) and superparent-one-dependence esti-
mators (a restricted class of 1-dependence estimators). Besides, averaged one-dependence
estimators (AODE) (Webb et al. 2005) have demonstrated that an ensemble of SPODEs can
deliver very high classification accuracy. For convenience, we use the term probabilistic
estimators (PE) to refer to both NB and individual SPODEs.

A naive Bayes classifier (NB) assumes that attributes are independent of each other given
the class. It utilizes Bayes formula to estimate P (y|x), the probability of each class y given
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the instance to be classified, x. It assigns the class with the highest estimated probability
to x. Note that (2) follows from (1) under NB’s attribute independence assumption.

P(y)P(xly)

_ PO, Ply) o
P(x)

where P (-) denotes an estimate of P (-). ﬁ(y) and P (x;|y) are estimated from the frequency
of the relevant terms in the training data, with possible corrections for sampling error such
as the Laplace correction. IS(X) is invariant across classes and hence need not be estimated
if one only seeks to identify argmax, (P (y|x)).

A superparent-one-dependence estimator (SPODE) (Keogh and Pazzani 2002) also es-
timates P(y|x), and then chooses the class argmax (P (y|x)) as the class of x. However,
it assumes that attributes are independent of each other given a common attribute (the su-
perparent) and the class. Expressing X ,’s value in x as x,, a SPODE with superparent X,
estimates P (y|x) as:

P(x,p, y)P(XIxp, ¥)

P(ylx) = 1 3)
_ Py T Py, ) @
P(x) '

As in NB’s case, required probabilities can be estimated from corresponding frequencies
from the training data, with possible corrections for sampling error such as the Laplace
correction. Note that (4) follows from (3) under SPODE’s weaker attribute independence
assumption. I3(x) need not be estimated if one only seeks to identify argmaxy(P(ylx)).
A set of training data with m attributes can produce m SPODEs, each of which takes a
different attribute as superparent.

4 Ensembling single improvement steps to classify an instance

Suppose when the ct budget was exhausted, the anytime classification system has included
k € [1, m + 1] single steps, among which the first one is always NB and the remaining are
SPODEs. The classification terminates by returning the average probabilities of P (y|x) for
all PEs completed. This follows the practice of the ensemble algorithm of AODE (Webb et
al. 2005) and is computed as follows.

Assume that I denotes a subset of SPODEs and |/| denotes the number of SPODEs in 1.
Since (4) holds for any SPODE, it also holds for 7, giving:

Zpel ﬁ(xp’y)ﬁ(x|xp;y)
Px) x |1

_ Zpe[}s(xp’y) 1_[;”:1 ﬁ(xi|x17’ y)
P(x) x |1 '

P(ylx) =

(&)
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Averaging NB as in (2) and SPODE:s as in (5), we get:
PO)PXIY) + e Py, ) P(xlxy, )
P x (1 +1)

PO Pl + X s Py, MTT, Pxilx,, )
Px) x (I +1) '

P(ylx) =

(6)

Equation (6) averages probability estimates of an ensemble of PEs to classify a test in-
stance. That is how the anytime system ensembles single improvement steps’ contribution
whenever it is required to finish. We name this procedure averaging probabilistic estimators
(APE). Another way to ensemble PEs’ individual verdicts is to follow a bagging approach
that votes among PEs’ predicted classes. We prefer the former to the latter because the for-
mer can output class probability estimates beyond simple 0/1 loss classifications.

5 Ordering single improvement steps

Given a data set involving m attributes, there are m + 1 single improvement steps: one NB,
and m SPODEs, each of which takes a different attribute as superparent. It is desirable that
an anytime classification system has run-time monotonicity, that is, the classification accu-
racy is a nondecreasing function of time. It seems reasonable to assume that the available
SPODEs may be of varying quality. In an anytime system a varying number of improvement
steps might be taken. It will be desirable to take the best steps first. These requirements point
to the use of an ordering mechanism over the SPODEs such that the most beneficial may be
applied first.

Seven ordering metrics are studied here, including information-theoretic metrics and
accuracy-based empirical metrics. They are random (RAN), frequency (FEQ), minimum
description length (MDL), minimum message length (MML), cross validation (CV), back-
ward sequential elimination (BSE) and forward sequential addition (FSA).

5.1 Random (RAN)

RAN randomly chooses a SPODE and adds it into the ensemble. RAN has low computa-
tional overhead and offers a useful comparator against which to judge the impact on classi-
fication error of ordering PEs.

5.2 Frequency (FEQ)

FEQ orders SPODEs upon receiving each instance to be classified. Based on the specific
values x; of the attributes in that instance, FEQ counts frequency(x;), the number of times x;
occurs in training data. The SPODE whose superparent has the highest frequency is ordered
to be first, and so on so forth.

5.3 Information-theoretic metrics (MDL and MML)
Information-theoretic metrics provide a combined score for a proposed explanatory model

and for the data given the model: I (D|h) + I (h). Particularly here, 4 is a SPODE and D is
the training data. They aim to find a balance between goodness of fit (minimizing I (D|h))
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and model simplicity (minimizing I (h)), and thereby to achieve good modeling perfor-
mance without overfitting the data. Two representative metrics are studied here: minimum
description length! (MDL) (Suzuki 1996) and minimum message length (MML) (Korb and
Nicholson 2004). The best score is the smallest. Hence the lower the score a SPODE gets,
the higher its priority to appear in the ensemble.

5.4 Cross validation (CV)

CV scores each individual SPODE with superparent X, by its error on leave-one-out cross
validation in the training data. Given a SPODE, CV loops through the training data n times,
each time training the SPODE from (n — 1) instances and using it to classify the remaining
1 instance. The misclassifications are summed and averaged over n iterations. The resulting
classification error rate is taken as the metric value of the SPODE. The lower the error a
SPODE gets, the higher its priority to appear in the ensemble. This cross validation process
is very efficient as the model need only be updated for each instance that is left out, rather
than recalculated from scratch.

5.5 Backward sequential elimination (BSE)

Inspired by the backward sequential elimination strategy for attribute selection in NB (Lan-
gley and Sage 1994), backward sequential elimination starts out with a full ensemble includ-
ing NB and every SPODE. It then uses hill-climbing search to iteratively eliminate SPODEs
whose individual exclusion results in the lowest classification error. In each iteration, sup-
pose the current ensemble is E¢yyen involving & SPODEs. BSE eliminates each member
SPODE in turn from E ey and obtains an ensemble Ey, with (k — 1) SPODEs. It then
calculates the leave-one-out error of E\. The ensemble E that yields the lowest error is
selected and the corresponding eliminated SPODE is permanently deleted from the ensem-
ble. The same process is applied to the new PE ensemble and so on, until only NB is left in
the ensemble. The reverse of the order of elimination produces an order for SPODEs to be
employed.

5.6 Forward sequential addition (FSA)

Inspired by the forward sequential selection strategy for attribute selection in NB (Lang-
ley and Sage 1994), forward sequential addition begins with an ensemble containing only
NB. It then uses hill-climbing search to iteratively add SPODEs whose individual inclusion
results in the lowest classification error. In each iteration, suppose the current ensemble is
Ecuene With k SPODEs. FSA in turn adds each candidate SPODE, one that has not been
included into E.yyent, and obtains an ensemble E, with (kK + 1) SPODE:s. It then calculates
the leave-one-out error of Eg. The Ewy Who obtains the lowest error is retained and the
corresponding added SPODE is permanently included into the ensemble. The same process
is applied to the new PE ensemble and so on, until every SPODE has been included. The
order of addition produces an order for SPODE:s to be employed.

1Suzuki’s MDL metric differs only by a constant factor from Akaike’s information criterion (AIC) (Akaike
1974) and the Bayesian information criterion (BIC) (Schwarz 1978). In consequence, all three metrics will
provide identical orders over the model. Hence, the analysis and evaluation of MDL here also suffice for AIC
and BIC.
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6 The anytime average probabilistic estimator (AAPE) algorithm

AAPE starts with computing the probability estimates for NB. One reason to do so is that
SPODEs typically have higher variance than NB (Webb et al. 2005). Hence, especially for
small training sets, there is a risk that the error will be higher than NB if computation is
terminated after only very few SPODEs have been processed. Then AAPE computes the
probability estimates of each SPODE in sequence, ordered as in Sect. 5, until time runs out.
When the ¢t budget has been exhausted, it terminates and returns P (y|x) calculated by (6).
This AAPE algorithm is presented in Table 1. Lines 1 to 7 compute NB. It is assumed that
this computation can be completed within the contract time budget and so interrupts are
only enabled on Line 8. Line 10 starts the loop over the ordered set of qualified attributes
I that are each the superparent for a SPODE to be invoked. Lines 12 to 17 compute the
probability estimates 7' P for one of the SPODE:s. Lines 19 to 22 update the average condi-

Table 1 The AAPE Algorithm

Algorithm: AAPE
Inputs:
e x: the instance to be classified.

e : aset of SPODEs ordered by alternative schemes studied in Section 5.

e PPci...c]: prior probability estimate for each class. This and the following estimates are based
on the observed frequency in the training data with possible correction for sampling error such as a
Laplace correction.

e PPlcy...cg,attvals]: prior probability estimates for each class and attribute-value pair.

e CPlcy...cy,attvals]: conditional probability estimates for each attribute value given each class.

e CPlci...ck, superparentvals, attvals]: conditional probability estimates for each attribute-
value (the final index) given each class and each superparent value.

Outputs:
e Plcy...cy]: the estimated probability of each class given x.

1l: for y:=cy...c do

2:  Plyl:= PP[y]

3: for i:=1...m do

4: Ply] := Ply] x CP[y, z]
5: end for

6: end for

7: normalize(P)

8: on interrupt goto 25

9: count:=1

10: for each p€ 1l in turn do
11: count := count + 1

12: for y:=c1...c; do

13: TPly] := PPy, zp]

14: for i:=1...m do

15: TPly] :=TP[y] x CPly, zp, x;]
16: end for

17: end for

18: suspend interrupts

19: for y:=c1...c, do

20: P[y} = P[y]X(COZ:J;tl)JFTP[y]
21: end for

22: normalize(P)

23: restore interrupts

24: end for
25: return P
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tional probability estimate for each class to account for a new set of T P values. Interrupts
are suspended during this process as the P values are in an unstable state. In consequence,
if the time budget expires during this process there will be a slight delay before computation
terminates.

7 Time complexity analysis

Assume that the number of training instances and attributes are n and m, and number of
classes is k. Let the average number of values for an attribute be v.

7.1 Classification overhead

No matter what ordering scheme is applied to AAPE, the result is a linear combination of
SPODEs. Hence, each scheme’s complexity is of the same order O (m?k), resulting from an
O (mk) algorithm applied over an O (m) sized ensemble.

One exception is FEQ, which is a lazy technique that determines the order of SPODEs at
classification time. It involves sorting m attribute values on frequency(x;), which incurs an
additional time complexity O (mlogm).

7.2 Training overhead

Note that as far as anytime classification is concerned, the training time complexity is not
the key concern for AAPE. It is included here for completeness of analysis.

NB constructs a two-dimensional table indexed in one dimension by the class value and
in the other by the attribute values. Each entry contains the frequency of the given class
and attribute-value pair. Construction of this table requires iteration through each instance
(O(n)), for each of which it iterates through each attribute (O (m)) to increment the fre-
quency of that attribute’s value and the instance’s class value. This results in time complexity
of O(nm).

SPODE requires a three-dimensional table indexed in one dimension by the class value,
in the second by the super-parent attribute’s values, and in the other dimension by the re-
maining attribute values. Each entry contains the frequency of the given class, super-parent
value and attribute-value tuple. Compilation of this table requires iteration through each
instance (O (n)), for each of which it iterates through each attribute other than the super-
parent (O (m)) to increment the frequency of that attribute’s value and the instance’s class
and super-parent values. This also results in time complexity of O (nm).

APE requires a three-dimensional table indexed in one dimension by the class value,
in the second by all possible super-parent attribute’s values, and in the final dimension by
the remaining attribute values. Compilation of this table requires iteration through each in-
stance (O (n)), for each of which it iterates through each potential super-parent (O (m)). For
each potential super-parent it iterates through each remaining attribute to increment the fre-
quency of that attribute’s value and the instance’s class and super-parent values. This results
in time complexity of O (nm?).

RAN and FEQ do not require any additional information to be gathered in training time
and hence have no impact on training-time.

MDL’s complexity of calculating I(D|k) is O (mv*k). The dominating part is from
H(X;, ®(i)) which iterates through each value (O(v)), and then each joint value of the
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superparent and the class (O (vk)). The complexity of calculating I (k) is O (m).> Since the
selection repeats for each attribute (O (:m)), the overall complexity is O (m x (mv2k +m)) =
O (m?v2k).

MML’s dominating complexity is from calculating [T/ Hlf’ 17 sl(jvi;,li 11)' T, @i
MML iterates through each attribute (O (m)); and then each joint value of the superpar-
ent and the class (O (vk)) for which two factorials are calculated (O (v) + O(Uk)) On top

of that it loops through each attribute value (O (v)) for which a third factorial is calculated
(O( 2k)) Hence the complexity is O (m * vk * (v + k) * V% 2k) = O0(mn(v + )) This
repeats for each attribute (O (1)) and the overall complexity is hence O (m*n (v —|— o).

CYV classifies n training instances in turn to score a SPODE. To classify one instance,
a SPODE will multiply the conditional probability of each attribute value given each class
label and one (constant) superparent value. This results in O (mk). To do leave-one-out cross
validation, the classification will repeat n times. Hence the complexity is O (mkn). This
repeats for each attribute (O (m)) and the overall complexity is hence O (m%kn).

BSE’s hill climbing procedure of reducing a PE ensemble of size (m + 1) to 1 will
render a complexity of O(m?). In the first round, it alternatively eliminates each of m
SPODEs. In the second round, it alternatively eliminates each of (m — 1) SPODEs. Fol-
lowing this line of reasoning, the total number of probing a SPODEism + (m — 1) 4 --- 4
2+ 1= 0(m?). As explained for CV, to test each SPODE by leave-one-out cross validation
will incur complexity of O (mkn). As a result, the overall complexity is O (m>kn).

FSA’s hill climbing procedure of increasing a PE ensemble from size 1 to size (m + 1)
will render a complexity of O(m?). In the first round, it alternatively adds each of m
SPODEs. In the second round, it alternatively adds each of (m — 1) SPODEs. Follow-
ing this line of reasoning, the total number of probing a SPODE ism + (m — 1) +--- +
24 1 = O(m?). As explained for CV, to test each SPODE by leave-one-out cross validation
will incur complexity of O (mkn). As a result, the overall complexity is O (m>kn).

8 Empirical observations, evaluations and analysis

Extensive experiments are conducted to test how effectively AAPE can utilize increasing
classification time to improve classification accuracy, and how effectively AAPE can handle
anytime interruption during its classification process.

8.1 Experimental design

The AAPE system is implemented in the WEKA machine learning environment (Witten and
Frank 2005). It is tested using a large suite of 60 benchmark data sets from the UCI Machine
Learning Repository (Blake and Merz 2004), as described in Table 2.

2Although MDL has an extra loop Hje¢(i) vj, in case of a SPODE, |®(i)| is of maximum value 2 (the
superparent and the class). Hence it can be treated as a constant and does not increase the order of the
complexity.
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Table 2 Each data set’s name, number of instances (Ins.) and number of attributes (Att.)

Data Set Ins. Att. Data Set Ins. Att.  Data Set Ins. Att.
Abalone 4177 8  HouseVotes84 435 16  Postoperative 90 8
Adult 97686 14 Hungarian 294 13 Promoter 106 57
AE 9961 12 Hypothyroid 3772 29  PrimaryTumor 339 17
Annealing 898 38 Ionosphere 351 34 Satellite 6435 36
Audiology 226 69  IrisClassification 150 4 Soybean 683 35
AutosImports85 205 25 KRvsKP 3196 36  Segment 2310 19
BalanceScale 625 4 LaborNegotiations 57 16  SickEuthyroid 3772 29
Bands 539 36 LED 1000 7  Sign 12546 8
BreastCancer 699 9  LetterRecognition 20000 16  Sonar 208 60
LiverDisorders 345 6 LungCancer 32 56  Splice 3177 60
Chess 551 39  Lymphography 148 18  Syncon 600 60
HeartDisease 303 13 Mfeat-mor 2000 6  Thyroid 9169 29
CMC 1473 9  Mushroom 8124 22 TicTacToe 958 9
CreditApproval 690 15 Musk 476 166  Vehicle 846 18
Echocardiogram 131 6  NewThyroid 215 5 Volcanoes 1520 3
German 1000 20  OpticalDigits 5620 48  Vowel 990 11
Glassldentification 214 9  PageBlocks 5473 10 Waveform 5000 40
HeartCleveland 270 13 PenDigits 10992 16  Wine 178 13
Hepatitis 155 19 NetTalkPhoneme 5438 7  Yeast 1484 8
HorseColic 368 21  PimaDiabetes 768 8 Zoo 101 16

On each data set, a 60-trial> 2-fold cross validation* is conducted. Various aspects of
AAPE’s performance are recorded, including its training efficiency under different order-
ing schemes, its classification error in an anytime fashion, and its classification bias and
variance decomposition.

We are interested in studying bias and variance because they each give different in-
sights into AAPE’s error (Breiman 1996; Friedman 1997; Kohavi and Wolpert 1996;
Kong and Dietterich 1995; Webb 2000). Bias describes the component of error that results
from systematic error of the learning algorithm. Variance describes the component of error
that results from random variation in the training data and from stochastic behavior in the
learning algorithm, and thus measures how sensitive an algorithm is to changes in the train-
ing data. We use Kohavi and Wolpert’s (1996) definitions of bias and variance, and estimate
them using Webb’s (2000) cross-validation method.

Various statistics are employed to analyze the experimental results. To compare a pair
of algorithms, we measure their win/loss/tie record and apply a binomial test on the record.
The win, loss, tie each represent the number of data sets in which one algorithm beats, loses
to or ties with the other respectively. A one-tailed binomial sign test can then be applied to

3The reason that we use 60 trials is because we perform bias-variance analysis, which is more accurate when
more trails are conducted. Meanwhile, because a large number of data sets are involved, too many trials will
make the whole evaluation process very expensive. 60 is selected as a compromise.

4A k-fold cross validation divides a data set into k equal-size subsets. Each subset is used in turn as a test set
with the remaining k — 1 data sets used for training. One may conduct k-fold cross validation for m trials,
each trial shuffling the instances and forming k different subsets.
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the wins and losses of the record. If its result is less than 0.05, the wins against losses are
statistically significant, supporting the claim that the winner has a systematic (instead of by
chance) advantage over the loser. To compare multiple algorithms, we use the Friedman test
and Nemenyi test as recommended by Demsar (2006). These tests rank rival algorithms and
indicate which ones have statistically significant differences.

Finally, as AAPE currently requires discrete-valued data, each training set is discretized
using the WEKA MDL discretizer (Witten and Frank 2005). As the software cannot handle
missing values when calculating information-theoretic metrics, we employ WEKA’s impu-
tation policy. All missing values for nominal and numeric attributes in a data set are replaced
with the modes and means from the training data.

8.2 Training efficiency

Recall that AAPE can employ alternative schemes to order SPODEs, as studied in Sect. 5.
Different schemes will demand different time. Figure 2 illustrates the training time of AAPE
caused by each ordering algorithm averaged across 60 data sets. From the fastest to the slow-
est are FEQ, RAN, MDL, CV, MML, BSE and FSA. FEQ and RAN are efficient because
they do not require any ordering process in training time. Empirical metrics (CV, FSA and
BSE) are slower than theoretic MDL because they need to loop through training data for
leave-one-out cross validation. One exception is MML whose complexity is higher than CV.
Metrics that measure PE ensembles (FSA and BSE) are slower than those that measure in-
dividual SPODEs (MDL, MML and CV) because they need to probe different combinations
of individual SPODE:s.

8.3 Anytime classification accuracy

It is desirable that AAPE improve its classification accuracy as it is given more time (al-
lowed to include more SPODE:s). To test this issue, we conducted run-time monitoring on
classification error offered by each ordering scheme. Their performance curves over time
are drawn in Fig. 3. The X axis corresponds to the time resource in terms of the number
of SPODE:s allowed to be included in the ensemble with 0 meaning NB alone. The Y axis
corresponds to AAPE’s classification error averaged on all data sets. Note that the error on
each data set is normalized by NB’s error in order to permit meaningful averaging over mul-
tiple data sets. If X becomes bigger than the number of attributes (SPODEs) in a data set,
for the purpose of drawing anytime classification curves, the Y value remains that of the full
ensemble. In practice, this means that if the ¢t budget is more than what AAPE needs to
finish, AAPE always returns its complete calculation.

@ Springer



46 Mach Learn (2007) 69: 35-53

. LR RAN ——
Z 098 =
(0]
g 096 MML e
11}
BSE --x
o
0.94 | ;
< FSA
5 092 |
o 1
g 09 "
e 088}
L
%
1l L
XS
0.84
0 10 20 30 40 50 60 70

X = Add on SPODEs

Fig. 3 AAPE’s anytime classification accuracy under alternative ordering schemes

Every ordering scheme starts with NB, resulting in the same classification error at X = 0.
A rapid decrease in error is witnessed at the early stages of adding SPODEs, where FSA is
the most effective and FEQ is the least effective. While more and more SPODEs are in-
cluded, the differences among alternative schemes shrinks. When all SPODE:s are included,
all schemes converge to the same classification error.

In addition to the mean error, at every X value in Fig. 3, as recommended by Dem-
sar (2006), we rank alternative ordering schemes according to AAPE’s classification error,
and apply Friedman test and Nemenyi test to the ranks. Some representative results are vi-
sually presented in Fig. 4. The critical difference ‘CD’ is shown above the graph. In each
sub-figure, the top line in the diagram is the axis on which we plot the average ranks of
schemes. The more effective a scheme is, the lower rank it is assigned. When comparing all
schemes against each other, we connect the groups of algorithms that are not significantly
different at the critical level of 0.05. For example, Fig. 4(a) illustrates that when adding the
first SPODE (X = 1), FSA and CV are equally best at reducing error (ranked lowest, 3.275),
while NB is the worst (ranked highest, 5.5). FSA and CV are significantly better than MDL,
RAN, FEQ and NB (tics not connected), while they do not have significant difference from
MML and BSE (tics connected).

According to Figs. 3 and 4, in general, FSA and CV are the best schemes. Schemes that
order SPODE:s by their empirical strength in classification accuracy (CV, BSE and FSA) are
more effective than schemes that order SPODEs by information theory (MDL and MML).
It is interesting to spot that FEQ is slow at decreasing the error, and less effective than
RAN. One reason might be that very high frequency attribute values contain relatively little
information and hence are not the most useful values to utilize. It is also good to obtain
experimental evidence that by employing appropriate ordering schemes such as CV and
FSA, AAPE’s error is bounded by NB which is an efficient, robust, low variance classifier.

Figure 3 also reveals an interesting issue that the full PE ensemble invoked for every
data set (X = 69) actually does not produce the minimum average error. For example, FSA
reaches its lowest mean error at X = 7 and climbs up a little while more SPODEs are in-
cluded. This arises a question that whether AAPE should terminate earlier (even if the clas-
sification time resource is still available to invoke more single steps) in order to minimize
the classification accuracy. The following section will study this issue.
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8.4 When to stop

Currently, AAPE keeps invoking the next SPODE as long as classification time allows. The
stopping point where AAPE terminates calculation and outputs classification, if time allows,
is when AAPE has eventually included all SPODEs. It is natural to ask whether there exists
any optimal stopping point Eyima, a subset of PEs, before AAPE reaches the full PE en-
semble Efy. If so, once AAPE reaches Eqpima, it can deliver classification, even when some
SPODESs remain uninvoked and the ¢t budget yet to be exhausted. The potential advantages
are in two-fold. First, Eqpima can obtain lower error than Egy by excluding poorly predic-
tive SPODEs. Second, it takes shorter time for AAPE to produce optimal accuracy. Figure 3
reveals that X = 69 (full PE ensemble invoked for every data set) actually does not produce
the minimum error. For example, FSA reaches its lowest mean error at X = 7 and climbs
up a little while more SPODE:s are included. This indicates that better stopping points exist
earlier than Egy.

To explore this issue, we implemented AAPE with two stopping criteria other than reach-
ing the full PE ensemble. Recall that in Sect. 5, both FSA and BSE have natural stopping
points: the ensemble E,;, that achieves the lowest leave-one-out cross validation error in
training during the addition or elimination process. For FSA, one can follow the addition
order to include SPODEs until the ensemble reaches the set of SPODEs that delivered E ;.

@ Springer



Mach Learn (2007) 69: 35-53

48

3 1.05 3 1.15 3 1.05

g 2 g

2 3 3

& 1 g 11 5 1

H z g

g 095 § 105 g 095

12 o 12

T 09 w1 w09

(7] (72} 17}

& & &

9 085 o 095 o 085

17 o 12

S 08 S 09 S 08

08 085 09 095 1 1.05 09 0095 1 105 1.1 1.15 08 085 09 0.95 1 1.05
X = stoprgp / SOPEyiENsemble X = stopgsa / SIOPEyiEnsembie X = stoprga / StOPEyjENsembie

Fig.5 Alternative stopping strategies’ relative performance. stopgsga and stopggg are better at reducing bias
while stopgyiEnsemble 18 better at reducing variance. The end effect is that stoppg and stopggg cannot beat

SI0PRyllEnsemble ON reducing error

For BSE, one can follow the reverse of the elimination order to include SPODE:s until the
ensemble reaches the set of SPODEs that delivered E,y;,.>

We tested AAPE’s classification error (decomposed into bias and variance) under the two
alternative stopping strategies, and compared them against that under the full PE ensemble
as in Fig. 5. For simplicity, we name the three strategies stopgga, St0pgsp and STOPp Ensemble
respectively. The values on the Y axis are the outcome for stopgge divided by that for
StOPpuEnsemble- 1hE Values of the X axis are the outcome for stopgg, divided by that for
StOPpuEnsemble- EaCh point on the graph represents one of the 60 data sets. Points on the
left of the vertical line at X = 1 in each subgraph are those of which stopgg, outperforms
StOPpulERsemble- POINtS below the horizontal line at ¥ = 1 indicate that stopggp outperforms
StOPpulERsemble- POINtS below the diagonal line ¥ = X represent that stopgg, outperforms
stopggg- It is observed that on one hand, both stopgg, and stopggy are more effective in re-
ducing bias compared with SfOpgjjEnsemble 25 the majority of points fall within the boundaries
X =1and Y =1 in Fig. 5(a). On the other hand, stopg Ensembie 15 Mmore effective in reduc-
ing variance than stopgg, and stopgge as the majority of points fall beyond the boundaries
X =1and Y =1 in Fig. 5(b). The end effect is that neither of them can beat stopg,jEnsemble
as Stopgg’s wWin/lose/tie record against STOPgjipnsemble 15 23/34/3, and stopggg’s is 27/30/3 in
Fig. 5(c).

These observations suggest that although it is desirable to find alternative stopping points
(if there is any) that exclude counter-productive SPODEs and enable AAPE to reach optimal
classification faster, this task is non-trivial. Nonetheless, it remains an interesting topic for
further research in our anytime learning systems.

8.5 CV and FSA

It is intuitive to expect that FSA should outperform CV. The former orders SPODEs accord-
ing to the collective merit of a PE ensemble while the later measures SPODEs individually.
However, Fig. 3 interestingly reveals that although FSA is the most effective at the early
stages of adding SPODESs, CV actually outperforms FSA later on (although not statistically
significantly).

To explore this issue, the relative performance between CV and FSA is illustrated in
Fig. 6 along the time line when SPODEs are added on. The Y value is the number of data
sets where FSA wins CV minus the number of data sets where CV wins FSA. Accordingly,

5In either case, if multiple ensembles attain the lowest error, the one that includes most SPODE:s is chosen,
as a means to reduce variance caused by model selection.
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Fig. 6 Comparing FSA and CV. FSA orders SPODEs by their ensemble’s collective merit and is most effec-
tive at early stages. CV orders SPODE:s in isolation, which outperforms FSA later on

a positive Y value means that FSA outperforms CV more often than not, and a negative Y
value means otherwise. The longer a bar, the bigger the win over the loss. It is observed that
CV frequently outperforms FSA in term of reducing classification variance as the Y values
are mostly negative in Fig. 6(c). This is because SPODEs are ordered independent of each
other by CV, while FSA chooses the next SPODE on basis of already chosen ones. On the
other hand, at early stages of adding on SPODEs, FSA usually achieves lower bias than CV,°
but the advantage reduces as more SPODEs are added as in Fig. 6(b). This suggests that it
is when a small number of SPODEs are involved that measuring collective merit is more
influential. As a result, the curves of FSA and CV cross each other in Fig. 3, FSA being the
constant winner initially while CV catches up and takes over at a later stage.

This observation is interesting because it suggests that a SPODE that achieves high ac-
curacy in isolation is often also a valuable one to be included in an ensemble (at least not
counter-productive). Furthermore, recall that in Fig. 2, CV makes AAPE much more effi-
cient in training than FSA does. As a result, CV can be a very attractive ordering scheme for
AAPE in practice.

8.6 BSE and FSA

Although previous work suggested that backward elimination tends to be more effective
than forward addition for feature selection (Koller and Sahami 1996; Kohavi and John 1996;
Wu and Urpani 1999), there is no clear-cut advantage to either algorithm in our case. Both
of them use greedy search and have their own niches depending on the nature of the data.
Figure 7(a) illustrates a representative data set ‘Vehicle’ where BSE outperforms FSA, while
Fig. 7(b) illustrates another representative data set ‘Splice” where FSA beats BSE. Nonethe-
less, as in Fig. 3, more often than not, AAPE using FSA ordering decreases classification
error faster than using BSE ordering. We suggest one reason is that very often the biggest
improvements of classification performance take place at the early stages, such as when
adding the first few SPODEs. FSA optimizes those important starting points while BSE
optimizes finishing points which are less critical. Besides, during BSE’s proceeding from a
full-ensemble to an empty ensemble, whenever it encounters ties among candidate SPODE:s,
it randomly picks one to eliminate. This strategy can make AAPE deviate from its optimal
path and lead to a sub-optimal start. That’s why BSE can perform worse than NB when
adding first SPODEs as in Fig. 7(b). More sophisticated tie-breaker strategies might im-
prove BSE’s accuracy, however at the cost of increasing its training efficiency.

f’Except when adding the first SPODE where FSA and CV are identical.
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Fig. 7 FSA and BSE each have its own niche. However, FSA is often more effective for AAPE because
starting SPODE:s often drop errors more effectively

9 Related research

Anytime neural networks (Grefenstette and Ramsey 1992; Opitz 1995) tackle the problem
of constrained training time by forming an initial model which is then refined. Once the
refinement phase has begun, it may be terminated at any time. While this approach might be
expected to deliver learning under arbitrary training time constraints, in practice these are
computationally intensive systems that are designed to run over a long time. They cannot
produce models within time spans measured in seconds or less. They do not address the
issue of varying resources at classification time.

Anytime interval-valued outputs for kernel machines (DeCoste 2002) utilize succes-
sive support vectors from an SVM to provide ever improving approximations to the final
SVM classification. To classify an instance X, this approach seeks to optimize the quantity
d%, —d%,, where dyy and dy p are the Euclidean distances from X to its negative neighbor
N and positive neighbor P, respectively. This paper shows how the same principle can be
applied to Bayesian classification with the desirable property that conditional probabilities
are returned rather than just a simple selection of a single class.

Another anytime classification scheme was proposed during the search of the best su-
perparent and its favorite child for a single SPODE (Keogh and Pazzani 2002). The search
begins with NB. It iterates through each superparent and then every child until it finds the
best parent-child pair that increases the classification accuracy most. Because the search is
time-consuming and is sub-optimal when fast classification is required, this anytime scheme
returns a best-so-far SPODE whenever the search is interrupted. In contrast, this paper
searches an ordered sequence of SPODEs. It is an anytime algorithm in the sense that the
classification can stop anywhere in the sequence. In addition this paper studies alternative
stopping criteria to find the best PE ensemble instead of the best single SPODE.

10 Discussion and further research

Any ensemble learner could be converted into an anytime classifier by simply evaluating at
classification time only as many of the available ensemble members as time allows. How-
ever, AAPE has a number of desirable properties that favor its use. First, each single step
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(a probabilistic estimator) itself is adept at incremental learning. They can be updated with
new training data at negligible cost, simply by updating the table of joint frequencies. Sec-
ond, the classifiers can return class probability estimates beyond simple 0/1-loss classifica-
tions. Third, AAPE’s lowest classification accuracy appears to be bounded by NB which is
an efficient, robust, low variance classifier.

AAPE tackles only one dimension of the complex inter-related set of potentially vari-
able computational resources that we identified in Sect. 2. There is clear potential to extend
AAPE in the future research.

e The AAPE framework could be extended to address variable training time. For example,
if training time allows, AAPE can do feature selection that reduce the number of super-
parents or children, which could potentially enhance AAPE’s classification accuracy as
well as efficiency.

e The AAPE framework could also be extended to accommodate varying space re-
sources, for example, by altering the degree of dependence in single improvement steps
(k-dependence estimators) in response to the space available to store the conditional fre-
quency tables.

o In the current work we have assumed that the primary objective is to increase classification
accuracy. In real-world applications of inductive learning, there are many different types
of cost involved, such as cost of unwanted achievements or cost of intervention (Turney
2000). It would be valuable to consider anytime techniques that utilize varying computa-
tional resources to optimize different metrics that users care about.

e AAPE works in an NB-like framework. Lessons learned here could be extended to explore
other learning paradigms such as TAN, decision trees and SVM.

11 Conclusion

We have argued that in many real-world applications, inductive inference is conducted under
strict computational resource constraints. We have analyzed such situations, identifying four
key resources: training space, training time, classification space and classification time.

We have also argued that many applications in which NB is currently deployed may have
periods when the classification-time resources are under-utilized. We propose a novel clas-
sification algorithm, AAPE, which makes good use of idle classification time. In training
time, AAPE identifies and orders NB and SPODE:s (the single improvement steps). At clas-
sification time, AAPE first computes NB and then utilizes any additional time to refine the
probability estimates by invoking SPODEs in order. Whenever it is interrupted, AAPE av-
erages the class probability estimates calculated by invoked single steps and delivers them
to the user. The technique of AAPE also lends itself to parallelization, with the possibil-
ity of utilizing a variable number of processors. Furthermore, AAPE can elegantly support
incremental learning.

To verify AAPE’s efficacy and efficiency, we have conducted extensive experiments,
using 60 benchmark data sets from the UCI Machine Learning Repository (Blake and Merz
2004) as well as using multiple established statistical tests.

Both theoretical analysis and empirical evidence suggest that by properly identifying,
ordering, invoking and ensembling single improvement steps, AAPE is able to effectively
utilize increasing classification time to improve classification accuracy. In particular, we
suggest that if the training time is not a concern, given a choice amongst the ordering metrics
studied here, FSA is the most attractive. If the training time is limited, CV is the method of
choice.

@ Springer



52 Mach Learn (2007) 69: 35-53

Acknowledgements We gratefully acknowledge Professor Janez Demsar for his kind help on our statistical
tests. We also thank Professor Pat Langley for his thoughtful and constructive comments on this paper. This
research was supported by Australian Research Council grant DP0556279.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Con-
trol, 19, 716-723.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Reading: Addison—Wesley.

Bernstein, D. S., Perkins, T. J., Zilberstein, S., & Finkelstein, L. (2002). Scheduling contract algorithms on
multiple processors. In Proceedings of the 18th national conference on artificial intelligence and the
14th conference on innovative applications of artificial intelligence (pp. 702-706).

Blake, C., & Merz, C. J. (2004). UCI repository of machine learning databases. [Machine-readable data
repository]. Department of Information and Computer Science, University of California, Irvine, CA,
USA.

Breiman, L. (1996). Bias, variance and arcing classifiers (Technical report 460). Berkeley: Statistics Depart-
ment, University of California.

Chan, P., Fan, W., Prodromidis, A., & Stolfo, S. (1999). Distributed data mining in credit card fraud detection.
IEEE Intelligent Systems, 14(6), 67-74.

DeCoste, D. (2002). Anytime interval-valued outputs for kernel machines: fast support vector machine classi-
fication via distance geometry. In Proceedings of the 19th international conference on machine learning
(pp- 99-106).

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7, 1-30.

Friedman, J. H. (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowi-
edge Discovery, 1(1), 55-77.

Grass, J., & Zilberstein, S. (1996). Anytime algorithm development tools. In M. Pittarelli (Ed.), SIGART
Bulletin Special Issue on Anytime Algorithms and Deliberation Scheduling, 7(2), 20-27.

Grefenstette, J., & Ramsey, C. (1992). An approach to anytime learning. In Proceedings of the 9th interna-
tional machine learning workshop.

Keogh, E. J., & Pazzani, M. J. (2002). Learning the structure of augmented Bayesian classifiers. International
Journal on Artificial Intelligence Tools, 11(40), 587-601.

Kohavi, R., & John, G. H. (1996). Wrappers for feature subset selection. Artificial Intelligence, Special Issue
on Relevance, 97(1-2), 273-324.

Kohavi, R., & Wolpert, D. (1996). Bias plus variance decomposition for zero-one loss functions. In Proceed-
ings of the 13th international conference on machine learning (pp. 275-283).

Koller, D., & Sahami, M. (1996). Toward optimal feature selection. In Proceedings of the 13th international
conference on machine learning (pp. 284-292).

Kong, E. B., & Dietterich, T. G. (1995). Error-correcting output coding corrects bias and variance. In Pro-
ceedings of the 12th international conference on machine learning (pp. 313-321).

Korb, K., & Nicholson, A. (2004). Bayesian artificial intelligence. London: Chapman & Hall/CRC.

Langley, P., & Sage, S. (1994). Induction of selective Bayesian classifiers. In Proceedings of the 10th annual
conference on uncertainty in artificial intelligence.

Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. In Proceedings of the 10th
national conference on artificial intelligence (pp. 223-228).

Lewis, D. D. (1998). Naive Bayes at forty: the independence assumption in information retrieval. In Proceed-
ings of the 10th European conference on machine learning (pp. 4-15).

Mitchell, T. M. (1997). Machine learning. New York: McGraw—Hill.

Opitz, D. (1995). An anytime approach to confectionist theory refinement: refining the topologies of
knowledge-based neural networks. Unpublished doctoral dissertation, Department of Computer Sci-
ences, University of Wisconsin-Madison, USA.

Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58.

Sahami, M. (1996). Learning limited dependence Bayesian classifiers. In Proceedings of the 2nd international
conference on knowledge discovery and data mining.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-465.

Suzuki, J. (1996). Learning Bayesian belief networks based on the MDL principle: an efficient algorithm
using the branch and bound technique. In Proceedings of the 13th international conference on machine
learning (pp. 463-470).

@ Springer



Mach Learn (2007) 69: 35-53 53

Turney, P. (2000). Types of cost in inductive concept learning. In Workshop on cost-sensitive learning at
ICML 2000 (pp. 15-21).

Webb, G. I. (2000). Multiboosting: a technique for combining boosting and wagging. Machine Learning,
40(2), 159-196.

Webb, G. 1., Pazzani, M. J., & Billsus, D. (2001). Machine learning for user modeling. User Modeling and
User-Adapted Interaction, 11(1-2), 19-29.

Webb, G. I., Boughton, J., & Wang, Z. (2005). Not so naive Bayes: averaged one-dependence estimators.
Machine Learning, 58(1), 5-24.

Witten, 1. H., & Frank, E. (2005). Data mining: practical machine learning tools and techniques with Java
implementations (2nd ed.). Los Altos: Kaufmann.

Wu, X., & Urpani, D. (1999). Induction by attribute elimination. I[EEE Transactions on Knowledge and Data
Engineering, 11(5), 805-812.

@ Springer



	Classifying under computational resource constraints: anytime classification using probabilistic estimators
	Abstract
	Introduction
	Problem definition and road map
	Identifying single improvement steps
	Ensembling single improvement steps to classify an instance
	Ordering single improvement steps
	Random (RAN)
	Frequency (FEQ)
	Information-theoretic metrics (MDL and MML)
	Cross validation (CV)
	Backward sequential elimination (BSE)
	Forward sequential addition (FSA)

	The anytime average probabilistic estimator (AAPE) algorithm
	Time complexity analysis
	Classification overhead
	Training overhead

	Empirical observations, evaluations and analysis
	Experimental design
	Training efficiency
	Anytime classification accuracy
	When to stop
	CV and FSA
	BSE and FSA

	Related research
	Discussion and further research
	Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


