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Abstract Logic Programs with Annotated Disjunctions (LPADs) provide a simple and ele-
gant framework for representing probabilistic knowledge in logic programming. In this pa-
per we consider the problem of learning ground LPADs starting from a set of interpretations
annotated with their probability. We present the system ALLPAD for solving this problem.
ALLPAD modifies the previous system LLPAD in order to tackle real world learning prob-
lems more effectively. This is achieved by looking for an approximate solution rather than
a perfect one. A number of experiments have been performed on real and artificial data for
evaluating ALLPAD, showing the feasibility of the approach.

Keywords Inductive logic programming - Probabilistic logic programming - Statistical
relational learning - Logic programs with annotated disjunctions

1 Introduction

Logic Programs with Annotated Disjunctions (LPADs) (Vennekens and Verbaeten 2004;
Vennekens and Verbaeten 2003) are a relatively new formalism for representing probabilistic
information in logic programming. They have been recognized as one of the simplest and
most expressive (Blockeel 2004) languages that combine logic and probability.

In (Riguzzi 2004) the definition of a learning problem for LPADs has been proposed to-
gether with an algorithm for solving it called LLPAD. However, LLPAD does not work well
on non-toy problems because it relies on the exact solution of a large constraint satisfaction
problem. On real world problems such a solution may not exist or may be too expensive
to find. Therefore in this paper we propose the system ALLPAD (Approximate Learning
of Logic Programs with Annotated Disjunctions) that modifies LLPAD in order to be able
to learn in real world scenarios by looking for a solution that “approximately” satisfies the
learning problem. ALLPAD solves the constraint satisfaction problem in an approximate
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way by transforming it into an optimization problem. Moreover, the clause search phase is
also modified in order to return only the most significant clauses so that the complexity of
the optimization problem is kept inside acceptable bounds.

To show that ALLPAD is able to work in practice, we have applied it to two real and one
artificial problems. The real problems are the classification of proteins into SCOP classes
and the classification of Unix traces into user classes. The accuracy obtained is compared to
that of a naive Bayes approach and with the results of previous works. The artificial problem
consists of learning back an LPAD from data generated from it by random sampling. The
log likelihood obtained is compared with that of naive Bayes and of the original LPAD.

The paper is organized as follows. Section 2 provides some preliminary notions regard-
ing LPADs together with their semantics as given in (Vennekens and Verbaeten 2004). In
Sect. 3 we introduce the learning problem and we describe LLPAD and ALLPAD. Section 4
presents the experiments. In Sect. 5 we discuss related works and in Sect. 6 we conclude
and present directions for future work.

2 Preliminaries

A Logic Program with Annotated Disjunctions P consists of a finite set of formulas of the
form

(hi:p)V(hy:p) V-V (hy:py) <bi,by, .. .0y

called annotated disjunctive clauses. In such a clause the h; are logical atoms, the b; are
logical literals and the p; are real numbers in the interval [0, 1] such that Y -, p; = 1. If
n = 1, then the annotation can be omitted. For a clause C of the form above, we define
head(C) as the set {(h; : p;) | 1 <i <n} and body(C) as the set {b; | 1 <i <m}. Pg is the
set of all finite ground LPADs. Let Hg(P) be the Herbrand base of P and let Zp be the set of
all the possible Herbrand interpretations of P (i.e., subsets of Hz(P)). If P contains function
symbols, then Hg(P) is infinite, otherwise it is finite. If P contains functions symbols and
variables then its grounding is infinite, otherwise it is finite.

Example 1 Let us see an example of an LPAD taken from (Blockeel 2004).

mother(m, c). father(f, c).
cg(m, 1, w). cg(m,2,w). cg(f, 1, p). cg(f,2, w).
(cg(X,1,A):0.5) v (cg(X,1,B):0.5)

<~ mother(Y, X),cg(Y, 1, A),cg(Y,2, B).
(cg(X,2,A):0.5) Vv (cg(X,2,B):0.5)

<« father(Y, X),cg(Y,1,A),cg(¥,2, B).
color(X, purple) <— cg(X,_N, p).
color(X, white) <— cg(X, 1, w), cg(X, 2, w).

This program encodes the Mendelian rules of inheritance of the color of pea plants. The
color of a pea plant is determined by a gene that exists in two forms (alleles), p and w, that

stand for purple and white. Each plant has two alleles for the color gene that reside on a
couple of chromosomes. cg(X,N,A) indicates that plant X has allele A on chromosome N.
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The facts of the program express that c is the offspring of f and m and that the alleles of m
are ww and of f are pw. The disjunctive rules encode the fact that an offspring inherits the
allele on chromosome 1 from the mother and the allele on chromosome 2 from the father.
In particular, each allele of the parent has a probability of 50% of being transmitted. The
definite clauses for color express the fact that the color of a plant is purple if at least one of
the alleles is p, i.e., that the p allele is dominant.

2.1 Semantics

The semantics of an LPAD was given in (Vennekens and Verbaeten 2004) for finite ground
programs, i.e., programs in Pg. A non-ground program can be assigned a semantics only if
its grounding is finite, i.e., if it does not contain function symbols. The semantics is given in
this case in terms of its grounding.

Each ground annotated disjunctive clause represents a probabilistic choice between a
number of ground non-disjunctive clauses. By choosing a head atom for each ground clause
of an LPAD we get a normal logic program called an instance of the LPAD. A probability
distribution is defined over the space of instances by assuming independence between the
choices made for each clause.

An instance is identified by means of a selection function. Let P be a program in Pg:
a selection (Vennekens and Verbaeten 2004) o is a function which selects one pair (4 : p)
from each rule of P, i.e. 0 : P — (Hg(P) x [0, 1]) such that, for each R in P, o(R) €
head(R). For each rule R, we denote the selected atom % by 0,:,,(R) and the selected
probability p by o, (R). Furthermore, we denote the set of all selections o by Sp.

Let o be a selection in Sp: the instance P, chosen by o (Vennekens and Verbaeten
2004) is obtained by keeping only the atom selected for R in the head of each rule R € P,
ie. P, = {“04om(R) < body(R)”| R € P}.

We now assign a probability to a selection function o and therefore also to the associated
program P,. The probability of a selection (Vennekens and Verbaeten 2004) o in Sp is
the product of the probabilities of the individual choices made by that selection, i.e. C, =
[Trep Oprov(R).

The semantics of the instances of an LPAD can be given by any of the semantics defined
for normal logic programs (e.g. Clark’s completion, Fitting semantics, stable models, well
founded semantics, Van Gelder et al. 1991). In (Vennekens and Verbaeten 2004) the authors
have considered only the well founded semantics, the most skeptical one. Since in LPADs
the uncertainty is modeled by means of the annotated disjunctions, the instances of an LPAD
should contain no uncertainty, i.e. they should have a single two-valued model. Therefore,
given an instance P,, we require that its well founded model W F M (P, ) is two-valued.

P € Pg is called sound (Vennekens and Verbaeten 2004) iff, for each selection o in Sp,
the well founded model W F M (P,) of the program P, chosen by o is two-valued.

An LPAD P is locally stratified iff all of the atoms in Hg (P) can be assigned a countable
ordinal rank such that, for every rule (h; : p1) V ---V (h, : p,) < B in the grounding P’
of P, for every h;: (1) the rank of h; is greater than the rank of every atom that appears
negatively in B, and (2) the rank of %; is greater or equal to the rank of every atom that
appears positively in B.

If P € Pg is locally stratified then P is sound (Van Gelder et al. 1991).

We now define the probability of interpretations. Let P be a sound program. For each
of its interpretations / in Zp, the probability n};(I) assigned by P to I (Vennekens and
Verbaeten 2004) is the sum of the probabilities of all selections which lead to 7, i.e. with
S(I) being the set of all the selections o for which WFM (Py) =1:nj(I) = Zaesu) C,.
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Let us now introduce the definition of the probability of a formula. For each formula ¢,
the probability w}(¢) of ¢ according to P (Vennekens and Verbaeten 2004) is the sum of
the probabilities of all the interpretations in which ¢ holds, i.e. 75 (¢) = Jer® (1) with

P

I0={IeIp I = ¢}
We can also define the conditional probability of a formula given another one. Given two

formulas ¢ and v, the conditional probability of ¢ given ¥ according to P is indicated by
Tp(AY)
SO

w5 (¢|¥) and is given by
2.2 Properties

In (Riguzzi 2004) a definition and two theorems were given that will be useful in the fol-
lowing. We will report them here, together with a correction: in (Riguzzi 2004) it was not
specified that the theorems hold only for ground clauses and for locally stratified programs.

Definition 1 (Mutually exclusive bodies) Ground clauses H, <— B, and H, <— B, have
mutually exclusive bodies over a set of interpretations J if, VI € 7, B| and B, are not both
true in /.

Theorem 1 Consider a locally stratified LPAD P € Pg and a clause C € P of the form
C=(i:p)V(ha:p)V---V(hy:pn) < B.

Suppose you are given the function w} over Ip and suppose that all the clauses of P that
share an atom in the head with C have mutually exclusive bodies with C over the set of inter-
pretations J = {I | w;(I) > 0}. The probabilities p; are given by the conditional probability
of the head atoms given the body:

pi =mp(hi|B)

This theorem states that, under certain conditions, the probabilities of the head disjuncts
of a ground rule can be computed from the probabilities of the interpretations. In particular,
the probability of a disjunct 4; is given by the conditional probability of /; given the body,
i.e. by the sum of the probabilities of interpretations where the body of the clause and &; are
true divided by the sum of the probabilities of interpretations where the body is true.

Theorem 2 Consider an interpretation I and a locally stratified LPAD P € Pg such that all
the couples of clauses of P that share an atom in the head have mutually exclusive bodies
with respect to the set of interpretations {1}. If S(I) # @ then all the selections o € S(I)
agree on the clauses of P with body true in I and

=[]  opm® (1)

ReP,I=body(R)

where o is any element of S(I). If S(I) =¥ then w3 (1) = 0.

This theorem states that, given an interpretation /, under certain conditions, all the selec-
tions o in the set S(/) agree on all the rules in the program with the body true in / and that
the probability of I can be computed by multiplying the probabilities of the head disjuncts
selected by a 0 € S(I) for all the clauses with the body true in /.

Proofs of these theorems can be found in (Riguzzi 2006).
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3 Learning LPADs

We consider a learning problem of the following form (Riguzzi 2004):
Given:

— a set E of examples that are couples (I, w(/)) where [ is an interpretation, 7 (/) is its
associated probability and ) ; .y cp 7(1) = 1;
— a space of possible LPAD S (described by a language bias L B)

Find: an LPAD P € S suchthatV(I,n(I)) e E nj(I) =n(I)

Instead of a set of couples (/, 7w ([)), the input of the learning problem can be a multiset
E’ of interpretations. From this case we can obtain a learning problem of the form above by
computing a probability for each interpretation in E’ using relative frequency.

We now describe LLPAD (Riguzzi 2004) and then ALLPAD.

3.1 LLPAD

LLPAD learns ground LPADs in four phases: the first consists in finding all the definite
clauses that satisfy certain constraints, the second consists in finding all the disjunctive
clauses that satisfy certain constraints, the third consists in annotating the head atoms of
disjunctive clauses with probabilities and the fourth consists in solving a constraint satisfac-
tion problem.

The first and second phases can be cast in the framework proposed by (Stolle et al. 2005)
in which the problem of descriptive ILP is seen as the problem of finding all the clauses in the
language bias that satisfy a number of constraints. Exploiting the properties of constraints,
the search in the space of clauses can be usefully pruned.

A constraint is monotonic if it is the case that when a clause does not satisfy it, none of its
generalizations (in the -subsumption generalization order) satisfies it. A constraint is anti-
monotonic if it is the case that when a clause does not satisfy it, none of its specializations
satisfies it.

The first phase of LLPAD can be formulated in this way: find all the definite clauses that
satisfy the following constraints:

D1 they have their body true in at least one interpretation

D2 they are satisfied in all the interpretations

D3 they are maximally general (there does not exist another clause that is strictly more
general and that satisfies D1 and D2)

LLPAD searches the space of definite clauses by performing a complete depth-first and top-
down search in the space of bodies for each ground atom a allowed by the language bias
in the head of clauses. The search starts with the clause with an empty body (a <) and
exploits constraints D3 and D1: as soon as a body is found such that the clause is satisfied
in all interpretations, the clause is returned and the search along that branch is stopped
because any specialization will not satisfy constraint D3; as soon as a body that is true in
zero interpretations is found, the search along that branch is stopped, because constraint D1
is anti-monotonic.

The second phase can be formulated in this way: find all the disjunctive clauses that
satisfy the following constraints:

C1 they have their body true in at least one interpretation
C2 they are satisfied in all the interpretations

@ Springer



212 Mach Learn (2008) 70: 207-223

C3 their atoms in the head are mutually exclusive over the set of interpretations where the
body is true (i.e. no two head atoms are both true in an interpretation where the body is
true)

C4 they have no redundant head atom, i.e. no head atom that is false in all the interpretations
where the body is true

LLPAD searches the space of disjunctive clauses by first searching depth-first and top-down
for bodies true in at least one interpretation and then, for each such body, searching for a head
satisfying the remaining constraints. When a body is found that is true in zero interpretations,
the search along that branch is stopped (constraint C1 is anti-monotonic).

The system searches the clause space in a complete way and employs bottom-up search
in the space of heads, exploiting the monotonic constraint C2 that requires the clause to be
true in all the interpretations for pruning the search.

Definite clauses are searched separately because if we allow the search in the space of
heads in the second phase to reach single atom heads we would return also non-maximally
general definite clauses. In fact, given a body B, an atom a and a literal b, if a < B satisfies
constraints C1-4 and B, b is true in at least one interpretation, then both the clauses a <— B
and a < B, b will be returned, thus violating constraint D3.

The third phase is performed by using Theorem 1: given a ground clause generated by
the second phase, the probabilities of head atoms are given by the conditional probability of
the head atoms given the body according to the distribution .

In the fourth phase, LLPAD partitions the set D of all the disjunctive clauses that have
been found in subsets that are solutions of the learning problem. This is done by assigning
to each clause C; € D a variable x; that is O if the clause is absent from a solution P and is
1 if the clause is present. The system must ensure that the couples of clauses that share an
atom in the head have mutually exclusive bodies over the set of interpretations E. This is
achieved by testing, for each couple of clauses, if they share an atom in the head and, if so,
if the intersection of the two sets of interpretations where their body is true is non-empty.
LLPAD asserts the constraint x; + x; < 1 for all such couples of clauses (C;, C;). Finally
the solution must assign the correct probability to each interpretation. For each 7 such that
(I, (1)) € E, the system asserts the constraint:

I1 pi=m() 2

C;eD,Ik=body(C;)

where p; is the probability of the single head of C; that is true in /.

In fact, if an assignment of the x;s is found that satisfies the mutual exclusion constraints
and the interpretation constraints (2), then the left hand side of (2) for an interpretation /
becomes [ [ cp . —1 1boay(c;) Pi @nd thus Theorem 2 tells us that the probability (1) of
every interpretation / will be equal to the one assigned to it by the set of selected clauses.
This result was proved to hold (Riguzzi 2006) in the case in which the language bias allows
only acyclic LPADs.

Definite clauses are not considered in the constraints because they would contribute only
with a factor 1*/ that has no effect on the constraint for any value of x;. Therefore, for each
assignment of the other variables, x; can be either O or 1. For this reason, all the found
definite clauses are included in every solution and, therefore, we need only the most general
definite clauses.

If we take the logarithm of both members we get the following linear constraint:

> xilogp; =logm(I). 3)

C; €D, 1=body(D)
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We can thus find the solutions of the learning problem by solving the above linear constraint
satisfaction problem.

3.2 ALLPAD

ALLPAD learns ground LPADs in five phases. The first and the third are the same as those
of LLPAD. The second and the fourth modify those of LLPAD and the fifth one is new.

Let us first consider the fourth phase: in it ALLPAD solves an optimization problem
rather than a constraint satisfaction problem. In fact, with real world problems, a perfect
solution of the learning problem may not exist in the solution space, because the language
bias is too restricted or because the data available is noisy. In these cases the constraint phase
returns a failure. In order to solve this problem, we may enlarge the language bias, but this
can lead to unacceptable run times, or look for an approximate solution. Thus the constraint
problem is transformed into an optimization problem where the system tries to satisfy the
interpretation constraints as much as possible. i.e., it tries to minimize the absolute value of
the difference between the left and right members of the interpretation constraints (3).

However the absolute value function is not linear, therefore we have to transform the cost
function so that we can use linear programming techniques. To this purpose, we introduce a
“slack variable” named max and two “slack variables” s; and s, for each interpretation 1.
These variables are real. Then each interpretation constraint in the form of (3) is replaced
with two constraints of the form

ZC[ED.I}:bOdy(Ci)xi log p; —_1<st
logm (1) -

1

_ ZC,-eD,u:hndy(c,-)xi log p; -
log (1) -0

Moreover the slack variables must satisfy the following constraints for every /

s;’ >0, s,+ < max, s; >0, s, < max.

The cost function to be minimized can now be expresses as

X:(I,:z(l))elz(s;r +s7)
|E]|

a x max+ (1 —a) x

where o is a parameter between 0 and 1. This function provides a trade-off between the
objective of minimizing the average error and the objective of minimizing the maximum
error. The user can modify the o parameter depending on her needs: if she is going to use
the learned model to evaluate the probability of a small number of interpretations, she may
prefer to have a high «, so that single large errors are avoided; if she is going to use the
model to evaluate the probability of a large number of interpretations, she may prefer to
have a low «, because single large errors have a lower influence on the overall performance.
In the experiments of Sect. 4 o was chosen to be 0.5 in order to take a neutral position
between these two competing requirements.

Since now both the constraints and the cost function are linear, we can use mixed-integer
programming (MIP) techniques. If no perfect solution exist, a non-zero optimum will be
found.

However, the optimization problem, as the constraint problem, is NP-hard and thus solv-
able only for small instances. To overcome this problem, we exploit the possibility of setting
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a time limit offered by many MIP packages: at the deadline, the best admissible solution
found up to that point is returned. An admissible solution in this case is one that respects
all the mutual exclusion constraints. If no admissible solution has been found, the package
returns an error. In this way, ALLPAD looks for the best solution given the available time.

To make sure that an admissible solution will be found within the time limits, one can
reduce the dimension of the problem by reducing the number of clauses found in the second
phase. Thus one may prefer the clauses that apply to examples with a high probability,
because they will give a large contribution to the probability of interpretations. For this
reason the complete search in the space of bodies performed by LLPAD is given up for an
incomplete search strategy, beam search. The heuristic to be used for ranking bodies is the
sum of the probabilities of the interpretations where the body is true. This heuristic ensures
that the clauses that apply only to a small number of improbable interpretations are discarded
and the dimension of the optimization problem is reduced.

Moreover, in ALLPAD it is possible to set a limit on the number of nodes explored in the
search for bodies, in order to further limit the number of generated clauses.

As regards the search in the space of heads, the system can employ either bottom-up
search or top-down search at the user choice. When it searches bottom-up it exploits the
monotonic constraint C2 that requires the clause to be true in all the interpretations for
pruning the search. When it searches top-down it exploits the anti-monotonic constraint C3
that requires head atoms to be mutually exclusive. This second possibility was proposed in
(Stolle et al. 2005) where the authors present the system Classic’cl.

ALLPAD can also employ a third modality for finding heads that does not require search.
If the head atoms in a clause template in the language bias are mutually exclusive by con-
struction, then a clause can be found by starting with a head containing all the possible
atoms. Then, if the clause is satisfied in all interpretations, ALLPAD removes the head
atoms that are not true in at least one interpretation where the body is true and it returns the
clause. This modality has been employed in all the experiments presented in Sect. 4.

The algorithm for the second phase in pseudo-code is given in Fig. 1. In it the func-
tion SearchHeads performs the search in the space of heads and returns the set of clauses
satisfying the constraints.

When searching the space of bodies, the refinement operator is downward while when
searching the space of heads the refinement operator is either upward or downward depend-
ing on user choice. In both cases the refinement operator can be optimal or non-optimal: the
user can choose an optimal operator to further reduce the number of returned clauses.

Since the learned clauses are ground, the refinement operator used by ALLPAD simply
adds (in the case of a downward operator) or removes (in the case of an upward operator)
literals from the clauses.

ALLPAD can employ two types of language bias: either DLAB (Dehaspe and Raedt
1996) or a simpler language bias that consists of a set of couples (H, B) where H is the set
of ground atoms allowed in the head of clauses and B is the set of ground literals allowed
in the body of clauses with heads in H. More details on ALLPAD language biases and
refinement operators can be found in (Riguzzi 2006).

In the fifth phase, the definite clauses not mutually exclusive with the selected disjunc-
tive clauses are removed. To this purpose, for each definite clause, ALLPAD looks for the
disjunctive clauses that share an atom in the head with the definite clause and checks if the
bodies are both true in one of the input interpretations. If this is true, the definite clause is
removed. In this way, in the output program, all clauses sharing an atom in the head have
mutually exclusive bodies.

ALLPAD was shown to be correct (Theorem 6 in Riguzzi 2006) when a minimum of O is
reached in the optimization phase and when the language bias allows only acyclic programs
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function SecondPhase(
inputs : E : set of couples (I, 7 (1)),
LB : alanguage bias expressed as a set of clause templates,
d : dimension of the beam,
n : maximum number of explored nodes,
returns : C : a set of disjunctive clauses)

C:=0
for each clause template 7" in LB
let pr be the downward refinement operator for
bodies relative to clause template T
Beam :=[(true, 1)]
/* Beam is a list of couples ordered on the second argument */

i:=0
while Beam # @ and i <n
i=i+1

remove the first couple (Body, P) from Beam
if Body is true in at least one interpretation (i.e. P > 0) then
C := CUSearchHeads(E, Body, T)
Ref:= pr(Body)
for each body R €Ref
let E R be the set of couples (I, Pr(I)) of E such that
R is true in /
PR:=) ( ryeer T()
insert (R, PR) in Beam in descending order of PR
discard the elements of Beam after the d-th
return C

Fig. 1 Function SecondPhase

(Riguzzi 2006). ALLPAD is not complete because it performs beam search in the space of
bodies and because it may not find the optimum of the optimization problem if a time limit
is set.

4 Experiments

In this section we report on the experiments performed for evaluating ALLPAD.

All the experiments have been performed on a PC with an Athlon XP 2600+ processor
at 2138 MHz, 1 GB of RAM and Windows 2000. For solving the MIP problem we used
Xpress-Optimizer by Dash Optimization. This tool allows the user to set a time limit to the
optimization.

4.1 Protein tertiary structure
ALLPAD was applied to the problem of predicting the tertiary structure of proteins by clas-
sifying them into one of the SCOP classes (Turcotte et al. 2001). Each protein is described

by a sequence of secondary structure elements. The sequence is represented in first order
logic as an interpretation where each atom is either of the form he(Type, Length, Position)
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or of the form s#(Orientation, Length, Position). The last argument is an ordinal number
indicating the position in the sequence. The first atom form indicates that the element is
an helix and specifies its type and length. The possible types are h(left, alpha), h(right, al-
pha), h(left, gamma), h(right, gamma), h(left, omega), h(right, omega), h(right, pi), h(right,
f3to10), 27ribbon and polyproline. The second atom form indicates that the element is a
strand and specifies its orientation and length. The possible orientations are null (the begin-
ning of a strand), plus (a parallel strand of a sheet) or minus (an anti-parallel strand of a
sheet). The length of helices and strands is defined as the number of amino acids they are
composed of and was discretized by diving the range into three intervals of equal length.

The dataset available (Kersting et al. 2003) (kindly provided by Kristian Kersting) re-
gards the prediction of domains at the second level of the SCOP hierarchy, namely the
level of folds. In particular, the data regards the alpha beta protein class (a/b) and, in this
class, the five most populated subclasses (i.e. folds) are considered: TIM beta/alpha-barrel,
NAD(P)-binding Rossmann-fold domains, Ribosomal protein L4, glucosamine 5-phosphate
deaminase/isomerase and leucine aminopeptidas. The folds will be respectively indicated in
the following with the names fold1, fold2, fold23, fold37 and fold55.

The dataset available has 721 examples for class foldl, 360 for fold2, 274 for fold 23,
441 for fold37 and 290 for foldS5. In the dataset, only two helix types are actually present,
namely h(right, alpha) and h(right, f3t010).

ALLPAD can be used for classification by learning a model for each class using only the
examples for that class and by assigning a test case to the class whose model gives it the
highest probability.

In order to learn an LPAD that describes a class, each interpretation given as input to
the system is annotated with the same probability, given by one over the total number of
interpretations in the training set, since no interpretation appears more than once.

Proteins are modeled with LPADs as stochastic processes: we want to predict the struc-
ture at position p on the basis of the structures in the k previous positions. To this purpose,
ALLPAD learns programs containing rules having all the possible structures with position
equal to p in the head and a conjunction of structures in the body with positions belonging
to the set S(p,k)={p—1,p—2,..., p—k} for a given k. Obviously we cannot have two
different structures for the same position ¢ € S(p, k) in the body since in that case the body
would be false in every interpretation. An example of such a rule is:

helix (h(right,alpha),long,7):0.571 ;
helix(h(right, £3t0l10),short,7):0.429 :-
helix(h(right,alpha), long,5),
strand (null,medium, 4) .

Therefore we give ALLPAD a language bias expressed using DLAB that contains a rule
template for each position p from 1 to the maximum length of the protein sequences in the
training set. Each rule template allows each possible structure in the head at position p and
each possible structure in the body for positions p — 1, p — 2 up to position p — k, if they
are larger or equal to 1.

Since the optimization phase finds only an approximate solution, we must use an ap-
proximate procedure for testing the theories learned. When the test case is a model of an
instance of the program, its probability can be computed in the following way: all the dis-
junctive rules whose bodies are true in the interpretation are identified and, for each such
rule, the single head that is true in the interpretation is identified. The probability of the case
is obtained by multiplying the probabilities associated to all the head atoms identified in this
way. For each position, there is a single rule whose body is true in the interpretation because
the rules have mutually exclusive bodies.
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When the test case is not a model of an instance of the program, the probability assigned
to the case is 0. This happens for example when for one or more positions there is no rule
with the body true in the interpretation. Since rules may be missing because the solution is
approximate, in the testing procedure we adopt the following approach: if for a position no
rule is applicable, the probability for the structure in that position is given by the conditional
probability of the structure given the position and the class. This corresponds to using a rule
with an empty body (i.e. a default rule).

The accuracy of the learned LPADs is compared with the accuracy of a naive Bayes
classifier obtained by applying the approximate testing procedure so that the conditional
probability given the position and the class is used for all positions.

Two experiments were performed using 10-fold cross validation. The time limit for the
MIP optimization has been set to 1 hour for each class in the first experiment and to 100
minutes for each class in the second experiment.

The other important parameters are: the value of k (the number of previous positions to
consider), set to 4; the size of the beam, set to 100, and the maximum number of bodies to be
refined for each clause template, set to 100 in the first experiment and to 125 in the second
experiment for all classes and cross-validation folds apart from two folds for class foldl
and one fold for class fold37 where it was set to 115 because in 100 minutes no admissible
solution was found for the MIP problem.

The results obtained are summarized in Table 1. LLPAD has been tested as well on
the dataset but the constraint satisfaction problem led to an insufficient memory error in all
cases.

A cross-validated paired two-tailed ¢ test has been performed for comparing the accuracy
of ALLPAD with that of naive Bayes. The null hypothesis of equivalence can be rejected
with the probability indicated in the Significance column in Table 1. The last column of the
table shows the average number of default rules used in testing. In the case of naive Bayes,
this is the average length of the sequences. This means that, on average, 3.26 learned rules
were used in the testing phase of the first experiment and 3.45 learned rules were used in
the testing phase of the second experiment. The accuracy improvement between the first
and second experiment, even if it is significant only with probability 65.9%, shows that the
results can be improved by employing more computation time.

As regards the execution times, they were dominated by the optimization problem: the
other phases only took a few minutes per fold.

The first work applying ILP to the problem was (Turcotte et al. 2001) where the authors
obtain an average accuracy of 78.28% using Progol. However, their dataset is very different
because they consider other classes besides the alpha beta class. Kersting et al. (2003); Ker-
sting and Girtner (2004); Kersting et al. (2006); Gutmann and Kersting (2006) use a dataset
similar to the one used here. Kersting et al. (2003, 2006) use logical hidden Markov mod-
els and achieve respectively accuracies of 74% and 76%. Kersting and Girtner (2004) uses
Fisher kernels for logical sequences and achieves an accuracy of 83.6%. Finally Gutmann

Table 1 Results of the SCOP experiments

Experiment Aw. acc. St. dev. Significance Av. def. rules
Naive Bayes 82.79% 0.03087 - 20.09
First 85.14% 0.01990 98.3% 16.83
Second 85.67% 0.02394 98.6% 16.64
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and Kersting (2006) use conditional random fields for logical sequences and achieve an ac-
curacy of 92.96%. The results of ALLPAD compare favorably with all the previous results
apart from the last one, even if the system is not specifically tailored to learning sequences,
as all previous systems are apart from (Turcotte et al. 2001).

4.2 Unix traces

ALLPAD has been applied to the problem of identifying the class of a user from a trace of
Unix commands. The data set considered was collected by Greenberg (1988) and contains
the traces of 168 users divided into four classes: novice programmer, experienced program-
mer, computer scientist and non-programmer. For each user the data records the commands
entered at the csh shell on a number of different sessions: overall 303,628 commands were
collected divided into 110 sessions on average per user. Each session constitutes a trace.

We used the same settings used in Kersting and Raiko (2005): we choose one user for
class novice (user novice-1, NV from now on) and one user for class non-programmer (user
non-programmer-4, NP from now on). 62 and 159 traces were collected respectively for
users NV and NP. From these we removed the traces containing non-printable characters
giving respectively 53 and 133 traces.

For each command the dataset records the line entered by the user, the current work-
ing directory, the alias expansion of the command (if any), whether the line had a history
expansion in it and the eventual error code returned by the shell.

Of these data we used only the line, the current directory and the alias. We represent each
command with two facts: command(Command, Position) and directory(Directory, Position).
Command is the Unix command effectively executed by the user: if there is an alias, it
is obtained from the alias expansion by removing the arguments, otherwise it is obtained
from the line by removing the arguments. Directory is the name of the last folder in the
directory path. Position is the position of the command in the trace. Class NV has 117
different commands and 15 different folders, while class NP has 124 different commands
and 72 different folders.

The approach for applying ALLPAD to this problem is similar to the one used
for protein tertiary structure: each trace is stored in a different interpretation with
probability given by relative frequency in the dataset and traces are modeled with
LPADs as stochastic processes, where the command and the directory at the current
position depend on the commands and directories at previous positions. In particu-
lar, the directory at position p depends on the commands at positions {p — 1,...,

p — k} and on the directories at positions {p — 1, ..., p — k}. The command at position
p depends on the directories at positions {p, ..., p — k 4+ 1} and on the commands at posi-
tions {p — 1, ..., p — k}. In the experiments k was set to 2.

Thus the language bias admits two kinds of templates, one for the predicate command and
one for the predicate directory. The templates for directory allow, in the head, all possible di-
rectories for position p and, in the body, all possible commands with positions {p — 1, p —2}
and all possible directories with positions {p — 1, p —2}. The templates for command allow,
in the head, all possible commands for position p and, in the body, all possible commands
with positions {p — 1, p — 2} and all possible directories with positions {p, p — 1}.

Five runs were executed. For each run 35 traces were randomly selected for each class
and used for training while the rest was used for testing. The theories learned were tested
using the approximate procedure described in Sect. 4.1. The probabilities computed for each
trace were multiplied by the class prior as in Kersting and Raiko (2005) in order to take into
account the skew present in the data. Besides ALLPAD, also a naive Bayes approach was
applied, as in Sect. 4.1.
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Table 2 Results of the Unix traces experiments

Algorithm ALLPAD Naive Bayes SAGEM k-NN J4.8
Accuracy 91% 86% 94% 91% 87%
St. Dev. 3% 3% 6% - -
Precision NV 73% 55% 94% - -
St. Dev. 11% 8% 6% - -
Precision NP 95% 97% 91% - -
St. Dev. 1% 1% 2% - -
Recall NV 74% 88% 67% - -
St. Dev. 6% 5% 3% - -
Recall NP 94% 85% 89% - -
St. Dev. 4% 5% 5% - -

The time limit of the MIP optimization was set to 1 hour for each class, the size of
the beam was set to 20 and the maximum number of bodies to be refined for each clause
template was set to 100.

The average accuracy, precision and recall of ALLPAD and naive Bayes are reported
in Table 2 together with the results obtained with SAGEM (Kersting and Raiko 2005) and
with k-NN and J48 (Jacobs and Blockeel 2003). SAGEM (for structural generalized EM)
is an Expectation Maximization algorithm for learning the structure and parameters of a
logical hidden Markov model. Jacobs and Blockeel (2003) describes a k-NN approach where
the edit distance is used as the measure of distance between the traces. By comparison,
the authors also report the results of applying J4.8 to the dataset. The results shown were
obtained on a dataset containing 50 examples.

The comparison of ALLPAD with naive Bayes shows that ALLPAD achieves a higher
accuracy that is significant at 90.8% (according to a paired two-tailed ¢ test).

ALLPAD outperforms J4.8, equates k-NN and is inferior to SAGEM in terms of accu-
racy. In terms of precision and recall, all figures are higher than those of SAGEM except
precision for class NV. Again, ALLPAD shows good performances given the generality of
the approach, even if it does not outperform more specific systems.

4.3 Artificial data

ALLPAD was also applied to artificial data. An LPAD was chosen and datasets were gen-
erated from it by random sampling. The LPAD chosen is the one shown in example 1 with
the following differences: besides the two parents and the child, the program considers as
well the four grandparents of the child; the alleles of the grandparents are randomly chosen
between p and w with uniform probability, and the clause that specifies the dependence of
the alleles on chromosome 2 from those of the father is replaced with

(cg(X,2,A):0.6) v (cg(X,2,B):0.4)

<~ father(Y, X),cg(Y,1,A),cg(Y,2, B).

This is done because otherwise, with the choices made for grandparent alleles, ALLPAD
would have no means of identifying that the alleles on chromosome 1 depend on those of
the mother and the alleles on chromosome 2 depend on those of the father.
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Fig. 2 Average log likelihood of the original LPAD, ALLPAD and naive Bayes

The performances of ALLPAD are evaluated by computing the log likelihood assigned
to a test dataset containing 20,000 cases by the programs learned. The approximate testing
procedure was used for computing the probability of the cases. The results are compared
with those of naive Bayes and with those of the original LPAD.

The language bias given as input to ALLPAD contains one template for each color gene
of each member of the family. The head allows the two possible alleles p and w and the
body allows the color gene atoms for all the ancestors of the plant.

Twenty datasets with 5,000 cases have been generated and twenty with 10,000 cases.
ALLPAD and naive Bayes models were learned from each dataset and the log likelihoods
were averaged.

The time limit for the MIP optimization was set to 1 hour, the size of the beam was set
to 50, and the maximum number of bodies to be refined for each clause template was set
to 200.

The results are shown in Fig. 2. The difference between ALLPAD and naive Bayes is
significant at 100.0% (according to a paired two-tailed ¢ test).

5 Related work

There has recently been a growing interest in the field of probabilistic logic programming:
a number of works have appeared that combine logic programming or relational representa-
tions with probabilistic reasoning. Among these works, we cite: Bayesian Logic Programs
(BLPs) (Kersting and Raedt 2000, 2001a), Probabilistic Relational Models (PRMs) (Getoor
et al. 2001), Independent Choice Logic (ICL) (Poole 1997), Stochastic Logic Programs
(Muggleton 2000; Cussens 2000), the Meta Interpreter Approach (MIA) (Blockeel 2003),
Logical Bayesian Networks (LBNs) (Fierens et al. 2004) and CLP(BN) (Santos Costa et al.
2003).

In (Blockeel 2004) the author compares MIA, CLP(BN), BLPs, LBNs and LPADs on
the problem of representing Mendel’s law of inheritance of pea color. The author concludes
that LPADs are the only ones that are both among the most readable and among those that
are able to express the most stringent constraints on the joint distribution by using only
qualitative information.

In (Vennekens and Verbaeten 2003) the authors compare LPAD with Bayesian Logic
Programs (Kersting and Raedt 2000, 2001a). They show that every BLP can be expressed
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as an LPAD with a semantics that matches that of the BLP. Moreover, they also show that a
large subset of LPADs can be translated into BLPs in a way that preserves the semantics of
the LPADs. Such a subset is the set of all finite ground LPADs that are acyclic. Therefore,
the techniques developed in (Kersting 2001b) for learning BLPs can be used for learning
this class of LPADs as well and, on the other side, ALLPAD can be used for learning BLPs,
thus representing an alternative approach to those in (Kersting 2001b).

Stochastic Logic Programs (SLPs) (Cussens 2000; Muggleton 2000) are another formal-
ism integrating logic and probability. Each clause C in a SLP has a label A, that specifies,
as in probabilistic context-free grammars, the probability that C is used in a SLD refutation
when an atom with the same predicate as the head of C has to be proved. In (Vennekens and
Verbaeten 2003) the authors have shown that a SLP can be translated into an LPAD, while
whether the opposite is possible is not known yet. Therefore, it is not clear at the moment
whether the techniques used for learning SLPs can be used for learning LPADs.

PRISM (Sato 1995) is a logic language in which a program is composed of a set of facts
and a set of rules such that no atom in the set of facts appears in the head of a rule. In a
PRISM program, each atom is seen as a random variable taking value true or false. A proba-
bility distribution for the atoms appearing in the head of rules is inferred from the probability
distribution given for the set of facts. PRISM differs from LPADs because PRISM assigns
a probability distribution to ground facts while LPADs assign a probability distribution to
the atoms in the head of rules. PRISM programs resemble programs of ICL, in the sense
that PRISM facts can be seen as ICL abducibles. In (Sato and Kameya 2001) the authors
also propose an algorithm for learning the parameters of the probability distribution of facts
from a given probability distribution for the observable atoms (atoms in the head of rules).
However, no algorithm for learning the rules of a PRISM program has been defined. Infer-
ring the parameters of the distribution is performed in ALLPAD analytically by means of
Theorem 1 rather than by means of the EM algorithm as in PRISM.

Considering the problem of learning LPADs, a system related to ALLPAD is Classic’cl
(Stolle et al. 2005). ALLPAD differs from Classic’cl in the following respects: it is able to
solve the constraint problem in an approximate way, it learns definite clauses separately, it
can search the space of heads bottom-up and it adopts beam search in the space of bodies.

6 Conclusion and future works

The learning algorithm ALLPAD has been presented. It improves LLPAD by solving the
constraint satisfaction problem in an approximate way so that real world problems can be
solved.

ALLPAD was tested on the problem of classifying proteins into SCOP classes and on
the problem of classifying Unix traces into user classes. While not overcoming the best
systems in the domains, ALLPAD achieved good accuracy, thus showing the viability of the
approach. Moreover, ALLPAD was also tested on artificial data and showed a significantly
higher log likelihood with respect to naive Bayes.

In the future, work will be devoted to the definition of a generality relation among LPAD
clauses and of the relative generalization operators, so that the ground clauses that are re-
turned by ALLPAD can be generalized in a sixth phase.

Moreover, given that Bayesian networks can be translated into LPADs (Vennekens and
Verbaeten 2004), we will explore an alternative approach for learning LPADs: learning a
Bayesian network from data and converting it into an LPAD. In this way a ground LPAD
will be obtained so generalization techniques will have to be employed as well.
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Finally, the problem of learning a more general class of LPADs, namely LPADs where
clauses do not have mutually exclusive bodies, will be investigated.
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