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Abstract We consider the problem of learning an acyclic discrete circuit with n wires,
fan-in bounded by k and alphabet size s using value injection queries. For the class of tran-
sitively reduced circuits, we develop the Distinguishing Paths Algorithm, that learns such a
circuit using (ns)O(k) value injection queries and time polynomial in the number of queries.
We describe a generalization of the algorithm to the class of circuits with shortcut width
bounded by b that uses (ns)O(k+b) value injection queries. Both algorithms use value injec-
tion queries that fix only O(kd) wires, where d is the depth of the target circuit. We give
a reduction showing that without such restrictions on the topology of the circuit, the learn-
ing problem may be computationally intractable when s = nΘ(1), even for circuits of depth
O(logn). We then apply our large-alphabet learning algorithms to the problem of approxi-
mate learning of analog circuits whose gate functions satisfy a Lipschitz condition. Finally,
we consider models in which behavioral equivalence queries are also available, and extend
and improve the learning algorithms of (Angluin in Proceedings of the Thirty-Eighth Annual
ACM Symposium on Theory of Computing, pp. 584–593, 2006) to handle general classes
of gate functions that are polynomial time learnable from counterexamples.
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1 Introduction

We consider learning large-alphabet and analog acyclic circuits in the value injection model
introduced in (Angluin et al. 2006). In this model, we may inject values of our choice on any
subset of wires, but we can only observe the one output of the circuit. However, the value
injection query algorithms in that paper for boolean and constant alphabet networks do not
lift to the case when the size of the alphabet is polynomial in the size of the circuit.

One motivation for studying the boolean network model includes gene regulatory net-
works. In a boolean model, each node in a gene regulatory network can represent a gene
whose state is either active or inactive. However, genes may have a large number of states
of activity. Constant-alphabet network models may not adequately capture the information
present in these networks, which motivates our interest in larger alphabets.

Akutsu et al. (2003) and Ideker et al. (2000) consider the discovery problem that models
the experimental capability of gene disruption and overexpression. In such experiments, it is
desirable to manipulate as few genes as possible. In the particular models considered in these
papers, node states are fully observable – the gene expression data gives the state of every
node in the network at every time step. Their results show that in this model, for bounded
fan-in or sufficiently restricted gene functions, the problem of learning the structure of a
network is tractable.

In contrast, there is ample evidence that learning boolean circuits solely from input-
output behaviors may be computationally intractable. Kearns and Valiant (1994) show that
specific cryptographic assumptions imply that NC1 circuits and TC0 circuits are not PAC
learnable in polynomial time. These negative results have been strengthened to the setting
of PAC learning with membership queries (Angluin and Kharitonov 1995), even with re-
spect to the uniform distribution (Kharitonov 1993). Furthermore, positive learnability re-
sults exist only for fairly limited classes, including propositional Horn formulas (Angluin
et al. 1992), general read once Boolean formulas (Angluin et al. 1993), and decision trees
(Bshouty 1995), and those for specific distributions, including AC0 circuits (Linial et al.
1993), DNF formulas (Jackson 1997), and AC0 circuits with a limited number of majority
gates (Jackson et al. 2002).1

Thus, Angluin et al. (2006) look at the relative contributions of full observation and full
control of learning boolean networks. Their model of value injection allows full control and
restricted observation, and it is the model we study in this paper. Interestingly, their results
show that this model gives the learner considerably more power than with only input-output
behaviors but less than the power with full observation. In particular, they show that with
value injection queries, NC1 circuits and AC0 circuits are exactly learnable in polynomial
time, but their negative results show that depth limitations are necessary.

A second motivation behind our work is to study the relative importance of the para-
meters of the models for learnability results. The impact of alphabet size on learnability
becomes a natural point of inquiry, and ideas from fixed parameter tractability are very rel-
evant (Downey and Fellows 1999; Niedermeier 2006).

1Algorithms in both (Linial et al. 1993) and (Jackson et al. 2002) for learning AC0 circuits and their variants
run in quasi-polynomial time.
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In this paper we show positive learnability results for bounded fan-in, large alphabet,
arbitrary depth circuits given some restrictions on the topology of the target circuit. Specif-
ically, we show that transitively reduced circuits and circuits with bounded shortcut width
(as defined in Sect. 2) are exactly learnable in polynomial time, and we present evidence
that shortcut width is the correct parameter to look at for large alphabet circuits. We also
show that analog circuits of bounded fan-in, logarithmic depth, and small shortcut width
that satisfy a Lipschitz condition are approximately learnable in polynomial time. Finally,
we extend the results of (Angluin et al. 2006) when behavioral equivalence queries are also
available, for both binary and large-alphabet circuits.

2 Preliminaries

2.1 Circuits

We give a general definition of acyclic circuits whose wires carry values from a set Σ . For
each nonnegative integer k, a gate function of arity k is a function from Σk to Σ . A circuit
C consists of a finite set of wires w1, . . . ,wn, and for each wire wi , a gate function gi of
arity ki and an ordered ki -tuple wσ(i,1), . . . ,wσ(i,ki ) of wires, the inputs of wi . We define wn

to be the output wire of the circuit. We may think of wires as outputs of gates in C.
The unpruned graph of a circuit C is the directed graph whose vertices are the wires

and whose edges are pairs (wi,wj ) such that wi is an input of wj in C. A wire wi is output-
connected if there is a directed path in the unpruned graph from that wire to the output wire.
Wires that are not output-connected cannot affect the output value of a circuit. The graph
of a circuit C is the subgraph of its unpruned graph induced by the output-connected wires.

A circuit is acyclic if its graph is acyclic. In this paper we consider only acyclic circuits.
If u and v are vertices such that u �= v and there is a directed path from u to v, then we say
that u is an ancestor of v and that v is a descendant of u. The depth of an output-connected
wire wi is the length of a longest path from wi to the output wire wn. The depth of a circuit
is the maximum depth of any output-connected wire in the circuit. A wire with no inputs
is an input wire; its default value is given by its gate function, which has arity 0 and is
constant.

We consider the property of being transitively reduced (Aho et al. 1972) and a general-
ization of it: bounded shortcut width. Let G be an acyclic directed graph. An edge (u, v) of
G is a shortcut edge if there exists a directed path in G of length at least two from u to v.
G is transitively reduced if it contains no shortcut edges. A circuit is transitively reduced if
its graph is transitively reduced. Note that in a transitively reduced circuit, for every output-
connected wire wi , no ancestor of wi is an input of any descendant of wi , otherwise there
would be a shortcut edge in the graph of the circuit.

The shortcut width of a wire wi is the number of wires wj such that wj is both an
ancestor of wi and an input of a descendant of wi . (Note that we are counting wires, or
vertices, not edges.) The shortcut width of a circuit C is the maximum shortcut width of
any output-connected wire in C. A circuit is transitively reduced if and only if it has shortcut
width 0. A circuit’s shortcut width turns out to be a key parameter in its learnability by value
injection queries.

2.2 Experiments on circuits

Let C be a circuit. An experiment e is a function mapping each wire of C to Σ ∪{∗}, where
∗ is not an element of Σ . If e(wi) = ∗, then the wire wi is free in e; otherwise, wi is fixed
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in e. If e is an experiment that assigns ∗ to wire w, and σ ∈ Σ , then e|w=σ is the experiment
that is equal to e on all wires other than w, and fixes w to σ . We define an ordering � on
Σ ∪ {∗} in which all elements of Σ are incomparable and precede ∗, and lift this to the
componentwise ordering on experiments. Then e1 � e2 if every wire that e2 fixes is fixed to
the same value by e1, and e1 may fix some wires that e2 leaves free.

For each experiment e we inductively define the value wi(e) ∈ Σ , of each wire wi in C

under the experiment e as follows. If e(wi) = σ and σ �= ∗, then wi(e) = σ . Otherwise, if the
values of the input wires of wi have been defined, then wi(e) is defined by applying the gate
function gi to them, that is, wi(e) = gi(wσ(i,1)(e), . . . ,wσ(i,ki )(e)). Because C is acyclic, for
any experiment this uniquely defines wi(e) ∈ Σ for all wires wi . We define the value of the
circuit to be the value of its output wire, that is, C(e) = wn(e) for every experiment e.

Let C and C ′ be circuits with the same set of wires and the same value set Σ . If C(e) =
C ′(e) for every experiment e, then we say that C and C ′ are behaviorally equivalent. To
define approximate equivalence, we assume that there is a metric d on Σ mapping pairs
of values from Σ to a real-valued distance between them. If d(C(e),C ′(e)) ≤ ε for every
experiment e, then we say that C and C ′ are ε-equivalent.

We consider two principal kinds of circuits. A discrete circuit is a circuit for which the
set Σ of wire values is a finite set. An analog circuit is a circuit for which Σ = [0,1]. In
this case we specify the distance function as d(x, y) = |x − y|.

2.3 The learning problems

We consider the following general learning problem. There is an unknown target circuit C∗
drawn from a known class of possible target circuits. The set of wires w1, . . . ,wn and the
value set Σ are given as input. The learning algorithm may gather information about C∗
by making calls to an oracle that will answer value injection queries. In a value injection
query, the algorithm specifies an experiment e and the oracle returns the value of C∗(e).
The algorithm makes a value injection query by listing a set of wires and their fixed values;
the other wires are assumed to be free, and are not explicitly listed. The goal of a learning
algorithm is to output a circuit C that is either exactly or approximately equivalent to C∗.

In the case of learning discrete circuits, the goal is behavioral equivalence and the learn-
ing algorithm should run in time polynomial in n. In the case of learning analog circuits,
the learning algorithm has an additional parameter ε > 0, and the goal is ε-equivalence. In
this case the learning algorithm should run in time polynomial in n and 1/ε. In Sect. 6.1, we
consider algorithms that may use equivalence queries in addition to value injection queries.

3 Learning large-alphabet circuits

In this section we consider the problem of learning a discrete circuit when the alphabet Σ of
possible values is of size nO(1). In Sect. 5 we reduce the problem of learning an analog circuit
whose gate functions satisfy a Lipschitz condition to that of learning a discrete circuit over
a finite value set Σ ; the number of values is nΘ(1) for an analog circuit of depth O(logn).
Using this approach, in order to learn analog circuits of even moderate depth, we need
learning algorithms that can handle large alphabets.

The algorithm Circuit Builder (Angluin et al. 2006) uses value injection queries to learn
acyclic discrete circuits of unrestricted topology and depth O(logn) with constant fan-in
and constant alphabet size in time polynomial in n. However, the approach of (Angluin et
al. 2006) to building a sufficient set of experiments does not generalize to alphabets of size
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nO(1) because the total number of possible settings of side wires along a test path grows
superpolynomially. In fact, we give evidence in Sect. 3.1 that this problem becomes compu-
tationally intractable for an alphabet of size nΘ(1).

In turn, this negative result justifies a corresponding restriction on the topology of the
circuits we consider. We first show that a natural top-down algorithm using value-injection
queries learns transitively reduced circuits with arbitrary depth, constant fan-in and alphabet
size nO(1) in time polynomial in n. We then give a generalization of this algorithm to circuits
that have a constant bound on their shortcut width. The topological restrictions do not result
in trivial classes; for example, every leveled graph is transitively reduced.

Combining these results with the discretization from Sect. 5, we obtain an algorithm
using value-injection queries that learns, up to ε-equivalence, analog circuits satisfying a
Lipschitz condition with constant bound, depth bounded by O(logn), having constant fan-
in and constant shortcut width in time polynomial in n and 1/ε.

3.1 Hardness for large alphabets with unrestricted topology

We give a reduction that turns a large-alphabet circuit learning algorithm into a clique tester.
Because the clique problem is complete for the complexity class W [1] (see Downey and Fel-
lows 1999; Niedermeier 2006), this suggests the learning problem may be computationally
intractable for classes of circuits with large alphabets and unrestricted topology.

The reduction Suppose the input is (G, k), where k ≥ 2 is an integer and G = (V ,E) is a
simple undirected graph with n ≥ 3 vertices, and the desired output is whether G contains
a clique of size k. We construct a circuit C of depth d = (

k

2

)
as follows. The alphabet Σ is

V ; let v0 be a particular element of V . Define a gate function g with three inputs s, u, and v

as follows: if (u, v) is an edge of G, then the output of g is equal to the input s; otherwise,
the output is v0. The wires of C are s1, . . . , sd+1 and x1, x2, . . . , xk . The wires xj have no
inputs; their gate functions assign them the default value v0. For i = 1, . . . , d , the wire si+1

has corresponding gate function g, where the s input is si , and the u and v inputs are the i-th
pair (x�, xm) with � < m in the lexicographic ordering. Finally, the wire s1 has no inputs,
and is assigned some default value from V − {v0}. The output wire is sd+1.

To understand the behavior of C, consider an experiment e that assigns values from V to
each of x1, . . . , xk , and leaves the other wires free. The gates g pass along the default value
of s1 as long as the values e(x�) and e(xm) are an edge of G, but if any of those checks fail,
the output value will be v0. Thus the default value of s1 will be passed all the way to the
output wire if and only if the vertex values assigned to x1, . . . , xk form a clique of size k

in G.
We may use a learning algorithm as a clique tester as follows. Run the learning algorithm

using C to answer its value-injection queries e. If for some queried experiment e, the values
e(x1), . . . , e(xk) form a clique of k vertices in G, stop and output the answer “yes.” If the
learning algorithm halts and outputs a circuit without making such a query, then output the
answer “no.” Clearly a “yes” answer is correct, because we have a witness clique. And if
there is a clique of size k in G, the learning algorithm must make such a query, because in
that case, the default value assigned to s1 cannot otherwise be learned correctly; thus, a “no”
answer is correct. Then we have the following.

Theorem 1 If for some nonconstant computable function d(n) an algorithm using value
injection queries can learn the class of circuits of at most n wires, alphabet size s, fan-in
bound 3, and depth bound d(n) in time polynomial in n and s, then there is an algorithm
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to decide whether a graph on n vertices has a clique of size k in time f (k)nα , for some
function f and constant α.

Proof (Note that the function f need not be a polynomial.) On input (G, k), where G has
n vertices, we construct the circuit C as described above, which has alphabet size s ′ = (

n

2

)
,

depth d ′ = (
k

2

)
and number of wires n′ = d ′ + k + 1. We then evaluate d(1), d(2), . . . to find

the least N such that d(N) ≥ n′. Such an N may be found because d(n) is a nonconstant
computable function; the value of N depends only on k. We run the learning algorithm on
the circuit C padded with inessential wires to have N wires, using C to answer the value
injection queries. By hypothesis, because d ′ ≤ d(N), the learning algorithm runs in time
polynomial in N and s ′. Its queries enable us to answer correctly whether G has a clique
of size k. The total running time is bounded by f (k)nα for some function f and some
constant α. �

Because the clique problem is complete for the complexity class W [1], a polynomial time
learning algorithm as hypothesized in the theorem for any non-constant computable func-
tion d(n) would imply fixed-parameter tractability of all the problems in W [1] (Downey and
Fellows 1999; Niedermeier 2006). However, we show that restricting the circuit to be tran-
sitively reduced (Theorem 5), or more generally, of bounded shortcut width (Theorem 13),
avoids the necessity of a depth bound at all.2

Remark A natural question is whether a pattern graph less dense than a clique might avoid
squaring the parameter k in the reduction. In fact, there is a polynomial-time algorithm to
test whether a graph contains a path of length O(logn) (Alon et al. 1995). A reduction
similar to the one above can be used to test for the presence of an arbitrary graph H on k

vertices {1, . . . , k} as an induced subgraph in G. The gate with inputs x� and xm tests for an
edge in G (if (�,m) is an edge of H ) or tests whether the vertices are distinct and not an
edge of G (if (�,m) is not an edge of H ). Note that regardless of the number of edges in H ,
the all-pairs structure is necessary to verify that the distinctness of the vertices assigned to
x1, . . . , xk .

3.2 Distinguishing paths

This section develops some properties of distinguishing paths, making no assumptions about
shortcut width. Let C∗ be a circuit with n wires, an alphabet Σ of cardinality s, and fan-in
bounded by a constant k. An arbitrary gate function for such a circuit can be represented by
a gate table with sk entries, giving the value of the gate function for each possible k-tuple
of input symbols.

Experiment e distinguishes σ from τ for w if e sets w to ∗ and

C∗(e|w=σ ) �= C∗(e|w=τ ).

If such an experiment exists, the values σ and τ are distinguishable for wire w; otherwise,
σ and τ are indistinguishable for w.

A test path π for a wire w in C∗ consists of a directed path of wires from w to the output
wire, together with an assignment giving fixed values from Σ to some set S of other wires;

2The target circuit C constructed in the reduction is of shortcut width k − 1.
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S must be disjoint from the set of wires in the path, and each element of S must be an input
to some wire beyond w along the path. The wires in S are the side wires of the test path π .
The length of a test path is the number of edges in its directed path. There is just one test
path of length 0, consisting of the output wire and no side wires.

We may associate with a test path π the partial experiment pπ that assigns ∗ to each wire
on the path, and the specified value from Σ to each wire in S. An experiment e agrees with
a test path π if e extends the partial experiment pπ , that is, pπ is a subfunction of e. We also
define the experiment eπ that extends pπ by setting all the other wires to ∗.

If π is a test path and V is a set of wires disjoint from the side wires of π , then V is
functionally determining for π if for any experiment e agreeing with π and leaving the
wires in V free, for any experiment e′ obtained from e by setting the wires in V to fixed
values, the value of C∗(e′) depends only on the values assigned to the wires in V . That
is, the values on the wires in V determine the output of the circuit, given the assignments
specified by pπ . A test path π for w is isolating if {w} is functionally determining for π .
The following property is then clear.

Lemma 2 If π is an isolating test path for w then the set V of inputs of w is functionally
determining for π .

We define a distinguishing path for wire w and values σ, τ ∈ Σ to be an isolating
test path π for w such that eπ distinguishes between σ and τ for w. The significance of
distinguishing paths is indicated by the following lemma, which is analogous to Lemma 10
of (Angluin et al. 2006).

Lemma 3 Suppose σ and τ are distinguishable for wire w. Then for any minimal experi-
ment e distinguishing σ from τ for w, there is a distinguishing path π for wire w and values
σ and τ such that the free wires of e are exactly the wires of the directed path of π , and e

agrees with π .

Proof We prove the result by induction on the depth of the wire w; it clearly holds when w

is the output wire. Suppose the result holds for all wires at depth at most d in C∗, and assume
that w is a wire at depth d + 1 and that e is any minimal experiment that distinguishes σ

from τ for w. Every free wire in e must be reachable from w; using the acyclicity of C∗, let
w′ be a free wire in e whose only free input is w. Let σ ′ = w′(e|w=σ ) and τ ′ = w′(e|w=τ ).
Because e is minimal, we must have σ ′ �= τ ′.

Moreover, the minimality of e also implies that

C∗(e|w=σ,w′=σ ′) = C∗(e|w=τ,w′=σ ′)

and

C∗(e|w=σ,w′=τ ′) = C∗(e|w=τ,w′=τ ′),

so we must have

C∗(e|w=σ,w′=σ ′) �= C∗(e|w=σ,w′=τ ′),

which means that the experiment e′ = e|w=σ distinguishes σ ′ from τ ′ for w′. The experiment
e′ is also a minimal experiment distinguishing σ ′ from τ ′ for w′; otherwise, e would not be
minimal. The depth of w′ is at most d , so by induction, there is a distinguishing path π ′
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for wire w′ and values σ ′ and τ ′ such that the free wires of e′ are exactly the wires of the
directed path π ′, and e′ agrees with π ′.

We may extend π ′ to π as follows. Add w to the start of the directed path in π ′. The
side wires of π are the side wires of π ′ with their settings in π ′, together with any inputs
of w′ (other than w) that are not already side wires of π ′, set as in e. The result is clearly an
isolating test path for w that distinguishes σ from τ . Also the wires in the directed path of π

are precisely the free wires of e, and e agrees with π , which completes the induction. �

Conversely, a shortest distinguishing path yields a minimal distinguishing experiment,
as follows. This does not hold for circuits of general topology without the restriction to a
shortest path.

Lemma 4 Let π be a shortest distinguishing path for wire w and values σ and τ . Then the
experiment e obtained from pπ by setting every unspecified wire to an arbitrary fixed value
is a minimal experiment distinguishing σ from τ for w.

Proof Because π is a distinguishing path, w is functionally determining for π , so e distin-
guishes σ from τ for w. If e is not minimal, then there is some minimal e′ � e such that e′
distinguishes σ and τ for w. By Lemma 3, there is a distinguishing path for w and values σ

and τ whose path wires are the free wires of e′. This contradicts the assumption that π as a
shortest path distinguishing σ from τ for w. �

3.3 The distinguishing paths algorithm

In this section we develop the Distinguishing Paths Algorithm.

Theorem 5 The Distinguishing Paths Algorithm learns any transitively reduced circuit with
n wires, alphabet size s, and fan-in bound k, with O(n2k+1s2k+2) value injection queries and
time polynomial in the number of queries.

Lemma 6 If C∗ is a transitively reduced circuit and π is a test path for w in C∗, then none
of the inputs of w is a side wire of π .

Proof Every side wire u of π is an input to some wire beyond w in the directed path of
wires, that is, to some descendant of w. If u were an input to w, then u would be an ancestor
of w and an input to a descendant of w, contradicting the assumption that C∗ is transitively
reduced. �

The Distinguishing Paths Algorithm builds a directed graph G whose vertices are the
wires of C∗, in which an edge (v,w) represents the discovery that v is an input of w in C∗.
The algorithm also keeps for each wire w a distinguishing table Tw with

(
s

2

)
entries, one

for each unordered pair of values from Σ . The entry for (σ, τ ) in Tw is 1 or 0 according to
whether or not a distinguishing path has been found to distinguish values σ and τ on wire w.
Stored together with each 1 entry is a corresponding distinguishing path and a bit marking
whether the entry is processed or unprocessed.

At each step, for each distinguishing table Tw that has unprocessed 1 entries, we try to
extend the known distinguishing paths to find new edges to add to G and new 1 entries
and corresponding distinguishing paths for the distinguishing tables of inputs of w. Once
every 1 entry in every distinguishing table has been marked processed, the construction of
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distinguishing tables terminates. Then a circuit C is constructed with graph G by computing
gate tables for the wires; the algorithm outputs C and halts.

To extend a distinguishing path for a wire w, it is necessary to find an input wire of w.
Given a distinguishing path π for wire w, an input v of w is relevant with respect to π

if there are two experiments e1 and e2 that agree with π , that set the inputs of w to fixed
values, that differ only by assigning different values to v, and are such that C∗(e1) �= C∗(e2).
Let V (π) denote the set of all inputs v of w that are relevant with respect to π . It is only
relevant inputs of w that need be found, as shown by the following.

Lemma 7 Let π be a distinguishing path for w. Then V (π) is functionally determining
for π .

Proof Suppose V (π) is not functionally determining for π . Then there are two experiments
e1 and e2 that agree with π and assign ∗ to all the wires in V (π), and an assignment a of
fixed values to the wires in V (π) such that the two experiments e′

1 and e′
2 obtained from e1

and e2 by fixing all the wires in V (π) as in a have the property that C∗(e′
1) �= C∗(e′

2).
Because π is a distinguishing path for w, the set V of all inputs of w is functionally

determining for π . Thus, e′
1 and e′

2 must induce different values for at least one input of w

(that cannot be in V (π)). Let e′′
1 be e′

1 with all of the inputs of w fixed to their induced values
in e′

1, and similarly for e′′
2 with respect to e′

2. Now C∗(e′′
1) = C∗(e′

1) �= C∗(e′
2) = C∗(e′′

2), and
both e′′

1 and e′′
2 fix all the inputs of w. By changing the differing fixed values of the inputs of

w one by one from their setting in e′′
1 to their setting in e′′

2 , we can find a single input wire
u of w such that changing just its value changes the output of the circuit. The resulting two
experiments witness that u is an input of w relevant with respect to π , which contradicts the
fact that u is not in V (π). �

Given a distinguishing path π for wire w, we define its corresponding input experiments
Eπ to be the set of all experiments e that agree with π and set up to 2k additional wires to
fixed values and set the rest of the wires free. Note that each of these experiments fix at most
2k more values than are already fixed in the distinguishing path. Consider all pairs (V ,Y )

of disjoint sets of wires not set by pπ such that |V | ≤ k and |Y | ≤ k; for every possible way
of setting V ∪ Y to fixed values, there is a corresponding experiment in Eπ .

Find-inputs We now describe a procedure, Find-Inputs, that uses the experiments in Eπ to
find all the wires in V (π). Define a set V of at most k wires not set by pπ to be determining
if for every disjoint set Y of at most k wires not set by pπ and for every assignment of values
from Σ to the wires in V ∪ Y , the value of C∗ on the corresponding experiment from Eπ

is determined by the values assigned to wires in V , independent of the values assigned to
wires in Y . Find-Inputs finds all determining sets V and outputs their intersection.

Lemma 8 Given a distinguishing path π for w and its corresponding input experiments
Eπ , the procedure Find-Inputs returns V (π).

Proof First, there is at least one set in the intersection, because if Vw is the set of all inputs
to w in C∗, then by Lemma 6 and the acyclicity of C∗, no wires in Vw are set in pπ .
By Lemma 2, Vw is functionally determining for π and therefore determining, and, by the
bound on fan-in, |Vw| ≤ k, so Vw will be one such set V . Let V ∗ denote the intersection of
all determining sets V .
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Clearly, every wire in V ∗ is an input of w, because V ∗ ⊆ Vw . To see that each v ∈ V ∗
is relevant with respect to π , consider the set V ′ = Vw − {v} of inputs of w other than v.
This set must not appear in V ∗(because v ∈ V ∗), so it must be that for some pair (V ′, Y )

there are two experiments e1 and e2 in Eπ that give the same fixed assignments to V ′ and
different fixed assignments to Y , and are such that C∗(e1) �= C∗(e2). Then v(e1) �= v(e2),
because V ′ ∪ {v} is functionally determining for π . Thus, if we take e′

1 to be e1 with v fixed
to v(e1) and e′

2 to be e1 with v fixed to v(e2), we have two experiments that witness that v

is relevant with respect to π . Thus V ∗ ⊆ V (π).
Conversely, suppose v ∈ V (π) and that V ∗ does not include v. Then there is some set V

in the intersection that excludes v. Also, there are two experiments e1 and e2 that agree with
π , set the inputs of w to fixed values and differ only on v, such that C∗(e1) �= C∗(e2). Let Y

consist of all the inputs of w that are not in V ; clearly v ∈ Y , none of the elements of Y are
set in pπ and |Y | ≤ k. There is an experiment e′

1 ∈ Eπ for the pair (V ,Y ) that sets the inputs
of w as in e1 and the other wires of V arbitrarily, and another experiment e′

2 ∈ Eπ for the pair
(V ,Y ) that agrees with e1 except in setting v to its value in e2. These two experiments set
the inputs of w as in e1 and e2 respectively, and the inputs of w are functionally determining
for π , so we have C∗(e′

1) = C∗(e1) �= C∗(e2) = C∗(e′
2). This is a contradiction: V would not

have been included in the intersection. Thus V (π) ⊆ V ∗, concluding the proof. �

Find-paths We now describe a procedure, Find-Paths, that takes the set V (π) of all inputs
of w relevant with respect to π , and searches, for each triple consisting of v ∈ V (π) and
σ, τ ∈ Σ , for two experiments e1 and e2 in Eπ that fix all the wires of V (π) − {v} in the
same way, but set v to σ and τ , respectively, and are such that C∗(e1) �= C∗(e2). On finding
such a triple, the distinguishing path π for w can be extended to a distinguishing path π ′
for v by adding v to the start of the path, and making all the wires in V (π) − {v} new side
wires, with values fixed as in e1. If this gives a new 1 for entry (σ, τ ) in the distinguishing
paths table Tv , then we change the entry, add the corresponding distinguishing path for v to
the table, and mark it unprocessed. We have to verify the following.

Lemma 9 Suppose π ′ is a path produced by Find-Paths for wire v and values σ and τ .
Then π ′ is a distinguishing path for wire v and values σ, τ .

Proof Because v is an input to w in C∗, prefixing v to the path from π is a path of wires
from v to the output wire in C∗. Because v is an input of w, by Lemma 6, v is not among the
side wires S for π . The new side wires are those in V (π) − {v}, and because they are inputs
of w, by Lemma 6 they are not already on the path for π nor in the set S. Thus, π ′ is a test
path. The new side wires are fixed to values with the property that changing v between σ

and τ produces a difference at the output of C∗. Because by Lemma 7, V (π) is functionally
determining for π , the test path π ′ is isolating for v. Thus π ′ is a distinguishing path for
wire v and values σ and τ . �

The Distinguishing Paths Algorithm initializes the simple directed graph G to have the
set of wires of C∗ as its vertex set, with no edges. It initializes Tw to all 0’s, for every non-
output wire w. Every entry in Twn is initialized to 1, with a corresponding distinguishing
path of length 0 with no side wires, and marked as unprocessed. The Distinguishing Paths
Algorithm is summarized in Algorithm 1; the procedure Construct-Circuit is described be-
low.

We now show that when processing of the tables terminates, the tables Tw are correct and
complete. We first consider the correctness of the 1 entries.
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Algorithm 1 Distinguishing paths algorithm
Initialize G to have the wires as vertices and no edges.
Initialize Twn to all 1’s, marked unprocessed.
Initialize Tw to all 0’s for all non-output wires w.
while there is an unprocessed 1 entry (σ, τ ) in some Tw do

Let π be the corresponding distinguishing path.
Perform all input experiments Eπ .
Use Find-Inputs to determine the set V (π).
Add any new edges (v,w) for v ∈ V (π) to G.
Use Find-Paths to find extensions of π for elements of V (π).
for each extension π ′ that gives a new 1 entry in some Tv do

Put the new 1 entry in Tv with distinguishing path π ′.
Mark this new 1 entry as unprocessed.

end for
Mark the 1 entry for (σ, τ ) in Tw as processed.

end while
Use Construct-Circuit with G and the tables Tw to construct a circuit C.
Output C and halt.

Lemma 10 After the initialization, and after each new 1 entry is placed in a distinguishing
table, every 1 entry in a distinguishing table Tw for (σ, τ ) has a corresponding distinguish-
ing path π for wire w and values σ and τ .

Proof This condition clearly holds after the initialization, because the distinguishing path
consisting of just the output wire and no side wires correctly distinguishes every distinct pair
of values from Σ . Then, by induction on the number of new 1 entries in distinguishing path
tables, when an existing 1 entry in Tw gives rise to a new one in Tv , then the path π from
Tw is a correct distinguishing path for w. Thus, by Lemma 8, the Find-Inputs procedure
correctly finds the set V (π) of inputs of w relevant with respect to π , and by Lemma 9, the
Find-Paths procedure correctly finds extensions of π to distinguishing paths π ′ for elements
of V (π). Thus, any new 1 entry in a table Tv will have a correct corresponding distinguishing
path. �

A distinguishing table Tw is complete if for every pair of values σ, τ ∈ Σ such that σ

and τ are distinguishable for w, Tw has a 1 entry for (σ, τ ).

Lemma 11 When the Distinguishing Paths Algorithm terminates, Tw is complete for every
wire w in C∗.

Proof Assume to the contrary and look at a wire w at the smallest possible depth such that
Tw is incomplete; assume it lacks a 1 entry for the pair (σ, τ ), which are distinguishable
for w. Note that w cannot be the output wire. Because the depth of w is at least one more
than the depth of any descendant of w, all wires on all directed paths from w to the root have
complete distinguishing tables. By Lemma 10, all the entries in all distinguishing tables are
also correct.

Because σ and τ are distinguishable for w, by Lemma 3 there exists a distinguishing
path π for wire w and values σ and τ . On this distinguishing path, w is followed by some
wire x. The wires along π starting with x and omitting any side wires that are inputs of x
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is a distinguishing path for wire x and values σ ′ and τ ′, where σ ′ is the value that x takes
when w = σ and τ ′ is the value that x takes when w = τ in any experiment agreeing with π .

Because x is a descendant of w, its distinguishing table Tx is complete and correct. Thus,
there exists in Tx a 1 entry for (σ ′, τ ′) and a corresponding distinguishing path πx . This 1
entry must be processed before the Distinguishing Paths Algorithm terminates. When it is
processed, two of the input experiments for πx will set the inputs of x in agreement with
π , and set w to σ and τ respectively. Thus, w will be discovered to be a relevant input of
x with respect to π , and a distinguishing experiment for wire w and values σ and τ will be
found, contradicting the assumption that Tw never gets a 1 entry for (σ, τ ). Thus, no such
wire w can exist and all the distinguishing tables are complete. �

Construct-circuit Now we show how to construct a circuit C behaviorally equivalent to C∗

given the graph G and the final distinguishing tables. G is the graph of C, determining the
input relation between wires. Note that G is a subgraph of the graph of C∗, because edges
are added only when relevant inputs are found.

Gate tables for wires in C will keep different combinations of input values and their
corresponding output. Since some distinguishing tables for wires may have 0 entries, we will
record values in gate tables up to equivalence, where σ and τ are in the same equivalence
class for w if they are indistinguishable for w. We process one wire at a time, in arbitrary
order. We first record, for one representative σ of each equivalence class of values for w, the
outputs C∗(eπ |w=σ ) for all the distinguishing paths π in Tw . Given a setting of the inputs to
w (in C), we can tell which equivalence class of values of w it should map to as follows. For
each distinguishing path π in Tw , we record the output of C∗ for the experiment equal to eπ

with the inputs of w set to the given fixed values and w = ∗. For this setting of the inputs,
we set the output in w’s gate table to be the value of σ with recorded outputs matching these
outputs for all π . Repeating this for every setting of w’s inputs completes w’s gate table,
and we continue to the next gate.

Lemma 12 Given the graph G and distinguishing tables as constructed in the Distinguish-
ing Paths Algorithm, the procedure Construct-Circuit constructs a circuit C behaviorally
equivalent to C∗.

Proof Assume to the contrary that C is not behaviorally equivalent to C∗, and let e be a
minimal experiment (with respect to �) such that C(e) �= C∗(e). Using the acyclicity of C,
there exists a wire w that is free in e and its inputs (in C) are fixed in e. Let σ be the value
that w takes for experiment e in C, and let τ be the value that w takes for experiment e in
C∗. Because e is minimal, σ �= τ .

Now C(e) = C(e|w=σ ) and C∗(e) = C∗(e|w=τ ), but because e is minimal, we must have
C(e|w=σ ) = C∗(e|w=σ ), so C∗(e|w=σ ) = C(e) �= C∗(e) = C∗(e|w=τ ) and e distinguishes σ

from τ for w. Thus, because the distinguishing tables used by Construct-Circuit are com-
plete and correct, there must be a distinguishing path π for (σ, τ ) in Tw .

Consider the set V of inputs of w in C∗. If in the experiment eπ the wires in V are set to
the values they take in e in C∗, then the output of C∗ is C∗(e|w=τ ). If V ′ is the set of inputs
of w in C, then V ′ ⊆ V , and if in the experiment eπ the wires in V ′ are set to their fixed
values in e, then the output of C∗ is C∗(e|w=σ ), where σ is the representative value chosen
by Construct-Circuit. Thus, there must be a wire v ∈ V − V ′ relevant with respect to π , but
then v would have been added to the circuit graph as an input to w when π was processed,
a contradiction. Thus, C is behaviorally equivalent to C∗. �
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We analyze the total number of value injection queries used by the Distinguishing Paths
Algorithm; the running time is polynomial in the number of queries. To construct the distin-
guishing tables, each 1 entry in a distinguishing table is processed once. The total number
of possible 1 entries in all the tables is bounded by ns2. The processing for each 1 entry is to
take the corresponding distinguishing path π and construct the set Eπ of input experiments,
each of which consists of choosing up to 2k wires and setting them to arbitrary values from
Σ , for a total of O(n2ks2k) queries to construct Eπ . Thus, a total of O(n2k+1s2k+2) value
injection queries are used to construct the distinguishing tables.

To build the gate tables, for each of n wires, we try at most s2 distinguishing path ex-
periments for at most s values of the wire, which takes at most s3 queries. We then run the
same experiments for each possible setting of the inputs to the wire, which takes at most
sks2 experiments. Thus Construct-Circuit requires a total of O(n(s3 + sk+2)) experiments,
which are already among the ones made in constructing the distinguishing tables. Note that
every experiment fixes at most O(kd) wires, where d is the depth of C∗. This concludes the
proof of Theorem 5.

4 Circuits with bounded shortcut width

In this section we describe the Shortcuts Algorithm, which generalizes the Distinguishing
Paths Algorithm to circuits with bounded shortcut width as follows.

Theorem 13 The Shortcuts Algorithm learns the class of circuits having n wires, alphabet
size s, fan-in bound k, and shortcut width bounded by b using a number of value injection
queries bounded by (ns)O(k+b) and time polynomial in the number of queries.

When C∗ is not transitively reduced, there may be edges of its graph that are important
to the behavior of the circuit, but are not completely determined by the behavior of the cir-
cuit. For example, the three circuits given in Fig. 1 of (Angluin et al. 2006) are behaviorally
equivalent, but have different graphs; a behaviorally correct circuit cannot be constructed
with just the edges that are common to the three circuit graphs. Thus, the Shortcuts Algo-
rithm focuses on finding a sufficient set of experiments for C∗, and uses Circuit Builder
(Angluin et al. 2006) to build the output circuit C.

A gate with gate function g and input wires u1, . . . , u� is wrong for w in C∗ if there
exists an experiment e in which the wires u1, . . . , u� are fixed, say to values uj = σj , and
w is free, and there is an experiment e such that C∗(e) �= C∗(e|w=g(σ1,...,σ�)), and is correct
otherwise. The experiment e, which we term a witness experiment for this gate and wire,
shows that no circuit C using this gate for w can be behaviorally equivalent to C∗. A set
E of experiments is sufficient for C∗ if for every wire w and every candidate gate that is
wrong for w, E contains a witness experiment for this gate and this wire.

Lemma 14 (Angluin et al. 2006) If the input E to Circuit Builder is a sufficient set of
experiments for C∗, then the circuit C that it outputs is behaviorally equivalent to C∗.

The need to guarantee witness experiments for all possible wrong gates means that the
Shortcuts Algorithm will learn a set of distinguishing tables for the restriction of C∗ obtained
by fixing u1, . . . , u� to values σ1, . . . , σ� for every choice of at most k wires uj and every
choice of assignments of fixed values to them.
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On the positive side, we can learn quite a bit about the topology of a circuit C∗ from
its behavior. An edge (v,w) of the graph of C∗ is discoverable if it is the initial edge
on some minimal distinguishing experiment e for v and some values σ1 and σ2. This is a
behaviorally determined property; all circuits behaviorally equivalent to C∗ must contain all
the discoverable edges of C∗.

Because e is minimal, w must take on two different values, say τ1 and τ2 in e|v=σ1 and
e|v=σ2 respectively. Moreover, e|v=σ1 must be a minimal experiment distinguishing τ1 from
τ2 for w; this purely behavioral property is both necessary and sufficient for a pair (v,w) to
be a discoverable edge.

Lemma 15 The pair (v,w) is a discoverable edge of C∗ if and only if there is an experiment
e and values σ1, σ2, τ1, τ2 such that e is a minimal experiment distinguishing σ1 from σ2 for
v, and e|v=σ1 is a minimal experiment distinguishing τ1 from τ2 for w.

We now generalize the concept of distinguishing paths to leave potential shortcut wires
unassigned. Assume that C∗ is a circuit, with n wires, an alphabet Σ of s symbols, fan-in
bound k, and shortcut width bound b. A test path with shortcuts π is a directed path of
wires from some wire w to the output, a set S of side wires assigned fixed values from Σ ,
and a set K of cut wires such that S and K are disjoint and neither contains w, and each wire
in S ∪K is an input to at least one wire beyond w in the directed path of wires. One intuition
for this is that the wires in K could have been set as side wires, but we are treating them
as possible shortcut wires, not knowing whether they will end up being shortcut wires or
not. As before, we define pπ to be the partial experiment setting all the wires in the directed
path to ∗ and all the wires in S to the specified fixed values. Also, eπ is the experiment that
extends pπ by setting every unspecified wire to ∗. The length of π is the number of edges
in its directed path of wires.

Let π be a test path with shortcuts of nonzero length, with directed path v1, v2, . . . , vr ,
side wires S and cut wires K . The 1-suffix of π is the test path π ′ obtained as follows. The
directed path is v2, . . . , vr , the side wires S ′ are all elements of S that are inputs to at least
one of v3, . . . , vr , and the cut wires K ′ are all elements of K ∪ {v1} that are inputs to at least
one of v3, . . . , vr . If t < r , the t -suffix of π is obtained inductively by taking the 1-suffix of
the (t − 1)-suffix of π . A suffix of π is the t -suffix of π for some 1 ≤ t < r .

If π is a test path with shortcuts and V is a set of wires disjoint from the side wires of π ,
then V is functionally determining for π if for any experiment that agrees with π and fixes
all the wires in V , the value output by C∗ depends only on the values assigned to the wires
in V . Then π is isolating if the set of wires {w} ∪K is functionally determining for π . Note
that if we assign fixed values to all the wires in K , we get an isolating test path for w.

Lemma 16 Let π be an isolating test path with shortcuts. If π ′ is any suffix of π then π ′ is
isolating.

Proof Let π have directed path v1, . . . , vr , side wires S and cut wires K . Let π ′ be the
1-suffix of π , with side wires S ′ and cut wires K ′. The values of v1 and K determine the
output of C∗ in any experiment that agrees with π . The only wires in {v1} ∪ K that are not
in K ′ are inputs of v2 that are not also inputs of some v3, . . . , vr . Similarly, the only wires in
S − S ′ are inputs of v2 that are not also inputs of some v3, . . . , vr . By setting the value of v2,
we make these input wires irrelevant, so {v2} ∪ K ′ are functionally determining for π ′. �

In this setting, what we want to distinguish are pairs of assignments to (w,B), where B

is a set of wires not containing w. An assignment to (w,B) is just a function with domain
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{w} ∪ B and co-domain Σ . If a is an assignment to (w,B) and e is an experiment mapping
w and every wire in B to ∗, then by (e|a) we denote the experiment e′ such that e′(v) = a(v)

if v ∈ {w} ∪ B and e′(v) = e(v) otherwise. If a1 and a2 are two assignments to (w,B), then
the experiment e distinguishes a1 from a2 if e maps {w} ∪ B to ∗ and C∗(e|a1) �= C∗(e|a2).

Let π be a distinguishing path with shortcuts with initial path wire w, side wires S

and cut wires K . Then π is distinguishing for the pair (w,B) and assignments a1 and a2 to
(w,B) if K ⊆ B , B ∩ S = ∅, π is isolating and eπ distinguishes a1 from a2. If such a path
exists, we say (w,B) is distinguishable for a1 and a2. Note that this condition requires that
π not set any of the wires in B . When B = ∅, these definitions reduce to the previous ones.

4.1 The shortcuts algorithm

Overview of algorithm We assume that at most k wires u1, . . . , u� have been fixed to values
σ1, . . . , σ�, and denote by C∗ the resulting circuit. The process described is repeated for
every choice of wires and values. Like the Distinguishing Paths Algorithm, the Shortcuts
Algorithm builds a directed graph G whose vertices are the wires of C∗, in which an edge
(v,w) is added when v is discovered to be an input to w in C∗; one aim of the algorithm is
to find all the discoverable edges of C∗.

Distinguishing tables The Shortcuts Algorithm maintains a distinguishing table Tw for
each wire w. Each entry in Tw is indexed by a triple, (B,a1, a2), where B is a set of at
most b wires not containing w, and a1 and a2 are assignments to (w,B). If an entry exists
for index (B,a1, a2), it contains π , a distinguishing path with shortcuts that is distinguish-
ing for (w,B), a1 and a2. The entry also contains a bit marking the entry as processed or
unprocessed.

Initialization The distinguishing table Twn for the output wire is initialized with entries
indexed by (∅, {wn = σ }, {wn = τ }) for every pair of distinct symbols σ, τ ∈ Σ , each con-
taining the distinguishing path of length 0 with no side wires and no cut wires. Each such
entry is marked as unprocessed. All other distinguishing tables are initialized to be empty.

While there is an entry in some distinguishing table Tw marked as unprocessed, say with
index (B,a1, a2) and π the corresponding distinguishing path with shortcuts, the Shortcuts
Algorithm processes it and marks it as processed. To process it, the algorithm first uses the
entry try to discover any new edges (v,w) to add to the graph G; if a new edge is added,
all of the existing entries in the distinguishing table for wire w are marked as unprocessed.
Then the algorithm attempts to find new distinguishing paths with shortcuts obtained by
extending π in all possible ways. If an extension is found to a test path with shortcuts π ′
that is distinguishing for (w′,B ′), a′

1 and a′
2, if there is not already an entry for (B ′, a′

1, a
′
2),

or, if π ′ is of shorter length that the existing entry for (B ′, a′
1, a

′
2), then its entry is updated to

π ′ and marked as unprocessed. When all possible extensions have been tried, the algorithm
marks the entry in Tw for (B,a1, a2) as processed.

In contrast to the case of the Distinguishing Paths Algorithm, the Shortcuts Algorithm
tries to find a shortest distinguishing path with shortcuts for each entry in the table. When
no more entries marked as unprocessed remain in any distinguishing table, the algorithm
constructs a set of experiments E as described below, calls Circuit Builder on E, outputs the
resulting circuit C, and halts.

Processing an entry Let (B,a1, a2) be the index of an unprocessed entry in a distinguish-
ing table Tw , with corresponding distinguishing path with shortcuts, π , where the side wires
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of π are S and the cut wires are K . Note that K ⊆ B and S ∩ B = ∅. Let the set Eπ consist
of every experiment that agrees with π , arbitrarily fixes the wires in K , and arbitrarily fixes
up to 2k additional wires not in K and not set by pπ , and sets the remaining wires free.
There are O((ns)2ksb) experiments in Eπ ; the algorithm makes a value injection query for
each of them.

Finding relevant inputs For every assignment a of fixed values to K , the resulting path πa

is an isolating test path for w. We use the Find-Inputs procedure (in Sect. 3.3) to find relevant
inputs to w with respect to πa , and let V ∗(π) be the union of the sets of wires returned by
Find-Inputs over all assignments a to K . For each v ∈ V ∗(π), add the edge (v,w) to G if it
is not already present, and mark all existing entries in all the distinguishing tables for wire
w as unprocessed.

Lemma 17 The wires in V ∗(π) are inputs to w and the wires in V ∗(π)∪K are functionally
determining for π .

Proof This follows from Lemma 8, because for each assignment a to K , the resulting πa is
an isolating path for w, and any wires in the set returned by Find-Inputs are indeed inputs
to w. Also, for each assignment a to K , the set V (πa) is functionally determining for πa ,
and is contained in V ∗(π). �

Additional input test The Shortcuts Algorithm makes an additional input test if π distin-
guishes two assignments a1 and a2 such that there is a wire w′ ∈ K such that a1 and a2

agree on every wire other than w. Let π ′ be the distinguishing path obtained from π by
fixing every wire in K − {w} to its value in a1. If there is an experiment e agreeing with π ′
and setting w to ∗ and fixing every element of V (π ′), and two values σ1 and σ2 such that
C∗(e|v=σ1) �= C∗(e|v=σ2), and, moreover, for every τ ∈ Σ , C∗(e|w=τ,v=σ1) = C∗(e|w=τ,v=σ2),
then add edge (v,w) to G if it is not already present, and mark all the existing entries in the
distinguishing table for wire w as unprocessed.

Lemma 18 If edge (v,w) is added to G by this additional input test, then v is an input of
w in C∗.

Proof Note that w must take two different values, say τ1 and τ2, in the experiments e|v=σ1

and e|v=σ2 ; thus, w must be a descendant of v. Moreover, C∗(e|w=τ1,v=σ1) = C∗(e|w=τ1,v=σ2)

and C∗(e|w=τ2,v=σ1) = C∗(e|w=τ2,v=σ2), from which we conclude that C∗(e|w=τ1,v=σ1) �=
C∗(e|w=τ2,v=σ1).

If v is not an input of w, then let U be the set of all inputs of w. In e, if we set v = σ1

and w = ∗ and the wires in U as induced by e|v=σ1 , then w = τ1 and the output of C∗ is
C∗(e|w=τ1,v=σ1). If we then change the values on wires in U one by one to their values in
e|v=σ2 , because the final result have w = τ2 and output C∗(e|v=σ1,w=τ2), there must be an
input u such that fixing the other inputs to w and changing u’s value changes the output
with respect to e|v=σ1 . Thus, u is a relevant input with respect to the distinguishing path
π{v=σ1}, and must be in the set V (π). This is a contradiction, because wires in V (π) are
fixed in e, and u must change value from e|v=σ1 and e|v=σ2 . Thus v must be an input of w. �

Extending a distinguishing path After finding as many inputs of w as possible using π ,
the Shortcuts Algorithm attempts to extend π as follows. Let IG(w) be the set of all inputs
of w in G. For each pair (w′,K ′) such that w′ ∈ IG(w) and K ′ is a set of at most b wires not
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containing w′ such that K ′ ⊆ IG(w)∪K and K ′ is disjoint from the path wires and side wires
of π , we let S0 = (K ∪ V ∗(π)) − ({w′} ∪ K ′). Note that the set of wires in S0 ∪ K ′ ∪ {w′} is
functionally determining for π .

For each assignment a of fixed values to S0, the algorithm extends π to π ′ as follows.
It adds w′ to the start of the directed path, adds S0 to the set of side wires (fixed to the
values assigned by a) and takes the cut wires to be K ′. Note that every wire in K ′ is an input
to some wire beyond w on the path. Because w′ is an input of w, and all of the wires in
V ∗(π) ∪ K are accounted for among (w,K ′) and S ′, and all of the wires in S ′ are inputs
to w or wires beyond w on the path, the result is an isolating test path with shortcuts for
(w′,K ′).

The algorithm then searches through all triples (B ′, a′
1, a

′
2) where B ′ is a set of at most

b wires not containing w′, and a′
1 and a′

2 are assignments to (w′,B ′), to discover whether
π ′ is distinguishing for (w′,B ′), a′

1 and a′
2. If so, the algorithm checks the distinguishing

table Tw′ and creates or updates the entry for index (B ′, a′
1, a

′
2) as follows. If there is no such

entry, one is created with π ′. If there already is an entry and π ′ is shorter than the path in
the entry, then the entry is changed to contain π ′. If the entry is created or changed by this
operation, it is marked as unprocessed. When all possible extensions of π have been tried,
the entry in Tw for (B,a1, a2) is marked as processed.

Correctness and completeness We define the distinguishing table Tw to be correct if
whenever π is an entry in Tw for (B,a1, a2), then π is a distinguishing path with short-
cuts that is distinguishing for (w,B), a1 and a2. For each wire w, let B(w) denote the set of
shortcut wires of w in the target circuit C∗. If π is a distinguishing path with shortcuts such
that every edge in its directed path is discoverable, we say that π is discoverable. The dis-
tinguishing Tw table is complete if for every pair a1 and a2 of assignments to (w,B(w)) that
are distinguishable by a discoverable path, there is an entry in Tw for index (B(w), a1, a2).

Lemma 19 When Shortcuts Algorithm finishes the processing of the distinguishing tables,
every distinguishing table Tw is correct and complete.

Proof The correctness follows inductively from the correctness of the initialization of Twn

by the arguments given above. To prove completeness, we prove the following stronger
condition about the distinguishing tables when the Shortcuts Algorithm finishes processing
them: (1) for every wire w and every pair a1 and a2 of assignments to (w,B(w)) that are
distinguishable by a discoverable path, the entry for (B(w), a1, a2) is a shortest discoverable
distinguishing path with shortcuts that is distinguishing for (w,B(w)), a1 and a2.

Condition (1) clearly holds for Twn after it is initialized, and this table does not change
thereafter. Assume to the contrary that condition (1) does not hold and let w be a wire of the
smallest possible depth such that Tw does not satisfy condition (1). Note that w is not the
output wire.

There must be assignments a1 and a2 for (w,B(w)) that are distinguishable by a discov-
erable path such that in Tw , the entry for (B(w), a1, a2) is either nonexistent or not as short
as possible. Let π be a shortest possible discoverable distinguishing path with shortcuts that
is distinguishing for (w,B(w)), a1 and a2. Let S be the side wires of π , with assignment a,
and let K be the cut wires of π . Then we have K ⊆ B and S ∩ B = ∅. Because w is not the
output wire, the directed path in π is of length at least 1. Let π ′ be the 1-suffix of π , with
initial vertex w′, side wires S ′ and cut wires K ′. Note that (w,w′) must be a discoverable
edge and that π ′ is also discoverable. By Lemma 16, π ′ is isolating.
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For any two assignments a′
1 and a′

2 to (w′,B(w′)) such that a′
j (u) is the value of u in

eπ |aj
for each u ∈ {w′} ∪K ′, we have that π ′ is distinguishing for (w′,B(w′)), a′

1 and a′
2. To

see this, note that {w′}∪K ′ is functionally determining for π ′, so C∗(eπ ′ |a′
j
) = C∗(eπ |aj

) for

j = 1,2, and these latter two values are distinct. Let a′
j denote the assignment to (w′,B(w′))

induced by the experiment eπ |aj
for j = 1,2; these two assignments have the required prop-

erty.
Because the depth of w′ is smaller than the depth of w, condition (1) must hold for Tw′ ,

and the distinguishing table for Tw′ must contain an entry for (B(w′), a′
1, a

′
2) that is a short-

est discoverable distinguishing path with shortcuts π ′′ that is distinguishing for B(w′), a′
1

and a′
2. Note that the length of π ′′ is at most the length of π minus 1.

We argue that the discoverable edge (w,w′) must be added to G by the Shortcuts Algo-
rithm. This edge is the first edge on a minimal experiment e distinguishing σ1 from σ2 for
w. This corresponds to a distinguishing path ρ with no cut edges distinguishing σ1 from σ2

for w, and every edge of this path is also discoverable. There are two cases, depending on
whether w is a shortcut of w′ on the path or not.

If w is not a shortcut edge of w′ on the path, then the 1-suffix of ρ will be a discoverable
distinguishing path with no cut edges that is distinguishing for w′, τ1, and τ2, where these
are the values w′ takes in e|w=σj

for j = 1,2. Because condition (1) holds for Tw′ , there
will be an entry in Tw′ containing a distinguishing path with shortcuts for (w′,B(w′)) that
distinguishes the two assignments that set B(w′) as in e and set w′ to τ1 and τ2. Because w

is a relevant input with respect to ρ, the edge (w,w′) will be added to G if it is not already
present when ρ is processed.

If w is a shortcut edge of w′ on the path, then the 1-suffix of ρ will be a discoverable
distinguishing path with cut edges {w} that is distinguishing for the assignments α1 = {w =
σ1,w

′ = τ1} and α2 = {w = σ2,w
′ = τ2}. Because w ∈ B(w′) and Tw′ satisfies condition

(1), there will be an entry ρ in Tw′ for (w′,B(w′)) that distinguishes the two assignments to
(w′,B(w′)) that agree with α1 and α2 on w′ and w, and set every other element of B(w′)
as in e. When the entry ρ is processed, the additional input test will discover the edge
(w,w′) and add it to the graph G if it is not already present. In fact, this shows that every
discoverable edge (v,w′) will eventually be discovered by the algorithm because Tw′ is
complete.

Thus, we can be sure that the entry π ′′ will be (re)processed when every discoverable
edge (v,w′) is present in G, including (w,w′). When this happens, the entry π ′′ will be
extended to a distinguishing path with shortcuts that is distinguishing for (w,B(w)), a1 and
a2 and has length at most that of π . To see that this holds, note that if v is a side wire of
π ′′, then it cannot be an ancestor of w′ because otherwise it is a shortcut wire of w′ and in
B(w′), which is disjoint from the side wires of π ′′. Thus, the side wires of π ′′ cannot include
any input of w′ or any wire in B(w), because all these wires are ancestors of w′. Moreover,
since all the discoverable inputs to w′ have been added to G, one of the possible extensions
of π ′′ will set (some of) the inputs of w′ in such a way that moving from assignment a1 to
assignment a2 to (w,B(w)) with the other side gate settings of π ′′ will move from a′

1 to a′
2

for (w′,B(w′)).
Thus, the entry (B,a1, a2) will exist and be of length at most the length of π when the

algorithm finishes processing the distinguishing tables. This contradiction shows that all the
distinguishing tables must be complete. �

Building a circuit When all the entries in all the distinguishing tables are marked as
processed, the Shortcuts Algorithm constructs a set E of experiments. For every table Tw

and every distinguishing path π for (B,a1, a2) in the table such that a1(u) = a2(u) for every
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u ∈ B , and every set V of at most k wires not set by pπ and every assignment a to V , add
to E the experiment eπ |a , that extends eπ by the assignment a. After iterating the above
process over all possible choices of at most k wires u1, . . . , u� and assignments to them, the
algorithm takes the union of all the resulting sets of experiments E and calls Circuit Builder
(Angluin et al. 2006) on this union and outputs the returned circuit C and halts.

Lemma 20 The circuit C is behaviorally equivalent to the target circuit C∗.

Proof We show that the completeness of the distinguishing tables implies that the set E of
experiments is sufficient, and apply Lemma 14 to conclude that C is behaviorally equivalent
to C∗. Suppose a gate g with inputs u1, . . . , u� is wrong for wire w in C∗. Then there exists
a minimal experiment e that witnesses this; e fixes all the wires u1, . . . , u�, say as uj = σj

for j = 1, . . . , �, sets the wire w free and is such that C∗(e) �= C∗(e|w=g(σ1,...,σ�
)).

Consider the iteration of the table-building process for the circuit C∗ with the restriction
uj = σj for j = 1, . . . , �. In this circuit, e distinguishes between w = σ and w = τ , where
σ is the value w takes in C∗ for e, and τ = g(σ1, . . . , σ�). Note that the free wires of e

form a directed path of discoverable edges. Because the table Tw is complete, there will
be a distinguishing path π with shortcuts for (w,B(w)) for assignments a1 and a2 where
a1(w) = σ and a2(w) = τ , and a1(v) = a2(v) for all v ∈ B(w). For every input v of w in
C∗ that is not among u1, . . . , u�, π does not set v, because it only sets wires that are inputs
to descendants of w, and any input of w that is an input of a descendant of w is a short cut
wire of w and therefore in B(w). However, π does not set any wires in B(w). Thus, among
the choices of sets of at most k wires and values to set them to, there will be one that sets
just the inputs (in C∗) of w as in e. The corresponding experiment e′ in E will be a witness
experiment eliminating the gate g with inputs u1, . . . , u�, so the set of experiments to Circuit
Builder is sufficient for C∗. �

Running time To analyze the running time of the Shortcuts Algorithm, note that there are
O(nksk) choices of at most k wires and values from Σ to fix them to; this bounds the number
of iterations of the table building process. In each iteration, there are O(nb+1s2b+2) total
entries in the distinguishing tables. Each entry in a distinguishing table may be processed
several times: when it first appears in the table, and each time its distinguishing path is
replaced by a shorter one, and each time a new input of w is discovered, for a total of at
most n + k times. Thus, the total number of entry-processing events by the algorithm in
one iteration is O((n + k)nb+1s2b+2). Each such event makes O((ns)2ksb) value injection
queries, so O((n + k)n2k+b+1s2k+3b+2) value injection queries are made by the algorithm
in each iteration, for a total of O((n + k)n3k+b+1s3k+3b+2) value injection queries made by
the Shortcuts Algorithm. The number of experiments given as input to Circuit Builder is
O(n2k+b+1s2k+2b+2), because each final entry may give rise to at most O(nksk) experiments
in E in each iteration. This concludes the proof of Theorem 13.

5 Learning analog circuits via discretization

We first give a simple example of an analog circuit. We then show how to construct a discrete
approximation of an analog circuit, assuming its gate functions satisfy a Lipschitz condition
with constant L, and apply the large-alphabet learning algorithm of Theorem 13, to get a
polynomial-time algorithm for approximately learning an analog circuit with logarithmic
depth, bounded fan-in and bounded shortcut width.
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5.1 Example of an analog circuit

For example, let ∧(x, y) = xy for all x, y ∈ [0,1] and let ∨(x, y) = x + y − xy for all
x, y ∈ [0,1]. (Note that these are polynomial representations of conjunction and disjunction
when restricted to the values 0 and 1.) Then ∧ and ∨ are analog functions of arity 2, and
we define a circuit with 6 wires as follows. Let g1 be the constant function 0.1, g2 be the
constant function 0.6 and g3 be the constant function 0.8. These functions assign default
values to the corresponding wires. Let g4 be the function ∨, and let its pair of inputs be
w1,w2. Let g5 be the function ∨, and let its pair of inputs be w2,w3. Finally, let w6 be the
function ∧, and let its pair of inputs be w4,w5. If we consider the experiment e0 that assigns
∗ to every wire, we calculate the values wi(e0) as follows. Using their default values,

w1(e0) = 0.1, w2(e0) = 0.6, w3(e0) = 0.8.

Then, because the inputs to w4 and w5 have defined values,

w4(e0) = ∨(0.1,0.6) = 0.64, w5(e0) = ∨(0.6,0.8) = 0.92.

Because the inputs to w6 now have defined values,

w6 = ∧(0.64,0.92) = 0.5888.

If we consider the experiment e1 that fixes the value of w5 to 0.2 and assigns ∗ to every
other wire, then as before,

w1(e1) = 0.1, w2(e1) = 0.6, w3(e1) = 0.8, w4(e1) = 0.64.

However, because the value of w5 is fixed to 0.2 in e1,

w5(e1) = 0.2, w6(e1) = ∧(0.64,0.2) = 0.128.

5.2 A Lipschitz condition

An analog function g of arity k satisfies a Lipschitz condition with constant L if for all
x1, . . . , xk and x ′

1, . . . , x
′
k from [0,1] we have

|g(x1, . . . , xk) − g(x ′
1, . . . , x

′
k)| ≤ Lmax

i
|xi − x ′

i |.

For example, the function ∧(x, y) = xy satisfies a Lipschitz condition with constant 2. A
Lipschitz condition on an analog function allows us to bound the error of a discrete ap-
proximation to the function. For more on Lipschitz conditions, see (Jeffreys and Jeffreys
1988).

Let m be a positive integer. We define a discretization function Dm from [0,1] to the
m points {1/2m,3/2m, . . . , (2m − 1)/2m} by mapping x to the closest point in this set
(choosing the smaller point if x is equidistant from two of them.) Then |x −Dm(x)| ≤ 1/2m

for all x ∈ [0,1]. We extend Dm to discretize analog experiments e by defining Dm(∗) = ∗
and applying it componentwise to e. An easy consequence is the following.

Lemma 21 If g is an analog function of arity k, satisfying a Lipschitz condition with
constant L and m is a positive integer, then for all x1, . . . , xk in [0,1], |g(x1, . . . , xk) −
g(Dm(x1), . . . ,Dm(xk))| ≤ L/2m.



Mach Learn (2008) 72: 113–138 133

5.3 Discretizing analog circuits

We describe a discretization of an analog gate function in which the inputs and the output
may be discretized differently. Let g be an analog function of arity k and r, s be positive
integers. The (r, s)-discretization of g is g′, defined by

g′(x1, . . . , xk) = Dr(g(Ds(x1), . . . ,Ds(xk))).

Let C be an analog circuit of depth dmax and let L and N be positive integers. Define
md = N(3L)d for all nonnegative integers d . We construct a particular discretization C ′ of
C by replacing each gate function gi by its (md,md+1)-discretization, where d is the depth
of wire wi . We also replace the value set Σ = [0,1] by the value set Σ ′ equal to the union
of the ranges of Dmd

for 0 ≤ d ≤ dmax . Note that the wires and tuples of inputs remain
unchanged. The resulting discrete circuit C ′ is termed the (L,N)-discretization of C.

Lemma 22 Let L and N be positive integers. Let C be an analog circuit of depth dmax whose
gate functions all satisfy a Lipschitz condition with constant L. Let C ′ denote the (L,N)-
discretization of C and let M = N(3L)dmax . Then for any experiment e for C, |C(e) −
C ′(DM(e))| ≤ 1/N.

Proof Define md = N(3L)d for all nonnegative integers d ; then M = mdmax . We prove the
stronger condition that for every experiment e for C and every wire wi , if d is the depth of
wi , we have

|wi(e) − w′
i (DM(e))| ≤ 1/md,

where wi(e) is the value of wire wi in C for experiment e and w′
i (DM(e)) is the value of

wire wi in C ′ for experiment DM(e). Because the output wire is at depth d = 0, this will
imply that C(e) and C ′(DM(e)) do not differ by more than 1/N .

Let e be an arbitrary experiment for C. We proceed by downward induction on the depth
d of wi . When this quantity is dmax , the wire wi is at maximum depth and has no inputs. The
wire wi is fixed in e if and only if it is fixed in DM(e), and in either case, the values assigned
to wi agree to within 1/2M < 1/mdmax . Now consider wi at depth d , assuming inductively
that the condition holds for all wires at greater depth. If wi is fixed in e then it is fixed in
DM(e) and the values assigned to it differ by at most 1/2M . If wi is free in e then it is free
in DM(e). Consider the input wires to wi , say wj1 , . . . ,wjs ; these are all at depth at least
d + 1, so by the inductive hypothesis

|wjr (e) − w′
jr

(DM(e))| ≤ 1/md+1,

for r = 1, . . . , s.
Note that

wi(e) = gi(wj1(e), . . . ,wjs (e))

and

w′
i (DM(e)) = Dmd

(gi(y1, . . . , ys)),

where yr = Dmd+1(w
′
jr

(DM(e))) for r = 1, . . . , s. Note that by the properties of the dis-
cretization function,

|yr − w′
jr

(DM(e))| ≤ 1/(2md+1).
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By the Lipschitz condition on the gate function gi we have

|gi(wj1(e), . . . ,wjs (e)) − gi(y1, . . . , ys)| ≤ L(3/2)(1/md+1) = 1/(2md),

because

|wjr (e) − yr | ≤ 1/md+1 + 1/(2md+1).

Discretizing the output of gi by Dmd
adds at most 1/(2md) to the difference, so

|gi(wj1(e), . . . ,wjs (e)) − Dmd
(gi(y1, . . . , yx))| ≤ 1/md,

that is,

|wi(e) − w′
i (DM(e))| ≤ 1/md,

which completes the induction. �

This lemma shows that if every gate of C satisfies a Lipschitz condition with constant L,
we can approximate C’s behavior to within ε using a discretization with O((3L)d/ε) points,
where d is the depth of C. For d = O(logn), this bound is polynomial in n and 1/ε.

Theorem 23 There is a polynomial time algorithm that approximately learns any analog
circuit of n wires, depth O(logn), constant fan-in, gate functions satisfying a Lipschitz con-
dition with a constant bound, and shortcut width bounded by a constant.

6 Learning with experiments and counterexamples

In this section, we consider the problem of learning circuits using both value injection
queries and counterexamples. In a counterexample query, the algorithm proposes a hy-
pothesis C and receives as answer either the fact that C exactly equivalent to the target
circuit C∗, or a counterexample, that is, an experiment e such that C(e) �= C∗(e). In (An-
gluin et al. 2006), polynomial-time algorithms are given that use value injection queries and
counterexample queries to learn (1) acyclic circuits of arbitrary depth with arbitrary gates
of constant fan-in, and (2) acyclic circuits of arbitrary depth with AND, OR, NOT, NAND,
and NOR gates of arbitrary fan-in.

The algorithm that we now develop generalizes both previous algorithms by permitting
any class of gates that is polynomial time learnable with counterexamples. It also guarantees
that the depth of the output circuit is no greater than the depth of the target circuit and that
the number of additional wires fixed in value injection queries is bounded by O(kd), where
k is a bound on the fan-in and d is a bound on the depth of the target circuit.

An advantage of learning with counterexamples is its flexibility. As remarked in (An-
gluin et al. 2006), if the counterexample queries return counterexamples that fix only the
input wires of the circuit, learning algorithms output a circuit equivalent to the target cir-
cuit with respect to input/output behaviors. In general, the algorithms only output a circuit
equivalent to the target with respect to the set of counterexamples presented to them. More-
over, the algorithms presented in this section can be naturally generalized to work when
more than one gate is observable. In this case, an experiment e is a counterexample if C

and C∗ compute one of the observable gates differently and the learning algorithm outputs
a circuit that behaves the same way on all observable gates with respect to the given set of
counterexamples.
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6.1 The learning algorithm

The algorithm proceeds in a cycle of proposing a hypothesis, getting a counterexample,
processing the counterexample, and then proposing a new hypothesis. Whenever we receive
a counterexample e, we process the counterexample so that we can “blame” at least one
gate; we find a witness experiment e∗ eliminating a candidate gate function g. In effect, we
reduce the problem of learning a circuit to the problem of learning individual gates with
counterexamples.

An experiment e∗ is a witness experiment eliminating g, if and only if e∗ fixes all inputs
of g but sets g free and C∗(e∗|w=g(e∗)) �= C∗(e∗). It is important that we require e∗ fix all
inputs of g, because then we know it is g and not its ancestors computing wrong values. The
main operation of the procedure that processes counterexamples is to fix wires to specific
values.

Given a counterexample e, let procedure minimize fix wires in e while preserving the
property that C(e) �= C∗(e) until it cannot fix any more. Therefore, e∗ = minimize(e) is a
minimal counterexample for C under the partial order � defined in Sect. 2.2. The following
lemma is a consequence of Lemma 10 in (Angluin et al. 2006).

Lemma 24 If e∗ is a minimal counterexample for C, there exists a gate g in C such that e∗

is a witness experiment for g.

Proof Because C is acyclic, there exists a gate g that is free in e∗ such that all the in-
puts of g are fixed in e∗. Then e∗ is a witness experiment for g, because otherwise we
have C∗(e∗|w=g(e∗)) = C∗(e∗) �= C(e∗) = C(e∗|w=g(e∗)), which contradicts the minimality
of e∗. �

Although it does the job, the procedure minimize may fix many more wires than neces-
sary. (In Sect. 6.2 we will describe a different algorithm that will fix many fewer wires for
certain classes of circuits.)

Now we run a separate counterexample learning algorithm for each individual wire.
Whenever C receives a counterexample, at least one of the learning algorithms will receive
one. However, if we run all the learning algorithms simultaneously and let each learning
algorithm propose a gate function, the hypothesis circuit may not be acyclic. Instead we
will use Algorithm 2 to coordinate them, which can be viewed as a generalization of the

Algorithm 2 Learning with experiments and counterexamples
Run an individual learning algorithm for each wire w. Each learning algorithm takes as
candidate inputs only wires that have fewer conflicts.
Let C be the hypothesis circuit.
while there is a counterexample for C do

Process the counterexample to obtain a counterexample for a wire w.
Run the learning algorithm for w with the new counterexample.
if there is a conflict for w then

Restart the learning algorithms for w and all wires whose candidate inputs have
changed.

end if
end while
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circuit building algorithm for learning AND/OR circuits in (Angluin et al. 2006). Conflicts
are defined below.

The algorithm builds an acyclic circuit C because each wire has as inputs only wires that
have fewer conflicts. At the start, each individual learning algorithm runs with an empty
candidate input set since there is yet no conflict. Thus, each of them tries to learn each gate
as a constant gate, and some of them will not succeed. A conflict for w happens when there
is no hypothesis in the hypothesis space that is consistent with the set of counterexamples
received by w. For constant gates, there is a conflict when we receive a counterexample for
each of the s = |Σ | possible constant functions. We note that there will be no conflict for a
wire w if the set of candidate inputs contains the set of true inputs of w in the target circuit
C∗, because then the hypothesis space contains the true gate.

Whenever a conflict occurs for a wire, it has a chance of having more wires as candidate
inputs. Therefore, our learning algorithm can be seen as repeatedly rebuilding a partial order
over wires based on their numbers of conflicts. Another natural partial order on wires is given
by the level of a wire, defined as the length of a longest directed path from a constant gate
to the wire in the target circuit C∗. The following lemma shows an interesting connection
between levels and numbers of conflicts.

Lemma 25 The number of conflicts each wire receives is bounded above by its level.

Proof A conflict happens to a wire w only when the candidate input wires do not contain
all input wires of the true gate of w. Therefore, constant gates, whose levels are zero, have
no conflict. Assuming the lemma is true for all wires with level no higher than i, for a level
i wire w, at the point w has i conflicts, all the input wires of w’s true gates have fewer
conflicts than w and thus are considered as candidate input wires for w by our algorithm.
Therefore, w can not have more than i conflicts. �

Corollary 26 The depth of C is at most the depth of C∗.

In fact, the depth of C is bounded by the minimum depth of any circuit behaviorally
equivalent to C∗.

Theorem 27 Circuits whose gates are polynomial time learnable with counterexamples are
learnable in polynomial time with experiments and counterexamples.

Proof By the learnability assumption of each gate, Algorithm 2 will receive only polyno-
mially many counterexamples between two conflicts, because the candidate inputs for every
wire are unchanged. (A conflict can be detected when the number of counterexamples ex-
ceeds the polynomial bound.) Lemma 25 bounds the number of conflicts for each wire by
its level, which then bounds the total number of counterexamples of Algorithm 2 by a poly-
nomial. It is clear that we use O(n) experiments to process each counterexample. Thus, the
total number of experiments is bounded by a polynomial as well. �

We make the learnability assumption that each gate is polynomial time learnable with
counterexamples. The model of learning with counterexamples are also known as the
mistake-bound model (Littlestone 1988). Circuits with constant fan-in gates are learnable
in this model, even with large alphabets. To see this, note that there are at most

(
n

k

)
many

choices of input wires. For each combination of k input wires, the gate function is fully
specified by the s possible outputs associated with each of the sk possible settings to the k
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inputs. Each counterexample will eliminate one of the s possible outputs for one of the sk

settings to the inputs.
More efficient algorithms exist when we have prior knowledge of hypothesis space. For

example, the “halving” algorithm and the “optimal” algorithm are able to cut the hypothesis
space in half whenever they receive a mistake (Littlestone 1988). Although computation-
ally expensive in general, these algorithms can be efficient when the hypothesis space is
small which can be true in a practical application of our circuit learning algorithms. In fact,
there exists a large body of work in the counterexample or mistake-bound learning literature
and many efficient learning algorithms exist. For example, AND/OR functions are certainly
learnable in this model. Furthermore, halfspaces and boxes with finite domain and threshold
functions (Maass and Turan 1989) are also learnable in this model.

6.2 A new diagnosis algorithm

A shortcoming of minimize is that it fixes many wires, which may be undesirable in the
context of gene expression experiments and other applications. In this section, we propose
a new diagnosis algorithm to find a witness experiment e∗ for some gate g in C. If the
hypothesis circuit C has depth d and fan-in bound k, the new algorithm fixes only O(dk)

more gates than the number fixed in the original counterexample.
Given a counterexample e, we first gather a list of potentially wrong wires. Let wC(e)

be the value of wire w in C under experiment e. We can compute wC(e) given e because
we know C. The potentially wrong wires are those w’s such that C∗(e|w=wC(e)) �= C∗(e).
It is not hard to see that a potentially wrong wire must be a free wire in e. We can gather
all potentially wrong wires by conducting n experiments, each fixing one more wire than e

does.
Now, pick an arbitrary potentially wrong wire w and let g be its gate function in C. If

g’s inputs are fixed in e, then e is a witness experiment for g, and we are done. Otherwise,
fix all g’s free input wires to their values in C, and let e′ be the resulting experiment. There
are two cases: either g is wrong or one of g’s inputs computes a wrong value.

1. If C∗(e′|w=wC(e)) �= C∗(e′), then e′ is a witness experiment for g.
2. Otherwise, we have C∗(e′|w=wC(e)) = C∗(e′). Because C∗(e|w=wC(e)) �= C∗(e), we have

either C∗(e′) �= C∗(e) or C∗(e′|w=wC(e)) �= C∗(e|w=wC(e)). Note that the only difference
between e and e′ is that e′ fixes free inputs of g to their values in C. So either e or
e|w=wC(e) is an experiment in which fixing all g’s free inputs gives us a change in the
circuit outputs. We then start from whichever experiment gives us such a change and fix
free inputs of g in C one after another, until the circuit output changes. We will find
an experiment e′′, for which one of g’s inputs is potentially wrong. We then restart the
process with e′′ and this input of g.

At each iteration, we go to a deeper gate in C. The process will stop within d iterations.
If C has fan-in at most k, the whole process will fix at most d(k − 1) + 1 more gates than
were fixed in the original experiment e.

7 Discussion

In this paper, we extended the results of Angluin et al. (2006) to the large-alphabet set-
ting under the value injection query model. We showed topological conditions under which
large-alphabet circuits are efficiently learnable and gave evidence that the conditions for
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shortcut width that we consider are necessary. We also showed that analog circuits can be
approximated by large alphabet circuits, and that they can be approximately learned given a
restriction on their depth. We improved on the results of (Angluin et al. 2006) for the case
when counterexamples are added, and we extended some of the results to the large-alphabet
case.

Now that small-alphabet, large-alphabet, and analog circuits have been studied under
the value-injection model, we plan to consider Bayesian circuits, where probabilities are
attached to the gates. Another interesting direction to explore is possible implications of
this work to complexity theory. For example, does the class of circuits that are efficiently
learnable with value injection queries represent a natural class of problems?
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