
Mach Learn (2008) 73: 107–132
DOI 10.1007/s10994-008-5063-9

Improved MCMC sampling methods for estimating
weighted sums in Winnow with application to DNF
learning

Qingping Tao · Stephen D. Scott

Received: 10 November 2005 / Revised: 17 May 2008 / Accepted: 25 May 2008 /
Published online: 17 July 2008
Springer Science+Business Media, LLC 2008

Abstract A Markov chain Monte Carlo method has previously been introduced to estimate
weighted sums in multiplicative weight update algorithms when the number of inputs is ex-
ponential. However, the original algorithm still required extensive simulation of the Markov
chain in order to get accurate estimates of the weighted sums. We propose an optimized
version of the original algorithm that produces exactly the same classifications while often
using fewer Markov chain simulations. We also apply three other sampling techniques and
empirically compare them with the original Metropolis sampler to determine how effec-
tive each is in drawing good samples in the least amount of time, in terms of accuracy of
weighted sum estimates and in terms of Winnow’s prediction accuracy. We found that two
other samplers (Gibbs and Metropolized Gibbs) were slightly better than Metropolis in their
estimates of the weighted sums. For prediction errors, there is little difference between any
pair of MCMC techniques we tested. Also, on the data sets we tested, we discovered that
all approximations of Winnow have no disadvantage when compared to brute force Winnow
(where weighted sums are exactly computed), so generalization accuracy is not compro-
mised by our approximation. This is true even when very small sample sizes and mixing
times are used.
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1 Introduction

Chawla et al. (2004) introduced the use of the Markov chain Monte Carlo (MCMC) method
to estimate weighted sums in multiplicative weight update (MWU) algorithms when the
number of inputs is exponential. One of their applications was using Littlestone’s (1988)
Winnow algorithm to learn DNF formulas. Although their preliminary empirical results
were much stronger than what their theoretical results implied, they still required extensive
simulation of the Markov chain to draw “good” samples (i.e. from a distribution similar to
that of the chain’s stationary distribution) in order to get accurate estimates of the weighted
sums. This significantly slowed down their algorithm.

We explore ways to speed up Chawla et al.’s algorithm. We also evaluate whether their
algorithm is useful in practice, even when theoretical guarantees are sacrificed. First we pro-
pose an optimized version of Chawla et al.’s algorithm, which often uses less computation
time without any loss in classification accuracy. We give two theorems to prove that our
optimized version exactly simulates that of Chawla et al. We also give lower bounds on how
much computation time our algorithm saves.

We also extend Chawla et al.’s algorithm to handle generalized (non-boolean) inputs
and multi-class outputs. These results are critical in applying MCMC methods to other ap-
plications of MWU algorithms with exponentially large feature spaces. For example, the
Winnow-based algorithm of Tao and Scott (2004) (adapted from Goldman et al. 2001 for
learning concepts from a generalization of the multiple-instance model, Dietterich et al.
1997) is efficient for low dimensions, but does not scale well. It is possible that Chawla et
al.’s MCMC-based approach will be very useful to make this algorithm (and others) more
scalable, but first a thorough empirical analysis of the sampling method is required.

In our experiments, we empirically compare three MCMC sampling techniques (Gibbs,
Metropolized Gibbs and parallel tempering) to Chawla et al.’s Metropolis sampler to de-
termine how effective each is in quickly drawing good samples, in terms of accuracy of
weighted sum estimates and in terms of Winnow’s prediction accuracy. The experimental
results show that the Metropolis sampler was slightly worse than Gibbs and Metropolized
Gibbs on estimating weighted sums. For prediction errors, there is little difference between
any pair of MCMC techniques we tested. Also, on the data sets we tested, we discovered that
all approximations of Winnow have no disadvantage when compared to brute force Winnow
(where weighted sums are exactly computed), so generalization accuracy is not compro-
mised by our approximation. This is true even when very small sample sizes and mixing
times are used.

The rest of this paper is as follows. In Sect. 2 we discuss related work. Section 3 describes
Chawla et al.’s MCMC approach for estimating weighted sums and presents our optimized
version. Section 4 presents various MCMC sampling techniques. Section 5 gives several
extensions of the basic Winnow algorithm. We then report our experimental results in Sect. 6
and conclude in Sect. 7.

2 Related work

2.1 Learning disjunctive normal form formulas

Let f = P1 ∨ P2 ∨ · · · ∨ PK be the target function, where Pi = ci1 ∧ ci2 ∧ · · · ∧ cin is a term
and cij is a constraint on the value of attribute j . If we let attribute j take on values from
{1, . . . , kj }, then cij = � ∈ {1, . . . , kj } means that for an example x to satisfy constraint cij ,
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xj = �. If cij = 0, then xj can be any value from {1, . . . , kj } and still satisfy the constraint.
If xj = 0, then this attribute value is unspecified and only satisfies a “don’t care” constraint
of cij = 0. In other words, x satisfies Pi iff for all j , either xj = cij or cij = 0. Thus the set
of possible terms available for f and the instance space are both Ω = ∏n−1

j=0{0, . . . , kj }. It is
easily seen that if example x has nx specified values (i.e. nx values that are > 0), then there
are exactly 2nx terms satisfied by it.

Example 2.1 (Monotone DNF) A monotone DNF formula is a DNF formula with no
negated variables. So kj = 1 for all j . For example, assume n = 3, example x = (0,1,1)

satisfies 22 = 4 terms: φ (the always true term), x2, x3, and x2 ∧ x3.

Example 2.2 (Conventional DNF) In conventional DNF formulas, kj = 2 for all j and 1 rep-
resents1 “true” and 2 represents “false”. For example, assume n = 3, example x = (0,1,2)

satisfies 22 = 4 terms: φ,x2,¬x3, and x2 ∧ ¬x3.

Example 2.3 (Generalized DNF) In generalized DNF formulas, kj can have more than 2
values for all j . For example, assume n = 3, example x = (0,3,7) satisfies 22 = 4 terms:
φ, (x2 = 3), (x3 = 7), and (x2 = 3) ∧ (x3 = 7).

The problem of learning conventional DNF formulas (i.e. kj = 2 for all j ) has been
heavily studied in a learning-theoretic framework (e.g. Bshouty et al. 2004; Klivans and
Servedio 2004; Khardon and Servedio 2005; Khardon et al. 2005 and references therein),
but positive results exist only in restricted cases, and the general DNF problem remains
open.2

2.2 The Winnow algorithm

The algorithm Winnow of Littlestone (1988) is a linear threshold learner that uses multi-
plicative updates to change its weights. Winnow is an on-line learning algorithm, which
means that learning proceeds in trials. At trial t , Winnow receives an input vector x′

t and
makes its prediction ŷt = 1 if Wt = wt · x′

t ≥ θ and 0 otherwise, where wt is its weight
vector at trial t and θ is the threshold. Then Winnow is told the true label yt ∈ {0,1} and
updates its weight vector as follows: wt+1,i = wt,iα

x′
t,i

(yt −ŷt ) for some learning rate α > 1. If
wt+1,i > wt,i , the update is called a promotion and if wt+1,i < wt,i , it is called a demotion.
Littlestone showed that if the target concept labeling the examples can be represented as a
monotone disjunction of K of the N total inputs to Winnow (i.e. a disjunction where none
of the K relevant inputs is negated in the target function), then Winnow can exactly learn
the target concept while making at most O(K logN) prediction mistakes.3 Hence Winnow
can be used to learn DNF formulas by using all possible terms as its inputs. E.g. if ki = 2
for all i, there will be N = 3n possible terms, where n is the number of variables in original
input vector x. For a particular instance x, input x ′

i to Winnow is 1 if x satisfies term i and 0

1Recall that we reserve the value 0 for “don’t care”, hence the use of 2 for “false”. I.e. we think of “true” and
“false” as attribute values.
2It is unlikely that an efficient distribution-free (PAC) DNF-learning algorithm exists (Klivans and Servedio
2004; Blum et al. 1994; Blum et al. 1993).
3A more general result was shown by Auer and Warmuth (1998): If the best K-disjunction makes Mopt

mistakes on a sequence of instances, then Winnow’s mistake bound is O(K(Mopt + logN)).
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otherwise. The number of mistakes that Winnow will make on any sequence of examples is
then O(Kn), where K is the number of terms in the target DNF.

It turns out that storing all weights takes Ω(N) space, but one can compute the weight
of a particular term P by evaluating it on the training set, eliminating the need to store the
weights. Specifically, in pass i through the entire training set (here we assume that when
operating as a batch learner, Winnow iterates multiple times over the fixed training set),
the algorithm has a record of the number of prediction errors that Winnow made on each
training example in each pass j < i through the training set. Now let S+

P be the set of
positive examples that satisfy term P and S−

P be the set of negative examples that satisfy
term P . Then, assuming all weights were initialized to 1, term P ’s weight is αg(P ), where
g(P ) = ∑

x∈S+
P

misti (x)−∑
x∈S−

P
misti (x) and misti (x) is the number of prediction mistakes

made by Winnow on training example x in passes 1 through i − 1.
Even though the algorithm as described above can be space efficient, it is not time effi-

cient, since brute force computation of Wt = wt · x′
t takes time Ω(N), which is exponential

in n. Thus another approach is needed to compute Wt . One possibility is to use kernels, as
illustrated by Khardon et al. (2005) for the Perceptron algorithm (i.e. using additive weight
updates). However, while they showed that it is possible to efficiently compute the weighted
sum for Perceptron when learning DNF, they also showed that in the worst case, their kernel-
based algorithm makes 2Ω(n) prediction mistakes. They also argued that unless P = #P, it
is impossible to efficiently exactly simulate Winnow for learning DNF. Thus we look to
Chawla et al. (2004), who use MCMC methods to estimate Wt for Winnow with high prob-
ability, as opposed to Khardon et al.’s hardness result that says no deterministic simulation
of Winnow is possible for DNF. While Chawla et al. do not guarantee an efficient DNF al-
gorithm in the learning-theoretic sense, their results yield an effective heuristic for learning
DNF.4 This is in part due to the fact that in order to correctly simulate Winnow, it is not
required that the estimate Ŵt be close to Wt , but only that it be on the same side of the
threshold θ as Wt .

2.3 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods use Markov chains to simulate Monte Carlo
experiments that provide approximations to quantities by performing statistical sampling
experiments. Starting with the work of Metropolis et al. (1953) and Geman and Geman
(1984), MCMC methods have been widely used to solve problems in statistical physics and
Bayesian statistical inference. One major class of these problems is approximate summation,
whose goal is to approximate the sum W = ∑

x∈Ω w(x), where w is a positive function
defined on Ω , which is a large but finite set of combinatorial structures.

Generally a Markov chain M with state space Ω and stationary distribution π is designed
to be ergodic, that is, the probability distribution over Ω converges asymptotically to π

regardless of the initial state. Then M is repeatedly simulated for T steps and generates
samples almost according to π . These S samples are then used to estimate the quantity of
interest. Usually we discard states in the first T0 steps and assume there would be a rapid
convergence to π during these steps. This T0-step procedure is called burn-in.

4It is possible, though not automatic, that Khardon et al.’s hardness results may be transferable to Chawla
et al.’s randomized approximation setting. Either way, Chawla et al.’s results do not guarantee an efficient
algorithm for learning DNF since their Markov chain’s mixing time is not guaranteed to be polynomial and
the range restriction on the weighted sum is not necessarily guaranteed to hold (see Sect. 3.1).
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After burn-in, M then would return the element at the state as a sample from the empiri-
cal distribution π̂ at the end of the simulation. Then this process would be restarted S times,
which means T = S T0. Rather than repeatedly restarting the whole process, the more com-
mon technique is to sample from a single run of the process, which means the Markov chain
would be simulated for another S steps after burn-in, each additional step generating a new
sample. Thus the total number of steps is T = T0 + S. One benefit of multiple runs is that
samples are completely independent, but this requires more computation. Instead, a single
run only needs a single burn-in procedure and the samples drawn from it would be good
enough if the chain converged to π rapidly. Since efficiency is essential in our experiments,
we use a single run rather than multiple runs.

One requirement for an approximation algorithm to be efficient is for the burn-in time T0

to be polynomial in all relevant parameters (n and K in our application). A Markov chain
having this property is called rapidly mixing, which means that the chain will be close to
its stationary distribution π after taking a polynomial-length random walk through Ω . More
formally, we measure the difference between π̂P,t (the empirical distribution resulting from
simulating the chain for t steps starting from state P ∈ Ω) and the true stationary distribution
π by variation distance (Jerrum and Sinclair 1996):

ΔP (t) = max
U ⊆Ω

∣
∣π̂P,t (U ) − π(U )

∣
∣ = 1

2

∑

Q∈Ω

∣
∣π̂P,t (Q) − π(Q)

∣
∣ .

The number of simulation steps T required for ΔP (T ) ≤ ε for all states P ∈ Ω is called the
mixing time of M .

Under appropriate conditions, the approximation algorithms based on the MCMC
method yield accuracy guarantees, e.g. in approximate summation, sometimes one can guar-
antee that the estimate of the sum is within a factor ε of the true value. When this is true and
the estimation algorithm requires only polynomial time, the algorithm is called a fully poly-
nomial randomized approximation scheme (FPRAS). In certain cases a similar argument
can be made about combinatorial optimization problems, i.e. that the algorithm’s solution is
within a factor of ε of the true maximum or minimum.

Two well-studied problems with MCMC solutions are the approximate knapsack prob-
lem and the problem of approximating the sum of the weights of a weighted matching in a
graph (e.g. Jerrum and Sinclair 1996). Chawla et al. (2004) combined these two solutions
and gave a Metropolis sampler (Metropolis et al. 1953) to approximate the weighted sum
in Winnow for learning DNF.5 Then they evaluated this algorithm on simple simulated data
sets. We extend their work by adding optimizations (Sect. 3.2), applying other sampling
techniques (Gibbs, Metropolized Gibbs and parallel tempering), and empirically evaluating
this approach with very small sample sizes and mixing times.

3 Estimating weighted sums with MCMC

3.1 Chawla et al.’s MCMC solution for Winnow

We now describe Chawla et al.’s (2004) MCMC solution for estimating Wt(α), where
Wt(α) = ∑

P∈Ωt
wt,P (α), wt,P (α) = α
t (P ) is term P ’s weight of training Winnow with

5They also used a similar technique to approximate weighted sums in Weighted Majority (Littlestone and
Warmuth 1994) of classifiers created by boosting (Schapire and Singer 1999) for predicting nearly as well as
the best pruning of an ensemble.
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learning rate α, and 
t(P ) = ut (P ) − vt (P ), where ut (P ) is the total number of pro-
motions of term P at time t and vt (P ) is the total number of demotions. Wt is a func-
tion of α since Chawla et al. define their approximation method using several different
values of αi ∈ [1, α]. Note that, however, the actual sequence of updates made (i.e. the
values of 
t(P )) will be the same regardless of αi . This single sequence of updates is
determined by running the learning algorithm with the original learning rate α. Hence
wt,P (αi)/wt,P (αj ) = (αi/αj )


t (P ).
Let Ω ′

t ⊆ Ω be the set of 2nt terms that are satisfied by example xt (nt ≤ n is the number
of non-zero values in xt ). For each term P ′ = (p′

1, . . . , p
′
n) ∈ Ω ′

t , P = (p1, . . . , pnt ) ∈ Ωt =
{0,1}nt is defined as follows:

1. delete p′
i from P ′ for all i such that xi = 0 and call the new term P ′′;

2. set pi = 1 if p′′
i > 0 and pi = 0 if p′′

i = 0.

Chawla et al. then build a set of Markov chains Mt on the state space Ωt that are based
on the Metropolis sampler (see Sect. 4.1). Each chain Mt(α

′) ∈ Mt has a specific learning
rate α′ and a stationary distribution πα′,t (P ) = wt,P (α′)/Wt(α

′). They then define

fi,t (P ) = wt,P (αi−1,t )/wt,P (αi,t ),

where αi,t = (1 + 1
mt

)i−1 for 1 ≤ i ≤ rt , rt is the smallest integer such that (1 + 1
mt

)rt −1 ≥ α,
and mt = ut (Pe) + vt (Pe) where Pe = (0,0, . . . ,0) (i.e. mt is the number of prediction
mistakes of Winnow so far). Then they get

E[fi,t (P )] =
∑

P∈Ωt

παi,t ,t (P )fi,t (P )

=
∑

P∈Ωt

wt,P (αi,t )

Wt (αi,t )

wt,P (αi−1,t )

wt,P (αi,t )
= Wt(αi−1,t )

Wt (αi,t )
.

So Wt(αi−1,t )/Wt(αi,t ) can be estimated by computing the sample mean of fi,t (P ), which
allows Wt(α) to be computed since

Wt(α) =
(

Wt(αrt ,t )

Wt (αrt −1,t )

)

· · ·
(

Wt(α2,t )

Wt (α1,t )

)

Wt(α1,t )

and Wt(α1,t ) = W(1) = |Ωt | = 2nt . Therefore, for each value α2,t , . . . , αrt ,t , St samples are
drawn from Mt(αi,t ) after discarding the first Ti,t steps. If Xi,t is the sample mean of fi,t (P )

and |Mt | = rt − 1, then Chawla et al.’s estimate of Wt(α) is

Ŵt (α) = 2nt

rt∏

i=2

1/Xi,t .

Table 1 shows Chawla et al.’s MCMC solution. The following result holds for this esti-
mation procedure.

Theorem 1 (Chawla et al. 2004) Assume a ≤ fi,t ≤ b for all i, let the sample size St =
	130rtb/(aε2)
 and Mt be simulated long enough for each sample such that the variation
distance between the empirical distribution and πα̂i,t

is at most εa/(5brt ). Then for any

δ > 0, Ŵt (α) satisfies

Pr[(1 − ε)Wt(α) ≤ Ŵt (α) ≤ (1 + ε)Wt(α)] ≥ 1 − δ.
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Table 1 Chawla et al.’s MCMC solution for Winnow

1: Given an example x to predict, a learning rate α and mt (the number of Winnow prediction mistakes so
far)

2: rt ← 	 ln(α)
ln(1+1/mt )


 + 1

3: Ŵt (α) ← 2nt

4: for i = 2 to rt do
5: αi,t ← (1 + 1/mt )

i−1

6: compute the sample mean Xi,t by sampling from Mt(αi,t ) (Sect. 4.1)

7: Ŵt (α) ← Ŵt (α)/Xi,t

8: end for
9: if Ŵt (α) < θ then

10: return ŷt (x) ← 0
11: else
12: return ŷt (x) ← 1
13: end if

Chawla et al. showed that for Winnow learning DNF, 1/e ≤ fi,t ≤ e for all i. Thus we
can apply Theorem 1 using a = 1/e and b = e.

As stated in Theorem 1, Chawla et al.’s algorithm can yield ε-good approximations for
Wt if enough samples are drawn after the chain mixes. The implication of this is that if
the weighted sums are sufficiently far from Winnow’s threshold θ (if Wt(α) �∈ [ θ

(1+ε)
, θ

(1−ε)
]

for all t ), then with probability at least 1 − δ, the number of mistakes made by an MCMC
simulation of Winnow on any sequence of examples is at most6 8 + 14Kn ln(k + 1), where
k = maxj {kj } and {1, . . . , kj } is the set of possible values of attribute j . Unfortunately,
whether the chain is rapidly mixing is unknown, which means an exponential number of
burn-in steps may be needed before any sample can be drawn in order for Chawla et al.’s
results to hold. These negative theoretical results on Chawla et al.’s algorithm are not sur-
prising, since no efficient algorithm is known to efficiently learn DNF formulas.

In addition to the burn-in time of the chains and the number of samples drawn on Line 6
of Table 1, the time complexity of Chawla et al.’s algorithm for trial t is influenced by the
number of chains, which is rt − 1 = 	 ln(α)

ln(1+1/mt )

 = Θ(mt ln(α)). If each Wt is sufficiently

far from θ , then we know that mt ≤ 8 + 14Kn ln(k + 1). Otherwise, it could conceivably
grow beyond this bound. We now briefly explore other means of setting rt .

According to Chawla et al.’s MCMC solution, the computation time of estimating Wt(α)

depends on the number of chains rt − 1, the number of burn-in steps T0, and the sample
size S. Thus one possible way of reducing the computation time is to reduce rt . However,
it turns out that reducing rt does not gain us anything. Specifically, our analysis in the Ap-
pendix (specifically, Corollary 6) shows that, for our bounds to apply, reducing rt requires
a larger sample size and a smaller variation distance between the empirical distribution and
the chain’s stationary distribution (i.e. longer simulations of the chain to draw samples). This
means that the result of our MCMC solution would become worse if we reduce the number
of chains without drawing more samples. In the next section we describe ways to use fewer
chains without reducing the accuracy of our Winnow simulations.

6If instead we have Wt (α) ∈ [ θ
(1+ε)

, θ
(1−ε)

] for some t , then the mistake bound may not hold (though further
theoretical analysis may yield new mistake bounds). Further, to ensure in the worst case that Wt is never in
this range, ε would have to be exponentially small. See Chawla et al. for more discussion on this.
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3.2 Our optimized MCMC solution

In Chawla et al.’s MCMC solution, rt −1 Markov chains need to be simulated. Here we give
an optimized solution that is based on the idea that to exactly simulate Winnow, we only need
to know what Winnow’s prediction is going to be (i.e. on what side of the threshold θ that
W will fall on), not what the weighted sum exactly is. So it is possible that we could stop
computing our estimate after only a subset of the chains in Mt has been run.

Let ℘max
t = maxP∈Ωt {ut (P ) − vt (P )}, ℘min

t = minP∈Ωt {ut (P ) − vt (P )} (i.e. the maxi-
mum and minimum number of net promotions of any Winnow input), and Ψt = {2, . . . , rt }.
Given some Ψ ′ ⊆ Ψt , we can define the following two conditions:

C
∏

i∈Ψ ′

Wt(αi,t )

Wt (αi−1,t )

(
αi,t

αi−1,t

)−℘min
t

≥ θ, (1)

D
∏

i∈Ψ ′

Wt(αi,t )

Wt (αi−1,t )

(
αi,t

αi−1,t

)−℘max
t

< θ, (2)

where C = 2nt
∏rt

i=2(
αi,t

αi−1,t
)℘min

t and D = 2nt
∏rt

i=2(
αi,t

αi−1,t
)℘max

t . Now we can prove the follow-
ing theorem.

Theorem 2 If ∃Ψ ′ ⊆ Ψt that satisfies condition (1), then Wt(α) ≥ θ ; If ∃Ψ ′ ⊆ Ψt that
satisfies condition (2), then Wt(α) < θ .

Proof Because αi,t > αi−1,t > 0 and 
t(P ) − ℘min
t ≥ 0 for all P ∈ Ωt ,

∑

P∈Ωt

α

t (P )−℘min

t

i,t ≥
∑

P∈Ωt

α

t (P )−℘min

t

i−1,t .

So Wt (αi,t )

Wt (αi−1,t )
(

αi,t

αi−1,t
)−℘min

t ≥ 1. Then

Wt(α) = C
rt∏

i=2

Wt(αi,t )

Wt (αi−1,t )

(
αi,t

αi−1,t

)−℘min
t

≥ C
∏

i∈Ψ ′

Wt(αi,t )

Wt (αi−1,t )

(
αi,t

αi−1,t

)−℘min
t

≥ θ.

Similarly we can prove the second statement. �

Theorem 2 tells us that it would not always be necessary to run all rt − 1 Markov chains
if we were only interested in Winnow’s predictions. Instead, we can sometimes limit our
simulations to a subset of Markov chains. So what we want is to find such a subset with the
smallest size.

Let Γ1(Ψt ) be the set of all Ψ ′ that satisfy (1), and Γ0(Ψt ) be the set of all Ψ ′ that
satisfy (2). We define Ψ min

1 ∈ Γ1(Ψt ) as a minimum 1-prediction set if |Ψ min
1 | ≤ |Ψ ′| for

all Ψ ′ ∈ Γ1(Ψt ), and Ψ min
0 ∈ Γ0(Ψt ) as a minimum 0-prediction set if |Ψ min

0 | ≤ |Ψ ′| for all
Ψ ′ ∈ Γ0(Ψt ). This leads us to Theorem 3.
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Theorem 3 If Ψ min
1 exists, {rt , rt − 1, . . . , rt − |Ψ min

1 | + 1} is a minimum 1-prediction set,
and if Ψ min

0 exists, {2,3, . . . , |Ψ min
0 | + 1} is a minimum 0-prediction set.

Proof Let β = (1 + 1
mt

). Using Cauchy’s inequality, we can prove that

Wt(αi+1,t )Wt (αi−1,t ) =
∑

P∈Ωt

α

t (P )

i+1,t

∑

Q∈Ωt

α

t (Q)

i−1,t

=
∑

P∈Ωt

βi·
t (P )
∑

Q∈Ωt

β(i−2)
t (Q)

=
∑

P∈Ωt

(βi·
t (P )/2)2
∑

Q∈Ωt

(β(i−2)
t (Q)/2)2

≥
( ∑

P∈Ωt

β(i−1)·
t (P )

)2

= Wt(αi,t )Wt (αi,t ).

So Wt (αi+1,t )

Wt (αi,t )
≥ Wt (αi,t )

Wt (αi−1,t )
for all i ∈ {2, . . . , rt − 1}. Now let Ψ ′ = {rt , rt − 1, . . . , rt −

|Ψ min
1 | + 1}:

C
∏

i∈Ψ ′

Wt(αi,t )

Wt (αi−1,t )

(
αi,t

αi−1,t

)−℘min
t

≥ C
∏

i∈Ψ min
1

Wt(αi,t )

Wt (αi−1,t )

(
αi,t

αi−1,t

)−℘min
t

≥ θ.

Therefore Ψ ′ ∈ Γ1(Ψt ). Since |Ψ ′| = |Ψ min
1 |, then Ψ ′ = {rt , rt − 1, . . . , rt − |Ψ min

1 | + 1}
is a minimum 1-prediction set. Similarly we can prove {2,3, . . . , |Ψ min

0 | + 1} is a minimum
0-prediction set. �

According to Theorem 3, if Wt(α) ≥ θ and we simulate Markov chains in the order
of rt , rt − 1, . . . ,2, and halt when we find a minimum 1-prediction set, we need no more
computation than any other sequence of Markov chains. Similarly, to get a minimum 0-
prediction set, we use no more chains than any other sequence if Wt(α) < θ and we simulate
them in the order of 2,3, . . . , rt . This yields our optimized MCMC solution in Table 2.

In Table 2, we can estimate ℘max
t and ℘min

t with ut (Pe) and −vt (Pe) because ut (Pe) ≥
℘max

t ≥ ℘min
t ≥ −vt (Pe). Then we choose one of the two orders (〈rt , rt − 1, . . . ,2〉 or

〈2,3, . . . , rt 〉) by guessing the most likely prediction y ′
t . When we use Winnow to predict an

unlabeled example, we could just assume y ′
t is 1. When we are training Winnow, we can set

y ′
t as the class label of training example x. But a better way is that at the t th training iteration,

let y ′
t = ŷt−1(x), where ŷt−1 is the prediction of x at the (t − 1)th iteration. The heuristic is

that the weighted sum of x might not change too much after the last time Winnow met x. At
the beginning of training, all weights of Winnow are 1. So W1(α) = 2nt for all examples. If
2nt ≥ θ , y ′

1 = 1, otherwise 0.
Another question is how small Ψ min

1 and Ψ min
0 can be. Intuitively, if Wt(α) is very close

to the threshold θ , the chance for our algorithm to stop early is small. Below we give upper
bounds of the sizes of Ψ min

1 and Ψ min
0 .
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Table 2 Optimized MCMC solution for Winnow

1: Given an example x to predict, a learning rate α and mt (the number of Winnow prediction mistakes so
far), let y′

t be our guess of Winnow’s most likely prediction of x’s label, as described in the text

2: rt ← 	 ln(α)
ln(1+1/mt )


 + 1

3: if y′
t = 1 then

4: Ŵt (α) ← 2nt
∏rt

i=2(
αi,t

αi−1,t
)℘

min
t , where αi,t = (1 + 1/mt )

i−1

5: for i = rt to 2 do
6: compute the sample mean Xi,t with Mt(αi,t )

7: Ŵt (α) ← (
αi,t

αi−1,t
)−℘min

t Ŵt (α)/Xi,t

8: if Ŵt (α) ≥ θ then
9: STOP and return ŷt (x) ← 1

10: end if
11: end for
12: return ŷt (x) ← 0
13: else
14: Ŵt (α) ← 2nt

∏rt
i=2(

αi,t
αi−1,t

)℘
max
t

15: for i = 2 to rt do
16: compute the sample mean Xi,t with Mt(αi,t )

17: Ŵt (α) ← (
αi,t

αi−1,t
)−℘max

t Ŵt (α)/Xi,t

18: if Ŵt (α) < θ then
19: STOP and return ŷt (x) ← 0
20: end if
21: end for
22: return ŷt (x) ← 1
23: end if

Theorem 4 If Wt(α) ≥ θ , let Wt(α) = (1 + ε)θ , where ε ≥ 0. Then the size of Ψ min
1 is at

most rt − 1 − ln(1 + ε); If Wt(α) < θ , let Wt(α) = (1 − ε)θ , where 0 < ε < 1. Then the size
of Ψ min

0 is at most rt − 1 + ln(1 − ε).

Proof If Wt(α) ≥ θ , then Ψ min
1 exists. Let Ψ k

1 = {rt , rt − 1, . . . , rt − k + 1} (so |Ψ k
1 | = k).

According to Theorem 3, Ψ k
1 is a minimum 1-prediction set if k is the minimum value that

makes Ψ k
1 satisfy (1).

Notice Wt(α) = Wt(αrt ,t ) = C
∏rt

i=2
Wt (αi,t )

Wt (αi−1,t )
(

αi,t

αi−1,t
)−℘min

t . Then (1) can be written as

θ ≤ C
rt∏

i=rt−k+1

Wt(αi,t )

Wt (αi−1,t )

(
αi,t

αi−1,t

)−℘min
t

= Wt(α)
/rt−k∏

i=2

Wt(αi,t )

Wt (αi−1,t )

(
αi,t

αi−1,t

)−℘min
t

= (1 + ε)θ
/(

Wt(αrt −k,t )

Wt (α1,t )

(
αrt −k,t

α1,t

)−℘min
t

)

.
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Notice θ is always greater than 0 for standard versions of Winnow that only maintain
positive weights. Since θ > 0, Wt(αrt −k,t ) = ∑

P∈Ωt
α


t (P )
rt −k,t , α1,t = 1, Wt(α1,t ) = 2nt ,

∑

P∈Ωt

α

t (P )−℘min

t

rt −k,t ≤ (1 + ε)2nt , (3)

and

∑

P∈Ωt

(α

t (P )−℘min

t

rt −k,t − (1 + ε)) ≤ 0. (4)

Equation (4) is equivalent to (1), so Ψ k
1 is a minimum 1-prediction set if k is the minimum

solution of (4). If 1 + ε ≥ α

t (P )−℘min

t

rt −k,t for all P , then the above inequality holds. Applying
αrt −k,t = (1 + 1

mt
)rt−k−1 yields

ln(1 + ε) ≥ (rt − k − 1) ln

((

1 + 1

mt

)
t (P )−℘min
t

)

and

k ≥ rt − 1 − ln(1 + ε)/ ln

((

1 + 1

mt

)
t (P )−℘min
t

)

.

Notice (1 + 1
mt

)
t (P )−℘min
t < (1 + 1

mt
)mt < e. So k′ = rt − 1 − ln(1 + ε) is a solution of

(4). Therefore the minimum solution of (4) must be at most k′. Then we get an upper bound
of |Ψ min

1 | as rt − 1 − ln(1 + ε). Similarly we can prove that rt − 1 + ln(1 − ε) is an upper
bound of |Ψ min

0 |. �

According to Theorem 4, our optimized MCMC solution uses at least ln(1 + ε) fewer
chains than Chawla et al.’s solution if the prediction is 1 and at least ln(1 − ε)−1 fewer
chains if the prediction is 0. Also we note that our solution will use fewer chains if Wt is
farther away from θ , saving more computation time.

4 Sampling from πα,t

All that remains is efficiently drawing samples from the chains (lines 6 and 16 in Ta-
ble 2). Chawla et al. (2004) applied the Metropolis sampler, which is a very popular MCMC
method, to the state space Ωt . Here we also look at other MCMC sampling techniques, in-
cluding Gibbs sampler, Metropolized Gibbs sampler, and parallel tempering. Implemented
properly, each technique provably yields an ergodic Markov chain with the desired station-
ary distribution, and thus application of each technique will draw samples from near the
stationary distribution.

4.1 Metropolis sampler for Winnow

The Metropolis sampler (Metropolis et al. 1953) can be applied to problems where the states
of the Markov chain are either continuous or discrete, as long as it is possible to compute the
ratio of the probabilities of two states. To draw samples from the near the chain’s stationary
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Table 3 The Metropolis sampler for Winnow for transition from state P to state Q

1: With probability 1/(nt + 1) let Q = P ; otherwise,
2: Select i uniformly at random from 1, . . . , nt and let Q′ = (p1, . . . , pi−1,1 − pi, . . . , pnt );

3: Let Q = Q′ with probability min{1,
πα,t (Q

′)
πα,t (P )

}, where

πα,t (Q
′)

πα,t (P )
= wt,Q′

wt,P
= α
t (Q

′)−
t (P ),

else let Q = P .

distribution π , the Metropolis sampler repeatedly considers random changes to the variables
defining the current state P , yielding a new state Q, which it then probabilistically accepts
or rejects (in the latter case, P remains the current state). Specifically, first the Metropolis
sampler decides with some non-negligible probability whether to follow a self loop. If it
does not follow the self loop, then it randomly chooses one variable of the current state
P and changes its value according to a proposal distribution, resulting in a new candidate
state Q. Then state Q is accepted with probability min{1,π(Q)/π(P )}.

Chawla et al. defined the chain Mt(α) with state space {0,1}nt based on the Metropo-
lis sampler. Each transition in Mt(α) selects a single variable pi ∈ P at random and
proposes a new value 1 − pi . Then the Metropolis acceptance probability for Mt(α)

is min{1,π(Q)/π(P )}, where Q = (p1, . . . , pi−1,1 − pi, . . . , pnt ). Then they used the
Metropolis sampler for Mt(α), with transitions defined as in Table 3.7

4.2 Gibbs sampler for Winnow

The Gibbs sampler (Geman and Geman 1984) is widely applicable to problems where the
variables have conditional distributions of a parametric form that can easily be sampled
from. In a single transition of the Gibbs sampler, each variable is iterated over and is re-
placed with a value picked from its distribution conditioned on the current values of all
other variables. In this case, there is no notion of acceptance as there is with Metropolis; all
changes are automatically accepted.

In our application, for any state P ∈ Ωt , each variable pi only has two possible values: 0
and 1. If P0 = (p1, . . . , pi = 0, . . . , pnt ) and P1 = (p1, . . . , pi = 1, . . . , pnt ), the conditional
distribution is

πα,t (pi | P \ {pi}) = πα,t (P )

πα,t (P0) + πα,t (P1)
.

Then the Gibbs sampler for Mt(α) makes transitions as in Table 4.
The Gibbs sampler has a number of distinct features. The acceptance rate of the Gibbs

sampler is equal to 1. Therefore, unlike Metropolis sampling, Gibbs sampling accepts each
new value generated from the conditional distribution. In contrast, the Metropolis sampler
probabilistically accepts the new value. Second, the conditional distributions of the Gibbs
sampler are constructed based on prior knowledge of π . Furthermore, the Gibbs sampler is,
by construction, multidimensional. It generates new values for all variables and only after
that it outputs a sample. In the Metropolis sampler, the variable to be changed is selected
totally at random.

7We compute the weights of P and Q′ by evaluating them on the training set (see Sect. 2.1).
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Table 4 The Gibbs sampler for Winnow for transition from state P to state Q

1: Q ← P

2: for i = 1, . . . , nt do
3: let Q′ = (q1, . . . , qi−1,1 − qi , . . . , qnt );
4: Let Q = Q′ with probability πα,t (1 − qi | Q \ {qi }), where

πα,t (1 − qi | Q \ {qi }) = wt,Q′/(wt,Q′ + wt,Q) = 1/(1 + α
t (Q)−
t (Q
′));

5: end for

4.3 Metropolized Gibbs sampler for Winnow

The Metropolized Gibbs sampler (Liu 1996) is a modification of the Gibbs sampler that uses
an acceptance probability. It has been proven to be statistically more efficient than the Gibbs
sampler. The sampler draws a new value p′

i with probability

πα,t (p
′
i | P \ {pi})

1 − πα,t (pi | P \ {pi}) ,

and accepts with the Metropolis-Hastings acceptance probability

min

{

1,
1 − πα,t (pi | P \ {pi})
1 − πα,t (p

′
i | P \ {pi})

}

.

As mentioned in Sect. 4.2, each component in Ωt has only two possible values. So in this
case the Metropolized Gibbs sampler becomes a Metropolis sampler that repeatedly updates
all components in a fixed order. We then build the Metropolized Gibbs sampler for Mt(α)

by replacing the probability in line 4 of Table 4 with

min

{

1,
πα,t (1 − qi | Q \ {qi})

1 − πα,t (1 − qi | Q \ {qi})
}

,

where

πα,t (1 − qi | Q \ {qi})
1 − πα,t (1 − qi | Q \ {qi}) = πα,t (Q

′)
πα,t (Q)

= α
t (Q
′)−
t (Q).

4.4 Parallel tempering for Winnow

The idea of parallel tempering (Geyer 1991) is to artificially ensemble a set of Markov chains
with different, but related, stationary distributions. It involves two sets of steps: local steps
in each chain and swap steps between two chains. Each local step is defined by a Markov
chain, using e.g. a Metropolis sampler or Gibbs sampler. In each swap step, two chains
exchange their current states. For example, if chain i is in state Pi and chain j is in state Pj ,
then after a swap step, chain i will be in state Pj and chain j will be in state Pi . Swap steps
are introduced to allow greater mobility and faster mixing. After each chain makes a local
step, the sampler attempts to swap the current states of two of the chains. The acceptance
probability for swapping states Pi and Pj between two chains i and j is min{1,

πi (Pj )πj (Pi )

πi (Pi )πj (Pj )
}.
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Table 5 Parallel tempering for Winnow

1: for T = 1, . . . , S do
2: With probability ρswap , randomly choose a neighboring pair of chains, say i and i + 1, and swap

current states Pi and Pi+1 with probability

min{1, (1 + 1/mt )

t (Pi )−
t (Pi+1)}

3: Simulate all rt − 1 Markov chains for a single step via their samplers
4: Save current states of all rt − 1 Markov chains as samples
5: end for

In our MCMC solution, we build rt − 1 parallel Markov chains Mt(αi) with stationary
distributions

παi ,t (P ) = α

t (P )
i

Wt(αi)
= (1 + 1/mt)

(i−1)
t (P )

Wt (αi)
.

Then we get the parallel tempering version of our samplers as in Table 5. In Table 5, we
simulate all rt − 1 Markov chains in parallel, while our optimized MCMC solution needs
to run these chains in a specific sequence (see Sect. 3.2). In order to apply our optimized
solution, we partition the sequence into small groups, use parallel tempering in each group
and run these groups sequentially. Then we apply our optimized solution on these groups.
However, in this case we might not find the best subset of chains as indicated in Theorem 3
since we will only check the constraints after the simulation of a group of chains instead of
a single chain.

5 Other extensions

5.1 Discretizing real-valued attributes

Since our algorithm can only handle discrete-valued attributes, we employ the method of
Elomaa and Rousu (1999) to discretize continuous-valued attributes. For each attribute, we
sort (in ascending order) its values over all examples and then divide its value range into
several intervals8 according to an evaluation function that estimates the class coherence in a
given set of examples. Here we use the average class entropy as the evaluation function. Let⊎

Si be a partition of S. The average class entropy of the partition is:

ACE

(⊎

i

Si

)

=
∑

i

|Si |
|S| H(Si) = 1

|S|
∑

i

|Si |H(Si),

where the entropy function H(S) = −∑m

j=1 P(Cj , S) log2 P(Cj , S), m is the number of
classes and P(Cj , S) is the proportion of the examples in S that belong to the class C.
A good property of average class entropy is cumulativity, i.e. the impurity of a partition can

8In our experiments, we set the number of intervals to be 10, which gave us a good ability to distinguish
values without becoming computationally difficult.
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be obtained by a weighted summation over the impurities of its subsets. Cumulativity facili-
tates incremental evaluation of impurity values. So we can apply the dynamic programming
scheme suggested by Elomaa and Rousu.

An advantage to partitioning a single continuous attribute c into several intervals (i.e.
mapping c to a single k-valued attribute) versus finding several thresholds for c (i.e. map-
ping c to k − 1 boolean attributes) is that the state space Ω is smaller, as is n. If k − 1
boolean attributes are used, then |Ω| = 3k−1

∏
i∈other (ki +1), where other is the set of other

attributes. In contrast, a single k-valued attribute yields |Ω| = (k + 1)
∏

i∈other (ki + 1). In
addition, reducing n makes exact computation of Wt (which requires enumerating up to 2n

terms) easier, so it is more likely that we can do exact computation of Wt rather than an
approximation.

5.2 Handling missing data

There is an implicit means in our representation of examples that can be used to handle
missing data. If the values of some attributes of example x are missing in an example, we
simply assign 0 to these attributes and define a term P to not be satisfied by x unless pi = 0
for all i such that xi = 0 (see Sect. 2.1). We used this approach in our experiments of Sect. 6
to handle missing attributes in the Vote and Annealing data sets.

5.3 Multi-class classification

Since Winnow can only make binary predictions, we train one Winnow DNF learner for
each class, i.e. a “one versus the rest” approach. So given an example x with a label of class
j , x is presented to Winnowj as a positive example and to all others as a negative example.
After training all Winnows, we take an unlabeled example, estimate the weighted sums of
all Winnows on that example, and predict the class with the Winnow that has the maximum
weighted sum. Our optimized solution of Sect. 3.2 can be directly applied to the training
procedure without any change. But for testing, since we need to compare weighted sums
to make predictions, we can first use our optimized algorithm to make predictions for all
Winnows. If only a single Winnow predicts 1, we predict the class with that Winnow. If
more than one Winnow predicts 1 or all of them predict 0, we then estimate the weighted
sums for these Winnows and compare them. In our experiments, we observed that even if
each single Winnow has a high error rate, the Winnow of the class that an example belongs
to frequently is the one with the highest weighted sum. Therefore our algorithm frequently
had low prediction error even when the individual binary classifiers did not.

6 Experimental results

In our experiments, we evaluated three MCMC sampling techniques: Metropolis, Gibbs
and Metropolized Gibbs, each with and without parallel tempering (PT). So we tested 6
samplers. We compared their performance on estimating weighted sums on two data sets:
simulated data similar to that used by Chawla et al. (2004) and Vote data from the UCI
repository (Blake et al. 2004). We then tested our optimized algorithm on the simulated data
and five UCI data sets (see Table 6) to find what kind of impact these MCMC samplers have
on Winnow’s predictions. We also compared the computation costs of our optimized solution
with Chawla et al.’s algorithm in terms of the total number of Markov chains simulated.
Finally, we explored the effect of significantly reducing the mixing times and sample sizes.
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Table 6 UCI data sets used in our experiments

Data set No. of attributes (n) No. of classes No. of examples

Iris 4 3 150

Car 6 4 1728

Breast Cancer 9 2 286

Vote 16 2 435

Auto 25 7 205

Annealing 38 6 798

We started our tests with data similar to Chawla et al.’s simulated data. They used data
with n ∈ {10,15,20}. In our experiment, we used their simulated data generator to generate
random 5-term monotone DNF formulas, using n ∈ {10,15,20,25,30,35,40}. For each
value of n there were 10 training/testing sets, each with 50 training examples and 50 testing
examples. In our experiments on UCI data, we partitioned each data set into k blocks, where
k = 10 if the data set size was ≥ 300. Otherwise the number of blocks was reduced to ensure
that each block was of size at least 30. Since our algorithm can only handle discrete-valued
attributes, we also discretized continuous-valued attributes.

Neal (1995) pointed out that it takes about T 2 steps to move to a state T steps away
because of the random walk nature of MCMC samplers. The farthest distance between two
states in Ωt is n, the number of variables. Thus for most of our experiments, we set the burn-
in time T0 = n2. Our experiments showed that this burn-in time worked very well, though we
also found that it often sufficed to choose a much smaller value of T0. In each experiment,
we counted each update of a single variable of current state as a single sampling step. We
used the same number of sampling steps9 Ts for all six samplers.

6.1 Comparisons of computation cost

First we report speedups of our optimized algorithm (Sect. 3.2) over Chawla et al.’s so-
lution in terms of the total numbers of Markov chains that are used. In Tables 7 and 8,
“MCMC” is the total number of chains used by Chawla et al.’s solution. “Opt MCMC”
is the total number of chains used by our algorithm. So MCMC = ∑τ

t=1(rt − 1) and Opt
MCMC = ∑τ

t=1 r ′
t , where r ′

t is the number of chains used by our optimized algorithm at trial
t and τ is the number of trials. “Savings” is the percentage of chains our algorithm saved,
that is, Savings = 1 − (Opt MCMC/MCMC). “Savingstheory” is our lower bound of the per-
centage of chains our algorithm can save according to the worst-case analysis of Theorem 4.
To compute Savingstheory, we computed the theoretical number of chains saved for each trial
and summed them over all trials. So Savingstheory = ∑τ

t=1 | ln(Savθ (Wt))|/MCMC, where
Savθ (Wt) = 1 + εt if Wt ≥ θ , and Savθ (Wt) = 1 − εt if Wt < θ . Since it is not practical to
compute Wt for Auto and Annealing, we cannot compute Savingstheory for these data sets.
In the tables, ε̄ is the average over all trials t of εt = |(Wt − θ)/θ |, which is the normalized
distance between the true weighted sum Wt and threshold θ .

Results in Tables 7 and 8 confirm that we do not need to run all chains when estimating
weighted sums. However, this widely varies with the data set. A possible reason for this is

9The number of samples S drawn by the Metropolis sampler is Ts . But S for the Gibbs and Metropolized
Gibbs samplers is Ts/n because they only use states as samples after all n variables have been updated (see
Sect. 4).
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Table 7 Comparisons of the total number (in thousands) of Markov chains on simulated data

n ε̄ MCMC Opt MCMC Savings (%) Savingstheory (%)

10 0.351 4.6 4.1 11.3 6.4

15 0.365 11.9 11.2 6.3 3.9

20 0.340 20.8 18.7 10.0 7.0

25 0.454 23.5 21.2 9.7 6.8

30 0.363 40.8 37.5 8.1 5.1

35 0.421 58.7 53.0 9.7 6.2

40 0.294 60.9 53.2 12.7 6.8

Table 8 Comparisons of the total number (in thousands) of Markov chains on UCI data sets

Data Set ε̄ MCMC Opt MCMC Savings (%) Savingstheory (%)

Iris 0.472 217.7 200.1 8.0 1.14

Car 0.529 14272.7 14032.0 1.7 0.12

Breast Cancer 0.500 45176.2 45111.5 0.2 0.04

Vote 0.587 1185.5 1132.0 4.5 0.48

Auto – 13822.8 13751.7 0.5 –

Annealing – 4855.2 3781.6 22.1 –

that the true weighted sums of Winnow are much less or much greater than the threshold
for some data sets, and closer for others. When the true weighted sums diverge significantly
from the threshold, there are more chances for our algorithm to stop early. As shown in
Tables 7 and 8, when Savingstheory is large, the true savings is also large.

6.2 Comparisons on estimating weighted sums

Our second set of experiments was designed to evaluate how well the weight estimation
procedures with different samplers guessed the weighted sums. Since we are interested in
estimated weighted sums instead of predictions in these experiments, we did not test our
optimized solution. During Winnow’s training, we computed the estimates with six sam-
plers, while we updated weights using the exact weighted sum computed via brute force
(i.e. Winnow was trained using the exact weighted sums). Thus all samplers worked on the
same distributions and state spaces. Then we compared them using the measure Guess Error
given in Chawla et al. (2004), which is the relative error of the estimates: |Ŵ − W |/W .

Figure 1 shows the results on Vote,10 which has 16 variables and 435 examples. We set
T0 = 256 and varied Ts ∈ {800,1600,3200,6400,9600, 12800,16000}. We trained Winnow
for 20 rounds on 10 partitions. So each point in Fig. 1 represents averages over more than
435 · 200 = 87000 estimates.

In Fig. 1, there are dramatic drops of Guess Error from 800 to 6400 sampling steps.
When Ts ≥ 9600, Ts has much less effect on Guess Error. This indicates that at that point
the Markov chains may be close to the stationary distribution πt . The parallel tempering

10The curves for parallel tempering were nearly exactly coincident with those of their non-PT counterparts,
so the PT curves are omitted for clarity’s sake.
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Fig. 1 Guess error vs. the number of sampling steps Ts on Vote

version of each sampler showed little effect. This is because the number of chains rt for each
estimation increased quickly. It was more than 50 after 8 training iterations and eventually
more than 150. So even setting the swap probability to 0.9 did not provide enough swap
steps to make an improvement. For all Ts , Guess Errors of Gibbs and Metropolized Gibbs
are consistently lower than those of Metropolis. This is especially true for smaller values
of Ts . Although Metropolized Gibbs has a lower Guess Error than Gibbs, the difference
between these two samplers is very small, especially when Ts ∈ {9600,12800,16000}.

To evaluate the effect of varying the number of attributes n, we measured Guess Error of
the six samplers on the simulated data.11 In Fig. 2, Ts is fixed at 10000 and T0 = n2. Gibbs
and Metropolized Gibbs are still consistently better than Metropolis. The Guess Error of
Metropolized Gibbs is lower than Gibbs when n ≤ 25. But when n > 25, Gibbs becomes
the best sampler. As with Vote, parallel tempering made a negligible difference, so its curves
are omitted. Considering the results in Figs. 1 and 2, we submit that Gibbs is (by a small
margin) the best choice on average in terms of the accuracy of estimating weighted sums.

6.3 Comparisons on prediction error

Now we describe experiments that examine the prediction error of MCMC-based Winnow.
In contrast with the experiments of Sect. 6.2, we did not update Winnow’s weights with the
brute force version. Instead, we had one instance of Winnow per algorithm, each updating

11It seems impractical to run brute force Winnow when n is larger than 20, but the simulated data is randomly
generated from monotone DNF. Thus each variable only can be 1 or 0. Since we do not need to consider the
variables with 0 value (see Sect. 3.1), the expectation of the number of variables needed by brute force
Winnow is n/2. So we can run brute force Winnow even when n = 40.
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Fig. 2 Guess error vs. the number of variables n on simulated data

Table 9 Comparisons of prediction errors with 95% confidence intervals on UCI data sets (T0 = n2 and
Ts = 10n2). Best results are in bold

Data set Iris Car Breast cancer Vote Auto Annealing

n 4 6 9 16 25 38

M 5.3 ± 2.1 1.7 ± 0.8 31.5 ± 5.0 5.0 ± 2.1 12.8 ± 7.5 1.0 ± 0.7

G 6.7 ± 3.8 1.9 ± 0.8 30.9 ± 5.5 5.0 ± 2.4 15.6 ± 7.8 0.6 ± 0.5

MG 6.0 ± 1.7 1.5 ± 0.8 31.7 ± 5.0 5.0 ± 2.1 16.6 ± 5.5 0.4 ± 0.4

M+PT 6.0 ± 3.2 1.7 ± 0.9 32.7 ± 4.7 5.0 ± 1.6 18.6 ± 5.1 0.9 ± 0.7

G+PT 6.7 ± 2.7 1.5 ± 0.8 31.5 ± 3.8 5.9 ± 2.5 18.4 ± 4.7 1.3 ± 0.9

MG+PT 6.0 ± 3.2 1.6 ± 0.7 31.8 ± 5.8 5.4 ± 2.5 18.1 ± 4.3 0.7 ± 0.5

BF 7.3 ± 3.2 3.3 ± 1.1 33.3 ± 4.9 5.0 ± 2.0 – –

M—Metropolis, G—Gibbs, MG—Metropolized Gibbs, PT—Parallel tempering, BF—Brute force

its weights independently of the others. We performed k-fold cross-validation on six data
sets from the UCI repository and computed 95% confidence intervals (we did not run brute
force Winnow on Auto and Annealing). Since Winnow can only make binary predictions,
we trained one Winnow DNF learner for each class. After training, we took an unlabeled
example, estimated the weighted sums of all Winnows on that example, and predicted the
class with the Winnow that had the maximum weighted sum. Table 9 summarizes the results.
For each data set, all six samplers have similar performance. All confidence intervals of
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Table 10 Comparisons of prediction errors with 95% confidence intervals on Vote (n = 16 and T0 = 256).
Best results are in bold

Ts 800 1600 3200 6400 9600 12800 16000

M 5.1 ± 1.7 5.3 ± 1.6 5.0 ± 2.1 5.3 ± 1.8 5.0 ± 1.3 4.8 ± 1.6 5.5 ± 2.4

G 4.6 ± 2.5 4.8 ± 1.5 5.0 ± 2.4 4.8 ± 2.1 6.0 ± 2.5 4.6 ± 1.8 4.3 ± 2.0

MG 5.1 ± 1.1 5.0 ± 1.5 5.0 ± 2.1 4.6 ± 1.6 4.8 ± 1.8 5.0 ± 2.7 5.9 ± 2.5

M+PT 5.3 ± 1.9 4.1 ± 0.9 5.0 ± 1.6 5.5 ± 1.5 5.0 ± 1.8 4.1 ± 2.0 3.6 ± 1.9

G+PT 5.3 ± 1.4 4.8 ± 1.8 5.9 ± 2.8 5.9 ± 2.5 5.4 ± 1.8 4.6 ± 2.2 4.3 ± 2.0

MG+PT 5.1 ± 1.1 3.2 ± 0.9 5.4 ± 2.5 4.8 ± 2.7 5.0 ± 2.5 5.0 ± 2.2 5.5 ± 2.4

BF 5.0 ± 2.0

M—Metropolis, G—Gibbs, MG—Metropolized Gibbs, PT—Parallel tempering, BF—Brute force

each data set overlap. Although no sampler showed a significant advantage over the others,
we note that prediction errors of all three samplers are often lower than their PT versions.
Another interesting fact is that brute force Winnow lacks a statistically significant advantage
over any MCMC-based Winnow. Thus for the data sets we tested, there does not seem to be
any disadvantage to using an MCMC-based approximation in place of brute force.

We then reran some experiments from Sect. 6.2, on both simulated data and Vote. For
Vote, 10-fold cross-validation was done for each experiment. Table 10 reports the results.
Again, all confidence intervals overlap, implying that there’s little difference in performance
when varying the sampler (including brute force) or Ts . That said, non-PT samplers often
had a slight edge over their PT counterparts for n < 9600, with the slight advantage switch-
ing to PT for n ≥ 9600. It is possible that this happens because when Ts is small, Guess Error
of all samplers is high, inducing high variance in the estimates Ŵ . Since parallel temper-
ing allows greater mobility (see Sect. 4.4), PT would introduce more variation, which may
make it hard for Winnow to learn. Finally, note that brute force does not have any significant
advantage over the approximations.

Table 11 reports results for simulated data. Here we fixed Ts and varied n. (When
n ≥ 100, we set T0 = 100 rather than n2 since the results were nearly identical for the two
settings and the former setting greatly speeds execution.) Each experiment involved 10 train-
ing/testing sets. No differences were significant at the 95% level. In particular, we found no
significant advantage to using parallel tempering, nor to using brute force.

From all the above results, we found that in cases where n is small enough to run brute
force, MCMC-based Winnow’s performance at least matches that of brute force. We also
found that parallel tempering introduces more random behavior in MCMC, making its per-
formance harder to predict. In this sense, Gibbs sampler, which has the best performance in
terms of Guess Error, is a good choice, though its advantage is less clear in terms of predic-
tion error. We do not recommend using its PT version. We also found that as n grows, we
can keep T0 relatively much smaller than n2 and still perform comparably to setting T0 = n2.
We explore this phenomenon further in Sect. 6.4.

6.4 Experiments on significantly reduced S and T

Chawla et al. (2004) ran experiments on simulated data with very good results using sur-
prisingly small values of S and T . We further investigate this by testing on the Auto data
set, using values of S and T that are significantly reduced from those used by Chawla et al.
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Table 11 Comparisons of prediction errors with 95% confidence intervals on simulated data (T0 = n2 and
Ts = 10000 for n ≤ 40, T0 = 100 and Ts = 10000 for n ≥ 100). Best results are in bold

n 10 15 20 25 30 35 40

M 1.8 ± 1.6 2.6 ± 2.6 7.4 ± 3.9 4.2 ± 2.3 6.0 ± 3.0 7.2 ± 5.9 7.0 ± 7.0

G 1.8 ± 1.6 3.0 ± 2.5 7.8 ± 4.3 3.4 ± 3.0 8.0 ± 3.5 7.4 ± 4.9 6.2 ± 3.8

MG 1.8 ± 1.4 2.6 ± 2.3 7.2 ± 3.5 3.8 ± 2.9 6.4 ± 3.9 8.8 ± 5.2 7.0 ± 3.9

M+PT 1.4 ± 1.5 4.4 ± 2.4 7.4 ± 3.7 3.2 ± 2.8 6.4 ± 4.1 7.0 ± 3.8 5.8 ± 4.5

G+PT 1.6 ± 2.0 3.0 ± 1.8 5.6 ± 3.1 4.4 ± 3.3 7.4 ± 4.5 7.2 ± 3.6 6.0 ± 3.4

MG+PT 1.6 ± 1.5 2.6 ± 2.6 7.0 ± 4.3 3.2 ± 2.3 7.8 ± 4.3 9.6 ± 5.5 6.0 ± 4.1

BF 2.8 ± 2.6 4.6 ± 3.8 7.2 ± 4.2 4.4 ± 4.4 6.2 ± 3.9 7.4 ± 3.5 5.6 ± 4.0

n 100 200 400

M 18.8 ± 5.1 33.8 ± 9.7 37.2 ± 9.1

G 20.0 ± 4.9 33.4 ± 8.0 36.4 ± 8.7

MG 18.2 ± 4.4 32.4 ± 8.8 36.8 ± 9.2

M+PT 19.6 ± 5.3 33.8 ± 8.6 36.6 ± 8.5

G+PT 19.0 ± 4.9 33.0 ± 8.9 35.2 ± 9.2

MG+PT 18.4 ± 5.3 34.2 ± 8.5 36.6 ± 8.4

M—Metropolis, G—Gibbs, MG—Metropolized Gibbs, PT—Parallel Tempering, BF—Brute force

Since we used such small values of S and T , we used multiple runs to draw samples instead
of a single run (see Sect. 2.3). One reason for multiple runs is that samples are independent
even with small S (for a single run, the samples are highly dependent with small S). Another
reason for multiple runs is that our small T means the MCMC algorithms can only explore
a small state space close to the origin. Since each state or term in that space has fewer spec-
ified attributes than those farther from the origin, Winnow in a sense learns from a restricted
hypothesis space by limiting the number of attributes appearing in terms. This serves as an
implicit regularizer, which may reduce the risk of overfitting.

To evaluate the effect of varying S and T , we measured prediction accuracy of our algo-
rithm on the Auto data set via 6-fold cross validation. The first thing we noticed is that in
Figs. 3 and 4, training and testing errors level off, suggesting that Winnow can converge to
a hypothesis even with very small values of S and T . Further, we note that even though the
final test error rates are higher in Figs. 3 and 4 than they are for Auto in Table 9, their 95%
confidence intervals overlap.12

In Fig. 3, T is fixed at 100 and S ∈ {10,50,100}. We see that for this value of T , changing
S has little effect on test or train error. In Fig. 4, a more pronounced difference is visible. For
a fixed value of S = 50, varying T ∈ {10,50,100} changed both training and testing error.
This suggests that for relatively small S and T , varying T has a greater impact on perfor-
mance than varying S. What is unusual about Fig. 4 is that while error varies with varying
T , increasing T does not necessarily reduce error. In fact, it appears that the opposite may be
true (for most training iterations, the differences between the T = 10 and T = 50 test error

12To simplify the plots, error bars are omitted. For training iteration 80, 95% confidence intervals ranged
from ±4 to ±7.4.
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Fig. 3 Prediction errors vs. training iterations on Auto data set for T = 100

Table 12 Prediction errors with 95% confidence intervals of MCMC-based Winnow, brute-force Winnow
and C4.5. Best results are in bold

Data Set MCMC Brute force C4.5

Iris 5.3 ± 3.1 7.3 ± 3.2 6.7 ± 7.7

Car 2.7 ± 1.3 3.3 ± 1.1 6.4 ± 1.1

Breast cancer 30.0 ± 5.1 33.3 ± 4.8 34.7 ± 5.1

Vote 4.4 ± 1.8 5.0 ± 2.0 5.7 ± 2.0

Auto 19.8 ± 5.3 – 22.9 ± 9.8

Annealing 0.6 ± 0.6 – 6.3 ± 1.5

curves are significant at the 90% level). This may be a result of the implicit regularization
mentioned earlier.

In Table 12, we compare our algorithm with C4.5 (Quinlan 1996). We performed k-fold
cross-validation on all data sets. All algorithms used the same partitions. We set S = 20 and
T = 50 for MCMC-based Winnow. We noticed that Winnow has lower error rates than C4.5,
some significant at the 95% confidence level. We also note that the results for such small
values of S and T are very similar to those from Table 9. Finally, we see that yet again,
brute-force Winnow has higher error rates than MCMC-based Winnow, though confidence
intervals overlap.
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Fig. 4 Prediction errors vs. training iterations on Auto data set for S = 50

7 Conclusions and future work

We proposed an optimized MCMC solution for estimating weighted sums in Winnow. We
showed that it often uses less computation time than Chawla et al.’s solution without loss
of classification accuracy. Our experimental results confirmed that our algorithm only needs
to use a subset of all Markov chains implied by the original solution. We also showed how
to get such a subset of the smallest size and gave lower bounds on how many chains our
solution can save. We empirically compared three new MCMC sampling techniques: Gibbs,
Metropolized Gibbs and parallel tempering. They often showed better performance than
Chawla et al.’s Metropolis sampler in terms of accuracy of weighted sum estimates. We also
found that the Gibbs sampler has good performance on average. Further, we found that the
approximation algorithms had prediction error that was comparable or superior to C4.5 and
a brute force version of Winnow that exactly computed the weighted sums. This advantage
held even when very small sample sizes and mixing times were used.

Future work includes applying our algorithm to other algorithms (e.g. the algorithms of
Tao and Scott 2004 and Goldman et al. 2001 for multiple-instance learning) and exploring
other MCMC techniques such as blocking and over-relaxation (Neal 1995). In addition,
one could investigate the effect of pruning terms (i.e. using only terms with high weight)
on prediction accuracy, found via both the Markov chain and a genetic algorithm. Other
interesting work is to develop other methods to reduce training time, e.g. by limiting each
term (input to Winnow) to be constraints on at most k attributes (i.e. at most k non-0s
are allowed per term). This reduces the state space size for exactly computing Wt to |Ωt | =
O(nk) as opposed to 2n. Khardon et al. (2005) discuss this idea in a slightly different context.
Also, Khardon et al. give a negative result for exactly simulating Winnow for learning DNF
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(Sect. 2.1). Does a similar result exist for randomized algorithms approximately simulating
Winnow with high probability?
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Appendix: What is the best choice of rt ?

According to Chawla et al.’s MCMC solution, the computation time of estimating Wt(α) de-
pends on the number of chains rt − 1, the number of burn-in steps T0, and the sample size S.
Thus one possible way of reducing the computation time is to reduce rt . However, as we
show below, reducing rt does not gain us anything, since for our bounds to apply, it requires
a larger sample size and a smaller variation distance between the empirical distribution and
the chain’s stationary distribution (i.e. longer simulations of the chain to draw samples).

Define f ′
i,t (P ) = wt,P (α′

i−1,t )/wt,P (α′
i,t ), where α′

i,t = (1 + κ/m′
t )

i−1 for 1 ≤ i ≤ r ′
t , r ′

t

is the smallest integer such that (1 + κ/m′
t )

r ′
t −1 ≥ α, and κ and m′

t are positive constants.
Obviously, fi,t (P ) is a special case of f ′

i,t (P ) when κ = 1 and m′
t = mt . If we increase κ

or use a smaller m′
t , we would decrease r ′

t . In Corollary 6 below, we extend Theorem 1. We
start with a lemma used to prove Corollary 6.

Lemma 5 For any distribution π of Ωt , if m′
t ≥ max{ut (Pe), vt (Pe)}, then for all i and P ,

e−κ ≤ f ′
i,t (P ) ≤ eκ .

Proof Let ℘max
t = maxP∈Ωt {ut (P ) − vt (P )} and ℘min

t = minP∈Ωt {ut (P ) − vt (P )}, i.e. the
maximum and minimum number of net promotions of any Winnow input. Since Pe is sat-
isfied by any term and ut (Pe), vt (Pe) ≥ 0, ut (Pe) ≥ ℘max

t ≥ ℘min
t ≥ −vt (Pe). Therefore,

m′
t ≥ max{|℘max

t |, |℘min
t |}.

For all P ∈ Ωt ,

f ′
i,t (P ) = wt,P (α′

i−1,t )

wt,P (α′
i,t )

=
(

α′
i−1,t

α′
i,t

)
(P )

=
(

1 + κ

m′
t

)−
(P )

,

where 
(P ) = ut (P ) − vt (P ). Since

(

1 + κ

m′
t

)
(P )

≤
(

1 + κ

m′
t

)℘max
t

≤
(

1 + κ

m′
t

)m′
t

≤ eκ

and
(

1 + κ

m′
t

)
(P )

≥
(

1 + κ

m′
t

)℘min
t

≥
(

1 + κ

m′
t

)−m′
t

≥ e−κ ,

we have e−κ ≤ 1/f ′
i,t (P ) ≤ eκ and e−κ ≤ f ′

i,t (P ) ≤ eκ . �

By substituting Lemma 5’s bounds into Theorem 1, we get Corollary 6.



Mach Learn (2008) 73: 107–132 131

Corollary 6 Let the sample size St = 	130e2κ r̂t /ε
2
 and Mt be simulated long enough for

each sample such that the variation distance between the empirical distribution and πα̂i,t
is

at most ε/(5e2κ r̂t ). If m′
t ≥ max{ut (Pe), vt (Pe)}, then for any δ > 0, Ŵt (α) satisfies

Pr[(1 − ε)Wt(α) ≤ Ŵt (α) ≤ (1 + ε)Wt(α)] ≥ 1 − δ.

According to Corollary 6, we can set m′
t = max{ut (Pe), vt (Pe)}, which is often less than

Chawla et al.’s proposal of mt = ut (Pe) + vt (Pe) (see Sect. 3.1). But Corollary 6 tells us
that if we increase κ by 1, we potentially would need almost e2 times the sample size and
e2 times smaller variation distance. This means that the result of our MCMC solution would
become worse if we reduce the number of chains without drawing more samples. Thus it
seems we could not expect to get as good a result as before with less computation time by
increasing κ .
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