
Mach Learn (2008) 73: 25–53
DOI 10.1007/s10994-008-5075-5

Learning to assign degrees of belief in relational domains

Frédéric Koriche

Received: 17 September 2007 / Revised: 23 April 2008 / Accepted: 24 June 2008 /
Published online: 30 July 2008
Springer Science+Business Media, LLC 2008

Abstract A recurrent problem in the development of reasoning agents is how to assign
degrees of beliefs to uncertain events in a complex environment. The standard knowledge
representation framework imposes a sharp separation between learning and reasoning; the
agent starts by acquiring a “model” of its environment, represented into an expressive lan-
guage, and then uses this model to quantify the likelihood of various queries. Yet, even for
simple queries, the problem of evaluating probabilities from a general purpose representa-
tion is computationally prohibitive. In contrast, this study embarks on the learning to reason
(L2R) framework that aims at eliciting degrees of belief in an inductive manner. The agent
is viewed as an anytime reasoner that iteratively improves its performance in light of the
knowledge induced from its mistakes. Indeed, by coupling exponentiated gradient strategies
in learning and weighted model counting techniques in reasoning, the L2R framework is
shown to provide efficient solutions to relational probabilistic reasoning problems that are
provably intractable in the classical paradigm.

Keywords Learning to reason · Online learning · Relational probabilistic reasoning ·
Exponentiated gradient learning · Markov networks · Weighted model counting

1 Introduction

From early on (Cox 1946), it has been recognized that degrees of belief, or epistemic prob-
abilities, play an important role in commonsense reasoning. Consider for example a doctor
equipped with a knowledge base containing factual information about patients, as well as
general information about symptoms, diseases, diagnostic tests, and medical treatments. In
most cases, the knowledge base is not complete enough to logically entail the illness of a par-
ticular patient. Since the efficacy of a treatment will almost certainly depend on the disease,
it is thus important for the doctor to estimate the likelihood of different possibilities. More

Editors: Hendrik Blockeel, Jude Shavlik, Prasad Tadepalli.

F. Koriche (�)
LIRMM, Université Montpellier II, 161 Rue Ada, 34392 Montpellier Cedex 5, France
e-mail: Frederic.Koriche@lirmm.fr

mailto:Frederic.Koriche@lirmm.fr

26 Mach Learn (2008) 73: 25–53

generally, if an agent wishes to employ the expected-utility paradigm of decision theory in
order to guide its actions, it must assign probabilities to various assertions. Less obvious,
however, is the key question of how to elicit such degrees of belief in a computationally
effective manner.

The standard knowledge representation approach claims that beliefs are elicited in a de-
ductive way: one starts by accepting a certain set of premises, and then accepts the con-
clusion that follows from the premises in accordance with certain inference rules. Actu-
ally, many approaches to uncertain reasoning follow this paradigm by extending logical
inference to probabilistic inference. The agent indeed starts by acquiring a compact de-
scription of a target probability distribution, and then, utilizes this description to derive
the probability of any possible query. The main assumption behind this paradigm is that,
in general, the description is acquired independently of the queries that will be posed. To
provide compact and reliable descriptions of complex probability measures, various repre-
sentation formalisms have been proposed in the literature; some of them extend first-order
logical representation languages to probabilistic inference (Poole 1993; Bacchus et al. 1996;
Muggleton 1996; Ngo and Haddawy 1997; Costa et al. 2003; Kersting 2006), while oth-
ers advocate a dual approach by extending graphical representation languages to rela-
tional inference (Jaeger 1997; Friedman et al. 1999; Pfeffer 2000; Taskar et al. 2002;
Richardson and Domingos 2006). For example, if the domain is represented by a knowledge
base in first-order logic, the probability measure is induced by assigning equal likelihood to
all interpretations that satisfy the knowledge base; the degree of belief of any query is simply
the fraction of those interpretations which are consistent with the query (Bacchus et al. 1996;
Halpern 2003).

From a pragmatic viewpoint, the usefulness of a computational approach to probabilistic
reasoning depends both on the accuracy of the belief estimates and the efficiency of belief
estimation. Unfortunately, the task of deducing degrees of belief from a general purpose de-
scription is computationally prohibitive. In propositional logic, the problem of inferring the
probability of any query from a propositional theory is #P-hard, and even the apparently eas-
ier question of approximating this probability in a very weak sense is NP-hard (Roth 1996).
The first-order version of this problem is highly undecidable in general (Abadi and Halpern
1994). Under finite domain assumptions, though, it remains decidable. Nevertheless, even
if any first-order theory defined over a finite domain can be transformed into a logically
equivalent ground formula, the size of the resulting formula can grow exponentially with
respect to the initial theory. Consequently, relational probabilistic inference turns out to be
EXP-hard to evaluate and NEXP-hard to approximate. Similar results have been obtained
for graphical representation languages (Jaeger 2000).

In contrast, this study aims at eliciting degrees of belief in an inductive manner. The
main departure from the deductive approach is that knowledge is not ascribed a priori, for
the purpose of describing an environment, but instead acquired a posteriori, by experience,
in order to improve the agent’s ability to reason efficiently in its environment. Specifically,
our approach follows the so-called learning to reason (L2R) framework that has recently
emerged as an active research field of Inductive Logic Programming for dealing with the
intractability of reasoning problems (Khardon 1999; Khardon and Roth 1997, 1999; Valiant
1994, 2000a, 2000b).

The inductive view of probabilistic inference is captured by a computational model of
learning. The environment, or domain in question, is modeled as a probability distribution
P on a space of relational structures, or interpretations. To acquire knowledge from its en-
vironment, the agent is given a “grace period” in which it can interact with its learning in-
terface. The purpose of this learning interface is to help the agent in concentrating its effort

Mach Learn (2008) 73: 25–53 27

toward finding a representation KB of P that is useful for evaluating queries in some tar-
get query language Q. The reasoning performance is measured only after the grace period,
when the agent is presented with new queries from Q and has to estimate their probability
according to its representation KB. Thus, by contrast with the deductive view of probabilis-
tic inference, the agent is not required to achieve optimal performance by evaluating any
possible query with perfect precision. Instead, the performance is measured with regard to a
restricted though expressive query language.

Technically, our framework is based on the online mistake-driven learning model intro-
duced by Littlestone (1988, 1989). In this setting, the L2R protocol is modeled as a repeated
game between the reasoning agent and its learning interface. During each trial of the game,
the agent receives a query Q from the language Q and assigns a degree of belief PrKB(Q) to
it. The agent is charged a mistake only if its prediction loss is not judged satisfactory for the
task at hand. In this case, the agent is supplied the correct probability PrP(Q) and updates
its knowledge base in light of this feedback information. In essence, the agent is an anytime
reasoner that gradually improves its performance by interacting with its learning interface.

Based on this framework, the requirements for efficient reasoning are twofold. First, the
length of the grace period needed to achieve full functionality must be polynomial in the
dimension of the relational vocabulary. In other words, the agent’s behavior must converge
to yield accurate belief estimates after a polynomial number of interactions. Second, the
computational cost needed to estimate the probability of any query from the language Q
must also be polynomial in the input dimension.

To satisfy these desiderata, we develop an online L2R algorithm which combines tech-
niques in regression learning and weighted model counting. The algorithm uses an exponen-
tiated gradient strategy (Kivinen and Warmuth 1997; Bylander 1998; Cesa-Bianchi 1999)
adapted for assigning probabilities to relational queries. The cumulative number of mistakes
made by the reasoner depends only logarithmically in the size of the target probability dis-
tribution, and hence linearly on the input dimension. Consequently, the learning curve of the
reasoner is guaranteed to converge to yield accurate estimations after a polynomial number
of interactions.

The key idea behind efficient relational probabilistic reasoning lies in a suitable encoding
of the “mistake-driven” knowledge that allows tractable forms of weighted model counting
(Sang et al. 2005; Chavira and Darwiche 2008). Namely, for several restricted conjunctive
query languages, the computational cost of assigning degrees of belief is polynomial in
the number of mistakes made so far, and hence, the dimension of the input vocabulary.
This result highlights the interest of the L2R framework by providing efficient solutions
to relational probabilistic reasoning problems that are provably intractable in the classical
framework.

The necessary background in relational probabilistic reasoning can be found in Sect. 2.
Based on this setting, the core of the paper introduces the L2R framework (Sect. 3), next
presents the exponentiated gradient L2R algorithm (Sect. 4), and then examines tractable
query languages (Sect. 5). In Sect. 6, we compare our framework with related work by
establishing some interesting relationships with knowledge compilation and statistical rela-
tional learning. In particular, the connection with Markov logic networks (Richardson and
Domingos 2006) is examined in detail. As a dual contribution of this paper, our results can
be viewed as introducing subclasses of Markov networks for which learning and inference
are shown tractable. Finally, in Sect. 7, we conclude by listing several perspectives of further
research. For the sake of clarity, proofs of Theorems 1 and 2 are given in the Appendix.

28 Mach Learn (2008) 73: 25–53

2 Relational probabilistic reasoning

We consider reasoning problems where the environment is modeled as a probability distri-
bution over a space of relational structures. This section briefly reviews the background for
reasoning in such environments.

2.1 Relational reasoning

A relational vocabulary consists in finite set of relation symbols, each equipped with its
associated arity, and a finite set of constant symbols. In addition, a countable set of variables
is used to construct quantified expressions. As usual, constant symbols represent objects in
the domain of interest, and relation symbols represent properties of objects and relationships
among objects. A term is a constant symbol or a variable.

As complex environments typically involve multiple kinds of objects, it is often useful to
rely on a many-sorted vocabulary (Manzano 2005), whose main advantage is to concisely
represent the background knowledge about different sorts of objects. From this perspective,
we shall assume that any relational vocabulary also includes a finite set of sorts. Each term
is given a sort s, and each k-ary relation symbol is given a k-tuple of sorts (s1, . . . , sk). Sorts
are essentially what are known as simple types in connection with programming languages;
they represent indivisible kinds of entities. For example, the variable x might range over
people (e.g. Ann, Bob, etc.), the constant C might represent a city (e.g. Seattle), and the
binary relation symbol At(x, y) might indicate the location of person x at city y. Notice that
an untyped vocabulary is just a vocabulary that contains a single sort.

An atom is an expression of the form R(t1, . . . , tk), where R is a k-ary relation symbol
and each ti is a term of appropriate sort si in the type of R. A ground atom is an atom with
no variables. Formulas are constructed in the usual way from the atoms, the connectives ¬
and ∧, the quantifier ∀, and the logical constant �.1 Sentences are, as usual, formulas with
no free variables. Unless stated otherwise, any formula under consideration in this study is a
sentence. The size |F | of a formula F is the number of occurrences of all relation symbols,
constant symbols, and variables in its description. For example, the size of ∃x∃yAt(x, y)

is 3.
The Herbrand base of a relational vocabulary, is the set H of all ground atoms that

can be constructed from the relation symbols and the constant symbols according to their
appropriate sorts in the vocabulary. The dimension d of a relational vocabulary is defined as
the cardinality of its Herbrand base. Notably, if the vocabulary contains m relation symbols
Ri or arity ai , and n constant symbols, then d ≤ ∑m

i=1 nai . Clearly, d is equal to
∑m

i=1 nai

when the vocabulary is reduced to a single sort. In this case, the Herbrand base is full in
the sense that it includes all possible ground atoms formed from the relation symbols and
constant symbols of the vocabulary.

Semantics is given to formulas using relational structures or interpretations. An inter-
pretation I consists of a set of objects D, called the domain, and a way of associating each
of the elements of the vocabulary the corresponding entities over the domain. Thus, a sort
s is associated with a subset Ds of D, a constant symbol c of sort s is associated with an
object of Ds , and a k-ary relation symbol R of type (s1, . . . , sk) is associated with a k-ary
relation over Ds1 , . . . ,Dsk . In this study, we shall focus on the common class of Herbrand

1Other logical connectives like ∨, → and ↔, and the quantifier ∃, are defined in the usual way in terms of
¬, ∧, ∀, and �.

Mach Learn (2008) 73: 25–53 29

interpretations which assumes that the domain is precisely the set of constants of the vocab-
ulary. Thus, a Herbrand interpretation is just a subset of H. The set ℘(H) of all Herbrand
interpretations generated from H is called the Herbrand space of the vocabulary.

The notion of model is defined by recursion on the structure of formulas. As usual, I is
always a model of �. If F is a ground atom, then I is a model of F iff F ∈ I . If F is ¬G,
then I is a model of F iff I is not a model of G. If F is G1 ∧ G2, then I is a model of F

iff I is a model of both G1 and G2. Finally, if F is ∀x G(x) where x is of sort s, then I is
a model of F iff I is a model of G(c) for every constant symbol c of sort s. The set of all
models of F is denoted M(F).

Given a formula F , we say that F is satisfiable if M(F) is nonempty. Given two formulas
F and G, we say that F entails G, denoted F |= G, if M(F) ⊆ M(G). Furthermore, we
say that F is equivalent to G, denoted F ≡ G, if F |= G and G |= F .

2.2 Probabilistic reasoning

In presence of uncertainty, logical entailment is often insufficient to determine the truth of a
formula F ; both F and its negation may be consistent with our model of the environment.
In order to quantify uncertainty, we need to evaluate the probability that F is true in the
environment. From this viewpoint, it is useful to represent the Herbrand space of a relational
vocabulary by an indexed set {I1, . . . , IN }, where N = 2d and d is the dimension of the
vocabulary. Thus, a probability distribution over the Herbrand space ℘(H) is specified by
a N -tuple P = (p1, . . . , pN) such that pi ∈ [0,1] and

∑N

i=1 pi = 1. The value pi is the
probability of the interpretation Ii according to the probability distribution P .

The projection of a formula F onto the Herbrand space ℘(H) is a N -tuple of features
φ(F) = (φ1(F), . . . , φN(F)) where φi(F) = 1 if Ii is a model of F and φi(F) = 0 other-
wise. Based on this notation, the probability that a formula F is true according to a proba-
bility distribution P over the Herbrand space ℘(H) is

PrP(F) =
N∑

i=1

piφi(F).

Definition 1 A relational probabilistic reasoning problem defined over a relational vocab-
ulary is a pair (P,Q), where P is a probability distribution over the Herbrand space of the
vocabulary, and Q is a countable set of formulas Q over the vocabulary. P is called the
environment and Q the query language.

Example 1 Let us consider the random blocks domain introduced by Chavira et al. (2006).
It describes the random placement of some blocks, viewed as obstacles, on the locations
of a two-dimensional map. The domain involves two sorts of entities: blocks and locations.
The spatial relationship among locations is described by two binary predicates Left(y1, y2),
indicating that location y1 is left of location y2, and Above(y1, y2), indicating that location
y1 is above location y2. The vocabulary also involves two other predicates: At(x, y), indi-
cating the location y of a block x, and Connected(y1, y2) which describes whether, after the
placement of the obstacles, there is an unblocked path between y1 and y2. The purpose of the
agent is to identify the underlying “scene” by estimating the probability of various queries.
For example, a query like ∃y Connected(y, l1) ∧ ∀x ¬At(x, l1) might express the possibility
that there is an unblocked path to reach l1 given that this location is free. With an instance
of the domain involving 4 blocks and 8 locations, the dimension is (3 × 64) + 32 = 224.

30 Mach Learn (2008) 73: 25–53

Example 2 Let us turn to a variant of the so-called blood type domain introduced by Fried-
man et al. (1999). Occasionally, a person is unavailable for testing and yet, because of many
reasons such as the clarification of crime, paternity test, or allocation of frozen semen, it is
necessary to estimate the blood type of the person. The domain involves four kinds of en-
tities: individuals, blood types {A,B,AB,O}, gene copies {1,2}, and alleles {a,b,o}. Each
person x has a blood type y, represented by Blood(x, y). The blood type is a phenotype
expressed by the two copies of the abo gene. Each copy z has an allele u, represented by
Gene(x, z,u). The first copy is inherited from the mother Mother(x, x1), and the second
copy is inherited from the father Father(x, x2). In this setting, the purpose of the agent is
to estimate blood types from the parenthood context. To this end, we would like to express
queries such as Blood(Ann,A) ∧ Mother(Ann,Mary) ∧ ∃z Gene(Mary, z,a) indicating that
the blood type of Ann is A given that one abo gene of her mother, Mary, has allele a. With
and instance of blood type domain involving 10 individuals, the dimension of the vocabulary
is 40 + 60 + (2 × 100) = 300.

3 The learning to reason framework

In the learning to reason paradigm, the goal of the agent is to acquire a representation KB of
the environment P for the query language Q. From this perspective, the agent is given access
to a learning interface that governs the occurrences of queries drawn from Q. The interface
most appropriate in our setting is a variant of the reasoning query oracle (Khardon and Roth
1997, 1999) adapted for belief estimation. In essence, the oracle provides training queries
and helps the agent in correcting its mistakes by supplying correct probabilities. To assess
regression discrepancies, we use the typical quadratic loss function L(x, y) = (x − y)2.

Definition 2 A reasoning query oracle for the problem (P,Q), with respect to a tolerance
parameter γ ∈ (0,1], denoted RQγ (P,Q), is an oracle that when accessed performs the
following protocol with the reasoning agent A. (1) The oracle picks an arbitrary query Q in
Q and returns it to A. (2) The agent A estimates the uncertainty of Q by assigning a degree
of belief PrKB(Q). (3) The oracleresponds by “correct” if L(PrKB(Q),PrP(Q)) ≤ γ , and
“incorrect” otherwise. In case of mistake, the oracle also supplies the correct probability
PrP(Q) to A.

The interaction protocol is modeled as a repeated game between the agent and its in-
terface. During each t ≥ 1, the agent receives a query Qt supplied by the oracle, makes a
prediction according to its knowledge base KBt and, in case of mistake, updates KBt in light
of the feedback information. A reasoning agent is conservative if it modifies its knowledge
base only when it makes a mistake; in other words, a conservative agent leaves unchanged its
hypothesis KBt whenever any prediction using it is correct. The mistake bound for an agent
A on the problem (P,Q), denoted MA,γ (P,Q), is the maximum number of mistakes that
A can make by interacting with RQγ (P,Q) over any arbitrary sequence of queries drawn
from Q.

Definition 3 Given a relational probabilistic reasoning problem (P,Q) defined over a vo-
cabulary of dimension d , an algorithm A is an efficient mistake bound learning to reason
(MB-L2R) algorithm for (P,Q), if there are polynomials p and q such that the following
conditions hold for any parameter γ ∈ (0,1]: (1) MA,γ (P,Q) ≤ p(d, 1

γ
), and (2) A evalu-

ates any query Q ∈ Q of size n in q(n, d, 1
γ
) time.

Mach Learn (2008) 73: 25–53 31

The online learning to reason framework provides a natural way to make explicit the
dependence of the reasoning performance on the knowledge acquired from the environment.
After a “grace period” of interaction between the agent and its oracle, the agent is expected
to evaluate any query supplied by its interface without the help of the feedback response. Of
course, we cannot force the agent to make all the mistakes within the grace period. However,
we can estimate the asymptotic behavior of a conservative MB-L2R agent by converting it
into a Probably Approximately Correct (PAC) L2R algorithm. In this setting, we make the
assumption that all the queries supplied by RQγ (P,Q) are drawn independently at random
according to a fixed, but unknown, probability distribution D. Given parameters γ and ε,
we say that a knowledge base KB is an (ε, γ)-good hypothesis if the probability of making
a mistake when KB is used to predict on any query Q taken at random from Q according to
D is at most ε, that is, PrQ∼D[L(PrKB(Q),PrP(Q)) > γ] ≤ ε.

Definition 4 Given a relational probabilistic reasoning problem (P,Q) defined over a vo-
cabulary of dimension d , an algorithm A is an efficient PAC-L2R algorithm for (P,Q), if
there are polynomials p and q such that the following conditions hold for any probability
distribution D on Q and any parameters δ, ε ∈ (0, 1

2] and γ ∈ (0,1]: (1) if A is supplied
at least p(d, 1

δ
, 1

ε
, 1

γ
) queries that are drawn independently at random according to D then,

with probability at least 1 − δ, A returns an (ε, γ)-good hypothesis, and (2) A evaluates any
query Q ∈ Q of size n in q(n, d, 1

γ
) time.

The simple conversion method due to Angluin (1988) can be adapted to our framework
without modifying the online behavior of the agent. We use a variant of this method which
takes into account the fact that, for an efficient MB-L2R algorithm, the total number of
mistakes is bounded by a known polynomial p. The method takes as input a sample size
s = 1

ε
(ln m

δ
), where m = p(d, 1

γ
) + 1, and converts A into a PAC analogue APAC as follows:

APAC starts with KB1 and calls RQγ (P,Q) exactly s times by keeping the same hypothesis.
If all queries were correctly predicted during this period, then APAC halts and returns KB1.
Otherwise, APAC picks the first query that has led to a mistake together with its feedback
information, and utilizes the update rule of A in order to generate a new hypothesis KB2.
Then KB2 is tested s times, and so on. In essence, the algorithm APAC is a “cautious” variant
of A that evaluates its current hypothesis on a fixed period before generating a new one.

Proposition 1 Let (P,Q) a relational probabilistic reasoning problem. Then, any efficient
conservative MB-L2R algorithm A for (P,Q) can be transformed into an efficient PAC-L2R
algorithm APAC for (P,Q).

Proof Since A is an efficient MB-L2R algorithm, there exists a polynomial p such that
MA,γ (P,Q) ≤ p(d, 1

γ
). Moreover, since A is conservative, APAC will generate at most m =

p(d, 1
γ
) + 1 hypotheses KB1, . . . ,KBm. Now, suppose that none of these descriptions is

an (ε, γ)-good hypothesis. Since each KBi has error greater than ε, any query is correctly
evaluated by KBi with probability (1−ε). Thus, s independent random queries are correctly
evaluated by KBi with probability at most (1 − ε)s . Since the probability of a union of
events is at most the sum of their individual probabilities, the probability that all s queries
are correctly evaluated by any of the hypotheses in KB1, . . . ,KBm is at most m(1 − ε)s ≤
me−εs . Taking s = 1

ε
(ln m

δ
), the algorithm APAC is therefore guaranteed, with probability

1 − δ, to return an (ε, γ)-good hypothesis by making at most m
ε
(ln m

δ
) calls to RQγ (P,Q).

Finally, since there exists a polynomial q such that A evaluates any query Q ∈ Q of size

32 Mach Learn (2008) 73: 25–53

n in q(n, d, 1
γ
) time, by construction, APAC is also guaranteed to evaluate Q in q(n, d, 1

γ
)

time. �

The most important message to be gleaned from the L2R framework is that the be-
havior of the reasoning agent is essentially governed by the target environment P , the
query language Q, and the tolerance factor γ . To this very point, the choice of γ is
crucially dependent on the domain in question. Consider for example an event such as
Blood(Ann,A) ∧ Mother(Ann,Mary) ∧ ∀z Gene(Mary, z,b). If γ is set to 1

4 , then any de-
gree of belief less or equal than 50% will be judged satisfactory for this event, even if it is
genetically impossible! On the other hand, if γ is set to 1

2500 , then any belief greater than 2%
will be treated as a mistake.

4 Exponentiated gradient learning to reason

The main idea behind this study is to combine exponentiated gradient strategies in online
learning and weighted model counting techniques in probabilistic reasoning. For the sake of
pedagogy, we begin to focus on the learning strategy by presenting a direct L2R algorithm
that uses an explicit encoding of probability distributions over the Herbrand space of the
input vocabulary. Based on weighted model counting techniques, we shall then derive an
indirect L2R algorithm that simulates the direct method using an implicit, yet economic,
representation of probability measures.

4.1 The direct algorithm

The direct L2R algorithm is presented in Fig. 1. The key idea is to maintain a prob-
ability distribution P̂ = (p̂1, . . . , p̂N) that approximates the target probability measure
P = (p1, . . . , pN). Initially, the hypothesis is set to the uniform distribution over the Her-
brand space. On each trial t , the agent receives a query Qt supplied by its learning interface,
and makes a prediction ŷt = PrP̂t

(Qt) with its hypothesis P̂t . In case of mistake, the agent
receives the correct value yt = PrP(Qt) of the query Qt . In light of this information, the
agent adjusts the probabilities in P̂t according to the standard multiplicative weight update
rule advocated in online regression algorithms (Kivinen and Warmuth 1997). As usual, a
normalization is also employed to guarantee that the resulting hypothesis P̂ belongs to the
probability simplex.

Fig. 1 The direct EG-L2R
algorithm Input:

learning rate η > 0
Initialization:

set p̂i,1 = 1
N

for 1 ≤ i ≤ N

Trials: in each trial t ≥ 1
receive a query Qt

predict ŷt = PrP̂t
(Qt)

if the prediction is correct then
P̂t+1 = P̂t

else
receive yt = PrP(Qt)

set p̂i,t+1 = p̂i,t e
ηφi (Qt)(yt −ŷt)

Zt
for 1 ≤ i ≤ N

Mach Learn (2008) 73: 25–53 33

The entropy of a target probability distribution P is defined in the usual way by H(P) =
−∑N

i=1 pi log2 pi . Based on this notion, the behavior of the algorithm is captured by the
following mistake-bound result.

Theorem 1 For any relational probabilistic reasoning problem (P,Q) defined over a vo-
cabulary of dimension d , on input γ > 0, when η = 4, the direct EG-L2R algorithm has the
following mistake bound

Mγ (P,Q) ≤ ln 2

2γ

(
d − H(P)

)
.

In other words, the worst-case total number of mistakes of the direct EG L2R algorithm is
logarithmic in the size of the Herbrand space of the input vocabulary, and hence, linear in the
input dimension. Interestingly, as we know that H(P) is always nonnegative, the reasoning
performance of the algorithm improves with the entropy of its environment. Indeed, the
number of mistakes tends to zero as P is getting closer to the uniform distribution on the
Herbrand space ℘(H).

4.2 The indirect algorithm

In relational probabilistic reasoning, a direct implementation of the distribution P̂ is physi-
cally impossible as the agent would need to maintain a weight vector of size Ω(2d). For
example, in the blood type domain, with only ten individuals the agent would need to
store about 1090 probability values! To circumvent this physical barrier, the key idea be-
hind the indirect algorithm is to encode P̂ into a weighted knowledge base KB, whose
size is polynomial in the number of mistakes made so far. In this representation, the pre-
diction task is thus translated into a weighted model counting problem (Sang et al. 2005;
Chavira and Darwiche 2008).

To this end, we need additional definitions. A weighted formula is a pair (F,w) where
F is a formula and w is a nonnegative real number. Intuitively, w reflects how strong a con-
straint it is: the higher the weight, the greater the difference in likelihood between an inter-
pretation that satisfies the formula and one that does not. In this setting, any “unweighted”
formula F is treated as an abbreviation of (¬F,0); it denotes a hard constraint that re-
stricts the space of possible interpretations. A weighted knowledge base KB is a finite set of
weighted formulas. The weight of KB, denoted ‖KB‖, is given by2

‖KB‖ =
N∑

i=1

∏

(F,w)∈KB

wφi(F).

The basic idea behind this notion is to ascribe a weight to each interpretation Ii (1 ≤
i ≤ N), which is specified by the product of weights w of all formulas (F,w) satisfied by
Ii , i.e. φi(F) = 1. Thus, the weight of the knowledge base KB is just the sum of weights of
the interpretations that are models of KB.

Now, consider a formula Q of the query language Q. Then, the degree of belief in Q

given KB is defined by

PrKB(Q) = ‖KB ∪ {Q}‖
‖KB‖ .

2We take the usual convention that 00 = 1 and 0x = 0 for any real number x > 0.

34 Mach Learn (2008) 73: 25–53

Fig. 2 The indirect EG-L2R
algorithm Input:

learning rate η > 0
Initialization:

set KB1 = {(�,1)}
Trials: in each trial t ≥ 1

receive a query Qt

predict ŷt = PrKBt (Qt)

if the prediction is correct then
KBt+1 = KBt

else
receive yt = PrP(Qt)

set KBt+1 = KBt ∪ {(Qt ,wt)} where wt = eη(yt −ŷt)

Recall that in the expanded knowledge base KB ∪ {Q} the formula Q is treated as an
abbreviation of (¬Q,0). Thus, ‖KB∪{Q}‖ denotes the sum of weights of the interpretations
satisfying both KB and Q. By normalizing this sum using the weight of KB, the degree of
belief in Q given KB can be regarded as the probability of choosing an interpretation I at
random that satisfies Q according to the probability distribution induced by the weights of
models of KB.

Interestingly, the weighted-worlds approach to degrees of belief suggested in this study
provides a natural generalization of the random-worlds approach advocated for the par-
ticular case of unweighted knowledge bases (Grove et al. 1994; Bacchus et al. 1996;
Halpern 2003). Indeed, if KB is reduced to a set of hard constraints, then ‖KB‖ corresponds
to the number of models of KB, and hence, in this case the degree of belief in Q given KB
is just the probability of choosing an interpretation at random that satisfies Q out of all the
interpretations that satisfy KB.

We are now in position to examine the indirect EG-L2R algorithm. As described in Fig. 2,
the backbone of the algorithm is formed by maintaining a weighted knowledge base used
to predict the likelihood of incoming queries. The reasoner starts with the tautology (�,1).
On each trial t , the agent assigns a degree of belief PrKBt (Qt) to the input query Qt ac-
cording to its knowledge base KBt . In case of mistake, KBt is simply expanded with the
weighted formula (Qt ,wt) that conveys, into a concise form, the knowledge gathered by the
reasoner during the interaction with its interface. In particular, the weight wt is adjusted by
exponentiating the gradient of the agent’s prediction loss with respect to its knowledge base.

As a representation theorem, the following result claims that the indirect L2R algorithm is
an exact simulation of the direct L2R algorithm. Namely, on the same sequential prediction
game, both algorithms assign the same degrees of belief.

Theorem 2 Indirect EG-L2R exactly simulates the Direct EG-L2R.

To summarize, the (indirect) EG-L2R algorithm is characterized by two important fea-
tures. First, its mistake bound is linear in the dimension of the input vocabulary. This is
indeed an immediate corollary of Theorems 1 and 2. Second, the size of the hypothesis KB
maintained by the reasoner is also linear in the number of ground atoms. This follows from
the fact the algorithm is conservative and hence, expands its knowledge base only if it makes
a mistake.

Despite these encouraging properties, it remains to be seen how the algorithm can effi-
ciently evaluate degrees of belief. This is the purpose of the next section.

Mach Learn (2008) 73: 25–53 35

5 Tractable query languages

After an excursion into the learning aspects of the framework, we now concentrate on the
reasoning aspects of the framework by examining several query languages that are tractable
for model counting. The utility of our architecture is thus highlighted by showing that
relational probabilistic reasoning problems defined over some restricted yet expressive of
conjunctive query languages are “mistake bound learnable”. Based on the conservativeness
property of the EG-L2R algorithm and the aforementioned conversion technique, these rea-
soning problems can also be shown “PAC learnable”.

The basic building block of tractable query languages lies in the notion of decompos-
able conjunctive query. Based on this notion, we begin to examine simple hitting query
languages, next we turn to cluster query languages, and then we extend still further the
expressiveness of the framework by exploring query languages with parameterized cluster-
width.

5.1 Decomposable conjunctive queries

A fundamental issue behind probabilistic reasoning is to evaluate in a reasonable amount of
time the number ‖F‖ of all interpretations satisfying a given formula F . Before examining
tractable query languages, it is instructive to observe how ‖F‖ can be evaluated using the
ground atoms of F . Let H(F) denote the set of all ground atoms satisfying the following
condition: A ∈ H(F) if and only if A ∈ H and there is a ground substitution θ such that A

occurs in the instance Fθ . For example, in the random blocks domain involving 2 blocks
and 2 locations,

H (∃y At(b1, y) ∧ ¬∀x At(x, l2)) = {At(b1, l1),At(b1, l2),At(b2, l2)}.

We remark that ℘(H(F)) is the space of all Herbrand interpretations generated from H(F).
The number of all interpretations in ℘(H(F)) satisfying F is denoted 〈〈F 〉〉. Now, let d be
the dimension of our background vocabulary. Based on the above notations, we can easily
verify that ‖F‖ = 2d−|H(F)| 〈〈F 〉〉. This simple observation suggests that if |H(F)| and 〈〈F 〉〉
can be evaluated in polynomial time, then ‖F‖ can be evaluated in polynomial time.

All query languages investigated in this study are conjunctive fragments of the class of
quantified propositions described in (Cumby and Roth 2000; Valiant 2000b). More precisely,
queries are defined to be restricted relational expressions in which (1) there is only a single
predicate in the scope of each variable, and (2) there is only a single type of quantifier in the
front of each predicate.

These restrictions can be formalized in the following way. An existentially (resp. uni-
versally) quantified atom is an expression of the form ∃x1, . . . ,∃xpR(t1, . . . , tk) (resp.
∀x1, . . . ,∀xpR(t1, . . . , tk)), where 0 ≤ p ≤ k and all the p variables occurring among the
k terms are within the scope of an existential (resp. universal) quantifier. A uniformly quan-
tified atom, or quantified atom for short, is an existentially quantified atom or a univer-
sally quantified atom. A quantified literal is a quantified atom A or its negation ¬A. Fi-
nally, a quantified conjunctive query is a conjunction of quantified literals. For example,
∃y1 Connected(l1, y1) ∧ ¬∀x At(x, l2) ∧ ∃y2 At(b1, y2) is a quantified conjunctive query.

Lemma 1 Let A and B be two quantified atoms defined on a vocabulary of dimension d .
Then deciding whether A entails B can be solved in O(d|A||B|) time.

36 Mach Learn (2008) 73: 25–53

Proof Since atoms can be either existentially quantified or universally quantified, four cases
have to be considered. If both A and B are existentially quantified, then A |= B if and only
if H(A) ⊆ H(B). Dually, if both A and B are universally quantified, then A |= B if and only
if H(B) ⊆ H(A). Now, if A is universally quantified and B existentially quantified, then
A |= B if and only if we have H(A)∩H(B) �= ∅. Finally, if A is existentially quantified and
B is universally quantified, then A |= B if and only if |H(A)| = |H(B)| = 1, and H(A) =
H(B). Notice that the fourth case is not the contrapositive of the third case. Obviously, the
first three cases can be decided in O(d|A||B|) time by listing the ground instances of one
atom and checking whether they are instances of the other. The fourth case can be decided
in O(d|A|+d|B|) time by testing whether both atoms contain a single ground instance and,
in case of success, comparing these instances. �

Based on the above lemma, the interest of quantified conjunctive queries lies in the fact
that many logical operations can be realized in polynomial time. Given two formulas F

and G, we say that F and G match if F entails G or G entails F . Dually, we say that F and
G clash if F ∧ G is unsatisfiable.

Proposition 2 Let Q and Q′ be two quantified conjunctive queries defined over a vocabu-
lary of dimension d . Then deciding whether Q and Q′ clash or match can be determined in
O(d|Q||Q′|) time.

Proof As usual, the sign of a quantified literal L is positive if L can be rewritten as a
quantified atom, and negative otherwise. Consider two quantified literals L and L′, and
let A and A′ be the quantified atoms occurring in L and L′ respectively. Then L |= L′ if
and only if either both L and L′ are positive and A |= A′, or both L and L′ are negative and
A′ |= A. In both cases, this can be determined in O(d|L||L′|) using Lemma 1. Now, consider
two quantified conjunctive queries Q and Q′. Since literals are independently quantified,
Q |= Q′ if and only if for each literal L′ of Q′ there is a literal L of Q such that L |= L′.
Furthermore, Q ∧ Q′ is unsatisfiable if and only if there is a literal L of Q and a literal
L′ of Q′ such that L ∧ L′ is unsatisfiable, which is equivalent to stating that L |= ¬L′. So,
deciding whether Q and Q′ either match or clash can be determined in O(d|Q||Q′|) time
by comparing pairs of literals. �

Example 3 Consider an instance of the random block domain with the following queries
∃y Connected(l1, y) ∧ ∃x At(x, l2) and ∃y1 Connected(l2, y1) ∧ ¬∃x∃y2 At(x, y2). Clearly,
these queries are clashing because ∃x∃y2 At(x, y2) is entailed by ∃x At(x, l2).

To obtain tractable forms of model counting, we need to introduce an additional re-
striction on queries which states that any ground atom is covered by at most one quan-
tified literal. The restriction can be formalized as follows. Two formulas F and G are
said to overlap if H(F) ∩ H(G) �= ∅. Based on this notion, a decomposable conjunc-
tive query is a conjunction of quantified literals which do not overlap each other. For
example, the query ∃y1 Connected(l1, y1) ∧ ¬∀x At(x, l2) ∧ ∃y2 At(b1, y2) is not decom-
posable since the last two literals overlap. On the other hand, the following expression
∃y Connected(l1, y) ∧ ∃x1 At(x1, l2) ∧ ¬∃x2 At(x2, l3) is decomposable.

Lemma 2 For any quantified literal L, the problem of counting the number of models of L

can be determined in O(|L|) time.

Mach Learn (2008) 73: 25–53 37

Proof We know that ‖L‖ = 2d−|H(L)|〈〈L〉〉. So, we only need to show that both |H(L)| and
〈〈L〉〉 can be evaluated in linear time. Let R(t1, . . . , tk) denote the atomic expression occur-
ring in L. Without loss of generality, we assume that for some integer p such that 0 ≤ p ≤ k,
all the first p terms t1, . . . , tp are variables. For 1 ≤ i ≤ p let ni be the number of constant
symbols of sort si . Obviously, |H(L)| = ∏p

i=1 ni . Therefore, |H(L)| can be evaluated in
O(|L|) time.

Now, let us turn to 〈〈L〉〉. Since any literal is either positive or negative, and any atom is
either universally quantified or existentially quantified, four cases have to be considered. In
the following, l is an abbreviation of |H(L)|. First, suppose that the quantified atom of L is
∀x1, . . . ,∀xpR(t1, . . . , tk). If L is positive, then 〈〈L〉〉 = 1 because the unique interpretation
I satisfying L is I = H(L). If L is negative, then clearly 〈〈L〉〉 = 2l −1. Dually, suppose that
the quantified atom of L is ∃x1, . . . ,∃xpR(t1, . . . , tk). If L is negative, then it can be rewrit-
ten as ∀x1, . . . ,∀xp¬R(t1, . . . , tk), and hence 〈〈L〉〉 = 1, because the unique interpretation I

satisfying L is I = ∅. Finally, if L is positive, then it follows that 〈〈L〉〉 = 2l − 1. Note that
in any case, if R(t1, . . . , tk) is a ground atom (i.e. p = 0), then 〈〈L〉〉 = 1. Since in all the four
cases 〈〈L〉〉 can be evaluated in O(|L|) time, this completes the proof. �

A decomposable conjunctive query language is a countable set Q of decomposable con-
junctive queries. The key interest behind the notion of decomposability is clarified by the
following property.

Proposition 3 For any decomposable conjunctive query Q, the problem of counting the
number of models of Q can be determined in O(|Q|) time.

Proof Let Q be a decomposable conjunctive query. Since ‖Q‖ = 2d−|H(Q)|〈〈Q〉〉 we only
need to prove that both |H(Q)| and 〈〈Q〉〉 can be evaluated in linear time. Suppose that
Q contains q quantified literals. The decomposability property implies that |H(Q)| =∑q

i=1 |H(Li)| and 〈〈Q〉〉 = ∏q

i=1〈〈Li〉〉, because literals do not overlap each other. Therefore,
by application of Lemma 2, the result follows. �

Example 4 Consider again a simple instance of the random block domain involving 2 blocks
and 5 locations. The dimension of the vocabulary is thus (3 × 25) + 10 = 85. Initially, the
knowledge base of the agent is (�,1), so ‖KB‖ = 285. Now suppose that our agent receives
the query ∃y Connected(l1, y) ∧ ¬∃x At(x, l2). We thus have

PrKB(Q) = ‖KB ∧ ∃yConnected(l1, y) ∧ ¬∃xAt(x, l2)‖
‖KB‖ = 285−(5+2) × (25 − 1) × 1

285
= 31

128
.

We conclude this section with some useful definitions concerning knowledge bases.
Given a query language Q and a weighted knowledge base KB, we say that KB is generated
from Q if F ∈ Q for any weighted formula (F,w) occurring in KB. Furthermore, KB is said
to be rooted if it contains the tautology (�,1). Finally, KB called irredundant if it does not
include a pair of distinct formulas (F1,w1) and (F2,w2) such that F1 is equivalent to F2.
When considering the behavior of the EG-L2R algorithm, we remark that the knowledge
base maintained by the agent is rooted and generated by the query language of its interface.
Clearly, this knowledge base can be kept irredundant by simply replacing any pair (F1,w1)

and (F2,w2) such that F1 ≡ F2, with the formula (F1,w1w2). If Q is a decomposable query
language, this operation can be realized in polynomial time.

38 Mach Learn (2008) 73: 25–53

5.2 Hitting query languages

In propositional logic, an important class of formulas for which model counting can be de-
termined in polynomial time is the class of hitting formulas (Büning and Zhao 2001). Based
on the notion of decomposable queries, we extend this class to the relational setting and
show that relational probabilistic reasoning problems defined over hitting query languages
are mistake-bound learnable. In the following, a hitting set is a set S of formulas where any
two of its formulas either match or clash.

Definition 5 A hitting query language is a hitting set of decomposable conjunctive queries.

Example 5 Any hitting query language can be represented by a tree, where each vertex is
labeled by an equivalence class of formulas. Two queries Q and Q′ that match are linked by
a path in the tree. Conversely, two queries Q and Q′ that are not joined by any path in the
tree must clash. For example, consider in Fig. 3 a labeled tree for the random blocks domain.
Then, the set of vertices in the tree forms a hitting query language. Note that if this language
would be expanded with a query such as ∃xAt(x, l2), then the hitting property would be
violated because ∃xAt(x, l2) does not match or clash with the formulas ∃yConn(l1, y) and
¬∃yConn(l1, y).

The salient feature of hitting query languages lies in the fact that any weighted knowledge
base generated from a hitting language can be represented into an tree-like data structure
for which query evaluation is essentially linear in the size of the knowledge base and the
dimension of the input vocabulary.

To capture this property within a formal setting, we need to introduce additional defini-
tions. Consider a hitting set S and a formula F in S. Borrowing the terminology of trees, an
ancestor of F is a distinct formula G of S such that F |= G. A parent of F is an immediate
ancestor of F , that is, an ancestor G of F such that F |= G and G′

� G for any distinguished
ancestor G′ of F . From a dual viewpoint, a descendant of F is a distinct formula G in S

such that G |= F , and a child of F is an immediate descendant of F , that is, a descendant G

of F such that and G � G′ for any distinguished descendant G′ of F . Finally, a formula F

is called a root if it does not have any parent, and a leaf if it does not have any child.
For example, using the hitting set in Fig. 3, we observe that � and ∃yConn(l1, y) are

ancestors of ∃yConn(l1, y) ∧ ∃xAt(x, l2) and � is the parent of ∃yConn(l1, y).
Now, let KB be a rooted, irredundant knowledge base generated from a hitting query

language Q. Then the tree of KB, denoted Tr(KB), is a labeled rooted tree defined in the
following way. First, to each formula (Fi,wi) in KB we associate a vertex i in Tr(KB).
Second, to each pair of formulas (Fi,wi) and (Fj ,wj) in KB such that Fi is a child of Fj

Fig. 3 A hitting query language for the random blocks domain

Mach Learn (2008) 73: 25–53 39

Input:
The tree Tr(KB) of a weighted knowledge base KB and a query Q

Begin
find the parent p of Q in Tr(KB)

if Fp ≡ Q then return Tr(KB)

add a new a vertex q and the edge (q,p)

for each child i of p such that Fi |= Q, remove the edge (i,p) and add (i, q)

label q with (Q, ŵq, ĉq) where ŵq = ŵp and ĉq = ‖Q‖ − ∑
i∈d(q) ĉi

set ĉp to ĉp − ĉq

return Tr(KB)

End

Fig. 4 The tree expansion procedure

in the set of formulas of KB, we associate an edge (i, j). By a(i) (resp. d(i)) we denote the
collection of all vertices j such that Fj is an ancestor (resp. a descendant) of Fi in KB. Third
and finally, to each vertex i, we associate a label (Fi, ŵi , ĉi) where ŵi and ĉi are defined as
follows

ŵi = wi ·
∏

j∈a(i)

wj and ĉi =
{

‖Fi‖ if i is a leaf, and

‖Fi‖ − ∑
j∈d(i) ĉj otherwise.

The key intuition behind this data structure lies in the fact that Tr(KB) induces a natural
partition of the Herbrand space: any interpretation is associated with the most specific for-
mula in KB that covers it. From this viewpoint, ĉi is a counter that captures the number of
interpretations that satisfy Fi but none of its implicants in the knowledge base. Analogously,
ŵi is a real value that captures the weight of these interpretations. We remark that Tr(KB) is
indeed a rooted tree since KB includes the tautology (�,1). For convenience, the root node
is simply denoted �.

With this data structure in hand, the degree of belief of a query Q can be evaluated by
expanding Tr(KB) with a new vertex associated to Q. The expansion procedure presented
in Fig. 4 takes as input the tree Tr(KB) of a knowledge base KB and a query Q, and returns
as output the new tree Tr(KB ∪ {Q}). The likelihood of Q is thus obtained by exploring all
descendants of Q in the tree.

Lemma 3 Let Q be a hitting query language, KB be a rooted irredundant knowledge base
generated from Q, and Q a query in Q. Let Tr(KB ∪ {Q}) be the structure obtained from
Tr(KB) and Q by the tree expansion procedure. Then

PrKB(Q) = ŵq ĉq + ∑
i∈d(q) ŵi ĉi

ŵ�ĉ� + ∑
j∈d(�) ŵj ĉj

.

Proof Consider an arbitrary vertex i in Tr(KB ∪ {Q}) and let F̂i denote the formula Fi ∧∧
j∈d(i) ¬Fj . Let Si = {F̂j : j ∈ d(i)} ∪ {F̂i}. The key idea of the proof is to show that Si

induces a partition of M(Fi). To establish this assertion, consider an arbitrary model I of
Fi . We first prove that I is model of at most one formula in Si . Suppose this is not the case.
Then, there are at least two formulas Ĝ and Ĝ′ in Si such that I is a model of Ĝ ∧ Ĝ′.
Obviously, G and G′ cannot clash. So, G and G′ must match, which implies that either G

40 Mach Learn (2008) 73: 25–53

is a descendant of G′ or the converse. In both cases, Ĝ ∧ Ĝ′ is unsatisfiable and hence, this
leads to a contradiction.

Now, we prove that I is model of at least one formula of Si . To this end, let j be the
deepest node in the tree for which I is a model of Gj . This node is unique because otherwise
I should be a model of two formulas Gj and Gj ′ that would clash. Now, suppose that I is
not a model of Ĝj . Then, by construction of Ĝj , there is a descendant k of j in the tree such
that I is not a model of ¬Gk . So, I is a model of Gk but this contradicts the assumption that
j is the deepest node in the tree.

To summarize, for any model I of Fi , there is exactly one Ĝ in Si such that I is a
model of Ĝ. Based on this partition, it follows that ‖Fi‖ = ‖F̂i‖ + ∑

j∈d(i) ‖F̂j‖, and hence
‖F̂i‖ = ĉi . Furthermore, for any formula F , we know that ‖KB ∪{F }‖ is the sum of weights
of models of KB that are also models of F . It follows that

‖KB ∪ {Fi}‖ = ‖KB ∪ {F̂i}‖ +
∑

j∈d(i)

‖KB ∪ {F̂j }‖.

By construction, the weight of any model of F̂i is the product of weights of each formula
(Fk,wk) in KB such that Fk is entailed by Fi . Thus by definition of ŵi , it follows that
‖KB ∪ F̂i‖ = ŵi ĉi . Therefore,

‖KB ∪ {Fi}‖ = ŵi ĉi +
∑

j∈d(i)

ŵj ĉj .

Finally, since PrKB(Q) is given by ‖KB∪{Q}‖
‖KB∪{�}‖ , the result follows. �

Based on the above lemma and the complexity analysis of the tree expansion procedure,
we can derive the following property.

Theorem 3 Let (P,Q) be a relational probabilistic reasoning problem where Q is a hitting
query language over a vocabulary of dimension d , m be the total number of mistakes made
by the EG-L2R algorithm, and n be the largest size of any formula in Q. Then for any query
Q in Q, PrKB(Q) can be evaluated in O(dmn2) time.

Proof The result can be established by assuming that the agent maintains the tree of its
knowledge base, during each trial t . Note that if t = 1 then Tr(KBt) consists in a single
node labeled by (�,1,2d). Now, consider that t ≥ 1 and let Qt be an incoming query.
The agent starts to transform Tr(KBt) into Tr(KBt ∪ {Qt }) according to the tree expansion
procedure, which takes O(dmn2) time. Indeed, searching the parent of Q takes dmn2 time
in the worst case by comparing Q with all formulas in the tree, using the comparison method
suggested in Proposition 2. Updating edges simply takes O(m) time, and updating vertices
takes O(|Q| + m) time. Notably, to determine ĉq , we simply need to evaluate the number
of the models of Q according to Proposition 3, and subtract from it each counter in the
descendants of Q. Based on Lemma 3, the agent can ascribe a degree of belief in O(m)

time by exploring the descendants of Q and � in its tree. If the prediction is correct, then the
agent can reset the original tree in O(m) time by updating at most m edges. Otherwise, the
agent simply needs to propagate the update value eη(yt −ŷt) to Q and its ascendants in order
to derive the new tree Tr(KBt+1). Again, this takes O(m) time. Based on these operations,
the overall cost per trial requires O(dmn2) time. �

Mach Learn (2008) 73: 25–53 41

We have previously shown that the cumulative number of mistakes of the EG-L2R al-
gorithm is linear in the input dimension. Since the size of the weighted knowledge base is
linear in the number of mistakes, we obtain the following result.

Corollary 1 There exists an efficient mistake bound L2R algorithm for any relational prob-
abilistic reasoning problem (P,Q) where Q is a hitting query language.

5.3 Cluster query languages

The expressiveness of query languages can be increased by forming clusters of hitting lan-
guages. In propositional logic, a cluster formula is a union of non-overlapping hitting for-
mulas (Nishimura et al. 2006). This notion is ported to relational query languages in the
following way. A set S of formulas is connected if for any pair of formulas {F,G} in S,
there is a sequence of formulas F1, . . . ,Fn such that F = F1, G = Fn and Fi and Fi+1 over-
lap for all i such that 1 ≤ i ≤ n− 1. A cluster set is a set S of formulas where any connected
subset of S is a hitting set.

Definition 6 A cluster query language is a cluster set of decomposable conjunctive queries.

Example 6 By analogy with hitting languages, any cluster query language can be repre-
sented by a tree where each vertex is labeled by an equivalence class of formulas. Two
queries that match are joined by a path in the tree. Dually, two queries that are not joined
by a path in the tree are necessarily clashing or non-overlapping. For example, consider in
Fig. 5 a labeled tree for the random blocks domain. Then the set of vertices in the tree forms
a cluster query language.

Theorem 4 Let (P,Q) be a relational probabilistic reasoning problem where Q is a cluster
query language over a vocabulary of dimension d , m be the total number of mistakes made
by the EG-L2R algorithm, and n be the largest size of any formula in Q. Then for any query
Q in Q, PrKB(Q) can be evaluated in O(dmn2) time.

Proof Any cluster query language Q is formed by the union Q1 ∪ · · · ∪Qd of up to d non-
overlapping hitting languages. Thus, any rooted irredundant knowledge base KBt generated

Fig. 5 A cluster query language for the random blocks domain

42 Mach Learn (2008) 73: 25–53

from Q can be represented by a forest {Tr(KBt,1), . . . ,Tr(KBt,d)}, where KBt,i is generated
from Qi . To identify clusters, each tree Tr(KBt,i) can be associated with the d-dimensional
characteristic boolean vector ht,i of H(KBt,i). Now consider an incoming query Qt and
suppose that Qt ∈ Qi . The task of finding KBt,i takes O(dmn) time by testing whether
ht,i(j) = 1 for at least one Aj in H(Qt). Furthermore, since clusters are non-overlapping,
PrKBt (Qt) = ‖KBt,i∪{Qt }‖

‖KBt,i‖ . By application of Theorem 3, this takes O(dmn2) time. Addition-
ally, the cost of updating Tr(KBt,i) and ht,i only takes O(dm + mn) time.

�

Corollary 2 There exists an efficient mistake-bound L2R algorithm for any relational prob-
abilistic reasoning problem (P,Q) where Q is a cluster query language.

5.4 Parameterized cluster-width

As a glimpse beyond cluster languages, we can relax the cluster assumption and explore
the larger family of conjunctive query languages with bounded cluster-width. Very roughly,
the cluster-width of a propositional formula is an upper bound on the minimum number
of boolean variables that must be assigned in order to transform the initial formula into a
cluster expression, for which model counting can be decided in polynomial time (Nishimura
et al. 2006).

The notion of cluster-width is ported to relational query languages using the following
definitions. Given a set S of formulas, a hitting obstruction is a pair of formulas {F,G} in
S such that F and G are connected, but they do not match or clash. Note that S is a cluster
set if and only if it does not contain any hitting obstruction. With a hitting obstruction we
associate the following pair of sets of ground atoms: {H(F),H(G)}. Based on this notion,
let Gr(S) denote the graph with vertex set H; two ground atoms A and B are joined by
an edge in the graph Gr(S) if and only if there is a hitting obstruction {F,G} in S where
A ∈ H(F) and B ∈ H(G). We call Gr(S) the obstruction graph of S.

Recall that a vertex cover of a graph is a set of vertices that contains at least one end of
every edge of the graph. The cluster-width of a set S of formulas is defined by the size of a
smallest vertex cover in the obstruction graph Gr(S) of S.

Definition 7 A k-cluster-width query language is a decomposable conjunctive query lan-
guage with cluster width at most k.

Example 7 Consider again a simple instance of the random block domain with 2 blocks
and 5 locations. Suppose that we would like to employ the query language illustrated

Fig. 6 A k-cluster query language for the random blocks domain with k = 2

Mach Learn (2008) 73: 25–53 43

Fig. 7 The obstruction graph
associated with random blocks
domain in Fig. 6

Fig. 8 A k cluster-width query language for the blood type domain. In this compact representation, each
formula F associated to a vertex s is given by the conjunction of the labels occurring in any minimal path
from � to s

in Fig. 6. As usual, two queries that match are joined by a path in the graph. We can
observe that there are actually two hitting obstructions: the first obstruction is given
by the pair {∃yConn(l1, y),∃xAt(x, l2)}, and the second obstruction is the dual pair
{∀y¬Conn(l1, y),∀x¬At(x, l2)}. The resulting obstruction graph of this language is rep-
resented in Fig. 7. We can easily verify that the size of a minimal vertex cover for this graph
is 2.

Example 8 Now consider an instance of the blood type domain involving four persons:
Ann, Bob, Chris and Mary. We would like to estimate the blood type of these persons from
parenthood or genetic observations. The query language is represented in Fig. 8. Again,
two queries that match are joined by a path in the graph. We can distinguish two groups of
hitting obstructions. The first group includes queries relative to Ann and Mary, while the
second includes queries relative to Bob and Chris. The obstruction graph associated to the
language is illustrated in Fig. 9. We can easily observe that the size of a minimal vertex
cover for this graph is 6.

The key interest of query languages with fixed cluster-width lies in the so-called notion
of backdoor set. In propositional logic, a (strong) backdoor of a satisfiability problem or
a model counting problem is a set of boolean variables which, however they are assigned,
provide a simplified formula that can be solved in polynomial time (Williams et al. 2003;
Ruan et al. 2004). This notion can be extended to our framework in the following way.

Consider a subset B of the set H of all ground atoms defined over the background vo-
cabulary. A partial Herbrand interpretation over B is a map I that assigns to each atom in
B a truth value and leaves undefined the atoms in H − B. Given a decomposable conjunc-
tive formula F , the simplification of F by I , denoted F [I], is defined as follows: for any
literal L in F that is true in I , L is replaced with �, and for any literal L in F that is false
in I , F is replaced with ⊥. More generally, given a knowledge base KB generated from a

44 Mach Learn (2008) 73: 25–53

Fig. 9 The obstruction graph associated to the support set of the language in Fig. 8. The ground atoms of
Gene are compactly represented by Gene(Mary, z, u) and Gene(Chris, z, u)

decomposable conjunctive query language, the simplification of KB by I , denoted KB[I], is
defined as follows. First, each weighted formula (F,w) in KB is replaced with (F [I],w),
next each resulting formula of the form (⊥,w) is removed from KB[I], and then the set of
all formulas of the form (�,wi) is replaced with a single root (�,

∏
i wi) in KB[I].

A set of ground atoms B is called a cluster-backdoor set for a knowledge base KB if for
any partial Herbrand interpretation I over B, the simplification KB[I] of KB by I is a cluster
set of weighted formulas. The following states that the obstruction graph of our knowledge
base can be constructed in polynomial time.

Lemma 4 Let Q be a decomposable query language, where n is the largest size of any
formula in Q. Let KB be a knowledge base containing m formulas generated from Q and
Gr(KB) the obstruction graph of KB. Then for any Q ∈ Q, the obstruction graph Gr(KB ∪
{Q}) can be constructed in O(d2m + dmn2) time.

Proof Without loss of generality, we assume that KB is decomposed into a set {KB1, . . . ,

KBd} of up to d clusters, where each cluster is associated with the characteristic vector of
its set of ground atoms. Note that any cluster is not necessarily a hitting set. Given a query
Q ∈ Q, we begin to check whether Q is connected to some cluster KBi . As shown in the
proof of Theorem 4, this can be done in O(dmn) time using the characteristic vector of
each cluster. If Q is not connected to any cluster, then we return Gr(KB). Otherwise, for
each formula Fi occurring in KBi , we first test whether Fi and Q clash or match, and if they
are incomparable, we expand the obstruction graph with the list of edges (Ai,B) where
Ai ∈ H(Fi) and B ∈ H(Q). By Proposition 2, the first operation takes O(dn2) time. The
second operation takes O(dn + d2) time by generating and connecting the ground atoms of
Fi and Q. The result follows by repeating the process to the m formulas in KBi . �

It is well-known that the vertex cover problem is fixed-parameter tractable. In other
words, given a fixed parameter k, we can determine whether a graph containing n vertices
has a vertex cover of size at most k in time bounded by 2knO(1). By a direct application of
the current best worst-case time complexity obtained by Chen et al. (2005) for the vertex
cover problem, we can derive the following property.

Lemma 5 Let KB be a knowledge generated from a decomposable conjunctive query lan-
guage over a vocabulary of dimension d , and Gr(KB) its obstruction graph. Then one can
find in time O(1.273k + dk) a vertex cover of Gr(KB) of size at most k, or determine that
no such vertex cover exists.

Mach Learn (2008) 73: 25–53 45

With these notions in hand, the connection between vertex covers and cluster-backdoor
sets is captured by the following property.

Lemma 6 Let KB be a knowledge generated from a decomposable conjunctive query lan-
guage, and Gr(KB) its obstruction graph. Then any vertex cover of Gr(KB) is a cluster-
backdoor set of KB.

Proof Consider a vertex cover B of the obstruction graph Gr(KB). For each hitting obstruc-
tion {F,F ′} in the set of formulas of KB, there is an associated bipartite subgraph G of
Gr(KB) that joins each A ∈ H(F) to each A′ ∈ H(F ′). Now, consider the set BG of vertices
in G that belong to B. Obviously, BG is a vertex cover of G. Let I be a partial interpretation
defined over BG . We shall prove that at least one of the simplified formulas F [I] and F ′[I]
is either � or ⊥.

First, suppose that F and F ′ are two quantified literals denoted L and L′. By construction,
any quantified literal can be rewritten into a finite disjunction of ground literals or a finite
conjunction of ground literals. If both L[I] and L′[I] are left undefined, then in any case,
there are at least two ground literals Li ∈ L and L′

j ∈ L′ such that the corresponding ground
atoms Ai and A′

j are left undefined by I . It follows that BG ∩{Ai,A
′
j } = ∅, and hence, there

is no vertex in BG that covers the edge (Ai,A
′
j) in G. This, however, contradicts the fact that

BG is a vertex cover of G. Now, consider the general case where F and F ′ are conjunctions
of quantified literals. Again, if F [I] and F ′[I] are left undefined, then there are at least
two quantified literals L ∈ F and L′ ∈ F ′ such that both L[I] and L′[I] are left undefined.
However, as shown above, this contradicts the fact that BG is a vertex cover of G. Therefore,
at least one of F [I] and F ′[I] is simplified to � or ⊥.

Finally, since B is a vertex cover of each bipartite subgraph G of Gr(KB) associated to a
hitting obstruction in KB, it follows that any partial interpretation I over B will remove each
obstruction by deleting at least one formula in the obstruction. Consequently, B is indeed a
cluster-backdoor set of KB. �

Theorem 5 Let (P,Q) be a relational probabilistic reasoning problem where Q is a k-
cluster-width language over a vocabulary of dimension d , m be the total number of mistakes
made by EG-L2R, and n be the largest size of any query in Q. Then for any query Q,
PrKB(Q) can be evaluated in O(1.273k + dk + 2k(d2m + dm2n2)) time.

Proof This can be established by assuming that the agent maintains the conflict graph
Gr(KBt) of its knowledge base during each trial. Consider an arbitrary trial t ≥ 1 and let Qt

be the supplied query. By Lemma 4, Gr(KB ∪ {Qt }) can be constructed in O(d2m + dmn2)

time. Furthermore, by Lemma 5, a vertex cover B of size at most k for this graph can be
found in O(1.273k + dk) time. Finally, by Lemma 6, we know that B is a cluster-backdoor
set of KB ∪ {Qt }. Now, let I be a partial interpretation over B. Then the set of formulas
in KB[I] is a cluster set. Each cluster in KB[I] can be transformed into a tree structure by
repeated application of the tree expansion procedure. To this point, we only need to compile
the cluster that includes Qt . Since there are at most m formulas in that cluster, the tree com-
pilation requires O(dm2n2) time, and query evaluation takes O(dmn) time. Finally, since
there are 2k distinct partial interpretations generated from B, the result follows. �

Corollary 3 There exists an efficient mistake-bound L2R algorithm for any probabilistic
reasoning problem (P,Q) where Q is a k-cluster-width query language.

46 Mach Learn (2008) 73: 25–53

6 Related work

The framework described here has connections with work in many other areas related to
reasoning and learning. Relational queries and their probabilistic estimation are central, for
example, to both databases and Artificial Intelligence, while learning in uncertain and rela-
tional domains has been studied in numerous settings. Our framework is distinguished by the
close way in which it integrates learning and reasoning, and by the insistence on having the
measures of both computational complexity and of accuracy bounded by polynomial func-
tions. Among the various alternative approaches that are relevant to ours, we concentrate on
three.

6.1 Statistical relational learning

Statistical relational learning (SRL) is concerned with learning in structural and uncertain
environments. As many real-world applications require to handle both aspects, this research
field has received a great deal of attention in the literature.

There are at least three key dimensions that must be taken into account in any SRL
framework. The first dimension is concerned with the type of learning task. In a learning to
classify problem, the overall goal is to produce a relational probabilistic classifier capable of
separating examples according to their class; the performance of the learner is measured by
how well it classifies future examples. By contrast, in a learning to reason problem, the goal
is to produce a relational probabilistic reasoner capable of quantifying the uncertainty of
various events according to its knowledge; the performance of the learner is here measured
by its ability to reason about the environment. The second dimension is characterized by
the representation language into which hypotheses are described. Various representation
languages have emerged in the literature, using either probabilistic extensions of logical
formalisms, or dually, relational extensions of graphical formalisms; see e.g. (Getoor and
Taskar 2007) for a recent overview on these formalisms. The third dimension is concerned
by the cover relation between hypotheses and examples (De Raedt and Kersting 2004). For
instance, in learning from interpretations, examples are described by relational structures,
such as Herbrand interpretations, and the cover relation is defined by the probability that
an interpretation is a model of the given hypothesis. In learning from entailment, examples
are queries, and the cover relation is specified by the degree of belief assigned to a query
according to the hypothesis.

Most current SRL frameworks are devoted to classification tasks; they essentially dif-
fer in the choice of the representation language and the type of cover relation. In contrast,
our framework is concerned with reasoning problems, in the spirit of learning to reason ap-
proaches. Despite this conceptual difference, our framework has connections with Markov
networks, which have often been advocated as a compact and flexible representation lan-
guage in statistical learning (Taskar et al. 2002, 2003, 2004; Kok and Domingos 2005;
Richardson and Domingos 2006; Mihalkova et al. 2007). A ground Markov network rep-
resents a probability distribution over the sample space ℘(H) of a set H of ground atoms. It
is composed of an undirected graph that associates to each ground atom a vertex, and a set
of potential functions associated to each clique of the graph. A potential function is a non-
negative real function of the state of its corresponding clique. According to the terminology
of this paper, a potential function F can be specified by its projection φ(F) and its weight
w. The probability distribution associated to a Markov network M is given by

PrM(Ii) = 1

Z

∏

(F,w)∈M

wφi(F)

Mach Learn (2008) 73: 25–53 47

where Z = ∑N

i=1

∏
(F,w)∈M wφi(F) is the normalizing partition function. First-order exten-

sions of Markov networks, such as Markov relational networks (Taskar et al. 2002) and
Markov logic networks (Richardson and Domingos 2006), can be viewed as templates for
constructing ground networks. For example, a Markov logic network is just a set of weighted
formulas (F,w), where each ground instance of F represents a potential function with
weight w. The probability distribution associated to a Markov logic network M is there-
fore given by

PrM(Ii) = 1

Z

∏

(F,w)∈M

wψi(F)

where ψi(F) is the number of ground instances of F that are true in Ii . From this viewpoint,
Markov relational networks constitute a subclass of Markov logic networks where formulas
are restricted to conjunctive queries.

The expressiveness of Markov logic networks and their variants comes, however, with
two important sources of complexity. First, the problem of determining the number ψi(F)

of ground instances of a formula that are true in an interpretation Ii is #P -hard (Richardson
and Domingos 2006). Second, the problem of inferring the degree of belief of any query
Q from a Markov logic network M is also #P -hard, even if Q is a simple atom and M a
ground network (Roth 1996).

In contrast, our framework introduces a new tractable class of Markov networks that
handles both sources of complexity. Indeed, any set of weighted decomposable conjunctions
KB gives rise to a Markov network, in a natural way, by associating to each weighted formula
(F,w) in KB a corresponding potential function. The graphical structure of the network is
formed by associating a vertex to each quantified atom occurring in KB, and an edge to each
pair of quantified atoms occurring in the same formula of KB. Thus, any clique in which the
conjunction of nodes is a formula F of KB, is associated with the potential function (F,w).
The computational cost of determining the value φi(F) for any decomposable conjunction
F is linear in the input dimension of the vocabulary. In addition, the cost of inferring the
degree of belief of any decomposable query Q from the network KB is also polynomial in
the input dimension, provided that the set of formulas occurring in KB ∪ {Q} is a cluster set.
More generally, if the cluster-width of this set is fixed by a parameter k, the running time is
then polynomial in the input dimension.

Example 9 Consider again the blood type domain, and suppose that our agent has made a
mistake on each query presented in Fig. 8. The graphical structure of the resulting Markov
network is illustrated in Fig. 10. For example, the clique {Blood(Ann,A),Blood(Mary,A),

∃zGene(Mary, z,b)} is associated with the potential function (Blood(Ann,A) ∧

Fig. 10 The Markov network obtained from the query language in Fig. 8

48 Mach Learn (2008) 73: 25–53

Blood(Mary,A) ∧ ∀z¬Gene(Mary, z,b),w), where w is the weight given by the exponenti-
ated gradient update rule.

6.2 Knowledge compilation

Knowledge compilation has also emerged as an active research field for addressing compu-
tational difficulties in reasoning (Selman and Kautz 1996; Liberatore 1998; Darwiche and
Marquis 2002; Del Val 2005). The idea is to transform a model of the domain into a com-
piled structure, which is then used online to answer queries in polynomial time. The key
motivation is to push as much of the computational overhead into the compilation phase,
which is amortized over many queries. Although most of the work has focused on logi-
cal inference, knowledge compilation has recently been ported to the probabilistic setting,
using arithmetic circuits (Darwiche 2003). In particular, this approach has been employed
for compiling relational Bayesian networks (Chavira et al. 2006). Technically, a relational
model is first instantiated into a ground Bayesian network which is then compiled into an
arithmetic circuit. Based on this technique, ground conjunctive queries can be evaluated in
time linear in the size of the arithmetic circuit.

Despite its undoubted success on improving the effectiveness of reasoning tasks, an im-
portant drawback of knowledge compilation is that the compiled structure is not guaranteed
to be polynomial in the size of the input dimension, even in the restricted case where the
compiled structure only approximates the initial theory (Del Val 2005). Actually, most of
computational problems that are interesting in commonsense reasoning are not “compilable”
(Liberatore 1998). Notably, the size of a compiled circuit for a relational Bayesian network
can grow exponentially in the size of its ground instance, and hence, doubly exponentially
in the input dimension.

Our framework can be viewed as a form of inductive knowledge compilation. Specifi-
cally, the initial model of the domain plays the part of the reasoning query oracle; based on
this interface, the learner iteratively compiles the queries that have led to a mistake. Thus,
the compilation is imposed not on the theory of the domain but on frequent queries posed
to the agent. We argue that our framework is a plausible one for commonsense situations,
since in general, an uncertain and relational domain can be very complex but the queries
are relatively simple. Notably, in the setting of cluster query languages, we have shown that
query evaluation is essentially linear in the number of mistakes.

6.3 Learning to reason

Naturally, this study is reminiscent to previous approaches on learning to reason. The foun-
dations of this paradigm have been established by Khardon and Roth (1997, 1999) in the
setting of propositional reasoning. In a similar spirit, the neuroidal architecture of Valiant
(2000a, 2000b) handles the relational setting by characterizing a variant of the language
R for which learning and entailment are polynomially bounded. Our framework attempts
to move one step further by showing that expressive fragments of R are also tractable for
relational probabilistic reasoning.

The approach closest to ours is the “Bayesian” learning to reason framework developed
by Greiner et al. (1997). Recall that a propositional Bayesian network is formed by two parts:
a qualitative part, or structure, which consists in a directed acyclic graph where vertices
represent variables and edges represent dependencies, and a quantitative part that associates
to each vertex a conditional probability table that quantifies the effects of the parents of the
vertex on itself. The aim of the Bayesian L2R framework is to induce from a sample of

Mach Learn (2008) 73: 25–53 49

queries, each valued by some hidden target distribution, a Bayesian network that compactly
encodes the target distribution and accurately evaluates the degree of belief of future queries.

In the Bayesian L2R framework, the hypothesis language is the class of all Bayesian
networks that can be built from the vocabulary. This structural choice has, however, two
important consequences. First, as shown by the authors, the problem of finding a Bayesian
network that minimizes the quadratic loss on a given set of queries is NP-hard even in
the restricted setting where the structure of the network is fixed and the learner has just
to fill the CP-tables. Second, the tractability of query evaluation in Bayesian networks is
only guaranteed for very restricted query languages, such as Markov-blanket queries (Pearl
1988). In most cases, including even atomic queries, probabilistic reasoning is #P-hard (Roth
1996). By contrast, in the setting suggested by our framework, the hypothesis language is
dependent on the choice of the target query language. Namely, the hypothesis maintained
by the learner is formed by associating a weight to each query that has led to a mistake. This
dependence, coupled with an exponentiated weight update learning strategy, enables us to
handle more expressive relational query languages that are tractable for weighted model
counting.

7 Conclusions

Along the lines of making degrees of belief applicable under tractable conditions, this study
has stressed the importance of combining learning and reasoning processes together. Specif-
ically, we have shown that some restricted though expressive classes of relational probabilis-
tic reasoning problems are mistake-bound learnable.

Clearly, there are many directions in which one might attempt extensions of this frame-
work. A first direction is to extend the expressiveness of query languages while maintaining
computational efficiency. For example, a conjunctive query such as ∃x∃z (Mother(Ann, x)∧
Gene(x, z,a)) can be transformed into a linear number of non-overlapping decomposable
conjunctions; model counting can hence be evaluated in polynomial time. A second direc-
tion is to explore other learning strategies such as, for example, quasi-additive algorithms
(Grove et al. 2001; Gentile 2003) which might open the door to new learnability results.
A third direction is to examine other types of learning interfaces. In fact, the results ob-
tained in this paper rely on a “quantitative” oracle capable of supplying the correct proba-
bility of input queries. Yet, the interface is not always a perfect image of the environment,
and it might be interesting to explore “qualitative” oracles, limited to supply a propositional
attitude, or “noisy” interfaces, susceptible to make perception errors.

Finally, we have restricted this study to degrees of belief, sometimes referred to as un-
conditional epistemic probabilities (Halpern 2003). This assumption is justifiable in many
situations where the learner is allowed to decompose conditional queries of the form G|F .
Namely, suppose that during the grace period, antecedents and consequents of conditional
queries are received separately. Then, after this period, the learner can estimate PrP(G|F),
using PrKB(G∧F) and PrKB(F), provided that the formulas occurring in conditional queries
form a decomposable language with bounded cluster-width. Nevertheless, in some situations
we are not necessarily informed about the context of events, and it is legitimate to learn di-
rectly from arbitrary queries. From this perspective, the problem of learning to reason about
conditionals looks challenging.

50 Mach Learn (2008) 73: 25–53

Appendix

Theorem 1 For any relational probabilistic reasoning problem (P,Q) defined over a vo-
cabulary of dimension d , on input γ > 0, when η = 4, the direct EG-L2R algorithm has the
following mistake bound

Mγ (P,Q) ≤ ln 2

2γ

(
d − H(P)

)
.

Proof The analysis follows Kivinen and Warmuth (1997) with a slight difference in the
derived bound. Let S = (Q1, . . . ,QT) be a sequence of queries supplied by the oracle. We
proceed by showing that the divergence between P̂t and P decreases after each mistake. The
divergence function employed for the analysis is the Kullback-Leibler (KL) distance

D(P, P̂t) =
N∑

i=1

pi ln(pi/p̂t,i).

It is well known that the KL distance is minimal and equal to 0 if and only if P = P̂t . Based
on this divergence function, we first observe that

T∑

t=1

D(P, P̂t) − D(P, P̂t+1) = D(P, P̂1) − D(P, P̂T +1) ≤ (
d − H(P)

)
ln 2. (1)

We thus need to prove that the total number of mistakes is bounded by this sum. In doing
so, let us examine the difference of divergences after each mistake. We have

D(P, P̂t) − D(P, P̂t+1) =
N∑

i=1

pi ln

(
eηφi (Qt)(yt −ŷt)

∑N

j=1 p̂t,j e
ηφj (Qt)(yt −ŷt)

)

= η(yt − ŷt)yt − ln

(N∑

i=1

p̂t,ie
ηφi (Qt)(yt −ŷt)

)

= η(yt − ŷt)yt − ln
(
1 − ŷt

(
1 − eη(yt −ŷt)

))
.

The last equality is derived from the fact that the exponentiated term is a convex function of
the form αφi (Qt) with α = eη(yt −ŷt) > 0 and φi(Qt) ∈ {0,1}. Now, by Lemma 1 in (Helmbold
et al. 1997), we know that ln(1 − z(1 − ex)) ≤ xz + 1

8x2. By substituting this inequality into
the main equation, we have

D(P, P̂t) − D(P, P̂t+1) ≥ ηyt (yt − ŷt) − ηŷt (yt − ŷt) − η2(yt − ŷt)
2

8

= η

(

1 − η

8

)

(yt − ŷt)
2.

Summing over all trials and using the upper bound (1), we obtain

T∑

t=1

(yt − ŷt)
2 ≤ 8 ln 2

η(8 − η)

(
d − H(P)

)
. (2)

Mach Learn (2008) 73: 25–53 51

The cumulative loss is minimized when η = 4. For this value, we have

T∑

t=1

(yt − ŷt)
2 ≤ ln 2

2

(
d − H(P)

)
. (3)

Finally, we know that a mistake arises only when (yt − ŷt)
2 > γ . By substituting this con-

dition into inequality (3) we obtain the desired bound. �

Theorem 2 The indirect EG-L2R algorithm exactly simulates the direct EG-L2R algorithm.

Proof We assume that both algorithms are run on the same parameter η and the same se-
quence S = (Q1, . . . ,QT) of queries supplied by the same oracle RQγ (P,Q). We must
show that PrP̂t

(Qt) = PrKBt (Qt) on each trial t = 1, . . . , T . Given an interpretation I in

℘(H), let Î be the conjunction of all ground literals that are true in I . Note that Î has
a unique model, which is I . It follows that PrP̂t

(Îi) = p̂t,i for 1 ≤ i ≤ N . Now, let us
consider the following invariant: for any trial t ≥ 1 and any interpretation I in ℘(H),
PrP̂t

(Î) = PrKBt (Î). This is a sufficient condition to prove that PrP̂t
(Qt) = PrKBt (Qt). In-

deed, we have

PrP̂t
(Qt) =

N∑

i=1

p̂t,iφi(Qt) =
∑

I∈M(Qt)

PrP̂t
(Î) =

∑

I∈M(Qt)

PrKBt (Î)

=
∑

I∈M(Qt)

‖KBt ∪ {Î }‖
‖KBt‖ = ‖KBt ∪ {Qt }‖

‖KBt‖ = PrKBt (Qt).

The existence of this invariant is proven by induction on the number of trials. Let t = 1.
Here, the knowledge base KB1 is reduced to {(�,1)}. We have

PrP̂1
(Î) = 1

N
= ‖Î‖

∑N

i=1 ‖Îi‖
= ‖KB1 ∪ {Î }‖

‖KB1‖ = PrKB1(Î).

Now, consider that t > 1 and assume by induction hypothesis that the property holds at
the beginning of the trial. We have ŷt = PrP̂t

(Qt) = PrKBt (Qt). On receiving the oracle’s
response, two cases are possible. First, suppose that L(yt , ŷt) ≤ ε. In this case, the property
trivially holds at the end of the trial. Now suppose that L(yt , ŷt) > ε. Recall that KBt+1 =
KBt ∪ {(Qt ,wt)}, where wt = eη(yt −ŷt). The property is proved by the following chain of
equalities.

PrP̂t+1
(Îi) = p̂t,ie

ηφi (Qt)(yt −ŷt)

∑N

j=1 p̂t,j e
ηφj (Qt)(yt −ŷt)

= PrP̂t
(Îi)w

φi (Qt)
t

∑N

j=1 PrP̂t
(Îj)w

φj (Qt)

t

= PrKBt (Îi)w
φi (Qt)
t

∑N

j=1 PrKBt (Îj)w
φj (Qt)

t

= PrKBt+1(Îi)
∑N

j=1 PrKBt+1(Îj)
= PrKBt+1(Îi).

It follows that PrP̂t
(Qt) = PrKBt (Qt) on any trial t = 1, . . . , T , as desired. �

52 Mach Learn (2008) 73: 25–53

References

Abadi, M., & Halpern, J. Y. (1994). Decidability and expressiveness for first-order logics of probability.
Information and Computation, 112(1), 1–36.

Angluin, D. (1988). Queries and concept learning. Machine Learning, 2(4), 319–342.
Bacchus, F., Grove, A. J., Halpern, J. Y., & Koller, D. (1996). From statistical knowledge bases to degrees of

belief. Artificial Intelligence, 87(1–2), 75–143.
Büning, H. K., & Zhao, X. (2001). Satisfiable formulas closed under replacement. Electronic Notes in Dis-

crete Mathematics, 9, 48–58.
Bylander, T. (1998). Worst-case analysis of the perceptron and exponentiated update algorithms. Artificial

Intelligence, 106(2), 335–352.
Cesa-Bianchi, N. (1999). Analysis of two gradient-based algorithms for on-line regression. Journal of Com-

puter and System Sciences, 59(3), 392–411.
Chavira, M., & Darwiche, A. (2008, to appear). On probabilistic inference by weighted model counting.

Artificial Intelligence.
Chavira, M., Darwiche, A., & Jaeger, M. (2006). Compiling relational Bayesian networks for exact inference.

International Journal of Approximate Reasoning, 42(1–2), 4–20.
Chen, J., Kanj, I. A., & Xia, G. (2005). Simplicity is beauty: improved upper bounds for vertex cover (Tech.

Rep. TR05-008). De Paul University, Chicago, IL.
Costa, V. S., Page, D., Qazi, M., & Cussens, J. (2003). CLP(BN): constraint logic programming for proba-

bilistic knowledge. In Proceedings of the nineteenth conference in uncertainty in artificial intelligence
(pp. 517–524). Acapulco: Morgan Kaufmann.

Cox, R. T. (1946). Probability, frequency, and reasonable expectation. American Journal of Physics, 14, 1–13.
Cumby, C. M., & Roth, D. (2000). Relational representations that facilitate learning. In Proceedings or

the seventeenth international conference on the principles of knowledge representation and reasoning
(pp. 425–434). Breckenridge: Morgan Kaufmann.

Darwiche, A. (2003). A differential approach to inference in Bayesian networks. Journal of the ACM, 50(3),
280–305.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. Journal of Artificial Intelligence Re-
search, 17, 229–264.

De Raedt, L., & Kersting, K. (2004). Probabilistic inductive logic programming. In Proceedings of the fif-
teenth international conference on algorithmic learning theory (pp. 19–36). Padova: Springer.

Del Val, A. (2005). First order LUB approximations: characterization and algorithms. Artificial Intelligence,
162(1–2), 7–48.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational models. In Pro-
ceedings of the sixteenth international joint conference on artificial intelligence (pp. 1300–1309). Stock-
holm: Morgan Kaufmann.

Gentile, C. (2003). The robustness of the p-norm algorithms. Machine Learning, 53(3), 265–299.
Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning. Cambridge: Cambridge Uni-

versity Press.
Greiner, R., Grove, A. J., & Schuurmans, D. (1997). Learning Bayesian nets that perform well. In Proceedings

of the thirteenth conference on uncertainty in artificial intelligence (pp. 198–207). Providence: Morgan
Kaufmann.

Grove, A. J., Halpern, J. Y., & Koller, D. (1994). Random worlds and maximum entropy. Journal of Artificial
Intelligence Research, 2, 33–88.

Grove, A. J., Littlestone, N., & Schuurmans, D. (2001). General convergence results for linear discriminant
updates. Machine Learning, 43(3), 173–210.

Halpern, J. Y. (2003). Reasoning about uncertainty. Cambridge: MIT Press.
Helmbold, D. P., Schapire, R. E., Singer, Y., & Warmuth, M. K. (1997). A comparison of new and old

algorithms for a mixture estimation problem. Machine Learning, 27(1), 97–119.
Jaeger, M. (1997). Relational Bayesian networks. In Proceedings of the thirteenth conference on uncertainty

in artificial intelligence (pp. 266–273). Providence: Morgan Kaufmann.
Jaeger, M. (2000). On the complexity of inference about probabilistic relational models. Artificial Intelli-

gence, 117(2), 297–308.
Kersting, K. (2006). Frontiers in artificial intelligence and applications: Vol. 148. An inductive logic pro-

gramming approach to statistical relational learning. Amsterdam: IOS Press.
Khardon, R. (1999). Learning to take actions. Machine Learning, 35(1), 57–90.
Khardon, R., & Roth, D. (1997). Learning to reason. Journal of the ACM, 44(5), 697–725.
Khardon, R., & Roth, D. (1999). Learning to reason with a restricted view. Machine Learning, 35(2), 95–116.
Kivinen, J., & Warmuth, M. K. (1997). Exponentiated gradient versus gradient descent for linear predictors.

Information and Computation, 132(1), 1–63.

Mach Learn (2008) 73: 25–53 53

Kok, S., & Domingos, P. (2005). Learning the structure of Markov logic networks. In Proceedings of the
twenty-second international conference in machine learning (pp. 441–448). Bonn: ACM.

Liberatore, P. (1998). Compilation of intractable problems and its application to artificial intelligence. PhD
thesis, Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Rome, Italy.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm.
Machine Learning, 2(4), 285–318.

Littlestone, N. (1989). Mistake bounds and logarithmic linear-threshold learning algorithms. PhD thesis,
University of California, Santa Cruz, CA.

Manzano, M. (2005). Extensions of first-order logic. Cambridge: Cambridge University Press.
Mihalkova, L., Huynh, T., & Mooney, R. J. (2007). Mapping and revising Markov logic networks for transfer

learning. In Proceedings of the twenty-second AAAI conference on artificial intelligence (pp. 608–614).
Vancouver: AAAI Press.

Muggleton, S. (1996). Stochastic logic programs. In L. D. Readt (Ed.), Advances in inductive logic program-
ming (pp. 254–264). Amsterdam: IOS Press.

Ngo, L., & Haddawy, P. (1997). Answering queries from context-sensitive probabilistic knowledge bases.
Theoretical Computer Science, 171(1–2), 147–177.

Nishimura, N., Ragde, P., & Szeider, S. (2006). Solving #SAT using vertex covers. In Proceedings of the
ninth international conference in theory and applications of satisfiability testing (pp. 396–409). Seattle:
Springer.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. San Mateo:
Morgan Kaufmann.

Pfeffer, A. (2000). Probabilistic reasoning for complex systems. PhD thesis, Computer Science Department,
Stanford University, CA.

Poole, D. (1993). Probabilistic horn abduction and Bayesian networks. Artificial Intelligence, 64, 81–129.
Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1–2), 107–136.
Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence, 82(1–2), 273–302.
Ruan, Y., Kautz, H. A., & Horvitz, E. (2004). The backdoor key: a path to understanding problem hardness.

In Proceedings of the nineteenth national conference on artificial intelligence (pp. 124–130). San Jose:
AAAI Press.

Sang, T., Beame, P., & Kautz, H. A. (2005). Performing Bayesian inference by weighted model counting.
In Proceedings of the twentieth national conference on artificial intelligence (pp. 475–482). Pittsburgh:
AAAI Press.

Selman, B., & Kautz, H. A. (1996). Knowledge compilation and theory approximation. Journal of the ACM,
43(2), 193–224.

Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative probabilistic models for relational data. In Pro-
ceedings of the eighteenth conference in uncertainty in artificial intelligence (pp. 485–492). Edmonton:
Morgan Kaufmann.

Taskar, B., Chatalbashev, V., & Koller, D. (2004). Learning associative Markov networks. In Proceedings of
the twenty-first international conference in machine learning. Banff: ACM.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin Markov networks. In Advances in neural informa-
tion processing systems 16. Vancouver: MIT Press.

Valiant, L. G. (1994). Circuits of the mind. New York: Oxford University Press.
Valiant, L. G. (2000a). A neuroidal architecture for cognitive computation. Journal of the ACM, 47(5), 854–

882.
Valiant, L. G. (2000b). Robust logics. Artificial Intelligence, 117(2), 231–253.
Williams, R., Gomes, C. P., & Selman, B. (2003). Backdoors to typical case complexity. In Proceedings of the

eighteenth international joint conference on artificial intelligence (pp. 1173–1178). Acapulco: Morgan
Kaufmann.

	Learning to assign degrees of belief in relational domains
	Abstract
	Introduction
	Relational probabilistic reasoning
	Relational reasoning
	Probabilistic reasoning

	The learning to reason framework
	Exponentiated gradient learning to reason
	The direct algorithm
	The indirect algorithm

	Tractable query languages
	Decomposable conjunctive queries
	Hitting query languages
	Cluster query languages
	Parameterized cluster-width

	Related work
	Statistical relational learning
	Knowledge compilation
	Learning to reason

	Conclusions
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

