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Abstract In recent years, variational Bayesian learning has been used as an approximation
of Bayesian learning. In spite of the computational tractability and good generalization in
many applications, its statistical properties have yet to be clarified. In this paper, we focus on
variational Bayesian learning of Bayesian networks which are widely used in information
processing and uncertain artificial intelligence. We derive upper bounds for asymptotic vari-
ational free energy or stochastic complexities of bipartite Bayesian networks with discrete
hidden variables. Our result theoretically supports the effectiveness of variational Bayesian
learning as an approximation of Bayesian learning.

Keywords Bipartite Bayesian networks · Variational Bayes framework · Variational free
energy

1 Introduction

Recently, Bayesian networks have been widely used in information processing and uncertain
artificial intelligence (Jordan 1999; Jensen 2001). For example, they have been applied to
bioinformatics, image analysis, and so on (Friedman 2004; Meltzer et al. 2005). In spite of
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their wide range of application, statistical properties such as the generalization error have
yet to be clarified.

The main reasons for this difficulty are due to their non-identifiability. If the mapping
from the parameter w of the learning machine to the probabilistic model p(x|w) is one-to-
one, then the model is called identifiable, and otherwise, non-identifiable. An identifiable
model is further called regular if the asymptotic normality of the maximum likelihood esti-
mator holds. One of the difficulties in the analysis of the non-identifiable model is that we
cannot apply the asymptotic theory of regular statistical models to a non-identifiable one. If
the model attains the true distribution from which sample data are taken, the true parameter
is not one point but an analytic set with singularities in the parameter space. This is why the
mathematical properties of the non-identifiable models have been unknown.

In recent years, however, the asymptotic theory for Bayesian learning of non-identifiable
models has been established with an algebraic-geometric method (Watanabe 2001). The
method revealed the relation between model’s singularities and its statistical properties. For
Bayesian networks, the asymptotic form of the Bayesian stochastic complexity, namely the
free energy, was derived (Yamazaki and Watanabe 2003b; Rusakov and Geiger 2005). The
result shows that the stochastic complexity of Bayesian networks is much smaller than com-
plexity of regular models.

On the other hand, performing Bayesian learning is computationally intractable for non-
identifiable models. The variational Bayesian framework was proposed as an approximation
method of Bayesian learning (Hinton and van Camp 1993) and extended to statistical mod-
els with hidden variables (Attias 1999; Beal 2003; Beal and Ghahramani 2003). This frame-
work provides computationally tractable posterior distributions over the hidden variables
and parameters with an iterative algorithm. Variational Bayesian learning has been applied
to various learning machines and it has performed with good generalization at only a modest
computational cost compared to Markov Chain Monte Carlo (MCMC) methods, which are
the major schemes in Bayesian learning.

Several properties of the variational Bayesian approach have been studied recently. Wang
and Titterington investigated the local convergence property of the variational Bayesian es-
timator (Wang and Titterington 2004, 2006) and examined the covariance of the estimator
(Wang and Titterington 2005). Asymptotic forms of variational free energies of mixture
models and hidden Markov models were derived (Watanabe and Watanabe 2005, 2006a,
2006b; Hosino et al. 2005).

In this paper, we analyze the variational free energy of Bayesian networks. We derive an
upper bound for the variational free energy for bipartite structured graphical models with
discrete hidden variables. The upper bound is obtained under the assumption that the true
data generating distribution is included in the set of models. This assumption is essential
for addressing model selection or hypothesis testing where we compare the variational free
energies of the possible models. We decompose the variational free energy into the sum of
the complexity-control term and the likelihood term. The likelihood term is evaluated by the
empirical entropy up to an additive constant. The complexity-control term is given by the
Kullback information from the approximate posterior distribution to the prior distribution.
We give the upper bound on it in the form, ν logn + C, where n is the sample size, C is a
constant independent of n, and the constant ν is identified by the structures of the Bayesian
network and the true network.

The variational free energy, which is also called the variational stochastic complexity and
corresponds to a lower bound for the Bayesian evidence, is a key quantity for model selec-
tion. Evaluating the variational free energy also contributes to the following two issues. One
is the accuracy of variational Bayesian learning as an approximation method since the vari-
ational free energy shows the distance from the variational posterior distribution to the true
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Bayesian posterior distribution in terms of Kullback information. Another is the influence
of the hyperparameters on the learning process. Since the variational Bayesian algorithm
minimizes the variational free energy function, the derived bounds indicate how the hyper-
parameters influence the learning process. The main results indicate how to determine the
hyperparameter values before the learning process.

The paper is organized as follows. Section 2 introduces Bayesian networks. Section 3
reviews the framework of Bayesian learning and its asymptotic analysis. Section 4 describes
the general framework of variational Bayesian learning and the variational Bayesian algo-
rithm for the Bayesian network is also derived. Section 5 presents the main theorem which
shows the upper bounds for the variational free energy of the Bayesian network. The proof
of the main theorem is presented in Sect. 6. Section 7 presents the results of the numerical
experiments demonstrating the tightness of the bounds.

In order to discuss the approximation accuracy of Variational Bayes, the derived bounds
are compared to the Bayesian free energy obtained in previous works and the effect of the
hyperparameters is also discussed in Sect. 8. Finally, Sect. 9 concludes the paper.

2 Bayesian networks

A graphical model expresses the relations among random variables by a graph. Bayesian
networks are included in graphical models. Bayesian network is defined by a directed graph
and conditional probabilities (Jensen 2001).

In this paper, we focus on a Bayesian network whose states of all hidden nodes influence
those of all observation nodes, and assume that it has N observation nodes and K hidden
nodes. The graphical structure of this Bayesian network is called bipartite and presented in
Fig. 1.

The observation nodes are denoted by a vector x = (x1, x2, . . . , xN), and the set of states
of observation node xj is {1,2, . . . , Yj }. The hidden nodes are denoted by a vector z =
(z1, z2, . . . , zK), and the set of states of hidden node zk is {1,2, . . . , Tk}.

The probability that the state of the hidden node zk is i (1 ≤ i ≤ Tk), is expressed as

a(k,i) := P (zk = i). (1)

Because ak := {a(k,i); i = 1,2, . . . , Tk} is a probability distribution,
∑Tk

i=1 a(k,i) = 1 holds for
k = 1,2, . . . ,K .

The conditional probability that the j th observation node xj is l (1 ≤ l ≤ Yj ), given the
condition that the states of hidden nodes are z = (z1, z2, . . . , zK), is denoted by

b(j,l|z) := P (xj = l|z). (2)

Then b(j,·|z) := {b(j,l|z); l = 1,2, . . . , Yj } satisfies
∑Yj

l=1 b(j,l|z) = 1, for j = 1,2, . . . ,N .
Define a := {ak; k = 1,2, . . . ,K} and b := {bz;1 ≤ z1 ≤ T1, . . . ,1 ≤ zK ≤ TK}, where

Fig. 1 Graphical structure of the
Bayesian network
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bz := {b(j,·|z); j = 1,2, . . . ,N}. Let ω = {a, b} be the set of all parameters. Then the joint
probability that the states of observation nodes are x = (x1, x2, . . . , xN) and the states of
hidden nodes are z = (z1, z2, . . . , zK) is

p(x, z|ω) = c(x|bz)

K∏

k=1

a(k,zk), (3)

where

c(x|bz) =
N∏

j=1

b(j,xj |z). (4)

Therefore the marginal probability that the states of observation nodes are x is

p(x|ω) =
∑

z

p(x, z|ω)

=
⎧
⎨

⎩

K∏

k=1

Tk∑

zk=1

⎫
⎬

⎭
c(x|bz)

K∏

k=1

a(k,zk), (5)

where we use the notation
∑

z = {∏K

k=1

∑Tk

zk=1} :=∑T1
z1=1

∑T2
z2=1 · · ·∑TK

zK=1 for the summa-
tion over all states of hidden nodes. Let

M =
N∑

j=1

(Yj − 1),

which is the number of parameters to specify the conditional probability c(x|bz) of the states
of all the observation nodes given the states of the hidden nodes. Then the number of the
parameters of the model, d , is

d = M

K∏

k=1

Tk +
K∑

k=1

(Tk − 1). (6)

A Bayesian network is non-identifiable if it has a hidden variable. Hence, as will be noted
in Sect. 3, the Bayesian stochastic complexity can no longer be well approximated by the
well-known model selection criteria such as the minimum description length (MDL) (Rissa-
nen 1986). Indeed, it was pointed out that the MDL also known as the Bayesian information
criterion (BIC) may not work well for Bayesian networks (Allen and Greiner 2000).

3 Bayesian learning

Suppose n training samples Xn = {X1,X2, . . . ,Xn} are independently and identically taken
from the true distribution p0(x). Let ϕ(ω) be the prior distribution of the parameters ω. Then
the posterior distribution p(ω|Xn) is computed from the given dataset and the prior by

p(ω|Xn) = 1

Z(Xn)
exp(−nHn(ω))ϕ(ω), (7)
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where Hn(ω) = − 1
n

∑n

i=1 logp(Xi |ω), and Z(Xn) is the normalization constant called the
marginal likelihood or the evidence of the dataset Xn (Mackay 1992). The Bayesian predic-
tive distribution p(x|Xn) is given by averaging the model over the posterior distribution as
follows,

p(x|Xn) =
∫

p(x|ω)p(ω|Xn)dω. (8)

The Bayesian stochastic complexity F(Xn) is defined by

F(Xn) = − logZ(Xn), (9)

which is also called the free energy and is important in most data modeling problems. In
practice, it is used as a criterion by which the model is selected and the hyperparameters in
the prior are optimized (Schwarz 1978).

Let EXn [·] be the expectation over all sets of training data and

S(Xn) = −
n∑

i=1

logp0(Xi) (10)

be the empirical entropy. It was proved that the Bayesian stochastic complexity has the
following asymptotic form (Watanabe 2001),

EXn

[
F(Xn) − S(Xn)

]� λ logn − (m − 1) log logn + O(1), (11)

where λ and m are, respectively, the rational number and the natural number which are
determined by the singularities of the true parameters. In regular models, 2λ is equal to the
number of parameters and m = 1, while in non-identifiable models, 2λ is not larger than
the number of parameters and m ≥ 1 (Yamazaki and Watanabe 2003b; Rusakov and Geiger
2005).

In practice, Bayesian learning requires integration over the posterior distribution, which
typically cannot be performed analytically. As an approximation, the variational Bayesian
framework was introduced in neural networks (Hinton and van Camp 1993) and was ex-
tended to deal with statistical models containing hidden variables (Attias 1999).

4 Variational Bayesian learning for Bayesian networks

This section reviews the variational Bayesian framework and that for the Bayesian network
model defined by (5).

4.1 Variational Bayesian learning

Let {Xn,Zn} be the complete data with the addition of the corresponding hidden variables
Zn = {Z1,Z2, . . . ,Zn}. The variational Bayesian framework approximates the Bayesian
posterior p(Zn,ω|Xn) of the hidden variables and the parameters by the variational pos-
terior q(Zn,ω|Xn), which factorizes as

q(Zn,ω|Xn) = Q(Zn|Xn)r(ω|Xn), (12)
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where Q(Zn|Xn) and r(ω|Xn) are posteriors over the hidden variables and the parameters
respectively. The variational posterior q(Zn,ω|Xn) is chosen to minimize the functional
F [q] defined by

F [q] =
∑

Zn

∫

q(Zn,ω|Xn) log
q(Zn,ω|Xn)

p(Xn,Zn,ω)
dω,

= F(Xn) + K(q(Zn,ω|Xn)||p(Zn,ω|Xn)), (13)

where K(q(Zn,ω|Xn)||p(Zn,ω|Xn)) is the Kullback information between the true Bayesian
posterior p(Zn,ω|Xn) and the variational posterior q(Zn,ω|Xn). The functional F [q] is
called the variational free energy function and it measures the quality of the approximation.
The above minimization problem leads to the following theorem. The proof is well known
(Beal 2003).

Theorem 1 If the functional F [q] is minimized under constraint (12) then the variational
posteriors, r(ω|Xn) and Q(Zn|Xn), satisfy

r(ω|Xn) = 1

Cr

ϕ(ω) exp〈logp(Xn,Zn|ω)〉Q, (14)

Q(Zn|Xn) = 1

CQ

exp〈logp(Xn,Zn|ω)〉r , (15)

where Cr and CQ are the normalization constants.1

Note that (14) and (15) give only the necessary conditions for the functional F [q] to be
minimized. The variational posteriors that satisfy (14) and (15) are computed by an iterative
algorithm whose convergence is guaranteed.

We define the variational free energy F(Xn) by the minimum value of the functional
F [q], that is,

F(Xn) = min
r,Q

F [q]. (16)

From (13), the difference between F(Xn) and the Bayesian stochastic complexity F(Xn)

shows the accuracy of the variational Bayesian approach as an approximation of Bayesian
learning.

4.2 Variational posterior for Bayesian networks

We assume that the prior distribution ϕ(ω) of the parameters ω = {a, b} is the conjugate
prior distribution. Then ϕ(ω) is given by {∏K

k=1 ϕ(ak)}{∏z

∏N

j=1 ϕ(b(j,·|z))}, where

ϕ(ak) = �(Tkφ0)

�(φ0)Tk

Tk∏

zk=1

a
φ0−1
(k,zk), (17)

1Hereafter we use the notation 〈·〉r and 〈·〉Q for the expectation over r(ω|Xn) and Q(Zn|Xn) respectively.
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and

ϕ(b(j,·|z)) = �(Yj ξ0)

�(ξ0)
Yj

Yj∏

xj =1

b
ξ0−1
(j,xj |z), (18)

are Dirichlet distributions with hyperparameters φ0 > 0 and ξ0 > 0, and

�(x) =
∫ ∞

0
tx−1e−t dt

is the gamma function. Let δ(n) be 1 when n = 0 and 0 otherwise, and define

n̄z
(k,zk) :=

n∑

i=1

〈
δ(Z

(k)
i − zk)

〉

Q
, (19)

and

n̄x
(j,xj |z) :=

n∑

i=1

δ(X
(j)

i − xj )

〈
K∏

k=1

δ(Z
(k)
i − zk)

〉

Q

. (20)

Here X
(j)

i is the state of the j th observation node and Z
(k)
i is the state of the kth hidden node

when the ith training datum is observed. From (14), the variational posterior distribution
of parameters ω = {a, b} is given by r(ω|Xn) = {∏K

k=1 r(ak|Xn)}{∏z

∏N

j=1 r(b(j,·|z)|Xn)},
where

r(ak|Xn) = �(n + Tkφ0)
∏Tk

zk=1 �(n̄z
(k,zk) + φ0)

Tk∏

zk=1

a
n̄z
(k,zk )

+φ0−1

(k,zk) , (21)

r(b(j,·|z)|Xn) = �(n̄x
z + Yjξ0)

∏Yj

xj =1 �(n̄x
(j,xj |z) + ξ0)

Yj∏

xj =1

b
n̄x
(j,xj |z)+ξ0−1

(j,xj |z) , (22)

and

n̄x
z :=

n∑

i=1

〈
K∏

k=1

δ(Z
(k)
i − zk)

〉

Q

.

Note that

n̄x
z =

Yj∑

xj =1

n̄x
(j,xj |z),

for j = 1, . . . ,N , and

n̄z
(k,zk) =

∑

z−k

n̄x
z , (23)

where
∑

z−k
denotes the sum over zi (i �= k).

It follows from (21) and (22) that

〈loga(k,zk)〉r = 
(n̄z
(k,zk) + φ0) − 
(n + Tkφ0),
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for k = 1,2, . . . ,K and

〈logb(j,xj |z)〉r = 
(n̄x
(j,xj |z) + ξ0) − 
(n̄x

z + Yj ξ0),

for j = 1,2, . . . ,N and given z, where 
(x) = �′(x)

�(x)
is the digamma function. From (15),

the variational posterior distribution of the hidden variables is given by Q(Zn|Xn) =∏n

i=1 Q(Zi |Xn), where

Q(Zi = z|Xn) =
∑

Zi

Q(Zi |Xn)δ(Zi − z)

=
〈

K∏

k=1

δ(Z
(k)
i − zk)

〉

Q

∝ exp

{
K∑

k=1

{
(n̄z
(k,zk) + φ0) − 
(n + Tkφ0)}

+
N∑

j=1

{
(n̄x

(j,X
(j)
i

|z) + ξ0) − 
(n̄x
z + Yj ξ0)}

}

. (24)

The variational Bayesian algorithm updates {n̄x
(j,xj |z)} using (20) and (24) iteratively.

5 Main results

We assume the following conditions.

(A1) The true distribution is defined by a Bayesian network with H hidden nodes, each
with Sk states, where H ≤ K . Then the true distribution p0(x) is

p(x|ω∗) =
⎧
⎨

⎩

H∏

k=1

Sk∑

zk=1

⎫
⎬

⎭
c(x|b∗

z )

H∏

k=1

a∗
(k,zk), (25)

where c(x|b∗
z ) =∏N

j=1 b∗
(j,xj |z) and the true parameters ω∗ = {a∗, b∗} are given by

a∗ = {a∗
k ; k = 1,2, . . . ,H },

b∗ = {b∗
z ;1 ≤ z1 ≤ S1,1 ≤ z2 ≤ S2, . . . ,1 ≤ zH ≤ SH },

b∗
z = {b∗

(j,·|z); j = 1,2, . . . ,N}, (26)

a∗
k = {a∗

(k,zk);1 ≤ zk ≤ Sk} (k = 1,2, . . . ,H),

b∗
(j,·|z) = {b∗

(j,xj |z);1 ≤ xj ≤ Yj } (j = 1,2, . . . ,N).

For k > H , we define Sk = 1 and a∗
(k,zk) = δ(zk − 1).

The true distribution can be realized by the model, that is, the model given by (5)
where Tk ≥ Sk holds for k = 1,2, . . . ,H .

(A2) The prior distribution of parameters ω = (a, b) is the conjugate prior distribution,
ϕ(ω) = {∏K

k=1 ϕ(ak)}{∏z

∏N

j=1 ϕ(b(j,·|z))}, where ϕ(ak) and ϕ(b(j,·|(z1,z2))) are given
by (17) and (18).



Mach Learn (2009) 75: 199–215 207

Under these conditions, we prove the following theorem. The proof will appear in the next
section.

Theorem 2 (Main result) Assume the conditions (A1) and (A2). Then for an arbitrary nat-
ural number n, the variational free energy satisfies

F(Xn) − S(Xn) ≤ ν logn + C (27)

with probability 1, where C is a constant independent of n and

ν = φ0

K∑

k=1

Tk − K

2
+ min{uk}

{
M

2

K∏

k=1

uk −
(

φ0 − 1

2

) K∑

k=1

uk

}

. (28)

The minimum is taken over the set of positive integers {uk;Sk ≤ uk ≤ Tk}K
k=1.

If K = 1, this reduces to the case of the naive Bayesian networks whose free energy
or stochastic complexity has been evaluated (Yamazaki and Watanabe 2003a; Rusakov and
Geiger 2005). Bounds for their variational free energy have also been obtained (Watanabe
and Watanabe 2005, 2006b).

The coefficient ν is given by the solution of the minimization problem. We present ex-
amples of the upper bound as corollaries below.

By taking uk = Sk for 1 ≤ k ≤ H and uk = 1 for H +1 ≤ k ≤ K , we obtain the following
upper bound for the variational free energy (Watanabe et al. 2006). This bound is minimal
if φ0 ≤ (1 + M min1≤k≤K{Sk})/2.

Corollary 1 For φ0 ≤ (1 + M min1≤k≤K{Sk})/2,

F(Xn) − S(Xn) ≤ ν logn + C, (29)

where C is a constant independent of n and

ν = φ0

K∑

k=1

Tk − φ0K +
(

φ0 − 1

2

)

H +
(

1

2
− φ0

) H∑

k=1

Sk + M

2

H∏

k=1

Sk. (30)

If K = H = 2, that is, the true network and the model both have 2 hidden nodes, solving
the minimization problem gives the following corollary. Suppose S1 ≥ S2 and T1 ≥ T2.

Corollary 2 If K = H = 2,

F(Xn) − S(Xn) ≤ ν logn + C, (31)

where C is a constant independent of n and

ν =

⎧
⎪⎪⎨

⎪⎪⎩

(T1 − S1 + T2 − S2)φ0 + M
2 S1S2 + S1+S2

2 − 1 (0 < φ0 ≤ 1+S2M

2 ),

(T2 − S2)φ0 + M
2 T1S2 + T1+S2

2 − 1 (
1+S2M

2 < φ0 ≤ 1+T1M

2 ),

M
2 T1T2 + T1+T2

2 − 1 (
1+T1M

2 < φ0).

(32)
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Fig. 2 The coefficient ν of the upper bound for the variational free energy (solid line) as a function of the
hyperparameter φ0 with T1 = T2 = 3, S1 = S2 = 2 and M = 3. The dashed line is the coefficient d/2 of the
BIC where d is the number of the parameters

The penalty term in the BIC is given by (d/2) logn (Schwarz 1978) where d is the
number of the parameters defined by (6). Corollary 2 claims that the coefficient ν of the
leading term is smaller than d/2 when φ0 ≤ 1+T1M

2 . The coefficient ν in the above corollary
is demonstrated in Fig. 2 as a function of the hyperparameter φ0 with T1 = T2 = 3, S1 =
S2 = 2, and three binary observed nodes Y1 = Y2 = Y3 = 2; that is, M = 3. The effect of the
hyperparameter φ0 is discussed in Sect. 8.3.

6 Proof of Theorem 2

This section proves the main theorem.
From (15), we can rewrite the variational free energy as follows,

F(Xn) = min
r

[
K
(
r(ω|Xn)||ϕ(ω)

)
− logCQ

]
, (33)

where
logCQ = log

∑

Zn

exp
〈
logp(Xn,Zn|ω)

〉

r
. (34)

From (21), (22) and (24), we obtain logCQ and K(r(ω|Xn)||ϕ(ω)) in (33) as follows,

logCQ =
n∑

i=1

log
∑

Zi

exp〈logp(Xi,Zi |ω)〉r

=
n∑

i=1

log

[
∑

z

exp

{
K∑

k=1

{
(n̄z
(k,zk) + φ0) − 
(n + Tkφ0)}

+
N∑

j=1

{
(n̄x

(j,X
(j)
i

|z) + ξ0) − 
(n̄x
z + Yj ξ0)}

}]

, (35)
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and

K
(
r(ω|Xn)||ϕ(ω)

)
=

K∑

k=1

K(r(ak|Xn)||ϕ(ak)) +
∑

z

N∑

j=1

K(r(b(j,·|z)|Xn)||ϕ(b(j,·|z)))

=
K∑

k=1

[
Tk∑

zk=1

{
n̄z

(k,zk)
(n̄z
(k,zk) + φ0) − log�(n̄z

(k,zk) + φ0)
}

− n
(n + Tkφ0) + log�(n + Tkφ0) + log
�(φ0)

Tk

�(Tkφ0)

]

+
∑

z

N∑

j=1

[ Yj∑

xj =1

{
n̄x

(j,xj |z)
(n̄x
(j,xj |z) + ξ0) − log�(n̄x

(j,xj |z) + ξ0)
}

− n̄x
z
(n̄x

z + Yj ξ0) + log�(n̄x
z + Yj ξ0) + log

�(ξ0)
Yj

�(Yj ξ0)

]

. (36)

Furthermore, by using the inequalities for the digamma function, for x > 0

1

2x
< logx − 
(x) <

1

x
(x > 0)

and for the log-gamma function,

0 ≤ log�(x) −
(

x − 1

2

)

logx + x − 1

2
log 2π ≤ 1

12x
(x > 0)

we can bound logCQ:

logCQ ≥
n∑

i=1

log

[
∑

z

exp

{
K∑

k=1

{

log
n̄z

(k,zk) + φ0

n + Tkφ0
− 1

n̄z
(k,zk) + φ0

+ 1

2(n + Tkφ0)

}

+
N∑

j=1

{

log
n̄x

(j,X
(j)
i

|z) + ξ0

n̄x
z + Yj ξ0

− 1

n̄x

(j,X
(j)
i

|z) + ξ0
+ 1

2(n̄x
z + Yj ξ0)

}}]

. (37)

We can also bound K(r(ω|Xn)||ϕ(ω)) in (33):

K
(
r(ω|Xn)||ϕ(ω)

)
≤

K∑

k=1

{(

Tkφ0 − 1

2

)

log (n + Tkφ0)

}

−
K∑

k=1

Tk∑

zk=1

{(

φ0 − 1

2

)

log
(
n̄z

(k,zk) + φ0

)}

+
∑

z

N∑

j=1

{(

Yj ξ0 − 1

2

)

log
(
n̄x

z + Yj ξ0

)

−
Yj∑

xj =1

(

ξ0 − 1

2

)

log
(
n̄x

(j,xj |z) + ξ0

)}

+ O(1). (38)
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From (33), since F(Xn) is given as the minimum value of the function of {n̄x
(j,xj |z)},

we can obtain an upper bound for F(Xn) by substituting each n̄x
(j,xj |z) by any specific value.

Therefore let uk be a natural number such that Sk ≤ uk ≤ Tk for k = 1,2, . . . ,K and consider
the following n̄x

(j,xj |z) for each j and xj :

n̄x
(j,xj |z) = nb∗

(j,xj |z)
K∏

k=1

a′
(k,zk), (39)

where z = (min{z1, S1},min{z2, S2}, . . . ,min{zH ,SH }) and

a′
(k,zk) =

⎧
⎪⎨

⎪⎩

a∗
(k,zk) (1 ≤ zk ≤ Sk − 1),

a∗
(k,Sk)/(uk − Sk + 1) (Sk ≤ zk ≤ uk),

0 (otherwise).

(40)

This corresponds to the case when uk (≥Sk) states of the kth hidden node are active for

k = 1,2, . . . ,H . Then we have n̄x
z = n

∏K

k=1 a′
(k,zk) and n̄z

(k,zk) = na′
(k,zk). Substituting them

into (38) yields

K
(
r(ω|Xn)||ϕ(ω)

)
≤
{

φ0

K∑

k=1

Tk − K

2
+ M

2

K∏

k=1

uk −
(

φ0 − 1

2

) K∑

k=1

uk

}

logn + O(1).

(41)
From (37), we obtain

logCQ ≥
n∑

i=1

log

(

p(Xi |ω∗) exp

(
C ′

n

))

= −S(Xn) + C ′, (42)

where C ′ is a constant. From (33), (42) and (41), we complete the proof. �

7 Experiments

We applied variational Bayesian learning to a Bayesian network with two hidden nodes and
computed the variational free energy to compare it to the derived upper bound and to the
BIC.

We generated data from the true network with H = 1 hidden node and N = 4 observed
nodes. Each observed node has Yj = 4 states and the hidden node is binary-valued, S1 = 2.
The parameters ω∗ were set to fixed values. Specifically, a∗

(1,1) = 1/3, a∗
(1,2) = 2/3, b∗

(j,l|1)

for all j are 5/8, 1/8, 1/8, 1/8, and b∗
(j,l|2) for all j are 1/8, 5/8, 1/8, 1/8 for l = 1,2,3,4.

We used as a learner the Bayesian network model with 2 binary-valued hidden nodes (one
redundant node), that is, K = 2 and T1 = T2 = 2, to consider the non-identifiable parameter
settings.

We compared the coefficient of the leading term of the free energy, which is of the order
of logn, instead of the energy itself since its constant order term (denoted by C in (27)) is
not zero although it can be negligible in our asymptotic theoretical analysis. Two data sets
with the size n = 1000 and n = 500 were generated from the true network. For these data
sets, we ran the variational Bayesian algorithm and computed the variational free energies
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subtracted by the empirical entropies S(X1000) and S(X500), respectively. Denoting them as
F 0(X

1000) and F 0(X
500), we calculated

ν̂ = (F 0(X
1000) − F 0(X

500))/ log 2

to estimate the coefficient of the leading term of the normalized variational free energy
F(Xn) − S(Xn). Theorem 2 implies ν̂ ≤ ν.

We also evaluated the corresponding value ν̂BIC for the BIC by replacing the variational
free energy F(Xn) with the BIC,

FBIC(Xn) = d

2
logn −

n∑

i=1

logp(Xi |ω̂MAP),

where ω̂MAP is the maximum a posteriori (MAP) estimator of the parameters ω. The MAP
estimator was obtained by slightly modifying the above variational Bayesian algorithm with
the same initial conditions. More specifically, the terms 
(n̄z

(k,zk) + φ0) − 
(n + Tkφ0) and

(n̄x

(j,X
(j)
i

|z) + ξ0)−
(n̄x
z +Yj ξ0) in (24) were replaced by log(n̄z

(k,zk) +φ0)− log(n+Tkφ0)

and log(n̄x

(j,X
(j)
i

|z) + ξ0) − log(n̄x
z + Yjξ0), respectively. To take into account the difference

of the likelihood terms between the variational free energy and the BIC, we also calculated

FVB–BIC(Xn) = d

2
logn − logCQ,

where logCQ is defined by (34), and obtained ν̂VB–BIC in the same way as we obtained ν̂

and ν̂BIC from F(Xn) and FBIC(Xn).
Figure 3 shows the results of ν̂, ν̂BIC and ν̂VB–BIC averaged over 100 draws of data sets for

the different values of the hyperparameter φ0. Another hyperparameter ξ0 was set to ξ0 = 1.
The results of ν̂ show a similar trend to ν and they are smaller than those of the BIC

(ν̂BIC and ν̂VB–BIC). This indicates the effect of the hyperparameter, which is suggested by
the discussion in Sect. 8.3.

8 Discussion

In this paper, we obtained an asymptotic upper bound for the variational free energy of
bipartite Bayesian networks with discrete hidden variables. In this section, we discuss some
generalizations of the main results, the approximation accuracy of Variational Bayes and the
effect of the hyperparameters.

8.1 Bounds for general Bayesian networks

In the previous sections, we considered any discrete random variables as observed nodes
whose conditional probabilities are given by

c(x|bz) =
N∏

j=1

b(j,xj |z),

with M =∑N

j=1(Yj − 1) parameters. Theorem 2 gives the upper bound for the variational
free energy, which applies to any sets of training samples Xn of the discrete variable x. The
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Fig. 3 The coefficients of the variational free energy for the hyperparameter φ0. The open squares are the
averages of ν̂ with the error bars showing 95% confidence intervals. The open circles and triangles are those
of ν̂BIC and ν̂VB–BIC respectively. The solid line is the coefficient ν of the theoretical upper bound on the
variational free energy, (32). The dashed line is the coefficient d/2 of the BIC where d is the number of
parameters

above distribution of the observed variable x can also be generalized to the exponential-
family distribution with M parameters by a similar argument as the one applied to the
mixtures of exponential families (Watanabe and Watanabe 2005, 2006b). In this case, the
observed variable x can also be continuous and the model (5) is given by

p(x|ω) =
⎧
⎨

⎩

K∏

k=1

Tk∑

zk=1

⎫
⎬

⎭
c(x|bz)

K∏

k=1

a(k,zk),

where c(x|b) is the probability density function of an exponential-family distribution with
the parameters b = (b(1), b(2), . . . , b(M))T ,

c(x|b) = exp(b · h(x) + h0(x) − g(b)).

Here b · h(x) is the inner product of the vector b and the vector-valued function h(x) =
(h1(x), . . . , hM(x))T . The functions h0(x) and g(b) are real-valued functions of the ob-
served variable x and the parameters b, respectively.

8.2 Comparison to Bayes

Let us compare the variational free energy to the Bayesian free energy, namely the stochas-
tic complexity of Bayesian networks and those of regular statistical models. The Bayesian
stochastic complexities of regular models are also called the Bayesian information criterion
(BIC) (Schwarz 1978).
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For an arbitrary natural number n, the following inequality holds for the Bayesian sto-
chastic complexity (Yamazaki and Watanabe 2003b; Rusakov and Geiger 2005),

EXn [F(Xn) − S(Xn)] ≤ μ logn + O(1),

where

μ = M

2

H∏

k=1

Sk − 1

2

H∑

k=1

Sk + 1

2
H +

K∑

k=1

Tk − K. (43)

These upper bounds are obtained under the conditions (A1), (A2), and φ0 = 1 in (17). Also
the penalty term in the BIC is given by d

2 logn where

d =
K∑

k=1

(Tk − 1) + M

K∏

k=1

Tk, (44)

is the number of parameters. By putting φ0 = 1 in (30), from (43) and (44), we obtain

ν = μ < d/2.

This means the variational free energy is much smaller than the BIC, and is close to the
Bayesian stochastic complexity. In other words, this implies the effectiveness of the varia-
tional Bayesian approach in terms of approximating the Bayesian posterior distributions and
estimating the Bayesian stochastic complexities.

8.3 Effect of hyperparameters

Theorem 2 indicates how the hyperparameters influence the process of variational Bayesian
learning. Consider the case discussed in Corollary 2 for example. The coefficient ν in (32)
implies the states of hidden nodes that minimize the variational free energy function depend-
ing on the hyperparameter φ0. More specifically, when φ0 ≤ 1+S2M

2 , all the redundant states
of the first and second hidden nodes shrink and become inactive, that is, their probabilities
approach 0. When 1+S2M

2 < φ0 ≤ 1+T1M

2 , all the states of the first hidden node (with more
possible states) become active while all the redundant states of the other hidden node are
eliminated. When 1+T1M

2 < φ0, all the states of both hidden nodes become active after the
learning process.

In the general case considered in Theorem 2, the coefficient ν is identified by the mini-
mum of a function of the numbers u1, u2, . . . , uK of states. The minimum solution implies
how many redundant states become active after the learning process according to the hyper-
parameter φ0.

8.4 Utility of the bound and future work

Using the bound in the main theorem, one can experimentally investigate properties of the
actual variational Bayesian algorithm which may converge to local minima of the variational
free energy. Comparing the theoretical bound with experimental results, one can examine
whether the algorithm converges to the optimal variational posterior.

Moreover, the theoretical bound would enable us to compare the accuracy of varia-
tional Bayesian approximation with other schemes such as the Laplace approximation or
the MCMC method. In order to make such comparisons more accurately, one will need the
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lower bound for the variational free energy as well as the upper bound. To obtain lower
bounds, the identifiability of Bayesian networks should be taken into account (Whiley and
Titterington 2002).

It is also important to assess the variational approximation in terms of the generaliza-
tion error, or the accuracy of approximating the Bayesian predictive distributions in future
studies.

9 Conclusion

In this paper, we obtained an upper bound for the variational free energy of Bayesian net-
works. The derived bound enabled us to assess the accuracy of the variational Bayesian
approximation and the effect of the hyperparameters. It hence provides implications for the
design of learning algorithms based on variational Bayesian approximation.
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