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Abstract Graphical modelling strategies have been recently discovered as a versatile tool
for analyzing multivariate stochastic processes. Vector autoregressive processes can be
structurally represented by mixed graphs having both directed and undirected edges be-
tween the variables representing process components. To allow for more expressive vector
autoregressive structures, we consider models with separate time dynamics for each directed
edge and non-decomposable graph topologies for the undirected part of the mixed graph.

Contrary to static graphical models, the number of possible mixed graphs is extremely
large even for small systems, and consequently, standard Bayesian computation based on
Markov chain Monte Carlo is not in practice a feasible alternative for model learning.
To obtain a numerically efficient approach we utilize a recent Bayesian information the-
oretic criterion for model learning, which has attractive properties when the potential model
complexity is large relative to the size of the observed data set. The performance of our
method is illustrated by analyzing both simulated and real data sets. Our simulation ex-
periments demonstrate the gains in predictive accuracy which can obtained by consid-
ering structural learning of vector autoregressive processes instead of unstructured mod-
els. The analysis of the real data also shows that the understanding of the dynamics of
a multivariate process can be improved significantly by considering more flexible model
classes.
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1 Introduction

Since the late 1970s, extensive multidisciplinary research has crystallized the fundamen-
tal versatility of graph representations of multidimensional probability distributions. Such
representations, generally referred to as graphical models, intertwine probability theory and
graph theory, see Lauritzen (1996) and Jordan (2004). The graph theoretic side of graphical
models provides both an intuitively appealing interface by which humans can model inter-
acting sets of variables, as well as a data structure that lends itself naturally to the design of
efficient general-purpose statistical learning algorithms.

As reviewed by Jordan (2004), many of the classical multivariate probabilistic systems
studied in fields such as statistics, systems engineering, information theory, pattern recog-
nition and statistical mechanics are special cases of the general graphical model formalism.
Examples of such include mixture models, factor analysis, hidden Markov models, Kalman
filters and Ising models. The graphical model framework provides a way to view all of
these systems as instances of a common underlying formalism. The concept of causality has
also been extensively linked to graph theoretical approach through an intervention-based
approach, see Pearl (2000) and Spirtes et al. (2000). However, until fairly recently, the core
formalism of the graphical models has mostly been anchored to a description of static mul-
tivariate probabilistic systems. Early papers considering graphical models in a multivari-
ate time series setting include Lynggaard and Walther (1993) and Brillinger (1996). Since
then, numerous refinements and extensions have been considered: Friedman et al. (1998),
Stanghellini and Whittaker (1999), Dahlhaus (2000), Reale and Tunnicliffe Wilson (2001,
2002), Bach and Jordan (2004a,2004b), Dahlhaus and Eichler (2003), Fried and Didelez
(2003, 2005), Oxley et al. (2004), Moneta and Spirtes (2005), and Carvalho and West (2007).
Most of these articles deal with graphs in which the values of the variables at different time
stamps are represented by separate nodes in the graph. Our focus is on Granger causality
graphs (Eichler 2001) in which each component process is represented by a single node and
the interactions between the components are described by a mixed graph, in which directed
edges represent Granger causalities and undirected edges represent contemporaneous par-
tial correlations. Similar graphs have been considered in Eichler (2006b, 2007), although
in these papers the undirected edges represent contemporaneous covariances between the
processes. Strictly speaking, we restrict the analysis to linear Granger causality (Florens and
Mouchart 1985), by considering only linear dependencies among the variables.

The undirected dynamic graphical models have recently attracted a vivid interest
in functional neuroimaging and patient monitoring in critical care (Gather et al. 2002;
Eichler et al. 2003; Salvador et al. 2005; Imhoff and Kuhls 2006; Schelter et al. 2006).
The primary reason why the undirected models have gained more attention than the directed
models is the mathematical and computational tractability of the structural model learn-
ing. Corander and Villani (2006) presented recently a Bayesian method for the learning of
directed models. However, their approach is restricted to models which have a decompos-
able representation in the analogous sense as for the static undirected models (Lauritzen
1996). Also, they did not consider the possibility of allowing the lag lengths to vary over
distinct parts of the vector autoregressive system. The restriction to the decomposability of
a system has indeed been exploited in the vast majority of all applications of the graphical
modelling strategy. The reason for this is typically not an intrinsic connection between the
decomposability and some underlying theory of the scientific field in question, but the math-
ematical and computational tractability of the resulting models. Nevertheless, the restriction
to decomposability may lead to unnecessarily complex models having spurious associations
between variables as illustrated for static graphical models by Corander (2003).
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The Bayesian approach to model learning has in a wide variety of contexts been
recognized to yield scientific practices with generally intuitive and appealing character-
istics (Bernardo and Smith 1994). In particular, a successful learning of complex sta-
tistical models most often necessitates the joint consideration of distinct parts of the
models. For instance, such a formulation avoids the multiple hypothesis testing para-
dox, which often hampers classical data analysis to a large extent. In the context of dy-
namic graphical models, model learning by minimizing a statistical criterion (e.g. AIC,
BIC) has been utilized e.g. by Eichler (2006a). However, especially with mixed graphi-
cal presentations, the learning has mostly been based on sequentially testing the exclu-
sion of causal dependencies or partial correlations between variables conditional on the
presence of dependencies between all other variables (e.g. Dahlhaus and Eichler 2003;
Eichler 2006b). Inevitably, such an approach makes it difficult to assess the reasonability
of any model as a whole, and the procedure may lead to distorted dependence structures, as
illustrated by Corander and Villani (2006).

The directed models represent a tremendous challenge for model learning as the num-

. . . k .
ber of different causal structures increases according to 23() as a function of the number
of processes (k) in the system. This can be compared to the number of undirected dynamic

graphical models 2(5), which is the same as in the case of a static system. Despite the ap-
parent challenge in the model learning, the directed dynamic graphical models have consid-
erably more potential to yield meaningful representations of multivariate dynamic systems.
As well illustrated by Valdés-Sosa et al. (2005) in the neuroimaging context, the most in-
triguing questions related to the system structure are statistically represented in terms of
causalities, not as partial correlations. Furthermore, the undirected dynamic models have
certain mathematical properties which may easily lead to the presence of redundant edges
in the estimated graphical representation. As shown theoretically by Dahlhaus and Eichler
(2003), these follow from the lacking ability of the undirected models to capture some of
the essential features of causality. Mathematically, the redundant edges follow from a gen-
eralization of the moralization property of static directed acyclic graphs (Lauritzen 1996).
Although the Bayesian model learning approach can be seen as theoretically preferable
to many other existing alternatives, the price of its fundamental coherence is expressed in
terms of computational complexity. The recent advances in trans-dimensional Markov chain
Monte Carlo (MCMC) methods (Sisson 2005) have largely extended the applicability of the
Bayesian approach to model learning. Nevertheless, the current context represents such a nu-
merical challenge that MCMC simulation-based methods are not expected to provide practi-
cally applicable solutions. Also, the exploitation of the MCMC approach would necessitate
a tedious elicitation of subjective expert knowledge to derive sensible prior distributions for
model parameters, as no computationally attractive reference choices exist, in contrast to the
static graphical models for discrete data. Hence, the need for unsupervised methods is ap-
parent for dynamic graphical modelling. Therefore, to obtain a numerically feasible learning
method, we utilize a recently introduced Bayesian information theoretic criterion for model
assessment. This criterion, BEC (Corander and Marttinen 2006), judges the statistical per-
formance of a model in terms of the predictive entropy and can be calculated efficiently even
for relatively large systems of variables. To obtain a plausible representation of the graphical
representation for a system given an observed multivariate time series, we perform a search
in the model space, where the transitions between the putative model structures are governed
by comparing the relative performances according to the information theoretic criterion.
The goals of this paper can be summarized as follows: We present a novel learning
method for the learning of Granger causality graphs, based on estimation of an underlying
graphical vector autoregressive process. The method generalizes the previous approaches by
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allowing for non-decomposable undirected part of the graph, and unequal lag-lengths for the
underlying process (as opposed to Corander and Villani 2006). We discuss the difficulties
related to the learning of such models by standard Bayesian learning based on Markov chain
Monte Carlo (MCMC), and propose an algorithm in which the MCMC type calculation is
merged with a greedy optimization approach to reach the optimal performance. We investi-
gate the accuracy of the derived criterion, BEC, with some standard alternatives (AIC, BIC,
HQ). We perform a simulation study to investigate the significance of allowing unequal lag-
lengths in the underlying process, in order to detect the correct Granger causality structure
for the process. Finally, we present a real data analysis, which shows that by considering
models with unequal lag-lengths, a more expressive representation of the process can be
obtained.

This paper is organized as follows. In Sect. 2 we introduce the vector autoregressive
processes in the context of directed graphical models. In Sect. 3 the statistical learning
process is described. Section 4 provides illustrative examples with both simulated and real
data sets, and some concluding remarks are given in the final section.

2 Granger causality graphs for VAR processes

We begin by introducing some graph theoretic concepts and notation. Let G = (V, E, E»)
denote a mixed graph (i.e. a graph with both directed and undirected edges), where V =
{1,...,k} is a set of vertices, E; €V x V is a set of directed edges and E;, CV x Visa
set of undirected edges. Here we allow multiple edges between two nodes: it is possible to
have any combination of the following three edges: a directed edge to either direction or an
undirected edge. A directed edge (i, i) from node i back into itself is called a loop.

Now, let G = (V, E|, E;) be an arbitrary mixed graph. In the current setting, each vertex
i € V represents a univariate stochastic process X; = {X;(¢),# =1, ..., n} from which we
have n observations at even intervals. Let Xy = {X; : i € V} denote the joint multivariate
process. For an arbitrary subset A € V, X, denotes the sub-process X, = {X; : i € A},
and X 4 (1) = {X4(s),s < t} denotes the history of X, at time ¢. In multivariate time se-
ries setting, Granger causality (Granger 1969) offers a tool for the investigation of interac-
tions between the individual processes. These interactions are consistently characterized by
Granger causality graphs (Eichler 2001), in which edges encode conditional independences
between the process components X;. More formally, Granger causality graph is defined by
two conditions:

Definition 1 A mixed graph G = (V, E|, E,) is a Granger causality graph for a time se-
ries Xy, if, forall a, b € V, a # b, the following two properties hold for all z:

(i) (a,b) ¢ E1 & Xp(t) L X, (1) |XV\{a}(t)~
(it) (a,b) ¢ Er & X, (t) L Xp(0) | Xy (1), Xy\ja,py(8).

The conditions specify, respectively, that X, is Granger-noncausal for X, and that X,
and X, are contemporaneously partially uncorrelated. In the original definition, Granger
(1969) assumed that the information set contained all the information in the universe, while
in practice the interactions are described between a limited number of entities. Thus, a di-
rected edge from a to b does not necessarily mean that a is causing b in the common sense
meaning of causality. Such an edge might result from a third variable, not present in the
information set, which affects both a and b. Eichler (2008) used a third type of an edge to
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describe such spurious causalities. However, here a directed edge from a to b means that
the previous values of a contain some information about future values of b, which is not
present in any other variable in the information set. Thus, within the given information set,
there is a direct relation from a to b. The undirected edges can be understood as interactions
which take place on a shorter delay than the interval between two consecutive observations.
Further discussion about Granger causality and related issues can be found e.g. in Granger
(2001). The complementary intervention-based approach to causality of Spirtes et al. (2000)
has been discussed in a dynamic setting by Dash (2005), see also Iwasaki and Simon (1994).
To put the Granger causality graphs in the context of dynamic Bayesian network models,
it is useful to recall that the model defined above is a chain graph model, where a particu-
lar chain component corresponds to Xy (¢). Thus, the undirected edges can only exist within
each component, whereas any directed edges are always between an element in a component
Xy (¢) and an element in a subsequent component Xy (r + r), r > 0 (i.e. future). As shown
in the sequel, by assuming certain types of probabilistic invariances to hold over time, it is
possible to retain expressiveness of the model structure while reducing the dimensionality
of the learning problem.

Vector autoregressive process with lag-length p, VAR(p), (e.g. Liitkepohl 1993) is de-
fined by

xt:letfl+"'+B1)xf7p+6tv lzl,...,}’l (l)

where x; are (k x 1) vectors, B; (k x k) matrices,i =1,..., p,andx;,i = —p+1,...,0, are
assumed to be available. The vectors ¢; are assumed to be i.i.d. N(0, X'). We assume in the
sequel that (1) defines a stationary process and that the covariance matrix of the residuals
X is positive definite. If a VAR process is defined to satisfy the independence conditions
present in some Granger causality graph G = (V, E|, E»), certain restrictions are imposed
on the residual covariance matrix X' and the coefficient matrices B;. Such restrictions have
been well characterized and are provided by the following lemma.

Lemma 1 For a VAR(p) process Xy with Granger causality graph G = (V, Ey, E»), the
following hold

(1) (a,b)¢ E\ & Bj(b,a)=0, foralli =1, ..., p.
(i) (a,b) ¢ Er & X~'(a,b)=0.

Proof See, e.g., Eichler (2001). O

Notice that if (a, b) € E|, then it follows from (i) of Lemma 1 that B; (b, a) is non-zero
for somei =1,..., p. No attempts seem to have been proposed to make this more specific.
For example, given that (a, b) € E;, Corander and Villani (2006) considered learning non-
zero parameter values B;(b,a) forall i =1, ..., p. In practice, there is usually no reason
to believe that lag-lengths for different directed edges would be equal. To improve the VAR
learning in this respect, we consider a class of models restricted by two components G and
L, where G is a Granger causality graph, and L € N¥** gspecifies the lag-lengths for the
directed edges. More specifically, the entries of L are determined by:

(a,b)¢ Ey = L(a,b)=0

and

#£0, foralli=1,...,L(a,b),

@bek = B"(b’“){zo, if i > L(a,b).
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Thus, L(a, b) specifies the lag-length of the directed edge from a to b. In the sequel, we call
L as the lag matrix of the process. A VAR process which satisfies the above conditions with
respect to a Granger causality graph G and a lag matrix L will be denoted as VAR(G, L).
Notice that Definition 1 of Granger causality does not consider self-loops, because they
do not affect the Markov properties of the graph. However, in the sequel we will consider
explicitly also the lags for the effect of the history of a process component on its own future
values, i.e. the presence and absence of the diagonal entries in the coefficient matrices B;,
as determined by the diagonal entries of L. The value L(a, a) will be referred to as the
lag-length of the loop (a,a) € E;.

To introduce some terminology that we use with undirected graphs only, let G=(V.,E)
denote the undirected part of a graph G. Let A, B, C and D be arbitrary subsets of V. Let
GD = (D, Ep) denote a subgraph of G such that Ep = {(i, j) € E : i, j € D}. The graph
Gp is complete, if (i, j) € Ep for all i, j € D. A complete subgraph is called a clique,
if it is not included in any other complete subgraph. The set C separates A and B if C
contains a vertex on every path from A to B. A triple (A, B, C) defines a decomposition
of G if A, B, C are disjoint, AU BUC =V, C separates A from B, and C is a complete
subset of V (for details, see Lauritzen 1996, Chap. 2.1). The subgraphs resulting from a
decomposition, G auc and G guc, can be further decomposed until no separating complete
subset can be found. A subgraph for which no decomposition can be found is called a prime
graph or a prime component. A prime component is maximal if it is not included in any
other prime component. Every graph can be uniquely decomposed into maximal prime (mp-)
components (Leimer 1993). If all the mp-components are cliques, G is called decomposable
(even triangulated, or chordal). Leimer (1993) also describes an algorithm for finding the
mp-components of a graph. The usefulness of the concept of decomposition in the learning
process of G for a given VAR process Xy is due to the fact that the joint density of Xy (¢),
conditional on Xy (¢) factorizes according to

Hggc(a) P(Xc(t)|YV (1))

Xy Xv(@) = —
PV (O) ers(a)P(Xs(fNXv(l))

(€3

where C(G) are the mp-components of G, and S(G) the corresponding separators (see,
e.g. Lauritzen 1996, Chap. 5.2.1). Note that (2) applies even if the mp-components are not
cliques. Therefore (2) is useful also when learning non-decomposable graphs, because the
mp-components are usually of smaller dimension than the complete graph. However, term
p(XL.(t)|YV (t)) can be calculated in a closed form in Gaussian setting only if the corre-
sponding component ¢ is complete, otherwise iterative methods must be used.

3 Learning of VAR(G, L)
3.1 Statistical criterion for model plausibility

Our primary statistical learning goal is to be able to identify the model M, € M = {M; :
J € J} in the class of VAR(G, L) models that best describes the relationships between the
variables of an observed data set. Each model M consists of two primary qualitative compo-
nents, G, the Granger causality graph, and L, the lag matrix of the VAR-process. An upper
bound for the lag-lengths, say p, is assumed to be specified prior to the analysis. We use
a model selection criterion, Bayesian Entropy Criterion (BEC) introduced in Corander and
Marttinen (2006) to estimate the plausibility of each putative model. According to Bayesian
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principles, model choice can be seen as a decision problem where the optimal choice is the
model that maximizes the posterior expected utility (Bernardo and Smith 1994)

E(Mj|x):/ u(M;,0;)m(0;x)db;, 3)

O

where 0; comprises the model parameters, i.e. the coefficient matrices B;, i =1,..., p,
and the residual covariance matrix X' of the VAR process. Here u(M;, 6;) is the utility of
model M; given that 6; is the true parameter value, and 7 (6;x) is the posterior distribution
of the model parameters given current observations x. Our utility function u uses a loga-
rithmic score (see, e.g. Bernardo and Smith 1994) to measure the expected performance in
predicting a future data set y of a similar structure, and is defined by

u(M;.0;) = / 2;(¥16;) log p; (y16,)dy. @)
X

where p;(-]0;) is the predictive probability distribution from model M; with parameter val-
ues 6;. The considered future data set y is from the same model, and of the same size as the
current data set X.

The characteristic feature of the BEC criterion is that the expectation in (4) is taken with
respect to the predictive distribution of model M. This has certain advantages in the current
setting, e.g. compared to the approach of Corander and Villani (2006), where the approx-
imate Bayesian model learning criterion required training of the prior distributions with
respect to the most complex model considered. This would typically correspond to the com-
plete model, having the complete graph G and the largest possible lag-length for each edge,
easily leading to a situation where the number of observations would not be sufficient for the
estimation of the parameters of the model. As (3) allows us to compute the expected utility
of every model per se, this approach avoids the fitting of overly complex models similarly
to the common asymptotic model selection criteria such as AIC, BIC and HQ, from Akaike
(1969), Schwarz (1978), and Hannan and Quinn (1979), respectively. However, unlike these
asymptotic criteria with a linear penalty term with respect to the model complexity for a
fixed (observed) sample size, BEC takes the curvature in log-likelihood into account, and
behaves non-linearly with respect to the increasing model complexity. This makes BEC an
attractive choice when the number of observations is small relative to the complexity of the
putative models, as will be illustrated in Sect. 4.

Thus far no prior knowledge about the actual model structure M; has been incorporated
to the model score. This can be done by subtracting a penalty term c; reflecting model
complexity from (3) (Bernardo 1999; Corander and Marttinen 2006). The resulting BEC
criterion equals

BEC(M,) = /

e

u(M;,0;)m(0;|x)db; —c;. (5)

We use reference priors for ¥ and B;, i =1, ..., p, and show in the Appendix that BEC
criterion for model M; can be written as

BEC(M;) =log p;(x|8;) + f(M;) — ¢}, (6)

where f(M;) can be calculated analytically. The first term in sum (6) is the maximized
log-likelihood under model M. It will be shown in the Appendix that, as n increases, the
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difference in the f terms in (6) between two models M; and M, converges to a constant
value:

n—oo dj —d;
fM) — f(M)"= ’2 L,

where d; and d; are the parametric dimensionalities of the two models. Thus, different
choices of the penalty term c¢; make BEC asymptotically equivalent to other model selection
criteria (e.g. AIC, BIC, HQ). We set

cj=d;loglogn, (N

which is in VAR framework the slowest increasing asymptotically consistent penalty (see
Hannan and Quinn 1979), corresponding to vague prior information about model structure.
With this choice, the BEC criterion (6) can be seen as analogous to the HQ criterion, how-
ever, with a correction term f(M;) to improve small sample properties.

Interpretation of the relative plausibilities of different models can be obtained by defining
a probability distribution from relative utilities according to

exp(BEC(M))

M) = .
1M = s p(BEC(M))

®)

It follows from the statistical consistency of the HQ criterion that, if one of the models in
M is the true generating model, its relative utility (8) will converge to unity as the number
of observations increases. The relative utilities can be interpreted as asymptotic approxima-
tions to posterior probabilities of models, analogously to similarly normalized versions of
statistically consistent criteria, such as BIC and HQ.

3.2 Algorithms

Here we describe the algorithm used to search the space of models (G, L) for a VAR(G, L).
(The ml-estimation of the parameters, required to calculate BEC (6), is described in the
Appendix). A greedy search using steepest descend is a computationally attractive choice in
the setting of graphical models (Heckerman et al. 1995), where the vast model space makes
standard exact search strategies (e.g. Back-Tracking, Cormen et al. 2001) infeasible. Other
methods have been proposed as well, such as Monte Carlo techniques (see, e.g. Janzura and
Nielsen 2006) and exact computation under structural model restrictions (Koivisto and Sood
2004). However, the increase in the degree of model complexity induced by the dynamics as
compared to regular static graphical models (typically for discrete-valued nodes), makes the
model learning even less tractable. A comprehensive collection of various model reduction
methods, which are commonly used in econometrics for learning the dynamic part of a
VAR, can be found in a comparison study by Briiggemann et al. (2002), see also Winker and
Maringer (2004) and Ozcicek and McMillin (1999). Here, we propose an algorithm, which
combines a greedy approach for efficiency and MCMC type calculation for consistency.

Let (G, L) be a model describing the structure of a VAR(G, L) process. We will use
(G, L), j)=1 to denote the model which equals otherwise (G, L), except that the lag-length
of directed edge (i, j) is set to /. Now, (8) can be utilized to define a distribution for the
lag-length of a directed edge, conditional on other edges, as

q((G, L) j=1)
Y 0q((G, L) jy=r)

q(L(, j)=1|(G,L)) = (C))
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Notice that in (G, L), j)—o the corresponding directed edge vanishes from the model. Sim-
ilarly, let (G, L)y;, j,=1 denote the model which is obtained from (G, L) by adding an undi-
rected edge between i and j, and (G, L)y; j,—o denote the model obtained by removing the
edge. The conditional probability of the undirected edge is given by

.. q((G, L) jy=1)
, E>)|(G, L)) = . 10
9(G- ) € Eal( ) q((G, L), jy=0) +q((G, L) jj=1) (10

The above two conditional distributions can be interpreted as approximate conditional pos-
terior distributions over the subclass of models where the condition holds. Our search al-
gorithm proceeds by updating edges one by one, using the distributions (9) and (10). The
process of updating the status of all edges once, is referred to as one iteration in the sequel.
Such iterations can be performed either in a greedy or a stochastic manner. In a greedy iter-
ation, each edge is updated to maximize the BEC value, whereas in a stochastic iteration the
values for the edges are drawn from the distributions (9) and (10). Notice that one stochas-
tic iteration corresponds to one iteration in a standard Gibbs sampling MCMC simulation
(see e.g. Robert and Casella 2005) from the distribution (8). In our MATLAB implemen-
tation, the algorithm proceeds by alternating between the stochastic and greedy iterations.
In practice this strategy leads to convergence quite rapidly, and in the performed simulation
experiments (see Sect. 4), no more than two or three stochastic iterations were usually re-
quired to reach a state where the algorithm no longer identifies new models in addition to
those already associated with high BEC values.

The combination of stochastic and greedy steps provides an important balance for the
search algorithm. Namely, if only stochastic steps were exploited in the search, the identi-
fication of a model with a very high ranking with respect to BEC would become extremely
unlikely in practice. This is due to the fact that, when the search is close to a (locally) optimal
model, the number of possible updates worsening the model is considerably larger than the
number of updates that would improve the model. Therefore, it is unlikely that all the edges
would simultaneously be associated with the optimal values, if these were chosen stochasti-
cally. This behavior was in fact clearly present in the analyses we performed with both real
and simulated data. On the other hand, using only greedy iterations would most likely lead
to a model which is only locally optimal. Indeed, the eventual discovery of the true global
optimum is theoretically guaranteed by the stochastic iterations, which allow the search to
escape from local maxima. Notice that there is a strictly non-zero probability that, starting
from any state, after one stochastic iteration the search is in the globally optimal state. It
follows that, as the number of performed stochastic iterations increases, the probability of
not visiting the true global optimum converges to zero.

Here we consider briefly the time complexity of the presented method. An exact deriva-
tion of the time complexity is straightforward and is omitted. Instead, we make the following
remarks: (1) Factors affecting the time complexity include: dimension of the process (k), the
lag-lengths of the directed edges, the number of data points 7, the upper bound for the lag-
length (p), and the size and the structure of the undirected part of the graph. (2) Some steps
in the ml-estimation of the model parameters (see Appendix) require quadratic or cubic op-
erations, and consequently the algorithm can not be expected to be easily scalable for mod-
eling situations with arbitrarily increasing complexity. (3) The sizes of the mp-components
of the undirected part of the graph determine largely the final complexity of the algorithm,
especially if the components are non-complete, and consequently require the use of the it-
erative methods for the ml-estimation of the corresponding parameters in the covariance
matrix. The observed execution times as well as the practical limits for the applicability of
the presented algorithm are discussed in the end of Sect. 4.2.
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For the purposes of the simulations in the next section, we need also such versions
of the described algorithm, which can be used for the learning of the structure of either
VAR(G, p*) or VAR(&), where VAR(G, p*) refers to a process in which all lags are as-
sumed equal (p*), while VAR(G) denotes a process, in which only the covariance matrix is
restricted by the undirected graph G, while the dynamic part, i.e. the coefficient matrices,
is unconstrained. The latter class of models can be interpreted as unstructured VAR models,
where the causal effects may be absent or present for any particular lag length, given the
presence of least a single non-zero element among B, (b, a), fori =1, ..., p, which would
imply the existence of the directed edge (a, b) in the Granger causality graph. (VAR(G)
can be considered as a DBN with contemporaneous dependencies represented by undirected
edges.)

The learning algorithms of VAR(G, p*) and VAR(G) are based on straightforward mod-
ifications of the algorithm presented for the learning of a VAR(G, L) process. Although the
model space of VAR(@) is vast as compared to VAR(G, L), one iteration of the search al-
gorithm is of the same order of complexity as with VAR(G, L). This is due to the fact that
updating the presence or absence of p parameters corresponding to one directed edge in
the unconstrained process requires the calculation of p bivariate conditional distributions
based on (8), while the update of a lag value for one edge in VAR(G, L) requires the calcu-
lation of one p-variate distribution. Both the operations require O (p) evaluations of BEC
for different models. Further details of these algorithms are omitted.

4 Examples
4.1 Synthetic data

To investigate the accuracy of our method under different conditions, we performed a sim-
ulation study with five different types of underlying graphs. For each graph type, we ran-
domly created a set of 20 graphs which were analyzed with the presented algorithm. The
different graph types that were considered include: (1) “basic” graph, (2) sparse graph,
(3) graph with directed edges only, (4) graph with undirected edges only, and (5) graph
with non-decomposable undirected part. The graph types were specified by five parameters:
the dimension of a process (k), the maximum lag-length for any directed edge (pmax), and
probabilities of a directed edge from one node to another (p;), a loop (p;), and an undirected
edge (p3). For example, for the “basic” graph type, the above parameters were set to: k =5,
Pmax =39, p1 = 0.3, p, =0.7, and p3 = 0.5. The graphs for each setup were randomly cre-
ated using the specified parameters. For directed edges present in a graph, the lag-lengths
were uniformly drawn from 1, ..., ppax.

The coefficient matrices B; (i =1, ..., pmax) of the VAR processes corresponding to the
simulated graphs were drawn from distributions:

U(—0.5,0.5), ifa=bandi<L(b,a),
Bi(a,b)~ U(~1,1), ifa#bandi <L(b,a),
0, ifi > L(b,a).

Only the coefficient matrices satisfying the stability condition (Liitkepohl 1993, for-
mula 2.1.12) were accepted for further analysis. The covariance matrices were simulated
with the MATLAB function sprandsym, which can be used to generate symmetric positive
definite matrices. Iterative proportional fitting was used to transform the inverse covariance
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matrices to satisfy the restrictions imposed by the undirected parts of the graphs. Before
accepting the generated covariance matrix we checked that the elements in the precision
matrix, corresponding to partially contemporaneously correlated variables, were non-zero
also in practice. Those non-zero elements of the precision matrix which were less than 0.05
were randomly assigned new values from the distribution U (0.07,0.17).

Data sets of sizes 200, 1000, and 5000 observations were generated for each process,
using the strategy described in Liitkepohl (1993), Appendix D.1. The estimation algorithm
was then run with each data set. The search was performed using both the stochastic and
the greedy search steps, such that the search was started with three stochastic steps, after
which the greedy step was repeated until no improvement occurred. These steps were re-
peated twice with the data sets having dimension 5, and three times with data sets of higher
dimension. The results along with different parameter values are collectively presented in
Table 1, and they are based on the 20 simulated graphs of each graph type. To measure the
differences between lag matrices we use a norm for matrix T = (#;;);,j1,...x defined as:

k k
WESIONIE

i=1 j=1

Because element (i, j) of the lag matrix specifies the number of parameters in the coefficient
matrices which are used to describe the directed edge from i to j, it follows that the norm
of the lag matrix ||L|| corresponds to the number of non-zero parameters in the coefficient
matrices.

The values in Table 1 show that our method is capable of inferring the correct graph
structure well, both the undirected edges, and the directed edges with the lag-lengths. Also,
the estimates are closer to the true underlying graphs, when the number of observations
increases, as expected from the theoretical perspective. The accuracy of the estimation pro-
cedure decreases slightly with an increasing dimension of the process, as can be seen by
comparing the graph types with dimension 7 and 10 to those with dimension 5. This reflects
the increased complexity, caused by the much larger number of possible models in higher
dimensions. However, with an adequate number of observations, the estimated graphs were
more accurate also in the higher dimensional situations. It can be seen that the directed
edges are inferred with a relatively high accuracy even with the smallest data sets, while
the inference of the undirected part seems to require more observations to yield a correct
identification of most of the edges. The complete exclusion of either directed or undirected
edges does not seem to create any bias, but the estimates of the remaining edges are as good
as with mixed graphs of similar complexity.

To illustrate the benefits of using BEC, we investigated the small sample properties of
other commonly used criteria, AIC, BIC, and HQ, and compared these to the results obtained
by the BEC criterion (6). We also considered various forms of the penalty term c; in (6),
making BEC asymptotically equivalent in turn to each of the mentioned criteria. In total
40 data sets of 50 observations were generated by using the above described simulation
setup with the basic graph type. The data sets were analyzed with the described algorithm,
changing only the used criterion. The results of these analyses are presented in Table 2. The
results show that, regardless of the criterion of choice (AIC, BIC, HQ), the BEC criterion
with the corresponding penalty term c; is able to infer the underlying model structure more
accurately than its asymptotic counterpart.

Finally, we investigated the estimation of the Granger causality graph under a range of
different constraints on the dynamic part (the coefficient matrices) of a process, when the
true underlying graph had unequal lag-lengths. In particular, we considered three different
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Table 1 Results with synthetic data. Each row shows average results from 20 graphs. The meanings of the
columns are: k: the dimension of the process. pmax: the upper bound for the length of the memory of any
single process. p1: the probability of a directed edge from one node to another. p;: the probability of a loop.
p3: the probability of an undirected edge. For the last setup (*) only the graphs having non-decomposable
undirected parts were accepted for the analysis. #data: the number of observations in the data set. || L|: the
average norm of the lag matrices in the simulated graphs. ||[L — L||: the average distance between the true
and the estimated lag matrices. Standard deviations are shown in the parentheses. |E5|: the average number
of undirected edges in the simulated graphs. A g, : the average number of differing undirected edges between
the true and the estimated graphs. Standard deviations are shown in the parentheses

Setup Results
k Pmax P1 P2 P3 #data LIl IL—L| |Es| Ag,
5 5 0.3 0.7 0.5 200 28.9 4.13.2) 5.0 3.6(1.5)
1000 1.6(1.3) 1.4(1.3)
5000 1.0(0.9) 0.3(0.6)
10 3 0.05 0.3 0.15 200 154 9.1(3.6) 8.1 8.6(3.0)
1000 4.8(2.6) 4.1(1.6)
5000 2.9(1.8) 1.3(1.0)
5 5 0.3 0.7 0 200 26.6 3.6(2.0) 0.0 0.4(0.5)
1000 1.7(1.4) 0.2(0.4)
5000 0.8(0.7) 0.2(0.4)
5 5 0 0 0.5 200 0.0 1.7(1.4) 4.7 3.5(1.6)
1000 1.3(1.3) 1.4(1.1)
5000 0.8(0.9) 0.2(0.4)
7 4 0.2 0.7 0.5% 200 33.0 7.3(3.2) 11.3 8.6(3.0)
1000 3.0(1.8) 4.0(1.4)
5000 1.8(1.5) 0.6(0.8)

Table 2 The results of the comparison of small sample behavior between various model choice criteria.
The simulation setup corresponding to row 1 in Table 1 was repeated for 40 data sets of 50 observations.
L — L] is the average distance between the true and the estimated lag matrices. A, is the average number
of differing undirected edges between the true and the estimated graphs. BECayc, BECpjc and BECyg
are variations of BEC, in which the penalty term c; in (5) is selected to make the criterion asymptotically
equivalent to AIC, BIC or HQ, correspondingly. Thus, BECy corresponds to the criterion referred to simply
as BEC elsewhere in the paper

Criterion IL—L| Ag,
AIC 80.1 5.1
BECaic 47.8 4.7
BIC 16.5 3.9
BECgic 124 43
HQ 46.1 4.8
BECHq 17.2 4.1
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Table 3 Comparison of the accuracy of learning Granger causality graphs, when the learning is based on
VAR processes with differing structural constraints on the dynamic part of the process. In VAR(G, L) the
coefficient matrices are constrained by lag matrix L. In VAR(G, p*) all lags are assumed to be equal. VAR(G)
corresponds to a VAR with an unconstrained lag-structure. The following parameter values (see Table 1)
were used to simulate the generating graphs for the data sets: K =5, p; =0.6, pp =0.9, p3 =0.5, and
#data = 300. The lag-lengths for the edges were generated on the first row from U(1,...,5) and on the
second row from U (1,2). However, on the second row one of the lags was drawn from U (4, ..., 8), and
one from U(18, ..., 20). The results are based on average values for 20 data sets. Ag, and Ag, denote the
numbers of differing directed and undirected edges between the estimated and the true graph. MSE (mean
squared error) measures the predictive performance of the estimated graph

VAR(G, L) VAR(G) VAR(G, p*)
Lag—length AEI AEz MSE AEl AEZ MSE AEI AEZ MSE
ud,...,5) 1.4 2.7 3.7 5.7 2.9 4.0 1.7 2.9 3.9
Mixture 1.5 29 3.7 54 2.8 4.1 3.5 3.5 53

approaches: (1) the traditional approach, in which all lag-lengths are assumed equal, i.e.
VAR(G, p*), (2) the presented approach, where each directed edge has its own lag-length,
VAR(G, L), and (3) VAR(@), in which the dynamic part of the process is unconstrained.
We investigated the estimation of Granger causality graphs in two different underlying lag-
length settings: in the first setting, the lag-lengths were drawn from U(1, ..., 5). In the sec-
ond setting the lag-lengths were drawn from U (1, 2), except that one lag-length was drawn
from U (4, ..., 8) and one from U (18, ..., 20). Model structures restricted by upper bound
p = 23 were considered by the search algorithms. Both settings were repeated 20 times, and
the average results are shown in Table 3. The results show that, in both the settings, the esti-
mate of the Granger causality graph based on the unrestricted VAR(&) was the most inaccu-
rate. The reason for this is that VAR(G) allows for the inclusion of individual parameters in
the coefficient matrices, which increases the model complexity only a little and thus leads to
a light penalty by the model selection criterion. Consequently, the corresponding causality
graphs have numerous redundant directed edges (related issues have been discussed also in
Eichler 2001). In contrast, an inclusion of a directed edge in VAR(G, L) or VAR(G, p*) in
general adds many parameters to the model and is therefore penalized more heavily, lead-
ing to fewer false associations between the variables. When the lag-lengths were simulated
from U(1,...,5), the assumption that all lag-lengths are equal did not seemingly reduce
the accuracy of estimating the Granger causality graph. On the other hand, when some di-
rected edges had clearly larger lag-lengths than others (the second setting), the estimated
overall lag-length in VAR(G, p*) was in general estimated to be somewhere in between the
extreme values. Also, the estimated Granger causality graph often did not contain all the
edges with shorter lags present in the true graph, because inclusion of such edges would
have introduced many redundant parameters, in addition to the actual ones. The learning
based on VAR(G, L), allowing for unequal lags, was not corrupted by such behavior. When
we used the learned models with ml-parameter values to predict yet another 10 observa-
tions from the true underlying models, the uncertainty related to the redundant parameters
in VAR(G, p*) model is clearly visible as a lowered predictive ability. Also the unrestricted
VAR(&) models had clearly better predictive abilities than the VAR(G, p*) models, even
if the corresponding Granger causality graphs were contaminated by spurious edges. The
importance of allowing unequal lag-lengths for VAR models has been discussed also e.g. in
Gredenhoff and Karlsson (1999).
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4.2 Air pollution data

As a real-world example we analyzed air pollution data previously examined by Dahlhaus
(2000), Dahlhaus and Eichler (2003) and Corander and Villani (2006). Dahlhaus (2000) and
Dahlhaus and Eichler (2003) used partial correlation graphs in their analysis and Corander
and Villani (2006) restricted their fractional Bayesian analysis to cover the Granger causal-
ity graphs with decomposable undirected parts of the graph and a common lag-length. We
searched for the best model among all graphs with directed and undirected edges, allowing
for unequal lag-lengths. The data has been collected by half-hourly measurements, and con-
sists of 48216 observations, thus covering a period of less than three years. The recorded
variables include CO, NO, NO,, O3 and global radiation intensity (GRI). CO and NO are
created mostly by traffic and industry, whereas NO, and Oj; are created by different chemi-
cal processes in the atmosphere. The global radiation plays a role in these processes, being
especially essential for the birth of ozone. For further details of the interactions between the
variables, the reader is referred to Seinfeld (1986, Chap. 4). As in Dahlhaus (2000), we per-
formed the analysis with both the original (raw) data and a trend-corrected (residual) data,
which was obtained by subtracting a local average daily cycle from the observations. For the
original data, only every 8th observation (4 hour interval) was considered in the analysis, as
in Dahlhaus (2000) and Corander and Villani (2006). For the trend-corrected data analy-
sis we used all the data points, as in Dahlhaus and Eichler (2003). The detailed results are
shown for the original data only. However, differences and similarities between the raw and
residual data analyses will be discussed afterwards.

Before the analysis an upper bound p of the lag-lengths is required to be specified. Here
we used a lag-length equal to 60 as the upper bound for the loops and 20 for the rest of
the directed edges (upper bound 60 corresponds to a period of 60%4 hours i.e. 10 days). An
upper bound equal to 80 was also tested for all the edges, but this did not lead to any change
in the results. We ran the search algorithm independently five times, by repeating on each of
these twice a succession of 4 stochastic and greedy iterations. The optimal graphs found in
the five replicates of the search all had the same undirected part, while the directed parts of
graphs varied to some extent over the runs. In two of the replicates, the graph corresponding
to the overall optimum over all runs was identified, while in the three others the lag-lengths
of some directed edges were slightly different from the optimum. The maximum difference
[ILy — L,|| of alag matrix L, found in any single replicate to the overall optimal lag matrix
Ly was 9. This is small as compared to the norm of the optimal lag matrix ||L,]||, which
equals 253. Thus, from the practical perspective the algorithm converged to almost the same
model in all five replicates. All the graphs visited during the five runs of the algorithm were
combined to calculate the relative utilities (8), which can also be interpreted as approximate
posterior probabilities as discussed earlier. Due to the vast model space, no single model
was clearly preferred over others. The highest value of the app