
Mach Learn (2009) 76: 73–107
DOI 10.1007/s10994-009-5116-8

Using the bottom clause and mode declarations in FOL
theory revision from examples

Ana Luísa Duboc · Aline Paes · Gerson Zaverucha

Received: 15 November 2008 / Revised: 3 April 2009 / Accepted: 17 April 2009 /
Published online: 12 June 2009
Springer Science+Business Media, LLC 2009

Abstract Theory revision systems are designed to improve the accuracy of an initial the-
ory, producing more accurate and comprehensible theories than purely inductive methods.
Such systems search for points where examples are misclassified and modify them using
revision operators. This includes trying to add antecedents to clauses usually following a
top-down approach, considering all the literals of the knowledge base. Such an approach
leads to a huge search space which dominates the cost of the revision process. ILP Mode
Directed Inverse Entailment systems restrict the search for antecedents to the literals of the
bottom clause. In this work the bottom clause and mode declarations are introduced in a
first-order logic theory revision system aiming to improve the efficiency of the antecedent
addition operation and, consequently, also of the whole revision process. Experimental re-
sults compared to revision system FORTE show that the revision process is on average 55
times faster, generating more comprehensible theories and still not significantly decreasing
the accuracies obtained by the original revision process. Moreover, the results show that
when the initial theory is approximately correct, it is more efficient to revise it than learn
from scratch, obtaining significantly better accuracies. They also show that using the pro-
posed theory revision system to induce theories from scratch is faster and generates more
compact theories than when the theory is induced using a traditional ILP system, obtaining
competitive accuracies.

Keywords ILP · Theory revision · Mode directed inverse entailment (MDIE)

Editors: Filip Zelezny and Nada Lavrac.

This is an extended and revised version of the ILP 2008 paper (Duboc et al. 2008).

A.L. Duboc · A. Paes (�) · G. Zaverucha
Department of Systems Engineering and Computer Science–COPPE, Federal University
of Rio de Janeiro (UFRJ), P.O. Box 68511, 21945-970 Rio de Janeiro, RJ, Brazil
e-mail: ampaes@cos.ufrj.br

A.L. Duboc
e-mail: aduboc@cos.ufrj.br

G. Zaverucha
e-mail: gerson@cos.ufrj.br

mailto:ampaes@cos.ufrj.br
mailto:aduboc@cos.ufrj.br
mailto:gerson@cos.ufrj.br

74 Mach Learn (2009) 76: 73–107

1 Introduction

Inductive Logic Programming algorithms learn a First-order Logic (FOL) theory from a set
of positive and negative examples and background knowledge (BK) (Muggleton and De
Raedt 1994; Nienhuys-Cheng et al. 1997; Dzeroski and Lavrac 2001; De Raedt 2008). The
BK is composed of a set of clauses assumed as correct and therefore it cannot be modified.
On the other hand, FOL theory revision from examples systems divide the initial theory in
two parts: the first one is assumed as correct and therefore is fixed and the second one may
contain incorrect rules which need to be modified in order to correctly explain the dataset
(Wrobel 1996). Theory revision systems operate by searching for revision points, that is,
the points which explain faults in the theory, and then proposing revisions to such points,
through applying at each point a number of revision operators. As the initial theory is a good
starting point and the revision process takes advantage of it, the theories returned by revision
systems are usually more accurate than theories learned from standard ILP systems using
the same dataset. Moreover, if the initial theory is approximately correct, it is more efficient
to revise it than learn a whole new theory from scratch.

Theory revision systems such as FORTE (Richards and Mooney 1995) include addition
of antecedents in a clause as one of the possible modifications in failing points of the the-
ory. In that system, the search for antecedents follows FOIL’s (Quinlan 1990) top-down
approach which eventually generates a huge search space of literals, with some of these
literals not covering even one positive example. On the other hand, ILP algorithms such
as Progol (Muggleton 1995) and Aleph (Srinivasan 2001), restrict the search for literals to
those belonging to the bottom clause. The bottom clause contains literals relevant to a posi-
tive example, collected from a Mode Directed Inverse Entailment (MDIE) search in the BK.
This hybrid bottom-up and top-down approach often generates many fewer literals, and they
are also guaranteed to cover at least one positive example (the one used to generate the bot-
tom clause). Just as the use of the bottom clause brings the advantage of reducing the search
space of Progol when compared to a top-down approach as FOIL, it could also reduce the
search space of antecedents of FORTE, which presently generates antecedents in the FOIL
manner. Thus, in this work, we propose to use the literals of the bottom clause to define the
search space for antecedents to add in the clauses being revised. Additionally, we use mode
declarations to validate if the antecedents of the bottom clause can effectively be added to
such clauses.

Dietterich et al. (2008) pointed out that although there were several theory revision sys-
tems developed in the past (Wrobel 1996; De Raedt 2008) they were not widely used for the
lack of applications with substantial codified initial theory and that the situation has changed
recently with the availability of large-scale resources of background knowledge in areas such
as biology (Muggleton 2005). Therefore, they concluded that with the availability of public
databases in the sciences there is an increasing need for the development of efficient theory
revision ILP systems. This work contributes towards this goal of bringing a theory revision
system to be as efficient as a state of the art ILP system and achieving significantly higher
accuracies.

Moreover, standard ILP systems search for the final hypothesis through a covering ap-
proach, where at each iteration a single clause is learned and the positive examples covered
by the clause are removed from the list of examples. Although the covering algorithm is con-
sidered to be faster than non-covering approaches, where the hypothesis (a clausal theory)
is constructed as a whole and globally evaluated, it can generate many clauses unnecessarily
long and only locally optimal (Bratko 1999). Besides that, the covering approach usually
learns only single predicates. A solution to this problem would be to construct hypothe-
ses as a whole by using a refinement operator for entire theories. Unfortunately, searching

Mach Learn (2009) 76: 73–107 75

Fig. 1 Theory revision schema

in the space of whole theories is known to be more expensive than using a covering ap-
proach (Badea 2001). Theory revision systems do not use a covering approach, since they
consider the whole theory instead of individual clauses when proposing modifications to
the failing points. However, the revision approach inherently works with a reduced search
space, since the focus in such systems is only on the misclassified examples and the failing
points of the theory. Therefore, another contribution of this work is to show through exper-
imental results that using a theory revision approach to induce whole theories from scratch
can be faster than using a covering approach while obtaining competitive accuracy and more
compact theories.

The rest of this paper is organized as follows. Sections 2 and 3 provide background con-
cerning theory revision and inverse entailment, respectively. Then, the proposed approach
of this work is devised in Sect. 4, followed by the experimental results in Sect. 5. Finally,
the work is concluded in Sect. 6.

2 First-order logic theory revision

Figure 1 presents a schema for theory revision. The theory revision system receives an initial
theory and a set of examples E+ ∪ E−, divided into positive and negative sets, respectively.
The initial theory includes two components: an invariant component, named background
knowledge (BK), and the Hypothesis (H) component that can be modified. H is composed
of function-free first-order Horn clauses, while BK, E+ and E− consist of Horn clauses.

Ideally, the revision process should generate a final hypothesis H ′ that, together with BK,
will entail all the positive examples in E+ and none of the negative examples, E−, that is,
the final theory will be consistent with the dataset. Notice that learning in Inductive Logic
Programming (ILP) can be seen as a particular case of theory revision where H is initially
empty.

2.1 Revision points

As theory revision deals with multiple predicates, many clauses can be involved in the proof
of a negative example as well as many clauses could be used to prove a positive example.
Nevertheless many clauses can be already correct and do not need to be modified. Therefore,
it is necessary to find the points in the initial theory that need to be corrected, which are
called revision points. There are two types of revision points:

– Generalization—the literal in a clause responsible for a failure in the proof of some pos-
itive example (failure point) and other literals in the theory that may have contributed to
this failure (contributing points);

76 Mach Learn (2009) 76: 73–107

– Specialization—clauses used in successful proofs of negative examples.

The specification of the revision point determines how the theory should be modified to
be consistent with the dataset. The modifications in the theory are devised by the revision
operators, which could be of two types. They may add previously missing answers through
generalization or remove incorrect answers through specialization (Wrobel 1996; Richards
and Mooney 1995).

2.2 Revision operators

Theory revision relies on operators that propose modifications at each revision point. Any
operator used in first-order machine learning can be used in a theory revision system. Below,
we briefly describe some operators used in this work.

The operators for specialization are:

• Delete-rule—this commonly used operator removes a clause that was used in the proof
of a negative example.

• Add-antecedent—this operator adds antecedents to an incorrect clause, where an an-
tecedent is defined as a literal in the body of the clause.

The generalization operators are:

• Delete-antecedent—this operator removes failed antecedents from clauses that could be
used to prove positive examples.

• Add-rule—this operator generates new clauses from existing ones using deletion of an-
tecedents followed by addition of antecedents. It is also possible to create an entirely new
clause.

There are other approaches of generalization and specialization operators. For more details
on revision operators we refer the reader to Richards and Mooney (1995) and Wrobel (1996).

2.3 FORTE

Although there are several theory revision systems described in the literature (De Raedt
2008) in this work we follow the First Order Revision of Theories from Examples (FORTE)
system (Richards and Mooney 1995). For an extensive comparison among FOL Revision
Systems, including MIS (Shapiro 1983), RUTH (Adé et al. 1994), MOBAL (Morik et al.
1993), among others, we refer the reader to Wrobel (1996).

FORTE performs a Hill-Climbing search through a space of both specialization and gen-
eralization operators in an attempt to find a minimal revision to a theory that makes it con-
sistent with the set of training examples. The hypothesis is composed of function-free Horn
clauses, background knowledge consisting of Horn clauses and the examples of ground def-
inite clauses. Unlike some theory revision systems that are incremental, FORTE is a batch
revision system in the sense that the examples are all processed at once. The skeleton of
FORTE is shown in Algorithm 1. The key ideas are:

1. Identify all the revision points in the current theory.
2. Generate a set of proposed revisions for each revision point starting from the one with

the highest potential and working down the list. Potential is defined as the number of
misclassified examples that could be turned into correctly classified from a revision in
that point.

3. Score each revision through the actual increase in theory accuracy it achieves.

Mach Learn (2009) 76: 73–107 77

Algorithm 1 FORTE Algorithm (Richards and Mooney 1995)
1: repeat
2: generate revision points;
3: sort revision points by potential (high to low);
4: for each revision point do
5: generate revisions;
6: update best revision found;
7: until potential of next revision point is less than the score of the best revision to date
8: if best revision improves the theory then
9: implement best revision;

10: until no revision improves the theory;

4. Retain the revision which increases the score most.

Each revision is scored considering the examples correctly and incorrectly classified be-
fore and after the revision. Thus, before performing the revision, the examples—correct
or incorrect—whose provability can be affected by it are collected. Then, after proposing
the revision, the difference between the incorrect examples which become correct and the
correct examples which become incorrect is the actual score of the revision. The score is
expressed by the formula

Improvement_on_accuracy = right − wrong (1)

where right is the number of examples which were incorrectly classified before the revision
and become correctly classified after it and wrong is the number of examples which were
correctly classified before the revision and become incorrectly classified after it.

FORTE stops when the potential of next revision point is less than the score of the best
revision so far. If the best revision really improves the theory it is implemented.

Antecedents addition Now we further discuss the add antecedents operation of FORTE
since this is the operator modified in this work to make the revision process more efficient.
There are two algorithms for adding antecedents in a clause:

1. Hill Climbing—This algorithm is based on FOIL and adds one antecedent at time. It
works as follows. First, all possible antecedents are created and scored using a slightly
modified version of the FOIL score, displayed in formula (2), where Old_score is the
score of the clause without the literal being evaluated, Positives is the number of positive
examples proved by the clause with the literal added to it and Negatives is the number
of negative examples proved by the clause with the literal. The difference concerns the
fact that FOIL score counts the number of proofs of instances, whereas FORTE counts
the number of provable instances, ignoring the fact that one instance may be provable
in several different ways. Next, the antecedent with the best score is selected. If the best
score is better than the current clause score, the antecedent is added to the clause. This
process continues until either there are no further antecedents to be added in the clause
or no antecedent can improve the current score. This approach is susceptible to local
maxima.

foil_based_score = Positives ∗ (Old_score − log(Positives/(Positives + Negatives)))
(2)

78 Mach Learn (2009) 76: 73–107

Fig. 2 An example of a
relational graph representing part
of the family domain (Richards
and Mooney 1995)

2. Relational Pathfinding—In this approach a sequence of antecedents is added to a clause
at once in attempt to skip local maxima, as, sometimes, none of the antecedents put
individually in the clause improves its performance.

The Relational Pathfinding algorithm is based on the assumption that generally in
relational domains there is a path with a fixed set of relations connecting a set of terms
and such path satisfies the target concept. A relational domain can be represented as a
graph where the nodes are the terms and the edges are the relations among them. Thus, we
can define a relational path as the set of edges (relations) which connect nodes (terms)
of the graph. To better visualize such an approach, consider, for instance, the graph in
Fig. 2, which represents a part of a family domain. In this graph, horizontal lines denote
marriage relationships, and the remaining lines denote parental relationships.

Now, suppose we want to learn the target concept grandfather, given an empty initial
rule and a positive example grandfather(peter,anne). The relational path between the
terms peter and anne is composed of the relation parents connecting peter to victoria,
and also of the relation parents connecting victoria to anne. From these relations, the path
parents(peter,victoria), parents(victoria,anne) is formed, which can be used to define the
target concept grandfather(A,B) : −parents(A,C),parents(C,B).

Therefore, the Relational Pathfinding algorithm aims to find such paths given a re-
lational domain, since important concepts are represented by a small set of fixed paths
between terms defining a positive example. From the point of view of theory revision,
this algorithm can be used whenever a clause needs to be specialized and it does not have
relational paths connecting its variables. In this case, a positive example proved by the
clause is chosen to instantiate it, and then, from the ground clause, relational paths to the
terms without a relationship in the clause are searched.

If the new relations found have introduced new terms that appear only once, FORTE
tries to complete the clause by adding relations that hold between these singletons and
other terms in the clause; these new relations are not allowed to eliminate any of the
currently provable positive instances. If FORTE is unable to use all of the new singletons,
the relational path is rejected.

When specializing a clause using any of these algorithms, if the antecedents added to
the clause make some positive example unprovable, the just revised clause is added to the
set of modifications proposed to the theory and a new search for antecedents starts from
the original clause, in an attempt to recover the provability of the positive examples. This
process continues until all the positive examples originally covered by the initial clause are
again provable.

Antecedents generation When creating literals to add in the body of a clause, all the pre-
dicates defined in the knowledge base are considered. A literal is created from a predicate
by instantiating its arguments by variables, while respecting the following constraints:

Mach Learn (2009) 76: 73–107 79

Algorithm 2 Hill Climbing Antecedent Generation Algorithm
1: C = Clause to be specialized
2: for each literal in the knowledge base do
3: return the variables and their types from C
4: return the arguments and their types from the particular literal
5: for each combination of variables from C do
6: Verify if the combination is valid as possible arguments of the literal
7: if the combination is valid then
8: Replace the arguments of the literal for the combination of variables found
9: return the literal as a new antecedent

10: else
11: Go to the next combination of variables available
12: N = number of arguments of the particular literal
13: i = 1
14: while i ≤ N − 1 do
15: Create a new variable L
16: V = Variables of C + L

17: for each combination in V that includes L and some variable of C do
18: Verify if the combination is valid as possible arguments of the literal
19: if the combination is valid then
20: Replace the arguments of the literal for the combination of variables found
21: return the literal as a new antecedent
22: else
23: Go to the next combination of variables available
24: i = i + 1
25: Go to the next literal in the knowledge base

1. At least one variable of the new literal must be in the clause being revised;
2. The arguments of the literals must obey the types defined in the knowledge base.

Such constraints do not explore properly the connections among variables, since they are
not defined as input or output variables (there are no mode declarations). Besides, several
different variations of the same literal are generated from the existing variables and the new
ones. Clearly, the larger the number of new variables in the clause, the more antecedents are
created. Actually, the space complexity grows exponentially in the number of new variables
since the complexity of enumerating all possible combinations of variables is exponential
in the arity of the predicate. Thus, following such an approach, the antecedent addition
operation is inefficient, since all the literals created must be scored in order to choose the
best one. Moreover, common scoring functions in ILP are very expensive since they involve
attempts to prove the examples.

The process of generating literals is slightly different for the two antecedents generation
algorithms. The algorithms for these processes can be seen in Algorithm 2 and Algorithm 3,
for Hill Climbing and Relational Pathfinding algorithms, respectively.

As already mentioned, the Relational Pathfinding algorithm starts from a clause grounded
from a positive example covered by the clause. The terms in the ground clause will be
the nodes in the graph, connected by the relations defined in the body of the clause. The
algorithm constructs the graph iteratively, starting from these initial nodes and expanding
them until finding the relational paths. The end values are the terms (nodes) created when a
node is expanded.

80 Mach Learn (2009) 76: 73–107

Algorithm 3 Relational Pathfinding Antecedent generation
1: for each literal in the knowledge base do
2: return the end values and their types in the node been expanded
3: return the arguments and their types from the particular literal
4: for each combination of end values in the node do
5: Verify if the combination is valid as possible arguments of the literal
6: if the combination is valid then
7: Replace the arguments of the literal for the combination of end values found
8: return the literal as a new antecedent
9: else

10: Go to the next combination of end values
11: N = number of arguments of the particular literal
12: i = 1
13: while i ≤ N − 1 do
14: Create a new variable L
15: V = end values of the node + L

16: for each combination in V that includes L and some end value of the node do
17: Verify if the combination is valid as possible arguments of the literal
18: if the combination is valid then
19: Replace the arguments of the literal for the combination of end values found
20: Search in the background knowledge for a fact that unifies with the literal

created
21: if a fact is found then
22: return the literal as a new antecedent
23: else
24: Go to the next combination of variables available
25: else
26: Go to the next combination of variables available
27: i = i + 1
28: Go to the next literal in the knowledge base

3 Mode directed inverse entailment and the bottom clause

This section briefly reviews the method of mode-directed inverse entailment originally de-
scribed in Muggleton (1995). Given background knowledge BK, a set of positive examples
E+ and negative examples E−, the goal of inductive logic programming systems is to find
a hypothesis such that

BK ∧ H � E+ and BK ∧ H � E−

As each clause in the simplest H should explain at least one example, let us consider the
case of H and E+ each being single Horn clauses. Then, using the contraposition law, the
first formula above is inverted to

BK ∧ E+ � H

If H and E+ are restricted to be single Horn clauses, H and E+ will be ground
skolemised unit clauses. Considering ⊥ as the conjunction of ground literals which are true

Mach Learn (2009) 76: 73–107 81

in all models of BK ∧ E+, we have

BK ∧ E+ � ⊥
The bottom clause ⊥ with respect to the example E+ and BK is the most specific clause
such that

BK∧ ⊥� E+

Since H must be true in every model of BK ∧E+, H must contain a subset of the ground
literals in ⊥. Thus,

BK ∧ E+ � ⊥ � H

and so

H �⊥
Therefore, a subset of solutions for H can be found by considering the clauses �-

subsuming ⊥.
Suppose, for example BK = animal(X) ← pet(X),pet(X) ← dog(X) and E = nice(X)

← dog(X). In this case, ⊥= nice(X) ← dog(X),pet(X),animal(X).
In general, ⊥ could have an infinite cardinality. Thus, Mode Directed Inverse Entail-

ment (Muggleton 1995) systems such as Aleph and Progol, use modes declaration together
with other settings to constrain the search for a good hypothesis. Mode declarations de-
scribes the relations between the arguments and their types and also defines if a predicate
can be used in the head of the clause (modeh) or in the body of the clause (modeb). They
can also constrain the number of different instantiations of a predicate in a clause, through
the recall number. To do so, the arguments of a literal can be of three modes:

– Input(+)—an input variable of type T in a body literal Bi appears as an output variable
of type T in a body literal that appears before Bi , or appears as an input variable of type
T in the head of the clause.

– Output(−)—an output variable of type T in the head of the clause must appear as an
output variable of type T in any literal of the body of the clause.

– Constant(#)—an argument denoted by #T must be ground with terms of type T .

Algorithm 4 illustrates the saturation phase of Progol (Muggleton 1995) system, corre-
sponding to the bottom clause generation from a positive example. The list InTerms keeps
the terms responsible for instantiating the input terms of the predicate in the head of the
clause and the terms instantiating output terms in the body of the clause. The function hash
associates a different variable to each term.

Suppose, for example, the mode declarations below, expressing a fatherhood relationship,
where the first argument is the recall number

modeh(1, father(+person,+person))

modeb(20,parent_of (+person,+person))

modeb(20,parent_of (−person,+person))

and the background knowledge

parent_of (jack,anne)
parent_of (juliet,anne)
parent_of (jack, james)
parent_of (juliet, james)

82 Mach Learn (2009) 76: 73–107

Algorithm 4 Bottom clause construction Algorithm (Muggleton 1995)

1: let Ex be a positive example, where Ex is a clause normal form logic program a ∧ b1 ∧
· · · ∧ bn

2: let i be 0, corresponding to the variables depth
3: BK ← BK ∪ Ex (1)
4: InTerms ← ∅, ⊥← ∅ (2)
5: find the first modeh h such that h subsumes a with substitution θ (3)
6: for each v/t in θ do
7: if v is a � type then
8: replace v in h by t

9: if v is a + or − type then
10: replace v in h by vk , where vk is a variable such that k = hash(t)

11: if v is a + type then
12: InTerms ← InTerms ∪ t

13: ⊥←⊥ ∪h

14: for each modeb declaration b do
15: for all possible substitution θ of arguments corresponding to + type by terms in the

set InTerms do
16: repeat
17: if b succeeds with substitution θ ′ then
18: for each v/t in θ and θ ′ do
19: if v corresponds to � type then
20: replace v in b by t

21: else
22: replace v in b by vk , where k = hash(t)

23: if v corresponds to − type then
24: InTerms ← InTerms ∪ t

25: ⊥←⊥ ∪b

26: until reaches recall times
27: i ← i + 1 (5)
28: Go to step (4) if the maximum depth of variables is not reached

return ⊥.

and the example father(jack,anne). The most specific clause is

⊥= father(jack,anne) ← parent_of (jack,anne),parent_of (juliet,anne)

where the first literal on the body was obtained by modeb(20,parent_of (+person,+person))

and the second literal by modeb(20,parent_of (−person,+person)).
The bottom clause above with the constants replaced by variables is

⊥= father(A,B) ← parent_of (A,B),parent_of (C,B)

To further reduce the search space of literals to be part of a bottom Clause, one can take
advantage of determination declarations. Determination statements declare the predicates
that can be used to construct a hypothesis (Srinivasan 2001). They take the form:

determination(TargetName/Arity,BackgroundName/Arity)

Mach Learn (2009) 76: 73–107 83

The first argument is the name and arity of the target predicate, that is, the predicate that will
appear in the head of hypothesised clauses. The second argument is the name and arity of a
predicate that can appear in the body of such clauses.

For more details on formal definitions of the Bottom Clause and Inverse Entailment we
refer the reader to Muggleton (1995).

4 Using the bottom clause to search for antecedents when revising a FOL theory

Aiming to reduce search cost, we propose the following modifications to FORTE:

1. To use the variabilized bottom clause as search space of literals, which reduces the search
space and also impose the following constraints:

– to limit the maximum number of different instantiations of a literal (the recall number);
– to limit the number of new variables in a clause;
– to guarantee that at least one positive example is covered (the one which generates the

bottom clause).

2. To declare modes to the arguments of a literal. As a result, the arguments are defined as
input, output and constant.

We call the modified version of FORTE considering mode declarations and the bottom
clause FORTE_MBC.

In order to generate the bottom clause in FORTE, we use the saturation phase, defined by
Progol/Aleph. The bottom clause is created immediately before the search for antecedents
begins, from a positive example covered by the currently revised clause (base clause). Note
that as we are revising an existing theory, the body of the base clause is usually not empty.
A covered positive example is selected because when specializing a clause the goal is to
make the negative examples covered by the clause become unprovable while the originally
provable positive examples to still be covered. Thus, naturally, the bottom clause must be
composed of the relevant literals for at least one positive example covered by the clause.
Also, in this way, the base clause is a subset of the bottom clause. The created bottom clause
becomes the search space for antecedents, which improves the efficiency of the addition
antecedents operation since it usually has many fewer literals than the previous space of
the whole knowledge base. Additionally, we have the guarantee that at least one positive
example continues covered by the generated literals, which was not guaranteed before by
the top-down search for antecedents. Also, as the bottom clause is already variabilized it
is not necessary to generate either new literals or new variables. Previously, such operation
had an exponential cost according the arity of predicates. It is important to emphasize that
the constraints of FOIL remain satisfied, as the arguments of the literals in the bottom clause
must obey their types and there is a linking variable between the literal being added in the
clause and the literals of the current clause.

4.1 Using the bottom clause in Hill Climbing add antecedents algorithm

The Hill Climbing algorithm modified to take into account the bottom clause as search space
is detailed in Algorithm 5.

The algorithm starts with the clause considered as a revision point for adding antecedents.
The goal of adding antecedents in a clause is to eliminate the existence of a proof of the
negative examples while still keeping the proof of positive examples. Antecedents are added
in a clause in two situations:

84 Mach Learn (2009) 76: 73–107

Algorithm 5 Hill Climbing Add Antecedents Algorithm Using the Bottom Clause
Input: C—a clause to be specialized; POS—the set of positive examples proved by C;

NEG—the set of negative examples proved by C

Output: C ′—one or more specialized versions of C

1: repeat
2: Ex ← an example from POS
3: BC ← bottom clause created from Ex
4: unify the variables of BC with C

5: repeat
6: Ante ← best antecedent from BC
7: if score(C + Ante) > score(C) then
8: add Ante to C

9: remove Ante from BC
10: until there are no more antecedents in BC or it is not possible to improve the score of

the current clause
11: if the final clause is different from the original one then
12: add the final specialized clause to C ′
13: until it is not possible to specialize C or all the positive instances originally proved by

C are proved by C ′

1. The clause is used in a proof of negative examples. Antecedents are added to it aiming to
eliminate the proof of negative examples.

2. The theory does not prove some positive examples and a clause is added to it so that such
positive examples become provable. A clause might be added to the theory through two
different ways:
(a) A completely new clause is added to the theory. The head of the clause is the vari-

abilized example and therefore it is proving all positive and negative examples with
such a predicate. It is necessary to add antecedents to eliminate the proof of negative
examples.

(b) A clause is added to the theory from an existing clause. In order to prove positive
examples it is necessary to delete the antecedents that prevent these examples from
being proved. After that, non-proved negative examples may become provable. It is
necessary to add antecedents to solve this problem.

The procedure begins by choosing a positive example currently covered by the clause be-
ing specialized. Then, it generates the bottom clause for this example using the background
knowledge and the mode and determination declarations. As the clause being specialized
may have a non-empty body, and the intersection of the bottom clause and such a body may
be not empty, we must unify the variables of the bottom clause with the variables of the
current clause. This is necessary to make the literals of the bottom clause identical to the
literals of the clause under specialization. Then, the specialization of the clause starts and
the literals of the bottom clause are evaluated so that the best one is chosen to be added in
the clause. If the score of the current clause with this added literal is better than the score
of the current clause, then this literal is added to the body of the clause. The process is over
when it is not possible anymore to improve the score or there are no more antecedents left
in the bottom clause. It is expected that the returned specialized clause does not cover any
negative examples. At this moment, if there is an originally proved example which becomes
unprovable, the algorithm tries to create a new specialized version of the clause. To do so,
it restarts the process from the original clause also creating a new bottom clause. The whole

Mach Learn (2009) 76: 73–107 85

Algorithm 6 Relational Pathfinding Add Antecedents Algorithm Using the Bottom Clause
Input: C—a clause to be specialized; POS—the set of positive examples proved by C;

NEG—the set of negative examples proved by C

Output: C ′—specialized version of C ′
1: Ex1 ← an example from POS
2: BC ← bottom clause created from Ex1
3: unify the variables of BC with C

4: Ex2 ← an example from POS
5: search for relational paths between the arguments of Ex2 considering BC as search space
6: for each relational path found do
7: PossibleClauses ← C + found relational path
8: C ′ ← the best clause from PossibleClauses
9: if C ′ continue to prove negative examples then

10: add antecedents to C ′ using the Hill-climbing algorithm

procedure finishes when all positive examples originally provable are again provable by the
specialized versions of the clause.

4.2 Using the bottom clause in Relational Pathfinding add antecedents algorithm

The Relational Pathfinding algorithm that adds more than one antecedents at once in a
clause, using a search space constrained by the bottom clause, is exhibited in Algorithm 6.

Similarly to Algorithm 5, this procedure starts by choosing a positive example originally
proved by the clause being specialized and generating a bottom clause for it. Also, the lit-
erals of the current clause and the bottom clause are unified, so that the current clause is a
subset of the bottom clause. Then, the algorithm tries to find literals of the bottom clause
which generate a relational path between the arguments of a another example. The best re-
lational path is selected and if there are negative examples proved by this new clause, new
antecedents will be added to it through the Hill Climbing algorithm explained in the last
section, in an attempt to eliminate the proofs of those negative examples.

4.3 Using the bottom clause as a search space for antecedents generation

The new antecedent generation algorithm using bottom clause for Hill Climbing and Rela-
tional Pathfinding can be seen in Algorithms 7 and 8, respectively.

The first algorithm is responsible for returning a valid antecedent to be added in a clause
during the course of Algorithm 5. Note that, here we consider one literal valid if it has at
least one variable in common with the current clause. Thus, Algorithm 7 is executed as a
loop in the step of line 6 of that algorithm, so that the valid antecedents are collected and
only they are evaluated. The algorithm visits each literal of the bottom clause and returns
only the ones which have a variable in common with the clause being specialized. The same
goal is followed by Algorithm 8, but now the literal is returned to the Relational Pathfinding
algorithm, and therefore it has to take into account the end values of the relational paths, as
explained in Sect. 2.3.

4.4 Using the modes declaration to validate antecedents

Antecedents being added in the revised clause must be validated according to the specified
mode declarations in the context of the revised clause. These operations are necessary as

86 Mach Learn (2009) 76: 73–107

Algorithm 7 Hill Climbing Antecedent Generation Algorithm Using the Bottom Clause
Input: C, a clause being specialized, BC, a bottom clause
Output: Ante, an antecedent to be added in C

1: for each literal in BC do
2: collect the variables of C

3: collect the variables of the particular literal
4: if the literal has a variable in common with C then
5: return the literal
6: else
7: Go to the next literal in BC

Algorithm 8 Relational Pathfinding Antecedent Generation Algorithm Using the Bottom
Clause
Input: C, a clause being specialized, BC, a bottom clause
Output: Ante, an antecedent to be added in C

1: for each literal in BC do
2: collect the end values with the respective variables they represent in the node been

expanded
3: collect the variables of the particular literal
4: if the literal has a variable in common with the variables bound to the end values

then
5: Instantiate the variables in the literal that represent some end value
6: Search in the background knowledge a fact that unify with the literal
7: if a fact is found then
8: return the literal
9: else

10: Go to the next literal in BC
11: else
12: Go to the next literal in BC

compliance with mode declarations within the bottom clause does not imply compliance
with it in the context of the revised clause. For example, an input occurrence of a variable
may be preceded by an output occurrence of it in another literal of the bottom clause, but
there may be no such previous output occurrence found in the revised clause.

In the case of Hill Climbing algorithm, only one antecedent is added at once and there-
fore, before scoring the antecedent, the algorithm verifies if it obeys the modes declaration
taking into account the current clause. This implies a change of line 4 of Algorithm 7. Now,
instead of only verifying if the literal has a variable in common with the base clause, it is
also necessary to verify if such literal obeys the modes definitions. Thus, fewer literals are
evaluated which decreases the cost of the addition antecedents process.

In the Relational Pathfinding algorithm, on the other hand, the antecedents cannot be val-
idated just after they are picked from the bottom clause, since more than one antecedent will
be added at once and therefore the mode declarations can be valid in the whole path but not
in just one of the antecedents. Thus, the whole path is validated according to mode declara-
tions. If the relational path does not obey the mode declarations it is discarded, which makes
many fewer clauses be evaluated and consequently decreases the runtime of the addition of
antecedents. This operation does not imply a direct change on Algorithm 8, since the path is

Mach Learn (2009) 76: 73–107 87

validated according to the modes only after it is completely created. However, now, inside
the cycle of line 6 of Algorithm 6, it is necessary to verify if the path plus the clause obeys
the mode declarations, just after line 7.

5 Experimental results

We performed a set of experiments in order to verify the benefits of revising FOL theories
using the bottom clause and mode declarations. Specifically, we would like to answer the
following questions:

1. Is FORTE_MBC capable of producing theories at least with the same accuracy and size
as FORTE in a significantly smaller runtime?

2. Is FORTE_MBC able to keep the advantage of theory revision and therefore achieve
higher accuracies than inductive methods, without significantly compromising in terms
of the size of generated theories and runtime?

3. If FORTE_MBC is used to learn a theory from scratch (since ILP is a particular case of
theory revision as discussed in Sect. 2), will it achieve higher accuracies than a traditional
ILP system, without significantly compromising in terms of the size of generated theories
and runtime?

General experimental methodology We applied K-fold stratified cross validation to split
the input data into disjoint training and test sets. Each fold keeps the original distribution of
positive and negative examples (Kohavi 1995). The significance test used was the corrected
two-tailed paired t-test (Nadeau and Bengio 2003), with p < 0.05. All the experiments were
run on Yap Prolog (Santos Costa 2008).

5.1 Comparison to the original FORTE revision system

Datasets To answer the first question, we consider the Alzheimer (King et al. 1995) do-
main, which compares 37 analogues of Tacrine, a drug combating Alzheimer’s disease, ac-
cording to four properties as described below, where each property originates from a differ-
ent dataset:

1. inhibit amine re-uptake, composed of 343 positive examples and 343 negative examples
2. low toxicity, with 443 positive examples and 443 negative examples
3. high acetyl cholinesterase inhibition, composed of 663 positive examples and 663 nega-

tive examples and
4. good reversal of scopolamine-induced memory deficiency, containing 321 positive ex-

amples and 321 negative examples.

We also considered the DssTox dataset (Fang et al. 2001), extracted from the EPA’s DSSTox
NCTRER Database. It contains structural information about a diverse set of 232 natural,
synthetic and environmental estrogens and classifications with regard to their binding activ-
ity for the estrogen receptor. We follow the experiments reported in Landwehr et al. (2007)
and use only structural information, that is, atom elements and bonds. We also provided a
relation linked(A1,A2,E,BT) in the background knowledge that represents that there is a
bond of type BT from atom A1 to atom A2 and A2 is of element E. This was done to reduce
the lookahead problem for greedy search algorithms. Following the cited source, we define
the Aleph parameters noise = 10 and clauselength = 10.

88 Mach Learn (2009) 76: 73–107

Table 1 Runtime in seconds, predictive accuracy and size in number of literals of the revised theories, using
the Hill Climbing algorithm for adding antecedents in a clause

Datasets Initial Original FORTE FORTE_MBC

accuracy (%) Runtime Accuracy Size Runtime Accuracy Size

(s) (%) (s) (%)

Amine 62.67 470 70.81
 80.1 25.53� 68.96
 34.5�

Toxic 74.02 254 74.35 26.9 15.85 75.64 27.1

Choline 56.02 9672.9 65.61
 115.5 150.63� 62.52
 40.2�

Scopo 55.59 4672.4 64.46
 137 72.11� 65.25
 45.8�

DssTox 49.69 1.68 50.05 11.1 12.05� 74.52 13.6
 �

Experimental methodology To avoid overfitting during the revision process, similarly to
Baião et al. (2003), we applied K-fold stratified cross validation to split the input data into
disjoint training and test sets and, within that, a t-fold stratified cross-validation to split
training data into disjoint training and tuning sets. The revision algorithm monitors the er-
ror with respect to the tuning set after each revision, always keeping a copy of the theory
with the best tuning set accuracy, and the saved “best-tuning-set-accuracy” theory is applied
to the test set. The initial theories were obtained from Aleph using its default parameters,
except for DssTox, as explained before. To generate such theories, the whole dataset was
considered but a 10-fold cross validation procedure was used. Thus, a different theory was
generated for each fold and each one of these theories was revised considering its respective
fold (the same fold is used to generate and revise the theories). We compared the runtime,
the predictive accuracies and the size of the theories in the number of literals returned by
original FORTE and FORTE_MBC. Each value in the tables is the average of the 10 folds
of cross validation, where within those a 5-folds internal cross validation was applied. We
also show in these tables the predictive accuracies of the initial theories, so that it is possi-
ble to see the significant improvement on accuracy achieved by the revision process. Both
Hill Climbing and the Relational Pathfinding algorithms were considered, running indepen-
dently. The runtime is the total time necessary to execute Algorithm 1 (including the bottom
clause generation).

Results The results are presented in Tables 1 and 2, where the symbol
 expresses the
cases where the final predictive accuracy is significantly better than the initial accuracy and
the symbol � indicates that the difference between FORTE_MBC and the original FORTE is
significant. DssTox is not included on Table 2, because the Relational Pathfinding algorithm
cannot be applied to it since the target predicate has arity one.

The tables show that FORTE_MBC speeds up significantly the runtime of the revision
process and also returns more comprehensible theories. Additionally, we can see that the
initial accuracies are improved by both systems and there are no significant difference be-
tween the accuracies obtained by FORTE and FORTE_MBC. There are three exceptions:
(1) when running the Hill Climbing algorithm for Toxic dataset, there is no significative
difference between the size of the theories returned by FORTE and FORTE_MBC and the
runtime of both systems, (2) when running the Hill Climbing algorithm the initial accuracy
of Toxic dataset is not improved by both revision systems (3) Forte_MBC obtained an ac-
curacy significantly better than original Forte in DssTox dataset, due to the inability of the
original revision system to use constants, which are essential to this problem. The symbol

Mach Learn (2009) 76: 73–107 89

Table 2 Runtime in seconds, predictive accuracy and size in number of literals of the revised theories, using
the Relational Pathfinding algorithm for adding antecedents in a clause

Datasets Initial Original FORTE FORTE_MBC

accuracy (%) Runtime Accuracy Size Runtime Accuracy Size

(s) (%) (s) (%)

Amine 62.67 5421.43 72.49
 175 72.34� 72.46
 51.1�

Toxic 74.02 6065.2 81.91
 151.2 42.27� 80.22
 41.3�

Choline 56.02 >648000 ? ? 622.24� 68.17
 71.3

Scopo 55.59 18640.38 71.85
 272.49 444.4� 65.39
 81.6�

“?” in Table 2 represents the case where the algorithm ran for more than 180 hours without
finishing even one fold.

Considering the Hill Climbing algorithm for adding antecedents, the biggest speedup
was of 65× in Scopo dataset, the smallest speedup was of 16× in Toxic dataset and on
average we obtained the speedup of 57×. On the other hand, the speedups for the Relational
Pathfinding algorithms were much higher, since the latter algorithm is more computationally
complex than Hill Climbing. Thus, the biggest speedup was of 143× in Toxic Dataset, the
smallest speedup was of 68× in Scopolamine dataset and on average the speedup was of
78×. Note that we are not considering the Choline dataset, since we do not have the exact
runtime value for the original algorithm (the lower bound on the speedup is thus 1000×).
Moreover, we observed an average reduction of 2.2× in the size of the returned theories
when running the FORTE_MBC system.

5.2 Comparison to inductive methods

In order to answer the second and third question we continue to consider the Alzheimer
domain and DssTox datasets and also the initial theories learned from scratch using Aleph.
First, we compare the revision performed by FORTE_MBC to that produced by the covering
algorithm followed by Aleph. Next, we compare the induction performed by both systems in
order to answer the third question. Finally, we revisit the second question to compare the re-
vision performed by FORTE_MBC to that produced by a non-covering induction approach.

5.2.1 Comparing the revision process performed by FORTE_MBC to a covering approach

Here we want to verify if revising theories produces more accurate results than learning
theories from scratch using a covering approach. To do so, we considered the Alzheimer
domain and DssTox.

5.2.1.1 Using Aleph default parameters

Methodology Here we do not consider DssTox as it requires modifications of Aleph para-
meters. In order to verify the improvement in accuracy obtained by the revision system, the
initial theories were obtained from Aleph by using various proportions of the example set.
However, the whole example set was used for revising the theories as well as for the from-
scratch induction by Aleph. The plotted accuracies are thus constant for the latter mode of
learning, while they vary for the revision experiments pertaining to different initial theo-

90 Mach Learn (2009) 76: 73–107

Fig. 3 Aleph X FORTE_MBC
revision in Amine dataset

ries. The points on the curves represent the average predictive accuracies for 10-fold cross
validation for both revision and induction.

Results We show in Figs. 3, 4, 5 and 6 the results obtained using both Hill Climbing and
Relational Pathfinding algorithms for adding antecedents.

Mach Learn (2009) 76: 73–107 91

Fig. 4 Aleph X FORTE_MBC
revision in Scopolamine dataset

As we can observe from the figures, the accuracies obtained by FORTE_ MBC are al-
ways significantly higher than accuracies obtained by Aleph, considering both algorithms
for adding antecedents, except for the Toxic dataset using the Hill Climbing algorithm.

In Tables 3 and 4 below we compare the runtime and size of final theories obtained by re-
vision with FORTE_MBC and induction with Aleph, considering both the Hill Climbing and

92 Mach Learn (2009) 76: 73–107

Fig. 5 Aleph X FORTE_MBC
revision in Toxic dataset

Relational Pathfinding algorithms, respectively. We are considering only the last point of the
curves above, i.e., the case where the initial theories were induced from the whole dataset.
As Aleph does not have a built-in internal cross validation procedure as FORTE_MBC,
we show the results with and without the internal cross validation procedure described in
Sect. 5.1. The symbol � indicates the cases where Aleph performed significantly better than

Mach Learn (2009) 76: 73–107 93

Fig. 6 Aleph X FORTE_MBC
revision in Choline dataset

FORTE_MBC with internal cross validation and the symbol
 indicates the cases where
Aleph performed significantly better than FORTE_MBC without internal cross validation.

Although the revision process is able to achieve much better accuracies than the covering
approach, as we can see from the tables the runtime and size results do not follow this
pattern, since, except for the Amine dataset when FORTE_MBC ran without internal cross
validation, Aleph reached significantly better results than FORTE_MBC.

94 Mach Learn (2009) 76: 73–107

Table 3 Runtime in seconds and Size in number of literals obtained from Aleph and FORTE_MBC with and
without internal cross validation, using Hill Climbing algorithm for adding antecedents in a clause

Datasets Aleph FORTE_MBC FORTE_MBC

with internal CV without internal CV

Runtime (s) Size Runtime (s) Size Runtime (s) Size

Amine 14.84� 20.8� 25.53 34.5 15.93 23.8

Toxic 11.49 �
 24.7 �
 15.85 27.1 23.44 31

Choline 38.17 �
 30.7 �
 150.63 40.2 93.88 39.7

Scopo 15.31 �
 28.9 �
 72.11 45.8 85.68 38.6

Table 4 Runtime in seconds and Size in number of literals obtained from Aleph and FORTE_MBC with and
without internal cross validation, using Relational Pathfinding algorithm for adding antecedents in a clause

Datasets Aleph FORTE_MBC FORTE_MBC

with internal CV without internal CV

Runtime (s) Size Runtime (s) Size Runtime (s) Size

Amine 14.84 �
 20.8 �
 72.34 51.1 104.49 41.7

Toxic 11.49 �
 24.7 �
 42.27 41.3 84.7 36.3

Choline 38.17 �
 30.7 �
 622.24 71.3 463.67 59.9

Scopo 15.31 �
 28.9 �
 272.49 81.6 216.73 53.2

5.2.1.2 Changing the clauselength parameter in Aleph

Methodology In the results above, we rely on Aleph’s default parameters to avoid intro-
ducing bias by their choice. In most of the cases, we have a fair comparison between both
systems, since the setting of FORTE_MBC (without internal cross validation) is similar to
the Aleph default parameters. For example, the default value of the Aleph parameter noise
is 0,1 while FORTE_MBC does not consider noise, always trying to find a theory covering
none of the negative examples. On the other hand, the default value of the Aleph para-
meter nodes is 5000,2 which is a number large enough for the problems presented here.
FORTE_MBC has no limit on the number of nodes explored when searching for a clause.
However, the parameter clauselength is able to produce different results in the datasets, since
its default value is small (4) and in most of the cases FORTE returns clauses larger than 4
literals because it has no limit on the size of clauses. Therefore, we run Aleph considering
clauselength = 10 to simulate the behavior of FORTE.

Results The results are presented in Tables 5 and 6, the first one considering the Hill
Climbing algorithm and the second one considering Relational Pathfinding. The first ta-
ble also includes the results for DssTox, since when running this dataset the clauselength
parameter is always 10 (and also noise = 10). The symbol � expresses the cases where there

1The noise parameter defines an upper bound on the number of negative examples allowed to be covered by
an acceptable clause.
2The nodes parameter sets an upper bound on the number of nodes to be explored when searching for an
acceptable clause.

Mach Learn (2009) 76: 73–107 95

Table 5 Runtime in seconds and Size in number of literals obtained from Aleph with clauselength parameter
set to 10 and FORTE_MBC with and without internal cross validation, using Hill Climbing algorithm for
adding antecedents in a clause

Datasets Aleph FORTE_MBC FORTE_MBC

with internal CV without internal CV

Acc Run (s) Size Acc Run (s) Size Acc Run (s) Size

Amine 69.7 326.03 54.1 �
 78.41� 168.36� 69.5 74.97
 119.66
 66.3

Toxic 68.26 408.9 61.9
 72.77 275.4� 69.2 76.73
 303.2 88.7

Choline 60.85 1014.02 76.5 �
 65.75� 1155.23 91.7 64.48
 1008.1 96.2

Scopo 59.36 370.94 61.8 �
 65.26� 266.38� 79.9 65.88
 220.58
 81.1

DssTox 49.69 222.32 10.5� 74.52� 12.5� 13.6 78.43
 13.37
 13.8

Table 6 Runtime in seconds and Size in number of literals obtained from Aleph with clauselength parameter
set to 10 and FORTE_MBC with and without internal cross validation, using Relational Pathfinding algorithm
for adding antecedents in a clause

Datasets Aleph FORTE_MBC FORTE_MBC

with internal CV without internal CV

Acc Run (s) Size Acc Run (s) Size Acc Run (s) Size

Amine 69.7 326.03 54.1 �
 74.82� 132.79� 77.3 77.53
 241.73 76.2

Toxic 68.26 408.9 61.9 �
 78.63� 455.5 83.4 76.76
 511.85 93.9

Choline 60.85 1014.02 76.5 �
 67.12� 1610.84 105.8 64.85
 1820.24 114.9

Scopo 59.36 370.94� 61.8 �
 63.52 692.8 111.3 66.04
 175
 89.7

is a significant difference between Aleph and FORTE_MBC with internal cross validation
and the symbol
 expresses the cases where there is a significant difference between Aleph
and FORTE_MBC without internal cross validation. We can conclude from the tables that
Aleph had its accuracies improved in most of the cases, but the revision also took advantage
of the higher initial theories, reaching better accuracies than previous results based on the
clauselength default. The quality of initial theories thus clearly correlates with the quality of
their revised counterparts. Additionally, the revision process executed faster than the induc-
tion in most of the cases and the size of theories returned from both systems is comparable.

5.2.2 Comparing FORTE_MBC induction to a covering approach

In order to answer the last question, we compare the runtime, predictive accuracy and size
of generated theories using FORTE_MBC induction and Aleph induction in the Alzheimer
and DssTox domains cited above. Both Hill Climbing and Relational Pathfinding algorithms
were considered.

Methodology We start the experiments using Aleph with default parameters. The values
are obtained from a 10-fold cross validation procedure. FORTE_MBC was run using the
internal cross validation procedure described in Sect. 5.1 and also without it.

Results The results are presented in Tables 7 and 8. The symbol � expresses the cases
where there is a significant difference between Aleph and FORTE_MBC with internal

96 Mach Learn (2009) 76: 73–107

Table 7 Runtime in seconds, predictive accuracy and size of the theories when learning from scratch, using
Hill Climbing algorithm for adding antecedents in FORTE_MBC

Datasets Aleph FORTE_MBC FORTE_MBC

with internal CV without internal CV

Runn Acc Size Run Acc Size Run Acc Size

Amine 14.84 62.67 20.8 2.97� 67.97� 7.2� 5.73
 67.82
 15

Toxic 11.49 74.02 �
 24.7 4.26� 67.6 8� 4.61
 68.63 10.3

Choline 38.17 56.02 30.7 8.67� 63.05� 10.5� 10.22
 63.2
 11.5

Scopo 15.31 55.59 28.9 3.42� 61.66� 10.2� 3.37
 55.44 6.6

Table 8 Runtime in seconds, predictive accuracy and size of the theories when learning from scratch, using
Relational Pathfinding algorithm for adding antecedents in FORTE_MBC

Datasets Aleph FORTE_MBC FORTE_MBC

with internal CV without internal CV

Run Acc Size Run Acc Size Run Acc Size

Amine 14.84� 62.67 20.8� 35.81 73.66� 41.3 98.63 71.65
 35.6

Toxic 11.49 74.02 24.7 47.28 77.29 27.3 55.84 71.89 23.9

Choline 38.17 56.02 30.7 65.16 62.37� 35 183.02 61.23
 18.9

Scopo 15.31
 55.59 28.9 44.03 64.64� 32.8 56.36 63.84
 19

cross validation and the symbol
 expresses the cases where there is a significant differ-
ence between Aleph and FORTE_MBC without internal cross validation. Each value in the
FORTE_MBC column is the average of the 10 folds of cross validation.

As we can see from tables, when using the Hill Climbing algorithm, FORTE_MBC is
significantly better than Aleph, for runtime, theory size and accuracy in most of the cases.
The biggest speedup was of 44.6× in the DssTox dataset without internal cross validation,
and the smallest speedup was of 2.5× in the Toxic dataset without internal cross validation.
On average, a speedup of 10.5× was obtained. When using the Relational Pathfinding al-
gorithm the size of theories generated by FORTE_MBC has no significant difference com-
pared to Aleph (except for the Amine dataset), but the accuracy of theories generated by
FORTE_MBC are significantly better than the ones generated by Aleph (except for Toxic).
However, the runtime of Aleph is significantly better than FORTE_MBC in half of the cases,
just because Relational Pathfinding is a very expensive algorithm.

Additionally, we show in Tables 9 and 10 the results of experiments considering
clauselength = 10 when running Aleph. FORTE_MBC results are the same as the previ-
ous table, since we do not take the initial theories into account when running this system
from scratch. When running DssTox, the noise parameter is set to 10. Note that with this
new setting, the accuracy of both systems are not significantly different, except for the Toxic
Dataset, whose accuracy was significantly better in FORTE_MBC system. However, the
runtime of Aleph system is much bigger than when using the clauselength default value.
The same is true for the size of returned theories.

Mach Learn (2009) 76: 73–107 97

Table 9 Runtime in seconds, predictive accuracy and size of the theories when learning from scratch, using
Hill Climbing algorithm for adding antecedents in FORTE_MBC and clauselength = 10 when running Aleph

Datasets Aleph FORTE_MBC FORTE_MBC

with internal CV without internal CV

Run Acc Size Run Acc Size Run Acc Size

Amine 326.03 69.7 54.1 2.97� 67.97 7.2� 5.73
 67.82 15

Toxic 408.9 68.26 61.9 4.26� 67.6 8� 4.61
 68.63 10.3

Choline 1014.02 60.85 76.5 8.67� 63.05 10.5� 10.22
 63.2 11.5

Scopo 370.94 59.36
 61.8 3.42� 61.66 10.2� 3.37
 55.44 6.6

DssTox 222.32 49.69 10.5 9.55� 78� 7.8� 4.97
 78.43
 4

Table 10 Runtime in seconds, predictive accuracy and size of the theories when learning from scratch,
using Relational Pathfinding algorithm for adding antecedents in FORTE_MBC and clauselength = 10 when
running Aleph

Datasets Aleph FORTE_MBC FORTE_MBC

with internal CV without internal CV

Run Acc Size Run Acc Size Run Acc Size

Amine 326.03 69.7 54.1 35.81� 73.66 41.3 98.63
 71.65 35.6

Toxic 408.9 68.26 61.9 47.28� 77.29� 27.3� 55.84
 71.89 23.9

Choline 1014.02 60.85 76.5 65.16� 62.37 35� 183.02
 61.23 18.9

Scopo 370.94 59.36 61.8 44.03� 64.64� 32.8� 56.36
 63.84 19

5.2.3 Comparing the revision process performed by FORTE_MBC to a non-covering
inductive approach

Now we would like to observe the performance of theory revision compared to an algorithm
inducing a theory from scratch, but without using a covering approach. Thus, we compare
in this section FORTE_MBC learning a theory from scratch and FORTE_MBC revising
theories. In order to generate the initial theories provided to the revision task, we considered
two approaches:

1. The initial theories are learned by an ILP system.
2. The initial theories are provided by domain experts.

Initial theories learned by an ILP system

Methodology In order to obtain the results presented in this section, FORTE_MBC revised
theories generated by Aleph with the whole set of examples from Alzheimer domain and
DssTox dataset, and then we compare it to the results of FORTE_MBC inducing theories
from these same domains, from scratch. The internal cross validation procedure was applied
on both systems.

Results The results can be seen in Tables 11 and 12. The symbol � indicates the statistically
significant values.

For both add antecedents algorithms, FORTE_MBC learning from scratch achieves bet-
ter results in runtime and size of theories in most of the cases. However, note that the initial

98 Mach Learn (2009) 76: 73–107

Table 11 Runtime in seconds, predictive accuracy and size of the theories in number of literals for
FORTE_MBC revising and learning from scratch, both using Hill Climbing algorithm for adding antecedents
in a clause

Datasets FORTE_MBC revising FORTE_MBC learning from scratch

Runtime (s) Accuracy (%) Size Runtime (s) Accuracy (%) Size

Amine 25.53 68.96 34.5 2.97� 67.97 72�

Toxic 15.85 75.64� 27.1 4.26� 67.6 8�

Choline 150.63 62.52 40.2 8.67� 63.05 10.5�

Scopo 72.11 65.25 45.8 3.42� 61.66 10.2�

DssTox 12.05 74.52 13.6 9.55 78 7.8�

Table 12 Runtime in seconds, predictive accuracy and size in number of literals for FORTE_MBC revising
and learning from scratch, both using Relational Pathfinding algorithm for adding antecedents in a clause

Datasets FORTE_MBC revising FORTE_MBC learning from scratch

Runtime Accuracy Size Runtime Accuracy Size

Amine 72.34 72.46 51.1 35.81 73.66 41.3

Toxic 42.27 80.22� 41.3 47.28 77.29 27.3

Choline 622.24 68.17� 71.3 65.16� 62.37 35�

Scopo 272.49 65.39 81.6 44.03� 64.64 32.8�

Table 13 Runtime in seconds, predictive accuracy and size of the theories in number of literals for
FORTE_MBC revising and learning from scratch, both using Hill Climbing algorithm for adding antecedents
in a clause. The theories provided to the revision process were obtained from Aleph with clauselength para-
meter set to 10

Datasets FORTE_MBC revising FORTE_MBC learning from scratch

Runtime (s) Accuracy (%) Size Runtime (s) Accuracy (%) Size

Amine 168.36 78.41� 69.5 2.97� 67.97 7.2�

Toxic 275.4 72.77� 69.2 4.26� 67.6 8�

Choline 1155.23 65.75 91.7 8.67� 63.05 10.5�

Scopo 266.38 65.26 79.9 3.42� 61.66 10.2�

DssTox 12.5 74.52 13.6 9.55 78 7.8�

theories provided to the revision systems were induced by Aleph, which follows a greedy
covering approach, where the best local clause found at each cycle is aggregated to the the-
ory being induced. The covering approach tends to produce theories with a large number
of clauses, each representing a possible revision point, thus making the subsequent revision
process computationally difficult. The large size and low quality of initial theories achieved
by the covering procedure is also an explanation for the subsequent low quality of the fi-
nal revised theories, compared to theories achieved by the revision algorithm starting from
scratch.

Additionally, we show the results of experiments where the initial theories provided to
FORTE_MBC revision were generated by Aleph with clauselength = 10. The results are
presented in Tables 13 and 14.

Mach Learn (2009) 76: 73–107 99

Table 14 Runtime in seconds, predictive accuracy and size in number of literals for FORTE_MBC revising
and learning from scratch, both using Relational Pathfinding algorithm for adding antecedents in a clause. The
theories provided to the revision process were obtained from Aleph with clauselength parameter set to 10

Datasets FORTE_MBC revising FORTE_MBC learning from scratch

Runtime Accuracy Size Runtime Accuracy Size

Amine 132.79 74.82 77.3 35.81� 73.66 41.3�

Toxic 455.5 78.63 83.4 47.28� 77.29 27.3�

Choline 1610.84 67.12� 105.8 65.16� 62.37 35�

Scopo 692.8 63.52 111.3 44.03� 64.64 32.8�

The results shown in this section indicate that applying a revision algorithm on theories
initially produced by a standard covering algorithm does not result in better theories than
those produced by a revision algorithm starting with an empty theory.

Using approximately correct initial theories given by domain experts Here we want to
verify if revising approximately correct theories guides to more accurate results than learn-
ing theories from scratch. FORTE_MBC revising initial theories was then compared to
FORTE_MBC inducing theories from scratch.3 Two datasets were considered: The classical
family domain (Quinlan 1990; Richards and Mooney 1995) and a dataset from a Distributed
Database problem, the 007 benchmark DDOODB (Baião et al. 2003, 2004).

Family domain The Family domain contains 744 positive examples and 1479 negative
examples, related to 12 family relationship concepts: wife, husband, mother, father, son,
daughter, brother, sister, uncle, aunt, niece and nephew. The target theory also contains 2
intermediate predicates: aunt_or_uncle and sibling.

Methodology To analyze the results with this dataset, we first introduced the following 3
random errors in the target theory:

1. The literal aunt_or_uncle(A,B) was deleted from the rule defining the concept uncle;
2. The literal married(A,B) was replaced by married(A,C) in the rule defining the concept

husband;
3. The literal parent(A,B) was removed from the rule defining the concept father.

We run theory revision using a 10-fold cross validation procedure encompassing an in-
ternal 5-fold cross validation procedure. In the learning curve, the example set size varies
from 150 to 400 and each point in the curve is the average predictive accuracy of the 10
folds of cross validation. We do not present the results for Relational Pathfinding algorithm
since the Hill Climbing algorithm already achieved 100% of accuracy. The curves can be
seen in Fig. 7.

From the curves we can see that the predictive accuracy obtained by revision through
FORTE_MBC is always significantly better than the induction using FORTE_MBC. These
results show that when the initial theory is approximately correct the revision process
achieves better accuracies than the induction process, since the former takes advantage of
the initial theory as a starting point, while the latter starts its process from scratch.

3We do not run Aleph in these experiments because both datasets contain multiple-predicate to be learned
and Aleph is a single predicate learner.

100 Mach Learn (2009) 76: 73–107

Fig. 7 Learning curves of
Family dataset using Hill
Climbing algorithm

Additionally, Fig. 8 shows the curves pertaining to introduction of random errors. There,
2 to 10 random errors were introduced in the target theory and such corrupted theories were
revised using 200 examples from the main dataset. The same examples were used to learn
theories from scratch using FORTE_MBC. Five types of errors were introduced:

1. Deletion of rules: for instance the rule defining the concept niece was removed from the
theory;

2. Addition of rules: for instance, the rule mother(A,B) ← parent(B,A), wrongly defining
the concept mother was introduced in the theory;

3. Deletion of antecedents: for instance, the rule father(A,B) ← parent(A,B),
gender(A,male) was replaced by the rule father(A,B) ← gender(A,male);

4. Change of antecedents (delete plus add): for instance the rule uncle(A,B) ← gender(A,

male),aunt_uncle(A,B) was replaced by uncle(A,B) ← gender(A,male), parent(A,

B);
5. Change of variables: for instance the rule husband(A,B) ← gender(A,male),

married(A,B) was replaced by husband(A,B) ← gender(A,male),married(A,C).

As we can see from the figures, increasing the number of errors in the initial theory do
lower the accuracy of FORTE_MBC’s revised theories for a given training set size. How-
ever, the theories returned by FORTE_MBC revision are still always significantly better
then the ones returned by FORTE_MBC induction up to 10 errors. So, when the theory is
approximately correct it is more effective to revise them than to learn them from scratch, a
result also obtained in Richards and Mooney (1995).

DDOODB dataset Finally, we considered an initial theory concerning the design of dis-
tributed databases on the 007 benchmark (Baião et al. 2003, 2004), with 19 positive exam-
ples and 29 negative examples related to three concepts: to choose a Vertical Fragmentation,
to choose a Primary Horizontal Fragmentation and to choose a Derived Horizontal Frag-
mentation.

Mach Learn (2009) 76: 73–107 101

Fig. 8 Errors curves of Family
dataset using Hill Climbing
algorithm

Methodology In this dataset we considered k = 12 and t = 4 and the Hill Climbing al-
gorithm for adding antecedents, following the methodology of the original paper. We plot
learning curves for the average predictive accuracies of FORTE_MBC revising the initial
theory defined by a Database expert and FORTE_MBC learning the theory from scratch,
both cases considering the same folds of the examples.

The curves are presented in Fig. 9. It is possible to see that the revising curve is always
above the learning curve, and the results of the revision are significantly better than the
results of induction. This shows the importance of the initial theory, specially when facing a
small set of examples.

From the experiments of this section, we can conclude that it is possible to achieve better
predictive accuracies when revising an approximately correct theory instead of inducing it
from scratch.

6 Conclusions and future work

With the availability of large-scale resources of background knowledge in areas such as
biology (Muggleton 2005) there is an increasing need for development of efficient theory
revision ILP systems (Dietterich et al. 2008). This work contributes towards this goal of
bringing a theory revision system to be as efficient as a state of the art ILP system and
achieving significantly higher accuracies than an ILP covering system.

The revision system considered in this work was FORTE (Richards and Mooney 1995).
The antecedent addition operation of FORTE follows the top-down approach of FOIL, which
leads to a huge search space dominating the cost of the revision process; moreover, it does
not properly explore the connections among variables. In this work the efficiency of theory
revision antecedent addition was improved by the introduction of the bottom clause (Mug-
gleton 1995) to define the search space of antecedents for both algorithms Hill Climbing and
Relational Pathfinding, and the introduction of mode declarations, to define which literals

102 Mach Learn (2009) 76: 73–107

Fig. 9 Learning curves of DDOODB dataset

of the bottom clause can effectively be added to the clause being revised. This new revision
system was named FORTE_MBC.

Experimental results show that a significant increase on efficiency was reached when
comparing FORTE_MBC to the original FORTE: we obtained a speedup of 57 times on
average with respect to the Hill Climbing algorithm (65 times in the best case) and an aver-
age speedup of 78 times with respect to the Relational Pathfinding algorithm (143 times in
the best case). Moreover, the accuracies obtained by the modified revision process were at
least maintained compared to the original system. Also, more comprehensible theories were
generated when using the modified revision system.

Additionally, we compared the revision process followed by FORTE_MBC with induc-
tion algorithms using a covering and a non-covering approach. In both cases, the revision
process is slower than the induction when the initial theories are not approximately correct,
although the revision produces more accurate results. But, when the theories are approxi-
mately correct, revision always produces more accurate results than induction, which is a
result compatible with previous literature of first-order theory revision.

Finally, induction by FORTE_MBC was compared to induction by the traditional ILP
system Aleph (i.e., both systems learning from scratch). Induction by FORTE_MBC is faster
than the induction of Aleph and also generates more compact theories in most of the cases,
while obtaining comparable accuracies.

Future work Our work in progress tackles the problem of overly large bottom clauses,
incorporating the ideas of the BETH system (Tang et al. 2003) in the revision process of
FORTE, where the bottom clause becomes “virtual” since it is not constructed beforehand,
as in done in Aleph, but it is discovered during the search for a good clause.

Mach Learn (2009) 76: 73–107 103

In Ong et al. (2005), the Relational Pathfinding algorithm was incorporated into Aleph.
As future work, we intend to compare this approach to the Relational Pathfinding with bot-
tom clause and modes used in FORTE_MBC.

In Paes et al. (2008), stochastic local search techniques were applied to the FORTE sys-
tem and was obtained a significant improvement in running time as well as in accuracy.
The goal of that work was to reduce the search space for misclassified examples, for re-
vision points and for proposed revisions, since all of those are expensive tasks performed
during the revision process. As in the original system, the antecedent addition operation
used all the knowledge base. Therefore, to further improve the efficiency a future work will
merge the idea of BETH and use the (“virtual”) bottom clause as the search space when
generating antecedents in the stochastic revision system. In this case, we intend to benefit
from some recent results concerning stochastically searched spaces constrained by a bottom
clause (Tamaddoni-Nezhad and Muggleton 2008).

Finally, we intend to formally characterize the refinement operators of FORTE_MBC
(Badea 2001; Tamaddoni-Nezhad and Muggleton 2008), so that the benefits of searching
whole theories using these operators are more theoretically founded.

Acknowledgements The first author is financially supported by Capes, the second author is financially
supported by Capes during the Ph.D. and by CNPq during the doctorate sandwich and the third author by
CNPq and FAPERJ. We would like to thank Bradley Richards and Raymond Mooney, Ashwin Srinivasan,
Stephen Muggleton and Vítor Santos Costa for making FORTE, Aleph, Progol and YAP systems available,
respectively. We would also like to thank Eric Silva, Rafael Pereira and Guilherme Niedu for helping on the
implementation of modes, Fernanda Baião, Marta Mattoso and Jude Shavlik for the DDOODB dataset and
Vítor Santos Costa for useful discussions. Finally, we would like to thank the anonymous reviewers for their
remarks and very helpful suggestions.

Appendix A: FORTE_BC results

In Tables 15, 16, 17 and 18 below we compare the runtime, the predictive accuracies and
the size of the theories in number of literals returned by FORTE_MBC and FORTE_BC
(FORTE_MBC without validating literals returned by the bottom clause as to their compli-
ance with mode declarations), considering revision in the first two tables and learning from
scratch in the remaining tables. Each value in the tables is the average of 10-folds cross vali-
dation. Both Hill Climbing and Relational Pathfinding algorithms were considered, running
independently. When revising, the theories provided to the revision process were obtained
from Aleph with default parameters. The symbol � indicates that the difference between
FORTE_MBC and FORTE_BC is significant.

Table 15 Runtime in seconds, predictive accuracy and size in number of literals for FORTE_MBC e
FORTE_BC revising with internal CV, both using Hill Climbing algorithm for adding antecedents in a clause

Datasets FORTE_MBC revising FORTE_BC revising

Runtime Accuracy Size Runtime Accuracy Size

Amine 25.53 68.96 34.50 25.83 68.96 34.50

Toxic 15.85 75.64 27.10 15.77 75.64 27.10

Choline 150.63 62.52 40.20 81.09 63.18 44.10

Scopo 72.11 65.25 45.80 71.06 65.25 45.80

DssTox 12.05� 74.52 13.60 40.11 78.00 15.00

104 Mach Learn (2009) 76: 73–107

Table 16 Runtime in seconds, predictive accuracy and size in number of literals for FORTE_MBC e
FORTE_BC revising with internal CV, both using Relational Pathfinding algorithm for adding antecedents in
a clause

Datasets FORTE_MBC revising FORTE_BC revising

Runtime Accuracy Size Runtime Accuracy Size

Amine 72.34 72.46 51.10 76.76 74.46 55.30

Toxic 42.27 80.22 41.30 49.92 80.00 43.70

Scopo 272.49 65.39 81.60 127.94 67.12 80.70

Table 17 Runtime in seconds, predictive accuracy and size in number of literals for FORTE_MBC e
FORTE_BC learning from scratch with internal CV, both using Hill Climbing algorithm for adding an-
tecedents in a clause

Datasets FORTE_MBC learning from scratch FORTE_BC learning from scratch

Runtime Accuracy Size Runtime Accuracy Size

Amine 2.97 67.97 7.20 2.96 67.82 5.20

Toxic 4.26 67.60 8.00 3.99 67.60 8.00

Choline 8.67 63.05 10.50 13.70 61.69 23.60

Scopo 3.42 61.66 10.20 3.15 61.66 10.20

DssTox 9.55� 78.00 7.80 25.51 78.00 8.40

Table 18 Runtime in seconds, predictive accuracy and size in number of literals for FORTE_MBC e
FORTE_BC learning from scratch with internal CV, both using Relational Pathfinding algorithm for adding
antecedents in a clause

Datasets FORTE_MBC revising FORTE_BC revising

Runtime Accuracy Size Runtime Accuracy Size

Amine 35.81 73.66 41.30 38.93 75.67 52.10

Toxic 47.28 77.29 27.30 47.07 75.05 36.80

Scopo 44.03 64.64 32.80 52.80 63.57 49.10

From the tables we can see that there is no significant difference between FORTE_MBC
and FORTE_BC, although in some cases FORTE_BC returns larger theories, which leads
to the conclusion that in FORTE_MBC the theories are smaller because of the use of mode
declarations.

We performed experiments with FORTE using only modes definitions without the bot-
tom clause. However, in most of the cases, the results were not significantly different from
the original FORTE. On the other hand, the results obtained from FORTE_MBC were al-
ways significantly better than FORTE using only mode declarations. Thus, it is the bottom
clause, rather than the mode declarations, that accounts for the improvements of the revision
process.

Mach Learn (2009) 76: 73–107 105

Appendix B: Modes definitions

B.1 Alzheimer domain

For the relations on the background knowledge the modes definitions are the same and come
from the literature. They are defined as follows.

modeb(∗, x_subst(+a,−n,−b))

modeb(∗,alk_groups(+a,−n))

modeb(∗, r_subst_1(+a,−l))

modeb(∗, r_subst_2(+a,−m))

modeb(∗, r_subst_3(+a,−n))

modeb(∗, ring_substitutions(+a,−n))

modeb(∗, ring_subst_1(+a,−b))

modeb(∗, ring_subst_2(+a,−b))

modeb(∗, ring_subst_3(+a,−b))

modeb(∗, ring_subst_4(+a,−b))

modeb(∗, ring_subst_5(+a,−b))

modeb(∗, ring_subst_6(+a,−b))

modeb(∗,polar(+b,−c))

modeb(∗, size(+b,−d))

modeb(∗,flex(+b,−e))

modeb(∗, h_doner(+b,−f))

modeb(∗, h_acceptor(+b,−g))

modeb(∗,pi_doner(+b,−h))

modeb(∗,pi_acceptor(+b,−i))

modeb(∗,polarisable(+b,−j))

modeb(∗, sigma(+b,−k))

modeb(∗, n_val(+a,−n))

modeb(∗, gt (+n,−n))

modeb(∗,great_polar(+c,−c))

modeb(∗,great_size(+d,−d))

modeb(∗,great_flex(+e,−e))

modeb(∗,great_h_don(+f,−f))

modeb(∗,great_h_acc(+g,−g))

modeb(∗,great_pi_don(+h,−h))

modeb(∗,great_pi_acc(+i,−i))

modeb(∗,great_polari(+j,−j))

modeb(∗,great_sigma(+k,−k))

For the target predicates, the modeh definition is different in each dataset as follows.

1. Amine Domain: modeh(((1,great_ne(+a,+a)).

2. Toxic Domain: modeh((1, less_toxic(+a,+a)).

3. Scopolamine Domain: modeh((1,great_rsd(+a,+a)).

4. Choline Domain: modeh((1,great(+a,+a)).

B.2 DssTox domain

modeh((1,active(+molecule))
modeb(∗,atom(+molecule,−atomid,#element))

106 Mach Learn (2009) 76: 73–107

modeb(∗, sbond(+molecule,+atomid,−atomid,#bondtype))
modeb(∗, linked(+molecule,+atomid,−atomid,#element,#bondtype))

B.3 Family domain

modeh((1,wife(+person,+person))

modeh((1,husband(+person,+person))

modeh((1,mother(+person,+person))

modeh((1, father(+person,+person))

modeh((1,daughter(+person,+person))

modeh((1, son(+person,+person))

modeh((1, sister(+person,+person))

modeh((1,brother(+person,+person))

modeh((1,aunt(+person,+person))

modeh((1,uncle(+person,+person))

modeh((1,niece(+person,+person))

modeh((1,nephew(+person,+person))

modeb(∗, sibling(+person,+person))

modeb(∗, au(+person,+person))

modeb(∗,parent(+person,−person))

modeb(∗,parent(−person,+person))

modeb(∗,married(+person,−person))

modeb(∗,married(−person,+person))

modeb(∗,gender(+person,#gender))

B.4 DDOODB domain

modeh((1, chooseVerticalFragmentationMethod(+operation,+class))
modeh((1, choosePrimaryHorizontalFragmentationMethod(+operation,+class))
modeh((1, chooseDerivedHorizontalFragmentationMethod(+operation,+class,

+ class))
modeb(∗, relationshipAccess(−relationship,+class,+class))
modeb(∗,query(+id,−freq,−list(operation)))

modeb(∗,operationAccess(+operation,−list(class)))
modeb(∗,navigates(+operation,+class,+class))
modeb(∗, isDerivedFragmented(+class))
modeb(∗, isNotDerivedFragmented(+class))
modeb(∗, isVerticallyFragmented(+class))
modeb(∗, isNotVerticallyFragmented(+class))
modeb(∗, cardinality(+class,#card))

modeb(∗, fragmentation(+class,#frag))

modeb(∗, relationshipType(+relationship,#rel))
modeb(∗, classification(+operation,#classif))

References

Adé, H., Malfait, B., & Raedt, L. D. (1994). RUTH: an ILP theory revision system. In LNCS. Proceedings of
8th international symposium of methodologies for intelligent systems (ISMIS-94) (pp. 336–345). Berlin:
Springer.

Mach Learn (2009) 76: 73–107 107

Badea, L. (2001). A refinement operator for theories. In LNAI: Vol. 2157. Proceedings of the 11th interna-
tional conference on ILP (pp. 1–14). Berlin: Springer.

Baião, F., Mattoso, M., Shavlik, J., & Zaverucha, G. (2003). Applying theory revision to the design of dis-
tributed databases. In LNAI: Vol. 2835. Proceedings of the 13th int. conference on inductive logic pro-
gramming (pp. 57–74). Berlin: Springer.

Baião, F. A., Mattoso, M., & Zaverucha, G. (2004). A distribution design methodology for object DBMS.
Distributed and Parallel Databases, 16(1), 45–90.

Bratko, I. (1999). Refining complete hypotheses in ILP. In LNAI: Vol. 1634. Proceedings of the 9th interna-
tional conference on inductive logic programming (pp. 44–55). Berlin: Springer.

De Raedt, L. (2008). Logical and relational learning. Berlin: Springer.
Dietterich, T., Domingos, P., Getoor, L., Muggleton, S., & Tadepalli, P. (2008). Structured machine learning:

the next ten years. Machine Learning, 73, 3–23.
Duboc, A. L., Paes, A., & Zaverucha, G. (2008). Using the bottom clause and modes declarations on FOL

theory revision from examples. In LNAI: Vol. 5194. Proceedings of the 18th international conference on
inductive logic programming (pp. 91–106). Berlin: Springer.

Dzeroski, S., & Lavrac, N. (Eds.). (2001). Relational data mining. Berlin: Springer.
Fang, H., Tong, W., Shi, L. M., Blair, R., Perkins, R., Branham, W., Hass, B. S., Xie, Q., Dial, S. L., Moland,

C. L., & Sheehan, D. M. (2001). Structure-activity relationships for a large diverse set of natural, syn-
thetic, and environmental estrogens. Chemical Research in Toxicology, 3(14), 280–294.

King, R. D., Sternberg, M. J. E., & Srinivasan, A. (1995). Relating chemical activity to structure: an exami-
nation of ilp successes. New Generation Computing, 13(3–4), 411–433.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In
Proceedings of the international joint conference on artificial intelligence (IJCAI) (pp. 1137–1145).

Landwehr, N., Kersting, K., & De Raedt, L. (2007). Integrating naive bayes and foil. Journal of Machine
Learning Research, 8, 481–507.

Morik, K., Wrobel, S., Kietz, J.-U., & Emde, W. (1993). Knowledge acquisition and machine learning: theory
methods and applications. San Diego: Academic Press.

Muggleton, S. (1995). Inverse entailment and progol. New Generation Computing, 13, 245–286.
Muggleton, S. (2005). Machine learning for systems biology. In LNCS: Vol. 3625. Proceedings of the 15th

international conference on inductive logic programming (pp. 416–423). Berlin: Springer.
Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: theory and methods. Journal of Logic

Programming, 19(20), 629–679.
Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52(3), 239–281.
Nienhuys-Cheng, Shan-Hwei, & de Wolf, R. (1997). Foundations of inductive logic programming. Berlin:

Springer.
Ong, I. M., Dutra, I. C., Page, D., & Costa, V. C. (2005). Mode directed path finding. In Proceedings of the

16th ECML (vol. 3720, pp. 673–681).
Paes, A., Zaverucha, G., & Costa, V. S. (2008). Revising first-order logic theories from examples through

stochastic local search. In LNAI: Vol. 4894. Proceedings of the revised selected papers of the 17th
international conference on inductive logic programming (pp. 200–210). Berlin: Springer.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.
Richards, B. L., & Mooney, R. J. (1995). Automated refinement of first-order horn-clause domain theories.

Machine Learning, 19(2), 95–131.
Santos Costa, V. (2008). The life of a logic programming system. In LNCS: Vol. 5366. Proceedings of the

24th international conference on logic programming (ICLP 2008) (pp. 1–6). Berlin: Springer.
Shapiro, E. Y. (1983). Algorithmic program debugging. ACM Distinguished Doctoral Dissertations. New

York: MIT Press.
Srinivasan, A. (2001). The Aleph manual.
Tamaddoni-Nezhad, A., & Muggleton, S. (2008). A note on refinement operators for IE-based ILP systems.

In LNAI: Vol. 5194. Proceedings of the 18th international conference on ILP (pp. 297–314). Berlin:
Springer.

Tang, L. R., Mooney, R. L., & Melville, P. (2003). Scaling up ILP to large examples: results on link discov-
ery for counter-terrorism. In Proceedings of the KDD-2003 workshop om multi-relational data mining,
Washington, DC (pp. 107–121).

Wrobel, S. (1996). First-order theory refinement. In L. D. Raedt (Ed.) Advances in inductive logic program-
ming (pp. 14–33). Amsterdam: IOS Press.

	Using the bottom clause and mode declarations in FOL theory revision from examples
	Abstract
	Introduction
	First-order logic theory revision
	Revision points
	Revision operators
	FORTE
	Antecedents addition
	Antecedents generation

	Mode directed inverse entailment and the bottom clause
	Using the bottom clause to search for antecedents when revising a FOL theory
	Using the bottom clause in Hill Climbing add antecedents algorithm
	Using the bottom clause in Relational Pathfinding add antecedents algorithm
	Using the bottom clause as a search space for antecedents generation
	Using the modes declaration to validate antecedents

	Experimental results
	General experimental methodology
	Comparison to the original FORTE revision system
	Datasets
	Experimental methodology
	Results

	Comparison to inductive methods
	Comparing the revision process performed by FORTE_MBC to a covering approach
	Using Aleph default parameters
	Methodology
	Results
	Changing the clauselength parameter in Aleph
	Methodology
	Results

	Comparing FORTE_MBC induction to a covering approach
	Methodology
	Results

	Comparing the revision process performed by FORTE_MBC to a non-covering inductive approach
	Initial theories learned by an ILP system
	Methodology
	Results
	Using approximately correct initial theories given by domain experts
	Family domain
	Methodology
	DDOODB dataset
	Methodology

	Conclusions and future work
	Future work

	Acknowledgements
	Appendix A: FORTE_BC results
	Appendix B: Modes definitions
	Alzheimer domain
	DssTox domain
	Family domain
	DDOODB domain

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

