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Abstract We introduce the problem of cluster-grouping and show that it can be considered
a subtask in several important data mining tasks, such as subgroup discovery, mining corre-
lated patterns, clustering and classification. The algorithm CG for solving cluster-grouping
problems is then introduced, and it is incorporated as a component in several existing and
novel algorithms for tackling subgroup discovery, clustering and classification. The result-
ing systems are empirically compared to state-of-the-art systems such as CN2, CBA, Ripper,
Autoclass and CobWeb. The results indicate that the CG algorithm can be useful as a generic
local pattern mining component in a wide variety of data mining and machine learning al-
gorithms.

Keywords Correlated pattern mining · Subgroup discovery · Associative classification ·
Clustering

1 Introduction

The representation of conjunctive rules occupies a central position in the field of symbolic
machine learning and data mining. It is used to represent local patterns in the data and sets
of such rules form the output of a wide variety of systems, tackling diverse tasks ranging
from association rule mining, correlated pattern mining, subgroup discovery, rule learning
to conceptual clustering (Agrawal and Srikant 1994; Morishita and Sese 2000; Lavrač 2004;
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Cohen 1995; Perkowitz and Etzioni 1999). These systems all possess a local pattern mining
or rule learning component, which raises the question as to whether there exists a unified
or universal local pattern mining approach that can be used across these systems. The key
contribution of the present paper is that we answer this question positively, by first, introduc-
ing the task of cluster-grouping, based on an extension of the work of Morishita and Sese
(2000), and second, proposing an algorithm, CG, employing upper-bound pruning tech-
niques for exhaustively solving this task. The algorithm guarantees to find the best pattern
(or rule) with regard to a correlation measure (e.g. χ2), and forms an alternative to the often
heuristic (beam-search) methods employed in machine learning.

As evidence for the wide applicability of the CG algorithm, we use it together with
different wrappers to tackle the tasks of correlated pattern mining, subgroup discovery, clas-
sification and conceptual clustering. The resulting systems are then empirically evaluated
on a large number of UCI data sets (Blake and Merz 1998) and compared to state-of-the-art
machine learning and data mining systems such as CN2-SD, RIPPER, CBA, and COBWEB

(Lavrač 2004; Cohen 1995; Liu et al. 1998; Fisher 1987). This also results in number of
novel systems. Especially interesting are the novel CBC system, for realizing associative
classification using correlated patterns rather than pure association rules as CBA (Liu et al.
1998) and CMAR (Li et al. 2001) do, and the novel CG-CLUS system, based on a divisive
decision-tree like algorithm, for realizing conceptual clustering. The tests in the CG-CLUS

trees are based on conjunctive descriptions. The results of the experiments provide evidence
for the key claims of this work—that the cluster-grouping task and CG algorithm can be use-
ful as a component across a wide variety of data mining and machine learning algorithms.
An additional and new finding is that using the CG algorithm instead of the common beam-
search not only leads to good performance, but that the exhaustive method is at least as
efficient as heuristic ones.

We proceed as follows. In the next section we introduce the concept of local pattern
mining. In Sect. 3, we present the underlying principles of CG, the algorithm we propose
for addressing the local pattern mining task. In Sect. 4, we introduce the general mechanism
for combining local patterns into a global model. Additionally, we show how different data
mining tasks can be cast in this description, describe influential systems based on existing
paradigms and experimentally compare CG-based systems to existing solutions. In Sect. 5
we refer to related work before we conclude in the last section.

2 Local pattern mining

Throughout the paper, we use attribute-value representations, and hence, employ conjunc-
tions of attribute-value pairs to describe patterns. More formally, let A = {A1, . . . ,Ad} be
a tuple of attributes and V[A] = {v1, . . . , vp} the domain of A. A tuple 〈v1, . . . , vd〉 with
vi ∈ V[Ai] is called an instance. A multiset E = {e1, . . . , en} of instances is called a data set.

Definition 1 (Condition) A condition l is an attribute-value-pair A = v with v ∈ V[A].
An instance 〈v1, . . . , vd〉 is covered by a condition l of the form Ai = v iff vi = v.

Definition 2 (Pattern) A pattern p is a conjunction of conditions, l1 ∧ · · · ∧ li . An instance
e is covered by p iff it is covered by all its conditions.

Such patterns are called local patterns if they describe instances that show an unexpect-
edly high density of certain attribute values compared to a background model. We define
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Table 1 Contingency table for p w.r.t. {AT }

AT = v1 AT = v2

p sup(p ∧ AT = v1) = y+
1 sup(p ∧ AT = v2) = y−

1 sup(p) = y+
1 + y−

1
¬p sup(¬p ∧ AT = v1) = m1 − y+

1 sup(¬p ∧ AT = v2) = n − m1 − y−
1 sup(¬p) = n − (y+

1 + y−
1 )

sup(AT = v1) = m1 sup(AT = v2) = n − m1 n

certain attributes AT
i ∈ A as target attributes and define target conditions. In the case of

cluster-grouping, the background model is supplied by the observed distributions of these
target conditions.

We consider patterns to be interesting if the distribution of the target conditions deviates
unexpectedly from the background distribution in the subset specified by the pattern. The
unexpectedness is quantified by setting a threshold on the values of certain measures with
regard to the pattern considered. To quantify the quality of a given pattern, different inter-
estingness measures can be used, such as accuracy or confidence, or correlation measures,
such as χ2, Information Gain, and Category Utility. Accuracy measures the purity of the
described population w.r.t. a given target condition, while correlation measures quantify the
deviation between assumed distributions of target conditions and the actual distribution in
the subset of instances defined by the patterns.

Definition 3 (Support) For a pattern p, we define

sup(p) = |{e ∈ E | e is covered by p}|
the support of p. The support of a pattern w.r.t. a single target AT = v1 is

sup(p ∧ AT = v1) = |{e ∈ E | e is covered by p and AT = v1}|

To facilitate the use of correlation measures, occurrence counts are often organized in
contingency tables. A contingency table for a pattern and a single binary-valued target at-
tribute is shown in Table 1.

We use the following notation to refer to occurrence counts of patterns:

Definition 4 (Occurrence Counts) For a given pattern p, target attributes AT
1 , . . . ,AT

d and a
given data set E we define:

n = |E |, mi = sup(AT
i = v1), y+

i = sup[p ∧ (AT
i = v1)]

y−
i = sup[p ∧ ¬(AT

i = v1)]

Note that the sum of the cells in a row (column) is equal to the margins of the table,
that is the rightmost (down-most) entry in a row (column). Correlation measures compare
for a given cell the product of the corresponding margins to the cell count, thus comparing
expected (under an independence assumption between patterns and target attribute values)
to observed frequency, and score the difference. Consider for instance the upper left cell of
Table 1: the value of the cell itself, the observed value, is y+. The coverage of the pattern
on the entire data is y+ + y−, as seen on the upper right margin, and the size of AT = v1

is m1, as seen in the lower left margin. This leads to a straight-forward expected value for



128 Mach Learn (2009) 77: 125–159

Table 2 Pseudo-Contingency table for p w.r.t. {AT
1 ,AT

2 }

AT
1 = v1 AT

1 = v2 AT
2 = v1 AT

2 = v2

p y+
1 = y−

1 = y+
2 = y−

2 = sup(p) = y+
1 + y−

1
sup[p ∧ (AT

1 = v1)] sup[p ∧ (AT
1 = v2)] sup[p ∧ (AT

2 = v1)] sup[p ∧ (AT
2 = v2)] = y+

2 + y−
2

¬p m1 − y+
1 = n − m1 − y−

1 = m2 − y+
2 = n − m2 − y2− = sup(¬p)

sup(¬p ∧ AT
1 = v1) sup(¬p ∧ AT

1 = v2) sup(¬p ∧ AT
2 = v1) sup(¬p ∧ AT

2 = v2) n − (y+
1 + y−

1 )

m1 = n − m1 = m2 = n − m2 = n

sup(AT
1 = v1) sup(AT

1 = v2) sup(AT
2 = v1) sup(AT

2 = v2) = |E |

the upper left cell: m1 · (y+ + y−)/n. To compare these two values, one can for instance
subtract them from each other, squared so that both higher and lower than expected behavior
is treated symmetrically: (y+

1 − m1(y
+
1 + y−

1 )/n)2. In the χ2 measure this term would then
be discounted with the expected value, giving a complete term of:

(y+
1 − m1(y

+
1 + y−

1 )/n)2

m1(y
+
1 + y−

1 )/n

Increasing the number of involved target attributes usually leads to an increase of di-
mension of the contingency table to capture all dependencies among the conditions. Our
focus is on the effect that pattern presence has on the AT

i , the target attributes defining the
background model. This means that we can disregard dependencies between those target
attributes, decreasing the computational complexity of mining processes by instead using
pseudo-contingency tables such as the one in Table 2. The main difference with regard to a
regular high-dimensional contingency table, a so-called multi-way table, is that the margin
of a row is not equal to the sum of row-cells anymore. A correlation measure still compares
the product of the margins to the cell count.

Definition 5 (Stamp Point, Morishita and Sese 2000) The stamp point of a pattern p w.r.t.
a data set E , and a set of target attributes {AT

1 , . . . ,AT
d }, is the tuple of occurrence counts

〈y+
1 , y−

1 , . . . , y+
d , y−

d 〉.

Consider an interestingness measure such as accuracy, χ2, Category Utility, Information
Gain, or Weighted Relative Accuracy defined on a pseudo-contingency table. Since n and
the mi are constant for a given data set, a given interestingness measure σ(p) is a function
of 2d variables

σ : N
2d �→ R

mapping the stamp point sp(p) to a real number.

We can now introduce the cluster-grouping problem, which—as we shall argue—can be
used in a wide variety of data mining and machine learning problems.

Definition 6 (Cluster-Grouping Problem)
Given:

– a pattern language L, defining the attribute-value pairs to be used in patterns,
– a data set E ,
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– an interestingness measure σ ,
– an interestingness threshold τ and/or maximum number of patterns k, and
– a set of target attributes {AT

1 , . . . ,AT
d }.

Find:
A k-theory

Thk(L, σ, E , τ, {AT
1 , . . . ,AT

d }) = arg
k

max
p∈L

{σ(sp(p)) ≥ τ }

The k-theory consists of the k best patterns expressible in L according to σ w.r.t. the back-
ground model induced by the AT

i on data set E .

An example for such a task would be the inner loop of a rule learner performing sequen-
tial covering: For k = 1, and accuracy as the interestingness measure σ , the most accurate
rule on E that can be formulated in L will be mined. The target attribute in this case is
the class label. After removing covered instances, another 1-theory Th1(L,acc, E , τ, {C}) is
mined, and this continues until all instances are covered.

In the next section, we propose a branch-and-bound algorithm in the mold of the family
of optimization algorithms from Webb (1995) for solving cluster-grouping problems that
is guaranteed to find optimal solutions. This contrasts with some heuristic approaches to
solving instances of the cluster-grouping problem (such as beam-search) that are sometimes
encountered in machine learning, cf. Clark and Niblett (1989); Fisher (1987).

3 Upper bound on convex correlation measures

Based on the convexity of correlation measures it is possible to calculate an upper bound on
the future value of σ for specializations of a given pattern. This upper bound can be used
to prune away parts of the search space known not to produce interesting solutions, and to
focus the search on promising parts of the search space. The main insight underlying this
technique is that convex functions attain their maximal values at the extreme points of their
domain. To our knowledge, this idea was introduced by Morishita and Sese (2000).

3.1 Pattern behavior in coverage space

Coverage spaces, introduced in Fürnkranz and Flach (2005), can be used to visualize a
pattern’s or (collection of patterns’) coverage behavior. To this end, a pattern is represented
by the number of positives P = y+ and negatives N = y− it covers (its stamp point w.r.t. a
single target attribute), as shown in Fig. 1(a). The most general pattern is situated at the upper
right corner (m1, n−m1), since all instances are covered. When a pattern is specialized (i.e.
extended with additional conditions), its stamp point sp(p) = 〈y+, y−〉 moves to the left
and/or downwards, as its coverage decreases.

The diagonal in the diagram corresponds to a proportion of covered positives and covered
negatives that is equal to that of the entire data set. At this diagonal, correlation measures
evaluate to 0. The farther away from the diagonal a stamp point lies, the more significant it is
w.r.t. the background distribution. For a given pattern p with stamp point sp(p) = 〈y+, y−〉,
the point in coverage space that can be reached by any specialization p′ and is farthest away
from the diagonal, and therefore most significant, is either (y+,0) or (0, y−), the extreme
points.



130 Mach Learn (2009) 77: 125–159

Fig. 1 Coverage space with isometric lines

Theorem 1 The upper bound of a specialization of pattern p w.r.t. a convex correlation
measure σ is

ubσ (p) = max{σ(y+,0), σ (0, y−)}

A pattern evaluation measure induces so-called isometrics in coverage space—curves
that connect all coverage points having the same value for the measure. Consider the cov-
erage space shown in Fig. 1(a). The two elliptic lines correspond to a χ2 threshold. A point
between one of the isometrics and the diagonal refers to a pattern that does not pass the
threshold, such as the patterns shown in the figure. The right pattern, p1, has two upper
bounds that lie above the threshold, which implies that it is worthy of specialization. The
left pattern’s (p2) upper bounds both lie inside the isometrics and therefore no specializa-
tion of this pattern can be better than the threshold value, and thus the pattern (and all its
specializations) should be pruned away.

3.2 Convexity

Upper bound pruning only works correctly for convex functions.

Definition 7 (Convexity) A function f : D �→ R is convex iff D ⊆ R
d is a convex set and

∀x1, x2 ∈ D,λ ∈ [0,1] : f (λx1 + (1 − λ)x2) ≥ λf (x1) + (1 − λ)f (x2).

This means that, given two points x1, x2, all points x that lie on the line connecting x1

and x2 must have a value f (x) that lies on or below the line connecting f (x1) and f (x2).
Isometrics are just projections of a three-dimensional graph’s area onto the two-dimensional
plane denoting its domain. If “islands” and “dents” exist, such as the ones shown in Fig. 1(b),
the upper bound technique cannot be utilized since a future point might lie in one of the
“islands”, thus attaining a higher value than the threshold without lying outside the curves.
At the same time, the existence of “islands” and “dents” corresponds to a violation of the
convexity criterion.

Functions such as χ2, WRAcc, Information Gain, and Category Utility are convex. For
the proofs of the convexity of χ2 and Information Gain we refer the reader to Morishita and
Sese (2000), while the proofs for WRAcc and Category Utility can be found in Appendix.
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3.3 Extension to arbitrary dimensions

If the mining process considers two or more independent target attributes, as we do, the
interestingness measure is additive, meaning that the correlation measure can be evaluated
separately for each of the independent target attributes, those finally summed up and aver-
aged and/or normalized.

Definition 8 A function σ over patterns p with sp(p) = 〈y1,
+ , y−

1 , . . . , y+
d , y−

d 〉 over at-
tributes At (the stamp point) is additive if

σ(p, At ) = σ(y+
1 , y−

1 , . . . , y+
d , y−

d ) = c

d∑

i=1

σ(y+
i , y−

i )

for some constant c.

Since a sum of convex functions is a convex function itself, and a possible averaging
factor c has no effect on convexity, the upper bound technique can be used on the entire
sum. However, computing an upper bound it not so easy. There is a naïve upper bound that
simply maximizes each summand:

ubσ (p) = c

d∑

i=1

max{σ(y+
i ,0), σ (0, y−

i )}

As shown in Table 2, however, ∀i : y+
i + y−

i = sup(p), which in turn leads to

x = sup(p) = y+
1 + y−

1 = y+
2 + y−

2 = · · · = y+
d + y−

d

This constraint is potentially violated when each summand is maximized independently of
the others.

To illustrate this effect, consider the left-hand side of Fig. 2. Shown are overlaid coverage
spaces for two different target attributes, with a pattern’s coverage denoted by a dark circle.
Note that both the upper right corners of the coverage spaces and the dark circles lie on an
isometric with a 135 degree slope—all points lying on this line have the same sum mi +

Fig. 2 Coverage spaces for two target attributes
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(n − mi) (the size-isometric), y+
i + y−

i (the coverage-isometric), respectively. The maximal
values, visualized by being farthest from the background-distribution-diagonal, that can be
reached by specializations of the pattern w.r.t. the two target attributes are denoted by max1

and max2 (denoted by maximum-isometric), respectively. The equal-sum-isometrics passing
through those two values are not the same however, meaning that the respective maximum
values would be reached by specializations with different coverage.

Given that the calculation of a non-naïve upper bound for an arbitrary number of target
attributes is crucial to the success of our technique, we will give in the next paragraphs an
algorithmic description of how to calculate this upper bound, use this algorithm and the
isometrics to give an intuition as to why the upper bound is correct and tighter and finally
prove its tighter evaluation.

As mentioned above, the main problem with the naïve technique lies in the fact that con-
flicting support isometrics could be induced by extreme points maximizing σ independently
for each target attribute.

The upper bound calculation we use, shown as Algorithm 1, instead calculates an upper
bound for every target attribute separately under a support constraint

ubi = max
y+
i,max+y−

i,min=y+
i,min+y−

i,max=x

{σ(y+
i,max, y

−
i,min), σ (y+

i,min, y
−
i,max)}

and then maximizes the sum of these upper bounds over a range of possible supports of
specializations of the current pattern

ubσ (p) = max
1≤x≤sup(p)−1

d∑

i=1

ubi

To do this, the algorithm iterates over all possible supports of specializations, which lie be-
tween 1 (0 would correspond to a pattern covering nothing) and the current pattern support—
1 (since identical support corresponds to a more specific pattern with the same informative
value)—the outermost for-loop in Algorithm 1.

As can be seen in the right-hand side of Fig. 2, such an isometric can correspond to a
maximal value of σ for one of the attributes while corresponding to a non-maximal value
for another one. The isometric can also correspond to non-maximal values for both at-
tributes (the nonmax-nonmax-isometric). What still holds for the purpose of maximizing

Algorithm 1 Multi-dimensional upper bound calculation

Given: current pattern p, corresponding stamp point 〈y+
1 , y−

1 , . . . , y+
d , y−

d 〉
Return: upper bound on φ(p′), with p′ a specialization of p

ub = 0
for 1 ≤ x ≤ sup(p) − 1 do

for 1 ≤ i ≤ d do
y+

max = min{x, y+
i }, y−

min = x − y+
max

y−
max = min{x, y−

i }, y+
min = x − y−

max

ubi = max{σ(y+
max, y

−
min), σ (y+

min, y
−
max)}

end for
ub = max{ub,

∑d

i=1 ubi}
end for
return ub
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σ for a single attribute is that those points should be extreme points (furthest away from
the background-distribution diagonal). To achieve this, two points 〈y+

max, y
−
min〉, 〈y+

min, y
−
max〉

are created. Since the support of a pattern, and the current value of y+ both impose upper
bounds on the maximal value of y+

max, the smaller of the two is chosen. Additionally, since
the isometric is specified, y+

max + y−
min have to equal x, the specified support. Therefore, y−

min

is set to x − y+
max. Analogous reasoning holds for 〈y+

min, y
−
max〉.

σ is evaluated on both of these extreme points for an attribute, and the larger value cho-
sen. Finally, the values for all attributes are added up and in this way an upper bound for the
score of a hypothetical specialization of support x calculated. By maximizing over all pos-
sible future supports, an upper bound for any possible specialization of the current pattern
is derived.

The preceding discussion explains why this is a correct upper bound: maximizing the
contribution to σ for each target attribute under a certain support constraint, and doing this
for all possible future supports ensures that no future score can exceed this bound. What is
left to show is that this bound is tighter than the naïve one.

As mentioned in Sect. 3, convex functions attain their maximal values at the extreme
points of their domain. Given the domain induced on a coverage space by y+

i , y−
i , it must

therefore hold that for all 〈y+
i,max, y

−
i,min〉, 〈y+

i,min, y
−
i,max〉 defined according to Algorithm 1

ubi = max{σ(y+
i,max, y

−
i,min), σ (y+

i,min, y
−
i,max)} ≤ max{σ(y+

i ,0), σ (0, y−
i )}

This in turn implies

max
1≤x≤sup(p)−1

d∑

i=1

ubi ≤
d∑

i=1

max{σ(y+
i ,0), σ (0, y−

i )}

3.4 The CG-algorithm

In this section we present an algorithm for solving the cluster-grouping problem, called CG.
For reasons of readability we show a version for finding patterns having a single highest
score value (k = 1).

The cluster-grouping algorithm CG (listed as Algorithm 2) is essentially a branch-and-
bound algorithm along the lines of the family of optimization algorithms proposed in Webb
(1995). Starting from the most general pattern (denoted by 
), in each iteration the pattern
pmp ∈ P (the set of potential solutions) with the highest upper bound is specialized (line 3).
We use an optimal refinement operator ρ:

Definition 9 (Optimal Refinement Operator) Let L be a set of conditions, ≺ a total order
on the literals in L, τ ∈ R.

ρ(p) = {p ∧ li | li ∈ L,ubσ (li) ≥ τ,∀l ∈ p : l ≺ li}
is an optimal refinement operator.

The optimality of the refinement operator ρ ensures that each pattern will be created and
evaluated only once during a run of the algorithm. The pattern p to be refined has an upper
bound above the threshold since it would have been pruned otherwise. Since only conditions
are added whose upper bound exceeds the threshold, the resulting specializations may have
a score that exceeds or matches the current threshold.
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Algorithm 2 The CG algorithm that computes Th1(L, σ, E , τ, {AT
1 , . . . ,AT

d }) =
arg1 maxp∈L{σ(sp(p)) ≥ τ }

E —data set, σ—correlation measure, τuser—user-defined minimum threshold on σ

1: P := {
}, τ := τuser, S := ∅
2: while P �= ∅ do
3: pmp := arg maxp∈P {ub(p)}
4: C := ρ(pmp)

5: for all ci ∈ C do
6: compute sp(ci ), calculate σ(ci)

7: ubσ (ci) := UpperBound(sp(ci))
8: τ := max{τ, σ (ci)}
9: end for

10: S := {s ∈ S | σ(s) = τ } ∪ {c ∈ C | σ(c) = τ }
11: S := S \ {s ∈ S | ∃s ′ ∈ S : s ′ ≺ s ∧ sp(s ′) = sp(s)}
12: P := {p ∈ P | ubσ (p) ≥ τ } ∪ {c ∈ C | ubσ (c) ≥ τ }
13: end while
14: return S

Fig. 3 Enumeration tree induced by CG

The created specializations are then evaluated on the data set and the σ -scores and upper
bounds are calculated (lines 6 and 7). If possible, the threshold is raised (line 8). The solution
set S is composed of all patterns which have a score matching the threshold τ (line 10). In
Algorithm 2, this threshold is either the best score seen so far or a user-defined threshold,
whichever is larger. Specializations whose scores match the current threshold are added
to the set of solutions S only if the solution set does not already include a generalization
having the same stamp point. The rationale behind this is that literals not included in the
more general pattern do not change the coverage and therefore do not add information. The
algorithm can be easily modified so that k best patterns are found, by using the kth-best
score as threshold, in which case solutions have to exceed, not match, the threshold. Finally,
the set of promising patterns P is pruned using the threshold and all specializations whose
upper bound exceeds τ are added (lines 11 and 12).

As an illustration of CG, consider Fig. 3. After refining the empty set, all single-literal
patterns are evaluated and their score and upper bound calculated. The highest σ is under-
lined using a solid line, while upper bounds that exceed it are underlined using a dashed
line. The highest score encountered after the first refinement is 4 and the corresponding best
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solution so far {l5} (ties are broken lexicographically). The only literals that can be part of a
solution exceeding this threshold are l1, l2, l3, l5 and l9. Since l2 has the highest upper bound
of these, it is selected for refinement. One of the new solutions, {l2, l3}, does have a better
score than the current threshold and is selected as new best pattern. Increasing the threshold
further reduces the literals that can be used for refinement to l1, l2 and l9. Since we aim
for general patterns, l1 is refined next, using l9 since l2 has already been refined. The upper
bound of {l1, l9} which is 5, invalidates the more optimistic upper bounds of l1, l2 and l9 and
the algorithm terminates.

4 CG as component of several data mining systems

In the previous sections we have introduced the cluster-grouping task and outlined the CG
algorithm for solving it. Cluster-grouping is typically not a goal in itself but rather—as
we shall argue—an important step for building global models. A key contribution of our
work is that we show that CG can be a useful component for machine learning and data
mining systems tackling a wide variety of tasks such as correlated pattern mining, subgroup
discovery, classification, and clustering. Many such systems can be decomposed into two
main components:

– A local pattern mining algorithm to find patterns describing/predicting the behavior of a
subset of the data

– A control structure, or “wrapper”, that, depending on the local miner’s result, manipu-
lates the data and/or restarts the local mining process, possibly with a different parameter
setting

In this section, we will show that the cluster-grouping task and CG algorithm can be used as
the local pattern mining component together with a wrapper for correlated pattern mining,
subgroup discovery, classification and clustering. The main conceptual difference to the
task of Sese et al. lies in the fact that we view the algorithm as a component in a complete
system, unlike their stand-alone formulation. Especially in the case of classification and
subgroup discovery, we replace heuristic local pattern mining components by our exhaustive
alternative, which is a novel approach to the best of our knowledge.

The resulting systems will also be empirically evaluated and compared to state-of-the-art
systems. This empirical comparison is meant to provide insight into both the effectiveness
and the efficiency of the CG algorithm for the above mentioned tasks. Whereas the criterion
for effectiveness depends on the specific task considered, the efficiency of the algorithms
will be measured by the number of patterns evaluated during the search, rather than cpu-
time or used memory, because these values are implementation-dependent. We now turn our
attention to the different subtasks: correlated pattern mining, subgroup discovery, classifica-
tion and clustering.

4.1 Correlated pattern mining

Problem description

Correlated pattern mining (Brin et al. 1997; Morishita and Sese 2000) is motivated by the
observation that association rules with very high confidence may still carry only little infor-
mation. If every single person shopping in a grocery store bought bread and every second
person bought milk then an association rule milk ⇒ bread would have a support of 0.5 and
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a confidence of 1.0 but still be useless. Therefore, using a correlation measure, grounded in
statistical principles, rather than frequency will typically result in more interesting relation-
ships. Reformulated, while classical association rule mining assumes frequent patterns to be
interesting, correlated pattern mining looks for local patterns for which the distribution of
the target item significantly deviates from the distribution in the entire data set.

Correlated pattern mining using cluster-grouping

Morishita and Sese (2000) model correlated pattern mining in the following way—the at-
tribute of interest is restricted to a single, fixed item and the quality of patterns is quantified
using the χ2-statistic to compare expected and observed occurrence counts. Correlated pat-
tern mining can be modeled as a cluster-grouping problem with:

– L = {I = true | I ∈ I}, with I = {I1, . . . , Iz}, the set of items, and ∀I ∈ I : V[I ] =
{false, true},

– E a transaction database,
– σ a (convex) correlation measure such as χ2,
– τuser the user threshold, and
– At = {I0}.

Inclusion in the actual solution set is based either on whether a pattern belongs to the k

best patterns according to the correlation measure used or on a p-value for the measure. This
gives it a sounder statistical interpretation than the setting of a support threshold.

Due to the large number of patterns returned, some can be expected to be considered
significant by the measure, however. Without a correction, for instance Bonferroni correc-
tion, the result set will therefore include false positives. This problem exists also for a low
minimum support threshold, however. In addition, minimum support can be expected to
wrongly reject patterns that will be accepted by an uncorrected significance test. Further-
more, techniques exist for efficiently performing such corrections (Webb 2007), and could
be incorporated into CG. The “wrapper” for this approach actually only performs a single
call to CG with certain parameters.

Denoting the local pattern mining step in Algorithm 3 for correlated pattern mining
the generic notation Thk(L, σ, E , τuser, {AT

1 , . . . ,AT
d }) from Definition 6 is used, where the

target attribute has been restricted to the item I0. Furthermore, S denotes the set of computed
solutions.

Experimental evaluation

Since the patterns mined by Morishita and Sese are special cases of cluster-grouping patterns
and the pruning technique is based on the same principles, it follows that the CG algorithm
is applicable to correlated pattern mining and also that it will produce exactly the same
solutions as Morishita and Sese’s approach. We therefore include no experiments on this
task.

Algorithm 3 The correlated pattern mining algorithm

S = Th∞(L, χ2, E , τuser, I0)
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4.2 Subgroup discovery

Problem description

In subgroup discovery, the goal is to find groups of instances in the data that show unex-
pected behavior with regard to a target attribute. For instance, a higher than expected fre-
quency of lung cancer, as compared to the overall population, in people living in areas with
high air pollution or a lower than expected number of cardiac arrests in persons whose diet is
rich in olive oil. Again, subgroup discovery can be viewed as an attempt to find patterns for
which the distribution of values for a given target attribute deviates from their distribution
in a different context (e.g. the entire data set or a particular subset, Klösgen 1996).

Subgroup discovery using cluster-grouping

Lavrač (2004) show how a rule learning algorithm such as CN2 (Clark and Niblett 1989),
used together with a function measuring positive correlation such as Weighted Relative Ac-
curacy (WRAcc) (Lavrač 1999), can be employed to find subgroups. The resulting system is
CN2-SD, which we will use here as a representative subgroup discovery system. The local
pattern mining component of CN2-SD can be modeled as a cluster-grouping problem with:

– L = {A = v | A ∈ A \ {At }, v ∈ V[A]}
– E a data set
– σ is Weighted Relative Accuracy
– k = 1
– At = {At = vi}

Given that WRACC is an asymmetrical measure that rewards higher-than-expected oc-
currence of a value, and penalizes lower-than-expected occurrence, the target attributes for
subgroup discovery are derived by turning the actual target attribute into a binary one denot-
ing presence of a value.

The system

CN2-SD performs beam search within a “wrapper” that re-weights instances that have al-
ready been covered to reduce their importance. The complete mining system is shown in
Algorithm 4, where τ = −∞ implies that the k best patterns, regardless of their score, are
included.

The local pattern mining step in CG-SD that computes Th1 is based on an incomplete
search strategy, beam search, which does not guarantee that the k best patterns are found.
However, this step can also be performed by CG, we call the resulting algorithm CG-SD.

Experimental evaluation

To compare the complete search method of CG-SD with the heuristic approach of CN2-SD,
we set up experiments to answer the following questions:

Q1 Does CN2-SD find all subgroups found by CG-SD?
Q2 Is CN2-SD more efficient than CG-SD?

The evaluation is performed in two settings:

(1) without the wrapper, where we search for a single top-scoring subgroup, and
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Algorithm 4 The general weighted covering algorithm
S = ∅
∀ei ∈ E : weight(ei) = 1
repeat

Find Th1(L,WRAcc, E ,−∞,At = vi)

for all ei ∈ E do
if ei is covered by Th1 then

weight(ei) = (
1

weight(ei )
+ 1

)−1

end if
end for
if Th1 /∈ S then

S = S ∪ Th1

end if
until ∀ei ∈ E : weight(ei) < 1

(2) with the wrapper, where we look for an incrementally constructed set of subgroups.

To answer the questions posed above, we perform experiments on a number of UCI data
sets, which were selected such that a large range of data cardinality and dimensionality were
covered. The implementation of CG is currently limited to nominal data. Therefore, numeri-
cal attributes have been discretized for the experiments, and we only chose data with discrete
classes. Two unsupervised discretization approaches were chosen. In the naïve version, the
mean value of an attribute is computed and taken as threshold, leading to two nominal val-
ues. For some data sets this has the effect that one of the two bins contains far more instances
than the other one. For these sets, we also chose the threshold in such a way that two roughly
equally distributed nominal values result. These data sets are denoted by a trailing “-equal”
in the name.

Experimental setting The experimental settings are the following:

• The attribute of interest is the class label
• Beam sizes for CN2-SD are 5, 10, 201

• σ is WRAcc

Results Tables 3 and 4 report the number of candidate patterns evaluated by CG-SD—
which corresponds to 100%—and the corresponding percentage-values for different settings
of CN2-SD. Additionally, the tables specify whether CG-SD found a subgroup description,
i.e. a pattern, that is better, i.e. has a higher WRAcc-score, than the one induced by CN2-SD
during one of the iterations.

For setting (1), the single subgroup case, CG-SD always evaluates far less candidate
patterns than the beam search, for all settings of beam size. For this setting, CN2-SD did
find the highest-scoring subgroup for each data set.

For setting (2), the result of the single-subgroup run carries over to the suggested setting
of beam size 20, even though the difference is not as pronounced as before. While for some
data sets CN2-SD needs less candidate patterns than CG-SD for beam sizes 5 and 10, the

120 was suggested by a reviewer, 5 and 10 evaluated as well as to not bias the efficiency estimation against
CN2-SD.
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Table 3 Comparison for induction of a single subgroup per class value, setting A. The first column lists
the data set, the last columns the number of candidate pattern evaluated by CG-SD, corresponding to 100%,
columns 2–4 the corresponding percentage-values for different settings of CN2-SD

Dataset CN2-SD20 CN2-SD10 CN2-SD5 CG-SD

Balance-2-Class 644.00% 436.00% 278.00% 50 (100%)

Breast-W 3443.04% 1791.14% 948.10% 79 (100%)

Breast-W-equal 3061.36% 1609.09% 856.82% 88 (100%)

Car 1722.22% 898.08% 481.61% 261 (100%)

Colic 10569.26% 5336.49% 2723.65% 296 (100%)

Colic-equal 10699.64% 5394.31% 2772.95% 281 (100%)

Credit-G 2106.84% 1062.73% 541.76% 1492 (100%)

Credit-G-equal 2036.56% 1028.06% 523.89% 1436 (100%)

Diabetes 2445.24% 1329.76% 705.95% 84 (100%)

Diabetes-equal 1014.78% 550.25% 291.63% 203 (100%)

Heart-H 3682.01% 1876.19% 976.72% 189 (100%)

Heart-Statlog 2639.30% 1342.36% 696.07% 229 (100%)

Heart-Statlog-equal 2416.27% 1227.38% 637.70% 252 (100%)

Krkopt 1463.92% 765.52% 413.20% 2697 (100%)

Mfeat-Morpho 2090.53% 1244.44% 672.43% 243 (100%)

Mfeat-Morpho-equal 2086.42% 1249.38% 676.95% 243 (100%)

Nursery 3283.92% 1692.60% 888.75% 311 (100%)

Segment 7784.20% 3949.24% 2015.46% 595 (100%)

Tic-Tac-Toe 1717.58% 879.69% 461.33% 256 (100%)

Voting Record 7201.55% 3655.04% 1883.72% 129 (100%)

Zoo 13206.91% 6714.63% 3400.96% 1982 (100%)

Pendigits 5523.76% 2800.83% 1313.24% 846 (100%)

Mushroom 11928.74% 5997.13% 3074.71% 522 (100%)

Average 4155.07% 2119.10% 1090.17%

heuristic technique also fails to find the top-scoring subgroups for these settings. On average,
CG-SD needs 5 to 20 times less candidate evaluations, and this factor correlates strongly
with the used beam-size. Note, finally, that even a beam size of 20 does not ensure that all
highest-scoring subgroups are found by CN2-SD!

As a consequence, the answers to Q1 and Q2 are negative for both settings (1) and (2),
and CN2-SD is neither as effective as CG-SD, nor more efficient. Especially the second
finding is surprising and significant since it clearly indicates that heuristic search for rules,
which is common practice in machine learning, is suboptimal, both in terms of quality of
found solutions and in terms of efficiency. It therefore seems more appropriate to employ
branch-and-bound algorithms whenever the evaluation measure is upper-boundable or con-
vex.

Related work

In addition to the CN2-SD algorithm, against which we evaluated our approach, there have
been other systems for exhaustively searching of subgroup descriptions. The earliest one is
the EXPLORA system introduced, cf. Klösgen (1996). The system supports a wide variety
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Table 4 Comparison of a complete subgroup discovery run, setting B. First column lists the data set, last
columns the number of candidate pattern evaluated by CG-SD, corresponding to 100%, columns 2–4 the
corresponding percentage-values for different settings of CN2-SD

Dataset CN2-SD20 CN2-SD10 CN2-SD5 CG-SD

Balance-2-Class 537.37% 356.48% 214.86% 471 (100%)

Breast-W 1588.41%* 865.23%* 442.74%* 179625 (100%)

Breast-W-equal 1475.91%* 800.42%* 504.28%* 117251 (100%)

Car 689.71% 350.11% 184.15% 61609 (100%)

Colic 1109.36%* 563.09%* 285.68%* 395291 (100%)

Colic-equal 892.98%* 458.43%* 218.20%* 476363 (100%)

Credit-G 231.50%* 113.24%* 55.72%* 543376 (100%)

Credit-G-equal 152.01%* 66.88%* 32.22%* 684859 (100%)

Diabetes 1948.31%* 1061.99%* 486.26%* 8030 (100%)

Diabetes-equal 316.79%* 169.46%* 88.00%* 13836 (100%)

Heart-H 1223.74%* 617.57%* 391.68%* 22415 (100%)

Heart-Statlog 1263.71% 911.69%* 479.43%* 5509 (100%)

Heart-Statlog-equal 1178.30% 595.25% 304.50% 6692 (100%)

Krkopt 655.85%* 337.64%* 182.00%* 394671 (100%)

Mfeat-Morpho 1724.76% 1017.61% 530.07% 11775 (100%)

Mfeat-Morpho-equal 1465.44% 864.24% 450.13% 12052 (100%)

Nursery 2082.05% 1066.15% 552.82% 975 (100%)

Segment 5610.12% 2835.89% 1410.76% 19293 (100%)

Tic-Tac-Toe 771.75% 391.34% 201.31% 2818 (100%)

Voting Record 1500.65%* 2454.68%* 2540.43%* 3643096 (100%)

Zoo 13206.91% 6714.63% 3400.96% 1982 (100%)

Pendigits 2705.73%* 1443.45%* 733.19%* 279217 (100%)

Mushroom 10002.78% 4870.87%* 2377.40%* 8900 (100%)

Average 2210.15% 1150.94% 588.10%

*denotes that a non-optimal subgroup, that is a subgroup having a lower score than the highest possible, has
been found

of interestingness measures, both convex and non-convex, and both heuristic and exhaustive
search strategies.

Newer work includes the APRIORI-SD (Kavsek and Lavrac 2006) and SD-MAP

(Atzmüller and Puppe 2006) systems which adapt frequent pattern mining techniques to
the task of subgroup discovery. Both of these systems show a conceptual difference to SD-
CN2 and SD-CG, however: they mine the k most interesting subgroups in relation to the
background distribution in the entire data. The sequential approaches evaluated in this sec-
tion, on the other hand, assume that knowledge of discovered subgroups should inform the
assessment of future subgroup descriptions. In addition, there is an algorithmic difference to
the CG-based approach: instead of using WRAcc directly for pruning the space of descrip-
tions, this pruning is based on a minimum frequency threshold. The selection of the actual
descriptions is performed as filtering by interestingness in a post-processing step. While this
allows for the use of non-convex measures, as Atzmüller et al. point out in Atzmüller and
Puppe (2006), it relies on the specification of a meaningful frequency threshold by the user.
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Finally, there has been work on finding bounds on the quality of subgroup descriptions.
A weaker upper bound for the WRAcc measure can be found in Wrobel (1997), and Schef-
fer and Wrobel (2002) proposed a sequential database sampling scheme for approximating
the k-best subgroup descriptions problem. The latter work allows a PAC-like bound on the
quality of the final solution but as the authors point out, it is not applicable to measures such
as the convex χ2-statistic.

4.3 Finding rules for classification

Problem description

Classification is related to subgroup discovery, because rules for classification concern
groups whose class distribution differs from the default one. Once rules describing such
groups are found, they can be used to predict the value of the class attribute. The main dif-
ference with subgroup discovery is that rule-based classification aims at inducing a set of
rules that, taken together, correctly predict the entire set of training instances.

Classification and cluster-grouping

Since the goal of classification can be re-interpreted as finding rules that separate two classes
from one another, measures such as χ2 and Information Gain can be used as well as—to a
certain degree—accuracy to solve the task in the cluster-grouping framework. The problem
then has the following characteristics:

– L = {A = v | A ∈ A \ {At }, v ∈ V[A]}
– E a data set
– σ is accuracy, χ2, Information Gain or Category Utility
– k = 1,τuser

– At = {C}, where C is the class attribute

Note, that when accuracy is used, its asymmetry will require the same binarization of the
target attribute as for the subgroup discovery setting.

The system

Rule-based classifiers often rely on the covering paradigm (Fürnkranz and Flach 2005). Our
focus lies essentially on the sequential covering paradigm in which patterns are mined, cov-
ered instances removed, and the process iterated on the remainder of the data set. Mining
can either be done in a greedy way, e.g. optimizing some measure’s score using beam search
(Clark and Niblett 1989), or exhaustively, by setting thresholds on e.g. the support and con-
fidence of interesting patterns and performing the covering step as post-processing (Liu et
al. 1998; Li et al. 2001).

This gives rise to two possible “wrappers”, which are shown in Algorithms 5 and 6:
sequential covering and complete mining.

By instantiating the inner loop of the sequential covering algorithm (Algorithm 5) with
CG we derive CN2-CG, by using a beam search maximizing χ2, CN2χ2 . We empirically
compare those two techniques below, also to RIPPER (Cohen 1995), one of the most sophis-
ticated sequential covering algorithms that use beam search.

For the complete mining algorithm, sketched in Algorithm 6, one choice is to use mini-
mum frequency to estimate significance; the resulting system has been introduced as CBA
(Liu et al. 1998)—classification based on association. Alternatively, by using CG instead
for mining the significant patterns, we obtain the novel CBC—classification based on cor-
relation algorithm, which we empirically evaluate below.
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Algorithm 5 The sequential covering algorithm
S = ∅
repeat

E = E \ {e|e covered by Th1(L, σ, E , τuser,C = c1)}
S = S ∪ Th1

until E = ∅ ∨ Th1 = ∅
return S

Algorithm 6 The complete mining algorithm
S = post-process(Thk(L, σ, E , τuser,C = c1))

Experimental evaluation

As demonstrated in the section on subgroup discovery, beam size is important for both the
quality of found solutions, and the efficiency of the mining technique, when comparing
CN2χ2 to CN2-CG. At the same time, we are also interested in comparing the performance
to RIPPER. This yields to the following reformulations of Q1 and Q2 for the sequential
covering approaches:

Q3 How does the quality of the rules found by CN2χ2 , CN2-CG and RIPPER compare?
Q4 Is CN2χ2 more efficient than CN2-CG?

However, for measuring the quality of the discovered solutions in the classification set-
ting, we employ classification accuracy rather than the correlation measures used for sub-
group discovery. We are also interested in a comparison to the state-of-the-art system for
classification RIPPER.
For the comparison of the complete mining algorithms, the following questions result:

Q5 How does the quality of CBA’s classifiers compare to those of CBC?
Q6 Is CBA more efficient than CBC?

Experimental setup The experimental setting for the sequential covering approach are as
follows:

– Beam sizes for CN2χ2 are 5, 10, 20.
– Minimum significance threshold for CN2χ2 and CN2-CG is 3.84.
– RIPPER is run as WEKA’s (Frank and Witten 1999) JRIP implementation with default

parameters and pruned classifiers evaluated.
– CN2χ2 - and CN2-CG-classifiers are unpruned.

For the exhaustive techniques, the following parameter settings are used:

– WEKA’s APRIORI implementation is used in CBA, with 1% minimum support and 50%
minimum confidence.

– Minimum significance threshold of CBC is 3.84.
– Maximum number of mined rules is 50,000.2

2An exception is the Kr-vs-KP data set where 90,000 rules are needed for CBA to find rules with confidence
of at least 90%.
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Table 5 Average accuracy and standard deviation for CN2
χ2 , CN2-SD, RIPPER, CBA, and CBC. The

left-most column lists data sets, columns 2–4 accuracy estimates for sequential covering approaches (2 & 3
annotated with statistical t-test comparison to RIPPER), CN2

χ2 results are also annotated with the width of
the beam giving rise to the result, columns 5 & 6 list exhaustive techniques (column 6 annotated with t-test
comparison to CBA)

Dataset CN2
χ2 CN2-CG RIPPER CBA CBC

Balance (2 Class) 86.8 ± 3.90 (5)* 86.8 ± 3.9* 80.0 ± 3.4 79.18 ± 4.59 79.18 ± 4.59

Breast-Cancer 81.5 ± 8.4 (10) 80.4 ± 0.8 71.7 ± 0.7 68.19 ± 8.48 66.77 ± 9.28

Breast-W 96.4 ± 2.40 (5) 96.4 ± 2.4 95.7 ± 2.1 94.71 ± 1.90 95.71 ± 1.34

Colic 82.9 ± 5.50 (5) 88.9 ± 5.9 83.9 ± 7.7 81.27 ± 8.07 76.91 ± 6.51

Credit-A 86.5 ± 2.5 (20) 85.8 ± 2.1 85.4 ± 2.5 85.65 ± 4.35 84.06 ± 4.48

Credit-G 79.4 ± 6.0 (10)* 79.4 ± 6.0* 69.4 ± 5.4 71.40 ± 2.63 69.80 ± 4.89

Diabetes 77.4 ± 5.4 (10) 75.1 ± 6.2 76.0 ± 3.9 75.92 ± 4.14 75.78 ± 4.23

Heart-H 83.3 ± 7.50 (5) 81.6 ± 6.3 79.2 ± 7.4 83.33 ± 6.69 82.66 ± 5.82

Kr-vs-Kp 94.3 ± 1.40 (5)** 94.3 ± 1.4** 99.3 ± 0.4 80.72 ± 1.75 95.63 ± 1.29*

Mushroom 98.5 ± 0.30 (5)** 98.5 ± 0.3** 100.0 ± 0.0 99.53 ± 0.19 100.00 ± 0.00*

Spambase 91.4 ± 1.4 (10) 89.0 ± 1.4** 92.7 ± 1.1 86.39 ± 1.62 86.09 ± 1.61

Tic-Tac-Toe 84.6 ± 2.20 (5)** 83.1 ± 2.2** 97.1 ± 1.2 100.00 ± 0.00 100.00 ± 0.00

Voting Record 95.3 ± 3.20 (5) 96.2 ± 3.0 95.6 ± 2.8 94.25 ± 3.10 93.10 ± 3.58

*denotes statistical wins at the 99% level, base-line being RIPPER, and CBA, respectively

**denotes statistical losses at the 99% level, base-line being RIPPER, and CBA, respectively

– CBC mines only the 1000 most accurate rules, a restriction motivated by an observation
in Mutter et al. (2004), that the rules chosen for the final classifier fall well within the
1000 highest-ranked rules.

The data sets used were again discretized. The discretization scheme was more sophis-
ticated than in the subgroup discovery experiments, using Fayyad and Irani’s supervised
discretization method (Fayyad and Irani 1993). The discretization algorithm was run on the
training folds, with the resulting intervals used on test data, such as not to introduce bias
into the data.

Results CN2χ2 , CN2-CG, and RIPPER give rise to solutions of similar quality, cf. Table 5,
with RIPPER being significantly better than CN2χ2 three times (four times vs CN2-CG),
χ2-based optimization being significantly better twice. With CN2χ2 outperforming CN2-
CG once, one can conclude w.r.t. Q3 that the quality of the heuristically derived classifiers
is at least equal to the ones found using CN2-CG. The sequential covering approach allows
the correction of errors in the induction of local patterns by steering the search process for
the overall classifier in the right directions. It should be noted however that selecting the
right beam size is non-trivial, mirroring the results of the subgroup discovery experiments.

Two of the cases in which RIPPER finds the better solution are large data sets with rules
that have high accuracy on only small subsets (Kr-vs-Kp, Tic-Tac-Toe). This indicates that
significance measures at some point tend to penalize low-frequency rules too much. On the
other hand, the χ2-based approaches significantly outperform RIPPER on the Balance and
Breast-Cancer data sets, both of which are rather small, more likely leading to overfitted
rules, which are discounted by the significance estimate of χ2. In contrast, all data sets
on which RIPPER performs well are large—giving a large enough sample to counteract the
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Table 6 Average number of patterns mined by the CN2
χ2 , and CN2-CG, number of patterns mined and

used by RIPPER

Dataset CN2
χ2 CN2-CG RIPPER

# mined # mined # mined # used

Balance (2 Class) 6.0 ± 1.00 5.4 ± 2.12 8.7 ± 2.35 5.2 ± 1.22

Breast-Cancer 27.1 ± 6.30 24.6 ± 6.10 11.2 ± 3.97 3.1 ± 0.74

Breast-W 12.8 ± 1.30 11.4 ± 0.80 19.8 ± 2.04 6.6 ± 0.97

Colic 16.5 ± 2.90 8 ± 0.90 12.9 ± 2.23 3.6 ± 0.70

Credit-A 16.2 ± 2.40 14.6 ± 1.84 25.5 ± 2.42 5.8 ± 1.81

Credit-G 31.1 ± 6.10 30 ± 3.37 15.3 ± 2.79 5.5 ± 2.12

Diabetes 10.0 ± 2.30 11.6 ± 3.37 20.1 ± 3.14 5.2 ± 0.91

Heart-H 9.0 ± 2.00 8.8 ± 1.75 10.8 ± 1.39 3.5 ± 0.85

Kr-vs-Kp 3.0 ± 0.00 2.0 ± 0.00 19.2 ± 1.13 15.4 ± 1.27

Mushroom 4.3 ± 0.50 3 ± 0.00 8.8 ± 0.79 8.7 ± 0.68

Spambase 10.6 ± 1.00 5.8 ± 0.92 53.9 ± 3.28 27.3 ± 3.23

Tic-Tac-Toe 6.3 ± 1.30 8.8 ± 0.40 12.1 ± 2.02 10.6 ± 1.27

Voting Record 4.8 ± 0.6 3.2 ± 0.42 8.8 ± 0.63 2.9 ± 1.20

overfitting stemming from accuracy maximization. Thus there seems to be a slight advantage
provided from the sophisticated pruning techniques of RIPPER which has less of an effect
on small data sets though.

The comparison of CBC with CBA shows that using χ2 instead of support to measure
significance (and ranking them accordingly) gives better results. CBC never performs sig-
nificantly worse than CBA and in two cases is significantly better, answering Q5 positively
regarding CBC effectiveness. In the case of the Mushroom data set the ordering of the rule
set before pruning is decidedly different between the two approaches and thus different rules
are selected for the final classifier. In the Kr-vs-Kp scenario, limiting the mining process to
the 90,000 most significant rules according to support excludes many high-confidence rules.
Even at 200,000, the highest confidence is at just 0.92, while for CBC rules with confidence
1.0 are found within the 50,000 most significant rules according to χ2.

Since the quality of found rules for the heuristic (CN2χ2 ) and complete (CN2-CG) χ2

maximization is very similar, Q4 focusses on whether one of the two techniques is more
efficient. Note that the introduction of beam search mainly attempts to make the search
space manageable by focusing on certain subspaces. Upper bound pruning on the other
hand, uses a different kind of restriction, also with the aim of focussing on the relevant parts
of the search space. Table 6 shows that CN2-CG often, though not always, selects fewer
rules than CN2χ2 , apparently capturing the underlying regularities better.

The number of candidate patterns evaluated, shown in Table 7, does not give a clear an-
swer to question Q4. On several occasions CN2-CG is better, most pronounced for the Colic
data set, while e.g. on Credit-G CN2χ2 finds effective rules far quicker. A possible explana-
tion is that effective rules are found early, the upper bound is not tight enough though, thus
exploring large parts of the search space without gaining anything. The main insight is again
that using exhaustive search can be as efficient as heuristic search, given the right pruning
mechanisms, while in addition it guarantees optimality. Thus, complete branch-and-bound
algorithms seem to be preferable to heuristic ones.
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Table 7 Number of candidate
patterns evaluated by CN2

χ2

(for beam size giving the best
solution) and CN2-CG. Column
three lists number of pattern
evaluated by CN2-CG, equating
100%, column two the
corresponding percentage value
for CN2

χ2

Dataset CN2
χ2 CN2-CG

Balance (2 Class) 139.83% 261.60 (100%)

Breast-Cancer 108.00% 46153.30 (100%)

Breast-W 101.69% 6817.00 (100%)

Colic 2277.10% 2288.70 (100%)

Credit-A 10.76% 1003999.50 (100%)

Credit-G 1.35% 17061266.50 (100%)

Diabetes 40.60% 13030.90 (100%)

Heart-H 36.27% 17809.40 (100%)

Kr-vs-Kp 5.46% 240431.00 (100%)

Mushroom 90.66% 28758.60 (100%)

Spambase 16.14% 2828763.30 (100%)

Tic-Tac-Toe 102.56% 2975.40 (100%)

VotingRecord 39.17% 11726.50 (100%)

Average 228.43%

Table 8 Number of candidate
pattern evaluated by the complete
mining algorithms. The last
column lists number of patterns
for CBC, equating 100%,
column two shows the
corresponding percentage value
for CBA

Dataset CBA CBC

Balance (2 Class) 156.01% 99.80 (100%)

Breast-Cancer 127.44% 8179.20 (100%)

Breast-W 52.58% 12913.80 (100%)

Colic 136.29% 73682.90 (100%)

Credit-A 98.49% 65226.50 (100%)

Credit-G 39.14% 155020.90 (100%)

Diabetes 126.52% 3875.80 (100%)

Heart-H 172.57% 14680.00 (100%)

Kr-vs-Kp 15.92% 687715.50 (100%)

Mushroom 95.86% 53615.80 (100%)

Spambase 15.13% 445856.30 (100%)

Tic-Tac-Toe 38.14% 24511.10 (100%)

Voting Record 65.41% 88996.10 (100%)

Average 87.65%

The final question to be answered is Q6, namely whether CBA is more efficient than
CBC. Table 8 shows again no clear-cut advantage for either technique. On average CBA
mines slightly fewer patterns than CBC.

Again, large data sets on which accurate rules have small coverage, and data sets with
minority classes make upper-bound pruning less effective. More specifically, basing associa-
tive classification mining on CG compares worst on Kr-vs-Kp, Spambase, and Tic-Tac-Toe.
We have seen however that Kr-vs-Kp gives also CBA trouble and subsequent experiments
in which the number of mined patterns is set to 1.8 million still does not give classifiers
comparing well with the CG-solution while exceeding its number of evaluated candidate
patterns significantly.
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To summarize, the experiments show that using statistically well-founded measures im-
proves the prediction accuracy of heuristic methods on small data sets and generally im-
proves upon the accuracy of frequency-based associative classification methods. While the
efficiency of CG-based techniques is on average as good as or better than the alternative
approaches’, for particular data sets existing methods can outperform CG. These findings
suggest (1) that the robustness of sequential covering algorithms such as RIPPER or CN2
that use beam search, a heuristic technique, may be improved by using CG (2) that it may
be advantageous to replace the use of support and confidence in associative classification
techniques such as CBA (Liu et al. 1998) and CMAR (Li et al. 2001) by using correlation
measures grounded in statistical theory, (3) that also decision tree approaches, who choose
an optimal pattern based on a single attribute, may profit from using CG instead, cf. also
our approach to clustering below and the Tree2 approach of Bringmann and Zimmermann
(2005).

Related work

To the best of our knowledge, all rule-based approaches to classification mine local patterns
in some way and build classifiers from them. Decision trees solve the problem of finding
the optimal splitting pattern by essentially limiting the number of conditions to one. There
has been work on multi-variate splitting criteria (Murthy 1997)—there, similar decisions on
the induction mechanism have to be made as in sequential covering. Sequential covering
algorithms like RIPPER or CN2 use beam search, a heuristic technique, inside the covering
loop and their robustness could be improved by using CG. Associative classification tech-
niques such as CBA (Liu et al. 1998) and CMAR (Li et al. 2001) mine patterns based on
user-specified values for support and confidence. Both approaches rely on the declaration of
parameters by the user. The exhaustive algorithms have parameters which are rather difficult
to decide upon but which can have an important effect on the resulting set (Coenen and Leng
2005). Additionally, the result set often is made up of a very large number of rules, making
interpretation by the user difficult. Basing the choice of cut-off value on statistical theory
and pushing the significance test inside the mining step should improve both efficiency and
effectiveness of such techniques.

4.4 Conceptual clustering

Problem description

In clustering, the goal is to partition the instances of a data set into typically disjoint subsets
(clusters) that exhibit high intra-cluster similarity and high inter-cluster dissimilarity. For
the numerical case clusters can be represented, for instance, by centroids or medoids and the
similarity quantified by a vector norm such as the L1 or L2 norm.

In conceptual clustering, clusters have to be described in terms of nominal values instead.
This usually also means that the instances that are clustered have nominal values (potentially
in addition to numerical ones). A similarity measure is then often harder to define. In general,
instances are considered similar if they agree on the values of many attributes. One measure
for judging the quality of a set of clusters is Category Utility (Gluck and Corter 1985) though
others have been defined in the literature as well.
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Clustering and cluster-grouping

Clusters are often arranged into a hierarchy, with clusters closer to the root of the cluster-
ing tree (or dendrogram) described by more general concepts. Such a dendrogram can be
obtained using either a divisive or an agglomerative approach. Here, we focus on a divi-
sive approach, which bears some similarities to decision tree induction, in which clusters
are repeatedly divided into sub-clusters according to some criterion. According to Höpp-
ner (2004) clusters can be considered as deviations in distribution from a default (or back-
ground) distribution w.r.t. certain attributes. Therefore, CG can be used to identify patterns
that capture the deviating areas and can be used to split the clusters. Using CG assures the
best split without restarts of the clustering algorithm and allows the induction of conjunctive
descriptions for clusters. Maximizing e.g. Category Utility—with binary attributes only—is
a cluster-grouping task with the following characteristics:

– L = {A = v | A ∈ A, v ∈ V[A]}, where A = {A1, . . . ,Ad},∀A ∈ A : V[A] = {true, false}
– E a data set
– σ is Category Utility
– k = 1
– At = {Ai | Ai ∈ A}

Since the goal, as mentioned above, is similarity in as many attributes as possible, all
attributes are considered targets, with the symmetric measure CU leading to the induction
of patterns in whose coverage space either the occurrence of true or false values will be
higher than expected.

The system

A dendrogram is a decision tree-like structure, with cluster membership decided by the con-
cepts in the nodes. Therefore the wrapper for a CG-based clustering algorithm is a bit more
involved, compared to the other wrappers, mirroring recursive decision tree algorithms. Al-
gorithm 8, which we term CG-CLUS, thus calls a function SPLIT that recursively constructs
a tree, whose inner nodes denote patterns (or their negations). This is to the best of our

Algorithm 7 SPLIT

Input: Data set E , Leaf node t

if Th1(L,CU, E ,−∞) �= ∅ then
E1 = E \ {e|e covered by Th1(L,CU, E ,−∞)}
E2 = E \ E1

Create left child of t , tl , containing Th1(L,CU, E ,−∞)

Create right child of t , tr , containing ¬Th1(L,CU, E ,−∞)

SPLIT(E1, tl)
SPLIT(E2, tr )

end if

Algorithm 8 CG-CLUS

T = ∅
SPLIT(E , T )

return T
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knowledge the first time that correlation based patterns are used in divisive clustering ap-
proach.

A second approach is cluster mining (Perkowitz and Etzioni 1999), where a clustering
algorithm is used to find a clustering, each cluster treated as a single class, and conjunctive
concepts learned on them. Afterwards, all instances matching a concept are considered to
be in one cluster, possibly producing overlapping clusters.

To evaluate CG-CLUS, we shall compare it to COBWEB (Fisher 1987), the arguably best-
known conceptual clustering technique, and a cluster mining technique using AUTOCLASS

(Cheeseman et al. 1988) and RIPPER. COBWEB iteratively processes instances, using four
operators: assigning an instance to an existing dendrogram node, creating a new node, split-
ting an existing node, or merging two existing nodes.

Experimental evaluation

COBWEB’s direct assignment and iterative processing gives it great flexibility in assem-
bling clusters but also makes it vulnerable to ordering effects in data. In addition, by using
conditional probability vectors instead of conjunctions to describe the clusters, it has fewer
restrictions which instances to cluster together. Thus, a question pertaining to COBWEB is:

Q7 Do COBWEB’s clusterings have higher CU than the ones of CG-CLUS?

This question is meant to provide an insight into the effectiveness of CG-CLUS.
AUTOCLASS is based on Bayesian principles and thus not directly optimizing CU. On

the other hand, it has greater flexibility than CG-CLUS in assigning instances directly to
clusters—not indirectly via the found description. In addition, decoupling the processes of
forming clusters and finding a description gives the actual concept formation greater flexi-
bility than CG-CLUS possesses. Since both COBWEB and a cluster-mining approach have
greater flexibility (and make conjunctive concept formation a non-integral part of the mining
process), two further questions are:

Q8 How similar are CG-CLUS’ and COBWEB’s/AUTOCLASS’ clusterings?
Q9 How complex are conjunctive descriptions of COBWEB’s/AUTOCLASS’ clusters, com-

pared to CG-CLUS’ ones, and how much information about the underlying instances is
recovered?

Experimental setup To compare the agreement of two clusterings, we use the Rand index,
which is the fraction of pairwise grouping decisions on which the two clusterings agree. Let
E = {e1, . . . , en} be a data set and C1, C2 two clusterings of E . For each pair of instances
ei, ej , Cl either assigns them to the same cluster or to different clusters. Let same be the
number of decision where ei, ej are in the same cluster in both clusterings and diff the
number of decisions where they belong to different clusters in both Cl . The Rand Index is
defined as:

Rand(C1, C2) = same + diff

n ∗ (n − 1)/2

If the number of clusters in a clustering is different, the Rand index will obviously show
a dissimilarity. Therefore, we attempted to form a number of clusters corresponding to the
number of class values on each data set in our experiments.

To obtain a given number of clusters from a COBWEB dendrogram, there are two
possibilities—the user selects certain nodes in the tree, disregarding the structure under-
neath them, or the growth of the dendrogram is limited.
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In the first case, the fact that COBWEB often constructs dendrograms in which every
instance is sorted into its own cluster, makes this a non-trivial procedure. Also, selecting all
nodes from the same level of the tree does not guarantee a good solution CU-wise.

Instead, in the WEKA implementation, a minimum CU-gain can be set which determines
whether new nodes in the dendrogram are introduced, or existing nodes split. By starting out
with a lenient threshold, systematically tightening it when more than the desired number of
clusters is formed and relaxing it when the tightening proved to be too strict, it is possible
to approximate the desired number of clusters.

Unfortunately, this method does not always guarantee obtaining the target number of
clusters, since COBWEB sometimes forms just one cluster or tens/hundreds depending on
a 0.0001 difference in the threshold value. Instead of arbitrarily merging clusters, we used
the COBWEB-solution whose number of clusters is closest to the actual number of classes,
unless this number is 1, i.e. all instances were sorted into the same cluster. After determining
the COBWEB-clustering, we attempted to construct the same number of clusters using CG-
CLUS.

AUTOCLASS can be supplied with the number of clusters it should create. For each data
set, AUTOCLASS performed 250 restarts with 200 iterations each. The assumed model was
single multinomial for all attributes. We used the best clustering found for comparison with
the CG-based approach.

As for our technique, CG-CLUS, to obtain the desired number k of clusters, the k − 1
best splits are used. Since a good CU score on a small subset is easier to achieve than on
a larger one, patterns’ scores are weighted with the proportion of instances of the complete
set that they were derived on. The resulting dendrogram is decision tree-like in the way data
is split on patterns and their impact discounted on the population size.

Owing to the need for binary attributes, discretization was performed as in the subgroup
discovery experiments, and nominal attributes binarized.

Results To answer Q7 and Q8, we report CU-values and the Rand-index for CG-CLUS-
and COBWEB-clusterings for a variety of data sets in Table 9. For the data sets for which
hundreds or even thousands of clusters were formed by COBWEB we did not attempt to
form the same number of clusters using CG. Instead we report on the Category Utility of
the “correct” solution of CG-CLUS (i.e. the clustering having as clusters the classes in the
data), the average CU for COBWEB and no value (N/A) for the Rand-index. In the cases
where we match COBWEB’s number of clusters, these can vary for different runs, leading to
variations of the CU which we report. If we do not match the number of clusters COBWEB

produces, we report only a single CU-value since CG-CLUS forms only one partition with
as many clusters as classes in the data.

The resulting Category Utilities show that far from always giving rise to superior scores
by using the more flexible clustering scheme, the quality of COBWEB’s solution is clearly
affected by ordering effects in the data. If the right ordering of instances exists, COBWEB

constructs very good solutions, if not, CU values are rather low or the dendrogram is huge.
When threshold differences of 0.0001 make the difference between a single cluster and
a dendrogram having hundreds of leaves it is difficult for the user to make an informed
decision on which clusters to merge. For the data sets where a reasonable number of clusters
was constructed, COBWEB’s average CU is larger than that of CG-CLUS four times, less six
times, while at the same time exhibiting similarities of the clusterings in excess of 0.7. This
means that Q7 has to be answered negatively, COBWEB does not always translate the greater
flexibility of its assignment mechanism into better CU values. Also, the solutions are rather
similar, giving the answer to Q8.
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Table 9 CU of the CG-CLUS clusterings, and CU of COBWEB’s solution, averaged over 10 runs, Rand-
index of the two clusterings

Dataset CUCG CUCW Rand

Credit-G 0.4408 0.0239 ± 0.002 N/A

Credit-G-Equal 0.4753 0.1161 ± 0.0293 N/A

Kr-vs-Kp 0.5343 ± 0.0040 0.5782 ± 0.0012 0.7817 ± 0.0029

KrkOpt 0.1536 ± 0.0072 0.1369 ± 0.002 0.7396 ± 0.028

Letter 0.1742 ± 0.0075 0.1342 ± 0.0151 0.7629 ± 0.0275

Letter-Equal 0.1677 ± 0.0053 0.1439 ± 0.0063 0.8759 ± 0.0001

Mfeat-Fourier 0.4743 0.4487 ± 0.1334 N/A

Mfeat-Fourier-Equal 0.7183 0.1855 ± 0.0289 N/A

Mfeat-Karhunen 0.457 0.0203 N/A

Nursery 0.3555 0.0846 ± 0.0273 N/A

Optdigits 0.4609 ± 0.0029 0.5234 ± 0.0229 0.7865 ± 0.0148

Optdigits-Equal 0.6865 ± 0.0203 0.7936 ± 0.0565 0.8509 ± 0.0069

Pendigits 0.4336 ± 0.0091 0.4015 ± 0.0074 0.8519 ± 0.0004

Segment 0.5878 ± 0.0122 0.5438 ± 0.0505 0.7994 ± 0.1029

Segment-Equal 0.7925 ± 0.0083 0.7916 ± 0.0063 0.8984 ± 0.0039

Waveform 0.9791 1.1624 ± 0.0229 0.7822 ± 0.0192

Table 10 is used to give insight into question Q9. It lists the number of classes in the
data, the average number of clusters in COBWEB’s clusterings over ten runs, the number of
rules learned by RIPPER (unpruned) on these clusters and their accuracy. It should be noted
that CG-CLUS builds a tree of conjunctive descriptions (and their negations) for clusters—
which have 100% accuracy—and can easily be constrained to form as many clusters as
classes exist in the data.

The experiments show that COBWEB hardly forms a number of clusters that corresponds
to the number of underlying classes. In addition, most of the time far more rules than classes
will be learned on the data, which do not always capture the clusters very well. So the
conjunctive descriptions found using COBWEB’s clusterings are at the same time rather
complex and not always reliable.

Regarding the cluster mining solution using AUTOCLASS and RIPPER, Table 11 lists the
number of classes per data set (both CG-CLUS and AUTOCLASS form the same number
of clusters), the number of rules learned by RIPPER and their accuracy on AUTOCLASS’
solution, as well as the Rand-index of the two clusterings.

The similarity of the clusterings produced by the two methods is generally very high,
with three exceptions, thus answering Q8. While AUTOCLASS’ solutions give rise to smaller
descriptions than COBWEB’s do, and AUTOCLASS’ rules achieve a far higher accuracy on
the underlying clusters, they still exceed the number of clusters (and thus conjunctive de-
scriptions in CG-CLUS’ tree) by far. This means that while being rather close in actual
composition, the description of AUTOCLASS’ solution is far more complex.

To summarize, while being less flexible in forming clusters, the novel system CG-CLUS

finds clusterings that are highly similar to the solutions of two more flexible schemes that
are well-established in the literature. The mining process itself guarantees high intra-cluster
similarity in a single run of the algorithm and in addition, the formulation of conjunctive
cluster descriptions of low complexity.
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Table 10 Classes per data set, average number of clusters formed by COBWEB, number of conjunctive rules
learned on the clustering using RIPPER, recovery rate (that is training set accuracy of learned rules)

Data sets # of Classes # of Clusters # of Rules Recovery rate

Credit-G 2 349.5 ± 180.96 38.9 ± 8.86 65.44% ± 17.61

Credit-G-Equal 2 202.5 ± 191.02 42.7 ± 8.30 78.34% ± 18.80

Kr-vs-Kp 2 2.5 ± 0.70 15.7 ± 14.47 99.74% ± 0.30

KrkOpt 18 13.8 ± 5.20 14.5 ± 5.98 99.99% ± 0.003

Letter 26 18.7 ± 13.01 139.6 ± 40.65 98.71% ± 0.64

Letter-Equal 26 24.5 ± 5.23 211.2 ± 24.04 97.41% ± 0.61

Mfeat-Fourier 10 54.9 ± 60.58 51.9 ± 24.82 95.13% ± 3.84

Mfeat-Fourier-Equal 10 58 ± 24.35 24.6 ± 2.87 96.99% ± 1.20

Mfeat-Karhunen 10 663.7 ± 173.25 86.3 ± 19.59 64.28% ± 8.75

Nursery 5 1480.8 ± 958.07 1102.3 ± 710.23 97.22% ± 0.92

Opdigits 10 8.5 ± 1.65 103.4 ± 16.59 93.33% ± 1.81

Optdigits-Equal 10 8.6 ± 1.17 111.2 ± 17.21 93.47% ± 1.00

Pendigits 10 7.2 ± 0.63 60.5 ± 7.01 99.73% ± 0.08

Segment 7 4.5 ± 0.7 6.6 ± 1.17 99.99% ± 0.01

Segment-Equal 7 6.2 ± 0.42 38.9 ± 3.24 99.42% ± 0.13

Waveform 3 3.0 ± 0.00 52.4 ± 2.75 97.31% ± 1.04

Table 11 Classes per data set, number of descriptive rules found by RIPPER on the AUTOCLASS-solution
and their accuracy, and similarity of found clusterings

Data sets # of Classes # of Rules Recovery rate Rand

Credit-G 2 7 100% 0.5012

Credit-G-Equal 2 25 99.1% 0.5580

Kr-vs-Kp 2 2 100% 0.9185

KrkOpt 18 31 100% 0.9663

Letter 26 268 98.86% 0.9016

Letter-Equal 26 277 97.16% 0.9402

Mfeat-Fourier 10 92 99.15% 0.8673

Mfeat-Fourier-Equal 10 64 99.4% 0.8481

Mfeat-Karhunen 10 89 99% 0.8729

Nursery 5 5 100% 0.6543

Optdigits 10 117 95.53% 0.8656

Optdigits-Equal 10 115 96.89% 0.8887

Pendigits 10 73 99.66% 0.9019

Segment 7 9 99.91% 0.8345

Segment-Equal 7 10 99.65% 0.9002

Waveform 3 50 98.2% 0.7877

Related work

The field of conceptual clustering is too vast to exhaustively discuss everything relating to
our work so we will restrict our discussion mainly to the papers mentioned in Sect. 4.4.
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One of the earliest approaches to inducing conjunctive descriptions of conceptual clusters is
the CLUSTER/2 system (Michalski and Stepp 1983). While CLUSTER/2 works bottom-up
in a heuristic manner, generalizing pairs of seed instances, our technique induces concepts
top-down and gives guarantees w.r.t. the quality of found solutions. The conceptual cluster
mining task, introduced by Perkowitz and Etzioni (1999), is similar to cluster-grouping w.r.t.
to clustering. Their goal is to induction clusters that are cohesive but also describable by a
simple concept. To this end, they use their PAGEGATHER system for clustering webpages
and RIPPER to learn the concept separating each cluster from all others. The final solution
consists of all subsets of instances that correspond to the learned concepts. Since both the
clustering and the rule learning algorithm could be instantiated differently, the conceptual
cluster mining framework is rather general. The approach does have potential drawbacks
as discussed in Sect. 4.4. In Nevins (1995), an incremental branch-and-bound clusterer for
the formation of hierarchies was introduced. Since addition of new observations can have
a severe effect on the existing hierarchy, re-insertion of instances and clusters is performed
during the formation process. To restrict the number of evaluation steps needed, the set of
nodes that could act as parents in the hierarchy to the instance or cluster to be inserted is
limited. To this end, an upper bound on the best value a node can give is calculated based
on the evaluation of picking this node’s parents as parents of the new instance or cluster.
The measure we used for the quality of cluster descriptions in this work is Category Util-
ity, with the probably best-known clusterer using this measure being COBWEB. Due to its
incremental instance processing, the ordering of instances has an effect on the solution.
To address this effect, Fisher (1996) explores several re-distribution and re-clustering tech-
niques for greedily improving an existing clustering. We find the optimally discriminating
patterns in the first run instead. A second issue addressed in Fisher’s work is related to the
effect we observed in Sect. 4.4, namely that COBWEB on certain data sets tends to create
a large amount of clusters, gaining only a small increase in Category Utility. The solution
discussed in Fisher (1996) is similar to post-pruning in decision tree learning in that cer-
tain branches of the clustering hierarchy are removed during validation on a separate data
set. Third, Fisher discusses possible shortcomings of Category Utility as a quality measure
for clusterings. Assuming that a clustering is used for classification afterwards, he suggests
properties such as number of leaves, maximum path length, branching factor and classifica-
tion cost, e.g. number of attributes to be evaluated, for measuring the quality of a clustering
tree. All these parameters could be affected by a user, given a suitable wrapper around CG.
Finally, possible alternatives to Category Utility mentioned in this work could be used in
CG if they are convex.

An additional work that has to be mentioned is that of Blockeel et al. (1998). In their
approach, a decision tree is constructed, with tests in first order logic in the splitting nodes.
While the measure used is intra-class variance, to induce similarity of numerical features,
CU could be used instead. The main difference lies in the fact that TIC describes clusters by
conjunctions formed by along branches of the tree but not in each splitting node.

5 Related work

Work that is related to the overall cluster-grouping-framework can be roughly grouped into
two categories: work exploring the relation between local pattern mining and diverse data
mining or machine learning tasks, and algorithmically related techniques.
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5.1 Local pattern mining for machine learning

The task of correlating pattern mining has been introduced by Brin et al. (1997). Their
solution to the problem is somewhat different than Morishita and Sese’s one in that they
mine for all pattern for whom all pairs of items correlate. By restricting their definition in
that way, they can derive an anti-monotone criterion that can be used for pruning. It also
means that they have more flexibility w.r.t. possible rules. The caveat is, however, that there
might be correlations which will only emerge if a combination of items is related to a target
item. Those will not be found by their technique.

The relation between local pattern mining and classical machine learning tasks has been
explored in recent years, notably at the 2004 Dagstuhlseminar: Detecting Local Patterns
(Morik et al. 2004). Höppner (2004) discusses the relation between local pattern mining
and clustering and arrives at an algorithm finding clusters characterized by local patterns
whose interestingness is measured w.r.t. a background distribution. Found partitions are
then successively refined further. The relationship between local and global models w.r.t.
classification rule learning is the topic of Fürnkranz (2004). This work is more concerned
with filtering and combining mined patterns to build a classifier, though.

A short discussion of the unification of supervised (subgroup discovery, classification)
and unsupervised learning (conceptual clustering) can be found in Fisher and Hapanyengwi
(1993). The authors mention that supervised learning aims at predicting a single attribute,
unsupervised learning all attributes, and that tasks between those two goals could be imag-
ined but do not seem to pursue this further, as we do.

5.2 Related algorithms

Similar ideas to the ones discussed w.r.t. the CG algorithm have been explored in the BRUTE

system (Riddle et al. 1994). It performs a bounded, exhaustive search to find the k best so-
called nuggets. These nuggets are high-accuracy rules, essentially local patterns that have a
high predictive power for a potentially small set of instances. In this regard they are similar
to rules describing subgroups. Instead of a minimum interestingness threshold, BRUTE asks
the user to specify a minimum search depth and possibly also minimum number of positives
covered and a beam size.

Generally speaking, CG, as well as any other exhaustive pattern miner, can be interpreted
as an instantiation of the OPUS system introduced by Webb (1995). Similarly to EXPLORA,
referred to in Sect. 4.2, OPUS is a general system for exhaustive mining that allows the
application of supplied mining rules. The optimization version of OPUS, OPUSO , depends
on the use of an optimistic value for pruning, i.e. an upper bound.

Webb and Zhang (2005) also presented an algorithm for mining the best k frequent pat-
terns according to an additional interestingness measure, specifically leverage which is cal-
culated in the same way as WRacc. The approach is similar to CG, employing a dynamic
threshold for pruning. The pruning rules are specifically tailored to leverage, in contrast to
the technique used here. The author identifies finding additional constraints and according
pruning rules as a future research direction. The addition of a frequency constraint seems to
conflict with our intuition that a pattern should be interesting w.r.t. statistical considerations.

The CG algorithm is a substantial extension of the Morishita and Sese algorithm for
correlated pattern mining, APRIORISMP (Morishita and Sese 2000). Morishita and Sese
have also adapted the basic APRIORISMP (Sese and Morishita 2004) to cope with multiple
numerical attributes in the consequent part of rules. By performing clustering of numeri-
cal target values using the convex interclass variance criterion, they are defining a further
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cluster-grouping task. The most important difference with the work of Sese and Morishita
(2004) is thus that they only look for the k best rules achieving this clustering effect and
did not study the application of these rules to hierarchical conceptual clustering, subgroup
discovery, or classification, which is the most important contribution of the present work.

A similar technique has been developed independently by Bay and Pazzani (2001). Their
name for patterns that discriminate strongly between several values of a designated attribute
is contrast sets. Bay and Pazzani also use the convexity of χ2 to derive an upper bound
for patterns regarding a multi-valued target attribute. The main difference with Morishita
and Sese’s work lies in the fact that the latter derive a general upper-bound framework
applicable to all convex correlation measures is developed, which we further generalized
into the cluster-grouping framework.

The cluster-grouping problem is also related to feature selection in conceptual clustering
and to semi-flexible prediction (Talavera 2000; Cardie 1993). Talavera (2000) motivation
for feature selection in conceptual clustering is somewhat related to our motivation insofar
as he is aiming for better comprehensibility, exclusion of irrelevant features and more effi-
cient clustering processes (both when creating and using the clusters). There is also some
similarity in where in the algorithm the feature are selected, since it is recomputed for each
node in the hierarchical clustering tree. This is called local or dynamic selection. The main
differences with our work are two-fold: Firstly, Talavera’s work still retains COBWEB’s rep-
resentation and only achieves better comprehensibility by reducing the number of consid-
ered attributes. Secondly, in his approach each attribute is scored before the actual clustering
step, whereas CG performs feature selection as part of the clustering process itself.

Cardie (1993) defines semi-flexible prediction as learning to predict a set of features
known a priori as opposed to inflexible prediction (classification) and flexible prediction
(clustering). Her approach involves automated feature selection for each attribute to be pre-
dicted separately. These features are then used in subsequent independent prediction of the
attributes. In contrast, we attempt to predict a disjunction of attributes from a shared set of
antecedents instead.

Finally, cluster-grouping is in many aspects related to the confirmatory induction setting
in the Tertius system by Flach and Lachiche (2001). As in CG, several target attributes are
considered. It is interesting to note in this context that the rule head is treated as a single
target while CG treats each condition separately. Flach’s work diverges from the general
correlation setting in which correlation is symmetric and instead focuses on the number
of counter-instances to a given rule, thus considering only directed associations. Using an
optimistic estimate (an upper bound) they prune non-promising candidates and find and rank
optimal rules. Focusing on counter-instances only allows more flexibility regarding the rule
head, that is, the set of conditions need not be fixed.

6 Conclusions and future work

We have introduced the problem of cluster-grouping and argued that it can be considered a
subproblem in a wide variety of popular machine learning and data mining tasks, such as
correlated pattern mining, subgroup discovery, classification, and conceptual clustering.

A key contribution of this paper is the formulation of the CG algorithm for tackling the
cluster-grouping task. We have also argued that it can be used as a universal local pattern
mining component in systems tackling important machine learning and data mining tasks.
Furthermore, using the CG algorithm has several advantages that often help to alleviate
some of the problems with existing systems:
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1. CG always outputs the k best solutions according to the interestingness function σ . This
contrasts with current approaches to the subgroup discovery, classification, and concep-
tual clustering settings, where the quality of the discovered solutions depends on para-
meters at best related implicitly to σ , such as a minimum support threshold. At worst,
such parameters are only related to the employed heuristic, such as beam-size.

2. While CG is based on a generic brand-and-bound algorithm that has already been used in
several works in data mining, it extends these works in that it allows to consider multiple
target attributes.

3. An effective pruning technique uses the best σ values seen so far to dynamically remove
those parts of the search space that cannot lead to solutions. This procedure often consid-
ers fewer candidate rules than heuristic techniques, such as beam search (cf. also the ex-
periments in Sect. 4.2), or complete enumeration techniques as associative classification
or brute-force search, combined with post-processing steps. Therefore, unlike the current
practice in machine learning, complete branch-and-bound search using convex interest-
ingness measures is often to be preferred over heuristic approaches like beam search.

4. The optimization with regard to interestingness measures is based on statistical principles.
Additionally, setting a parameter k to limit the size of the solution set is—arguably—
more intuitive than the specification of a beam size or minimum support threshold.

We have shown that our approach is an extension of Morishita’s and Sese’s work that
allows one to apply the underlying ideas to more flexible target definitions and thus addi-
tional problem settings. We have provided experimental evidence that CG is well-suited
for rule-based subgroup discovery (CG-SD), use in classification (CN2-CG,CBC), and
conceptual clustering (CG-CLUS). Different variants of existing and novel algorithms were
implemented and experimentally compared to state-of-the-art techniques for solving these
tasks. In most of cases the CG based approach improved upon alternative techniques in ef-
ficiency or performance. Especially worth mentioning are two novel algorithms, CBC and
CG-CLUS, which target associative classification and divisive clustering respectively. CBC
is a natural alternative to systems such as CMAR and CBA that derive association rules
using support and confidence. The CG-CLUS algorithm is competitive with one of the best-
known conceptual clustering algorithms, COBWEB, and computes rule-sets that are easier
to interpret.

Further research will proceed in several directions. First, as can be seen in the experi-
ments, the effectiveness of the pruning step depends strongly on the tightness of the upper
bound calculated. Therefore, it is desirable to tighten future support estimates and therefore
attainable values of σ . Second, the technique should in principle be usable in the formation
of multi-variate decision trees (Murthy 1997). For such a setting it would be necessary to
extend the upper-bound techniques to multi-valued target attributes. For the classification
setting this extension could take the form of learning rules involving error-correcting output
codes (Dietterich and Bakiri 1991; Masulli and Valentini 2000).

Another direction is the application to other learning areas. We have already employed
the basic principles of CG in a different domain, tree-structured data (Bringmann and Zim-
mermann 2005) and the cluster-grouping paradigm could also be extended into the area of
logical and relational learning (De Raedt 2008).
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Appendix: Convexity Proofs

A.1 Convexity of Weighted Relative Accuracy (WRAcc)

Let A be an attribute, v ∈ V[A] a possible value of A, E a data set, r a rule of the form
b � A = v, with x = sup(b), y = sup(x � A = v),m = sup(A = v),n = |E |.

Then the usual definition of WRAcc:

P (b)(P (A = v|b) − P (A = v)) can be redefined as: WRAcc(x, y) = x

n

(y

x
− m

n

)

To prove the convexity of WRAcc, we directly check the convexity criterion:

WRAcc(λ(x1, y1) + (1 − λ)(x2, y2))

= λx1 + (1 − λ)x2
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= λWRAcc(x1, y1) + (1 − λ)WRAcc(x2, y2)

Since the two terms are equal WRAcc is not strictly convex function.

A.2 Convexity of Category Utility (CU)

As shown in Sect. 3.3, CU can be decomposed into a sum of partial CUs. If reformulated in
the stamp point notation, CU becomes:

CU(〈x, y1, . . . , yd〉)

=
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Since a sum of convex functions is itself is again convex it is enough to prove the convex-
ity of partial CU. Additionally to directly checking the convexity property there is another
way to prove convexity whose presentation takes up less space. For a twice differentiable
function to be convex, its Hessian has to be positive semi-definite. The Hessian is the matrix
of the function’s second partial derivatives and for the two-dimensional case has the form:

⎛

⎝
∂2f

∂x2
∂2f

∂x∂y

∂2f

∂y∂x

∂2f

∂y2

⎞
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A matrix is positive semi-definite if the determinants of all its leading principal minors
are ≥ 0. This implies that we have to show that:

∂2f

∂x2
≥ 0,

∂2f

∂y2
≥ 0, and

∂2f

∂x2

∂2f

∂y2
− ∂2f

∂x∂y

∂2f

∂y∂x
≥ 0

A partial CU in stamp point notation is a sum that can be decomposed further into the
part corresponding to the instances covered by the rule body and the instances not covered
by the rule body. Again it holds that if those two terms are convex, the entire partial CU is
convex. The corresponding Hessians are:

(
2y2

nx3
−2y

nx2

−2y

nx2
2
nx

)(
2(y−m)2

(n−x)3n

2y−2m

(n−x)2n

2y−2m

(n−x)2n

2
2(n−x)n

)

The ∂2f

∂x2 , ∂2

∂y2 are obviously greater or than zero, so all that is left is checking the deter-
minants of the whole matrices. For the “positive” part (the part that corresponds to covered
instances) this determinant is:

4y2

n2x4
− 4y2

n2x4
= 0 and for the “negative” part:

4(y − m)2

(n − x)4n2
− 4(y − m)2

(n − x)4n2
= 0

So the Hessian of CU is positive semidefinite and thus CU is a convex function.
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