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Abstract The goal of approximate policy evaluation is to “best” represent a target value
function according to a specific criterion. Different algorithms offer different choices of the
optimization criterion. Two popular least-squares algorithms for performing this task are
the Bellman residual method, which minimizes the Bellman residual, and the fixed point
method, which minimizes the projection of the Bellman residual. When used within pol-
icy iteration, the fixed point algorithm tends to ultimately find better performing policies
whereas the Bellman residual algorithm exhibits more stable behavior between rounds of
policy iteration. We propose two hybrid least-squares algorithms to try to combine the
advantages of these algorithms. We provide an analytical and geometric interpretation of
hybrid algorithms and demonstrate their utility on a simple problem. Experimental results
on both small and large domains suggest hybrid algorithms may find solutions that lead to
better policies when performing policy iteration.

Keywords Reinforcement learning · Markov decision processes

1 Introduction

Solving Markov decision processes (MDPs) (Puterman 1994) with large or infinite state
spaces requires some form of function approximation. Algorithms that use value functions,
such as approximate value iteration and approximate policy iteration, encounter the problem
of how best to represent a target function. Given a policy π , the approximate policy evalu-
ation problem is to compute an approximate value function V̂ that represents that policy’s
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value function V π . Temporal difference (TD) methods (Sutton 1988) and Bellman residual
methods (Schweitzer and Seidmann 1985) offer different solutions to this problem. These
methods, which behave very differently in practice, are similar in that they both stem from
functions of the Bellman equation. Baird (1995) proposed a combination of the two methods
using a single parameter that at one extreme defaults to the temporal difference method and
at the other extreme defaults to the Bellman residual method. Intermediate values combine
the objective functions of the two methods. Baird termed this a residual algorithm, which
for clarity we refer to as a hybrid algorithm.

The original hybrid algorithm (Baird 1995) was incremental in nature as updates to the
value function occur either after each observed transition or after each epoch. Incremental
algorithms have the disadvantage that they make inefficient use of data and require appro-
priately setting a learning rate. Least-squares algorithms, which have access to a batch of
samples and can make multiple passes over the data, remedy these issues. The fixed point
algorithm, also referred to as the least-squares temporal difference (LSTD) algorithm, was
proposed by Bradtke and Barto (1996) and generalized by Boyan (1999) to learn a value
function for a fixed policy. Least-squares techniques have also been applied to the Bellman
residual method. These two algorithms can be used to learn action-value functions for con-
trol problems (Lagoudakis and Parr 2003). When used within policy iteration, the fixed point
algorithm tends to find better policies while the Bellman residual algorithm exhibits more
stable behavior between rounds of policy iteration.1 We propose two ways to implement
hybrid algorithms using the more efficient least-squares approach.

Hybrid algorithms can be understood both analytically and geometrically. They produce
approximate value functions that are projections of the target function V π under different
weightings. We provide equations for the projections. We also describe hybrid algorithms
from a geometric perspective associated with the Bellman equation. This perspective offers
some further intuition on the stability of the algorithms. Finally, we compare the various
algorithms empirically on small domains and on Tetris, a large problem with more than 1060

states.

2 Background and terminology

We consider Markov decision processes (Puterman 1994) with a finite state space S

of N states, a finite action space A, a state transition function P (s, a, s ′) yielding the
probability of moving from state s ∈ S to state s ′ ∈ S given action a ∈ A, and a re-
ward function R(s, a, s ′) giving the expected reward under the transition from s ∈ S to
s ′ ∈ S given a ∈ A. A policy π is simply a mapping from states to actions. Let P π be
a N × N matrix with P π(i, j) = P (i,π(i), j) and let Rπ be a length N vector with
Rπ(i) = ∑

j P π(i, j)R(i,π(i), j). The value function V π is a length N vector that solves
the Bellman equation

V π = Rπ + γP πV π (1)

where γ ∈ [0,1) is a discount factor.

1By stability, we do not mean the likelihood of a value function diverging to infinity (as was the original issue
with incremental TD methods when used with function approximation (Baird 1995)). Rather, we refer to how
rapidly the functions fluctuate between rounds of policy iteration.
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Policy evaluation involves computing V π for an arbitrary policy π . The value function
V π can be computed directly V π = (I − γP π)−1Rπ or iteratively

Vk+1 = T π(Vk) = Rπ + γP πVk (2)

where T π : R
N → R

N is the Bellman operator. The iterative method converges to V π .
When an exact representation of V π is infeasible, the value function must be approxi-

mated. We consider linear function approximation where a value function V̂ is expressed
as a linear combination of basis functions. This is written V̂ = Φw where w ∈ R

K is an
adjustable parameter vector and Φ = [Φ1| . . . |ΦK ] ∈ R

N×K with each column Φi being a
basis function. We assume without loss of generality that the basis functions are linearly
independent. It is also typical for the number of free parameters to be much smaller than the
number of states (K � N ).

Approximate policy evaluation involves computing an approximate value function V̂ =
Φw that represents V π . The following four techniques address this problem.2

1. Optimal Approximate Solution (OPT)
If the target value function V π were known, then it is easy to find an approximation V̂

simply by projecting V π onto the space spanned by the basis functions. This directly
minimizes ‖V̂ − V π‖ρ , where the errors for each state are weighted according to distri-
bution ρ. Thus, the solution is V̂ = Φw = ΠρV

π where Πρ = Φ(ΦT DρΦ)−1ΦT Dρ is
a projection matrix and Dρ is a diagonal matrix Dρ(i, i) = ρ(i). The difficulty of this
method is in computing V π , which can in principle be done using Monte Carlo meth-
ods.

2. Bellman Residual Minimization (BR)
This technique computes a solution by minimizing the magnitude of the Bellman resid-
ual, ‖T π(V̂ ) − V̂ ‖ρ , where the errors for each state are weighted according to distribu-
tion ρ:

min
w

‖T π(V̂ ) − V̂ ‖ρ

= min
w

‖Rπ + γP πΦw − Φw‖ρ. (3)

The least-squares solution is to minimize ‖ABRw − bBR‖ρ where:

ABR = ΦT (I − γP π)T Dρ(I − γP π)Φ,

bBR = ΦT (I − γP π)T DρR
π .

This technique, proposed by Schweitzer and Seidmann (1985), has also been re-
ferred to as the residual-gradient method (Baird 1995; Schoknecht 2003), the quadratic
residual method (Munos 2003), and as the Bellman residual method (Lagoudakis
and Parr 2003; Antos et al. 2008). When the model is unknown or is too large,
the matrix ABR and vector bBR must be estimated from samples. To achieve an
unbiased estimate, two samples from each state are required (Sutton and Barto
1998). Given double samples 〈s,π(s), r ′, s ′〉 and 〈s,π(s), r ′′, s ′′〉, the updates are

ÂBR = ÂBR + ρ(s)(φ(s) − γφ(s ′))(φ(s) − γφ(s ′′))T ,

b̂BR = b̂BR + ρ(s)(φ(s) − γφ(s ′))r ′

2The first three techniques were similarly described by Munos (2003).
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where φ(s) is a column vector of length K associated with the sth row of Φ (i.e.
φ(s) = Φ(s, :)T ). If only a single sample is available, then replacing φ(s ′′) with φ(s ′)
in the equation above for ÂBR results in a biased estimate of ABR. This occurs be-
cause the term γ 2ΦT (P π)T DρP

πΦ in ABR cannot be estimated from just a single
transition. Two common heuristics for dealing with this issue are to hypothesize a sec-
ond sample using a nearest neighbor of s ′ and to not update ÂBR until a state s has
been visited at least twice. Recently, Antos et al. (2008) proposed a technique for
avoiding double samples by adding an auxiliary function which itself must be opti-
mized.

3. Fixed Point Solution (FP)
This technique computes a solution by forcing V̂ to be a fixed point of the Bellman op-
erator. Since the Bellman operator can back up values out of the space spanned by the
basis functions, it must be followed by a projection onto the column space of Φ (writ-
ten [Φ]) to ensure V̂ is a fixed point. Thus, the solution is to minimize ‖ΠρT

π(V̂ ) − V̂ ‖ρ :

min
w

‖ΠρT
π(V̂ ) − V̂ ‖ρ

= min
w

‖Πρ(T
π(V̂ ) − V̂ )‖ρ

= min
w

‖Πρ(R
π + γP πΦw − Φw)‖ρ. (4)

In the second step above, note that V̂ = ΠρV̂ . The least-squares solution to this problem
is to find w such that AFPw = bFP where:

AFP = ΦT Dρ(I − γP π)Φ,

bFP = ΦT DρR
π .

We refer to this technique as the FP solution to be consistent with previous work
(Lagoudakis and Parr 2003), but it has also been referred to as the temporal difference
method (Schoknecht 2003; Munos 2003). Unbiased estimates of the matrix AFP and vec-
tor bFP can be obtained from a single sample 〈s,π(s), r ′, s ′〉 by the following updates:

ÂFP = ÂFP + ρ(s)φ(s)(φ(s) − γφ(s ′))T ,

b̂FP = b̂FP + ρ(s)φ(s)r ′.

4. Hybrid Minimization (H)
The BR solution minimizes the Bellman residual (3) and the FP solution minimizes the
projected Bellman residual (4). Baird (1995) proposed residual algorithms as a way to
combine these techniques. The term “residual” algorithm was used to emphasize that it
was different from a “residual-gradient” algorithm (his terminology for BR). To avoid
any confusion, we refer to residual algorithms as hybrid algorithms. This name also em-
phasizes the fact that it is a combination of BR and FP. Baird’s original version was an
incremental algorithm. An update to the weight vector was computed by linearly com-
bining the updates due to the BR and FP: ΔwH = βΔwBR + (1 − β)ΔwFP. We present
two ways to formulate the hybrid technique using least-squares.

3 Hybrid least-squares algorithms

The hybrid approach accounts for both the Bellman residual (which is minimized by the
BR in (3)) and the projection of the Bellman residual onto [Φ] (which is minimized by the
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FP in (4). Our first algorithm H1 linearly combines these two errors from which we derive
a least-squares equation. The second algorithm H2 is a more direct combination of the BR
and FP least-squares statistics. Both H1 and H2 when used with an exact representation (i.e.
Φ = IN ) produce the target value function V π . When using an approximate representation,
H1 and H2 produce different results and have different storage and computational require-
ments.

3.1 Motivation

There are three factors that motivate hybrid algorithms. First, as pointed out by Baird (1995),
hybrid algorithms are a general class of algorithms that include BR and FP as special cases
at opposite ends of a spectrum. Fully understanding this spectrum is worthwhile in its own
right. Also, as least-squares techniques have been applied to BR and FP (Bradtke and Barto
1996; Boyan 1999; Lagoudakis and Parr 2003) to make them more data efficient than their
incremental counterparts, it makes sense to design a least-squares version of hybrid al-
gorithms. These least-squares algorithms have an intuitive geometric perspective. BR and
FP minimize the length of different sides of a triangle defined by the Bellman equation
(Lagoudakis and Parr 2003). Hybrid algorithms naturally complete this perspective.

The second factor motivating hybrid least-squares algorithms is the empirical behav-
ior of BR and FP when used within approximate policy iteration. The FP algorithm
tends to produce better policies than the BR algorithm (Lagoudakis and Parr 2003).
However, this increase in performance comes at the expense of stability (Baird 1995;
Munos 2003). Li (2008) analyzed incremental versions of FP and BR under a particular
learning model and concluded that BR can achieve smaller residuals while FP can make
more accurate predictions. Hybrid algorithms have the potential to achieve both stability
and improved performance. To illustrate this on a concrete example, consider the six state
MDP shown in Fig. 1 with discount factor γ = 0.99. The optimal policy is to move right
in the first three states and left in the last three states (π∗ = RRRLLL). Let the initial policy
be π0 = LLLLLL and assume there are three basis functions corresponding to the first three
eigenvectors of the graph Laplacian (Mahadevan 2005). These basis functions are symmet-
ric and are rich enough to represent an approximate value function whose corresponding
greedy policy is π∗. The basis functions are shown in Fig. 2. The distribution ρ can be set
to either the invariant distribution of P π0 or the uniform distribution (which is appropriate
when performing policy iteration (Koller and Parr 2000)); the results hold for both distri-
butions. The approximate value functions V̂

π0
BR and V̂

π0
FP were computed according to the

least-squares solutions described in Sect. 2. Then the model was used to determine a policy
π1 that is greedy with respect to V̂ . The BR produces a policy π1 = LLLLLL while the FP
produces a policy π1 = RRRRRR. Thus, after one round of policy iteration, BR converges on
the initial policy and FP completely flips the policy. Moreover, since the model and basis
functions are symmetric, FP oscillates forever between LLLLLL and RRRRRR. This example
demonstrates FP’s potential instability. We will revisit this example later to show that hybrid
least-squares algorithms find solutions between these two extremes.

The third motivating factor is the bias associated with ÂBR when only a single sample
is available from each state. Denote the sampled Bellman update for a fixed policy π as T .
Note this is a random variable, which depends on the samples, such that the expected value
E[T ] = T π . Antos et al. (2008) showed that the expected value of the (single) sample-based
Bellman residual is equal to the true Bellman residual plus the variance of the sampled
Bellman update. This takes the form:

E
[‖T V̂ − V̂ ‖2

ρ

] = ‖T π V̂ − V̂ ‖2
ρ + ρT Var[T V̂ ]
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Fig. 1 Reward and transition functions for a six state MDP with two possible actions

Fig. 2 First three Laplacian eigenvectors associated with the MDP in Fig. 1

where the variance Var[·] is point-wise and ρ is a distribution vector. On the other hand,
ÂFP is unbiased when only a single sample is available from each state. Hybrid algorithms,
by naturally combining BR and FP, offer some control over the impact of the bias.

3.2 Algorithm H1

We combine the BR minimization problem (3) and the FP minimization problem (4) with a
parameter β ∈ [0,1]. Simply combining these two problems results in a minimization over
two separate norms; however, these can be combined into a single norm as we prove below:

min
w

[
β‖T π(V̂ ) − V̂ ‖2

ρ + (1 − β)‖Πρ(T
π(V̂ ) − V̂ )‖2

ρ

]

= min
w

[
β‖(I − Πρ + Πρ)(T

π(V̂ ) − V̂ )‖2
ρ + (1 − β)‖Πρ(T

π(V̂ ) − V̂ )‖2
ρ

]

= min
w

[
β‖(I − Πρ)(T

π(V̂ ) − V̂ )‖2
ρ + ‖Πρ(T

π(V̂ ) − V̂ )‖2
ρ

]

= min
w

‖√β(I − Πρ)(T
π(V̂ ) − V̂ ) + Πρ(T

π(V̂ ) − V̂ )‖2
ρ

= min
w

‖(√βI + (1 − √
β)Πρ)(T

π(V̂ ) − V̂ )‖2
ρ

= min
w

‖(√βI + (1 − √
β)Πρ)(R

π + γP πΦw − Φw)‖2
ρ. (5)

The chain of steps relies on the Pythagorean theorem (used in both the third and fourth
lines) and the fact that [I − Πρ] and [Πρ] are orthogonal subspaces. Note that the squared
length ‖·‖2 was used in the derivation for ease of use with the Pythagorean theorem. A least-
squares equation of the form ‖AH1w −bH1‖ρ can be derived from the minimization problem
in (5). To simplify the derivation, let F = √

βI + (1 − √
β)Πρ and let G = (I − γP π):

FGΦw = FRπ,

(FGΦ)T DρFGΦw = (FGΦ)T DρFRπ,
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ΦT GT FT DρFGΦw = ΦT GT FT DρFRπ .

It is easy to show that FT DρF = Dρ(βI + (1 − β)Πρ). The final result is therefore:

AH1 = ΦT (I − γP π)T Dρ(βI + (1 − β)Πρ)(I − γP π)Φ,

bH1 = ΦT (I − γP π)T Dρ(βI + (1 − β)Πρ)R
π .

To estimate AH1 and bH1 from samples, it is necessary to store three K × K matrices and
two length K vectors. This can be seen by rewriting the equations:

AH1 = βABR + (1 − β)AT
FPC

−1AFP

bH1 = βbBR + (1 − β)AT
FPC

−1bFP

where C = ΦT DρΦ . Thus, AH1 can be estimated by incrementally updating ÂBR, ÂFP, b̂BR,
b̂FP, as well as the matrix Ĉ via Ĉ = Ĉ + ρ(s)φ(s)φ(s)T given sample 〈s,π(s), r ′, s ′〉. If
only a single sample is available from each state, then ÂH1 will be a biased estimate of AH1

because of the bias in ÂBR. However, as mentioned in Sect. 3.1, hybrid algorithms can reduce
the impact of the bias. This is achieved simply by setting β to a value less than one. This
occurs because only one of the two norms that make up H1 is biased (i.e. E[β‖T V̂ − V̂ ‖2

ρ]
is biased but E[(1 − β)‖Πρ(T V̂ − V̂ )‖2

ρ] is unbiased).
Both the BR and FP least-squares problems only need to store one K × K matrix and

one length K vector, whereas H1 requires three matrices and two vectors. Moreover, the
matrix C must be inverted when computing AH1 . These issues motivated our second imple-
mentation.

3.3 Algorithm H2

Rather than starting from the BR and FP minimization problems, we consider a direct com-
bination of the BR and FP least-squares statistics:

AH2 = βABR + (1 − β)AFP

= ΦT (I − βγP π)T Dρ(I − γP π)Φ,

bH2 = βbBR + (1 − β)bFP

= ΦT (I − βγP π)T DρR
π .

By definition, this technique returns the BR solution when β = 1 and the FP solution when
β = 0. Only one K ×K matrix and one length K vector are required for H2. The incremental
update given double samples 〈s,π(s), r ′, s ′〉 and 〈s,π(s), r ′′, s ′′〉 has the form:

ÂH2 = ÂH2 + ρ(s)(φ(s) − βγφ(s ′))(φ(s) − γφ(s ′′))T ,

b̂H2 = b̂H2 + ρ(s)(φ(s) − βγφ(s ′))r ′.

It is worthwhile noting that these updates are nearly identical to those for ÂBR and b̂BR

except for the extra parameter β .
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3.4 Difference between H1 and H2

Aside from the different data structures used by H1 and H2, it is useful to elucidate any
other differences. To make this comparison more obvious, the least-squares equations can
be rewritten as follows:

AFP = ABR − γ 2ΦT (P π)T DρP
πΦ + γΦT (P π)T DρΦ,

AH1 = ABR − (1 − β)γ 2ΦT (P π)T DρP
πΦ + (1 − β)γ 2ΦT (P π)T DρΠρP

πΦ,

AH2 = ABR − (1 − β)γ 2ΦT (P π)T DρP
πΦ + (1 − β)γΦT (P π)T DρΦ.

Matrices ABR and AH1 are symmetric by definition whereas AFP and AH2 (except when
β = 1) are not symmetric. Consider the extreme values of β . Both AH1 and AH2 are clearly
the same as ABR when β = 1. When β = 0, it is obvious that AH2 and AFP are identical. It
is less obvious that H1 produces the same solution w to the least-squares minimization as
H2 and FP when β = 0, but this can in fact be shown. The interesting case occurs when 0 <

β < 1 because the H1 and H2 solutions differ. Notice the only difference between AH1 and
AH2 is in the final term shown above. The final term in AH2 is γΦT (P π)T DρΦ , while AH1

includes the same term times its transpose. This occurs during the least-squares derivation
of AH1 .

As shown in (5), H1 can be written as a minimization over the sum of two norms: the
norm of the Bellman residual and the norm of the projected Bellman residual. H2, by virtue
of directly combining the FP and BR least-squares solutions, does not have the same analyt-
ical form. Although H2 seems less justified than H1, it outperformed H1 experimentally.

3.5 Other possible algorithms

The two proposed hybrid algorithms implicitly constrain the Bellman residual by the choice
of the parameter β . This constraint could be made explicit. The problem would be to mini-
mize the projection of the Bellman residual subject to an inequality constraint on the Bell-
man residual (either on its magnitude or component-wise):

min
w

‖AFPw − bFP‖ρ

subject to: ‖ABRw − bBR‖ρ ≤ δ

or: ±(ABRw − bBR) ≤ Δ.

The parameters δ ∈ R
+ and Δ ∈ R

K+ must be set appropriately based on the minimal value
of the Bellman residual magnitude attained with the BR. We point out the possibility of
explicitly controlling the Bellman residual to be thorough. However, since this increases
the computational complexity, we limit our discussion to the two simple least-squares algo-
rithms H1 and H2.

4 Analysis

4.1 Projections of the target function

The first three approximate policy evaluation techniques were shown to be images of the
target function V π under different projection operations (Schoknecht 2003). More specif-
ically, each method X = {OPT,BR,FP} produces an approximate value function with the
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following form: V̂ = Φw = ΦA−1
X bX = Φ(ΦT DXΦ)−1ΦT DXV π . The matrix DX controls

the weighting of the projection and takes on the following values (Schoknecht 2003):

DOPT = Dρ,

DBR = (I − γP π)T Dρ(I − γP π),

DFP = Dρ(I − γP π).

The hybrid methods have a similar characterization:

DH1 = (I − γP π)T Dρ(βI + (1 − β)Πρ)(I − γP π),

DH2 = (I − βγP π)T Dρ(I − γP π).

4.2 Geometry of the Bellman equation

Each approximate policy evaluation algorithm uses the Bellman equation in different ways
to compute a value function. There is an intuitive geometric perspective to the algorithms
when using linear function approximation. We expand on the original presentation of this
perspective (Lagoudakis and Parr 2003).

The Bellman equation with linear function approximation has three components: V̂ ,
T π(V̂ ), and ΠρT

π(V̂ ). These components geometrically form a triangle where V̂ and
ΠρT

π(V̂ ) reside in the space spanned by Φ while T π(V̂ ) is, in general, outside this space.
This is illustrated in the leftmost triangle of Fig. 3. The three-dimensional space in the figure
is the space of exact value functions while the two-dimensional plane represents the space
of approximate value functions in [Φ]. The angle between subspace [Φ] and the vector
T π(V̂ ) − V̂ is denoted θ . The BR and FP solutions minimize the length of different sides
of the triangle. The second triangle in Fig. 3 shows the BR solution, which minimizes the
length of T π(V̂ ) − V̂ . The third (degenerative) triangle shows the FP solution, which min-
imizes the length of ΠρT

π(V̂ ) − V̂ . This length is 0 which means θFP = 90◦. The fourth
triangle shows the H solution, which minimizes a combination of the lengths of the two
sides. In general, θH lies between θBR and 90◦. The hybrid solution allows for controlling
the shape of this triangle. We purposefully drew the triangles in Fig. 3 suggestively to not
only accentuate their angles, but also to emphasize that the length of the Bellman residual

Fig. 3 The triangle on the left shows the general form of the Bellman equation. The other three triangles
correspond to the different approximate policy evaluation algorithms where the bold lines indicate what is
being optimized
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(T π(V̂ )− V̂ ) can become large at times for FP. By including the norm of the Bellman resid-
ual in their objective functions, hybrid algorithms can protect against such large residual
vectors. They also have the flexibility of finding solutions that are almost fixed points but
have more desirable properties (smaller Bellman residuals).

5 Experiments

We first present a policy evaluation experiment on the six state chain MDP (Fig. 1) described
in Sect. 3.1. This simple problem makes evident the difference between the BR and FP
solutions. The next two experiments compare the various approximate policy evaluation
algorithms within the broader context of policy iteration. We emphasize there is a linear
dependence on β only for policy evaluation. Policy iteration results are not necessarily linear
in β given the nonlinearity of policy improvement.

5.1 Chain MDP

Reconsider the chain MDP from Fig. 1 and the basis functions from Fig. 2. The optimal
policy for this MDP with a discount factor γ = 0.99 is π∗ = RRRLLL. Starting from initial
policy π0 = LLLLLL, BR results in an approximate value function V̂

π0
BR whose greedy policy

is also π1 = LLLLLL. In other words, after one round of policy iteration, BR converges on
the initial policy. FP produces an approximate value function V̂

π0
FP whose greedy policy is

π1 = RRRRRR. Hybrid algorithms find solutions between these two extremes. We ranged
the value of β from 0 to 1 and computed V̂

π0
H1

and V̂
π0

H2
using the equations in Sect. 3 (the

transition matrix and reward function were not sampled but rather were used explicitly). We
also recorded the norm of the Bellman residual, the norm of the projected Bellman residual,
the angle between the Bellman residual and the space spanned by the basis functions Φ , and
the greedy policies associated with the approximate value functions. The results are shown
in Fig. 4 using a uniform distribution ρ; however, the results are very similar when setting ρ

to be the invariant distribution of P π0 . Note the trade-off between the Bellman residual and
the projected Bellman residual for different values of β in Figs. 4(a) and 4(b). In Fig. 4(b),
the curve associated with H2 is beneath that of H1. This indicates algorithm H2 places more
weight on minimizing the projected Bellman residual compared to algorithm H1. Also, note
that the greedy policies in Figs. 4(d) and 4(e) run the full gamut from RRRRRR at β = 0 to
LLLLLL at β = 1.

5.2 Grid MDP

We compared all methods on a 10×10 grid MDP. The MDP has 100 states, 4 actions that
have probability 0.9 of success (an unsuccessful action resulted in a transition in one of the
other three directions), a 0.95 discount factor, and a reward of +1 in one corner and +2 in
the diagonal corner. Fifteen Laplacian eigenvectors (Mahadevan 2005) were used as basis
functions.

We ran 500 trials. Each trial began with a randomly initialized policy, then policy itera-
tion was run using each policy evaluation method until the weight vector converged or 500
iterations were reached. The model was used during policy iteration to avoid any difficulty
comparing the various methods due to sampling. The result of policy iteration is a final pol-
icy πf . We evaluate these policies by computing V πf exactly and comparing it with V ∗.
The results, which are broken into the trials that converged and those that did not converge,
are shown in Fig. 5.
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Fig. 4 Results of approximate policy evaluation using H1 and H2 for the MDP in Fig. 1
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Fig. 5 Results of 500 policy iteration trials for the grid MDP. The results are divided into those trials that
converged (a) versus those that did not converge (b). The median value of ‖V ∗ − V

πf ‖ is plotted versus β ,
where πf is the final policy attained when policy iteration terminates. The percentage of trials that converged
is shown in (c)

The BR algorithm converged almost twice as often as the FP algorithm (71.4% compared
to 37.6%). However, when BR did converge, it happened after only 8.5 rounds of policy
iteration on average. That strongly contrasts with FP’s average of 89.1 rounds of policy
iteration until convergence. Since BR tends to make small changes to the value function
between rounds of policy iteration, it is not surprising that this early convergence (starting
from a random policy) leads to very suboptimal policies. It is interesting that BR discovered
better policies when policy iteration did not converge. On the other hand, when FP converged
it found excellent policies (small values of ‖V ∗ − V πf ‖).

The policies found by algorithm H1 had a general linear trend between β = 0 (FP) and
β = 1 (BR). The policy iteration convergence rate for H1 had a similar effect. The con-
vergence rate was not nearly as predictable for H2. In fact, at β = 0.8, all 500 trials con-
verged. The most interesting aspect of this experiment is the excellent performance of H2.
The method produced good policies regardless of convergence and across all β values.

5.3 Tetris

We have presented hybrid least-squares algorithms for approximating value functions, but
the same idea holds for approximating action-value functions. We omit the equations for
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Table 1 Results of policy
iteration for Tetris. An asterisk
indicates policy iteration
converged

Technique Score Technique Score

BR 0 FP∗ 630

H1, β = 0.1 15 H2, β = 0.1∗ 800

H1, β = 0.2 0 H2, β = 0.2∗ 580

H1, β = 0.3 80 H2, β = 0.3∗ 645

H1, β = 0.4 295 H2, β = 0.4∗ 515

H1, β = 0.5 60 H2, β = 0.5∗ 455

H1, β = 0.6 5 H2, β = 0.6∗ 395

H1, β = 0.7 5 H2, β = 0.7∗ 370

H1, β = 0.8 0 H2, β = 0.8∗ 405

H1, β = 0.9 0 H2, β = 0.9∗ 330

lack of space, but they are very similar to those in Sect. 3. We tested all policy evaluation
methods on the problem of learning an approximate action-value function for Tetris. Ten
basis functions over state-action pairs (s, a) were used. The first four are for the current
state s: maximum height, number of holes, sum of absolute height differences between ad-
jacent columns, and the mean height. The next four basis functions are the change in the
value of the first four features after taking action a from s. The last two are the change in
the score and a constant 1. This feature set was proposed by Lagoudakis et al. (2002).

Forty episodes of data (∼30,000 samples) were generated using an initial policy greedy
with respect to weight vector wπ0 = [−1,−10,−1,−1,−2,−11,−2,−2,50,10]T . We ran
policy iteration starting from wπ0 until the weight vector converged or 100 iterations were
reached. Instead of generating double samples to form unbiased estimates of A and b, we
used the model to compute the expectation over next-states and actions. For Tetris, each
action results in seven equally likely next-states corresponding to the seven Tetris pieces.
This method of using the model instead of samples was described by Lagoudakis and Parr
(2003) (see LSTDQ-Model).

We tested the learned policies 50 times. Each time, we generated a random ordered set of
pieces that all policies were forced to place to make the comparison more accurate. This is
necessary because Tetris performance can be very sensitive to the exact order of pieces. The
average score over the 50 trials is shown in Table 1. The initial policy wπ0 scored 310 on
average. Policy iteration converged in less than 7 iterations for FP and H2, whereas BR and
H1 did not converge. The performance split along this division. The final policy computed
using BR rarely removed a line. This was also the case for policies learned using H1 except
when β = 0.4. On the other hand, the FP and H2 policies performed at least as well as the
initial policy and in some cases significantly better. The best policy was computed using H2

with β = 0.1.

6 Conclusions

The fixed point (FP) and Bellman residual (BR) algorithms can be combined to form a hy-
brid approximate policy evaluation algorithm. We proposed two ways to implement hybrid
algorithms using least-squares methods, thus improving efficiency over the original incre-
mental algorithm (Baird 1995). The first implementation solved a least-squares problem
minimizing the sum of two norms: the norm of the Bellman residual and the norm of the
projected Bellman residual. The second implementation is a direct linear combination of the
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least-squares statistics for FP and BR. We analyzed the algorithms in terms of projections
of the target function and we showed that hybrid algorithms have an intuitive geometric
interpretation.

Hybrid least-squares algorithms attempt to combine the stability of the BR solution with
the improved performance of the FP solution. We presented an example on a chain MDP
demonstrating this effect. Policy iteration experiments were conduced on a simple grid MDP
so that the quality of the learned policies could be determined analytically. Experiments
were also run on the challenging task of learning to play Tetris where learned policies were
evaluated empirically. In both domains, the hybrid algorithm H2 discovered policies that
performed much better than BR and H1 and as well as, and in some instances better than,
FP. The H2 algorithm has the same data structures and computational complexity as BR
and FP. A surprising finding was H2’s robustness for a wide range of β values. One would
expect that for β values close to 1, the difference between BR and H2 would be minimal. An
explanation of this effect would be useful. Other interesting areas for future work include a
deeper understanding of the objective function being minimized by H2 and a mechanism for
automatically setting β . The latter idea could be challenging because the best value could
depend on the specific domain, set of basis functions, and the policy being evaluated.
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