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Abstract It has been established that the second-order stochastic gradient descent (SGD)
method can potentially achieve generalization performance as well as empirical optimum
in a single pass through the training examples. However, second-order SGD requires com-
puting the inverse of the Hessian matrix of the loss function, which is prohibitively expen-
sive for structured prediction problems that usually involve a very high dimensional feature
space. This paper presents a new second-order SGD method, called Periodic Step-size Adap-
tation (PSA). PSA approximates the Jacobian matrix of the mapping function and explores
a linear relation between the Jacobian and Hessian to approximate the Hessian, which is
proved to be simpler and more effective than directly approximating Hessian in an on-line
setting. We tested PSA on a wide variety of models and tasks, including large scale sequence
labeling tasks using conditional random fields and large scale classification tasks using lin-
ear support vector machines and convolutional neural networks. Experimental results show
that single-pass performance of PSA is always very close to empirical optimum.
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1 Introduction

The problem of large scale learning (Bottou and LeCun 2004, 2005; Bottou et al. 2007;
Bottou and Bousquet 2008) arises partly due to the increasing of the digital data avail-
able for data mining and partly due to the need of many unsolved artificial intelli-
gence challenges: natural language understanding, speech recognition, computer vision
and robotics. In the latter case, structured prediction (Taskar 2005; Taskar et al. 2005;
Tsochantaridis et al. 2005) is more adequate to deal with the complexity of these problems
than well-studied binary classification methods, but then either a large number of exam-
ples or a set of very high dimensional training examples is required to achieve satisfactory
generalization performance.

In this paper, we report the results of our investigation of how to apply a classical on-
line learning method to solve the large scale structured prediction problem. Given a set of
new training examples, an on-line learner can update its model without processing previ-
ously used examples while improving its performance. In contrast, off-line or batch learners
must combine previous and new data and start the learning all over again. Otherwise, the
performance may suffer.

The advantage of on-line learning for large scale structured prediction is illustrated in
Fig. 1. Assume that everyday, a fixed number of training examples become available to the
learner. Also assume that the time complexity for the off-line learner is no better than O(n),
where n is the data size. As days go by, the training examples will accumulate and the time
required for the off-line learner to complete the learning task will eventually exceed the
time required for the on-line learner to process those additional training examples. In fact,
many well-designed on-line learning algorithms converge more rapidly than their off-line
counterparts (see, for example, Collins et al. 2008; Bordes et al. 2007; Bottou et al. 2007;
LeRoux et al. 2008) given the training examples of the same size.

For on-line learning to achieve the feat illustrated in Fig. 1 and solve large scale structured
prediction problems in practical applications, an on-line learning algorithm should satisfy
some desiderata. One of them is O(d) or better per-iteration time complexity, where d is
the dimension of the weights, so that very high dimensional data can be handled. Another
is minimum batch size requirement. Some on-line learning algorithms need 100 or more
training examples in each learning-iteration to cover potentially exponentially large output
spaces. This places an unnecessary restriction to their applicability. Also, the number of
hyper-parameters required to be tuned must be minimized.

Fig. 1 Advantage of on-line
learning
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But above all, the most important is a minimum single-pass regret so that used training
examples can be discarded to save time and storage. Previously, many authors, including
Murata (1998), Murata and Amari (1999), Bottou and LeCun (2005), have established that
the second-order stochastic gradient descent (SGD) method can potentially achieve gener-
alization performance as well as empirical optimum in a single pass through the training ex-
amples. However, second-order SGD requires computing the inverse of the Hessian matrix
of the loss function, which is prohibitively expensive, especially for structured prediction
problems. This paper presents a new second-order SGD method, called Periodic Step-Size
Adaptation (PSA). This new method satisfies all of the above mentioned desiderata for on-
line methods. PSA approximates the Jacobian matrix of the mapping function and explores
a linear relation given in (15) between the Jacobian and Hessian to approximate the Hessian,
which is proved to be simpler and more effective than directly approximating Hessian in an
on-line setting. We performed experiments to evaluate this new method on a wide variety of
models and tasks, including large scale sequence labeling problems with conditional random
fields (CRF) and classification tasks using linear support vector machines (SVM) and con-
volutional neural networks (CNN). Experimental results show that single-pass performance
of PSA is always very close to empirical optimum. Since PSA is applicable to any learning
problems where SGD is applicable, it may potentially be a practical solution of other large
scale structured prediction problems.

This paper is organized as follows. Section 2 surveys related work in second-order sto-
chastic gradient descent methods for on-line learning. Section 3 reviews a method for ap-
proximating the Jacobian matrix of a fixed-point iteration. From this approximation method,
we derive PSA for on-line learning and analyze its convergence properties in Sect. 4. Sec-
tion 5 reports our experimental results. Finally, we summarize our results and findings in
Sect. 6.

2 Related work

Our new on-line learning algorithm is a second-order stochastic gradient descent method.
Currently, most of state-of-the-art machine learning algorithms, including those for struc-
tured prediction problems, are derived by formulating a learning problem as an optimization
problem to minimize an objective (loss) function L(θ;D) of a model where θ is the vector
of the weights in the model and D is the set of training examples. To find the weights that
minimize the objective function, we can solve this equation:

∂L(θ;D)

∂θ
= ∇L(θ;D) = g(θ;D) = 0. (1)

One of the methods to solve this equation is to use the gradient descent algo-
rithm (Widrow and Hoff 1960), as illustrated in Fig. 2(a), where η is the step size. The step
size can either be a scalar, a vector (to be multiplied with the gradient component-wise),
or a matrix. Also shown in Fig. 2(b) is the stochastic gradient descent (SGD) algorithm.
The difference between SGD and its off-line counterpart is the gradient taken in step 3. In
the off-line version, the gradient is taken for the entire set of training examples D, while
in SGD, only a small subset B ⊆ D, |B| � |D|, is considered at each iteration. SGD is ap-
plicable when the global objective function with regard to the entire set of training examples
can be approximated as the sum of the objective function measured on independently drawn
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(a) Gradient Descent (GD)

1: Initialize θ(0)

2: repeat
3: θ(t+1) ← θ(t) − ηg(θ (t);D)

4: Update η

5: t ← t + 1
6: until Convergence

(b) Stochastic Gradient Descent (SGD)

1: Initialize θ(0)

2: repeat
3: Choose B(t) uniformly at random from D
4: θ(t+1) ← θ(t) − ηg(θ (t);B(t))

5: Update η

6: t ← t + 1
7: until Convergence

Fig. 2 (a) Batch (Off-Line) Gradient Descent Algorithm and (b) Stochastic (On-Line) Gradient Descent
Algorithm

small batches:

L(θ;D) ≈
∑

x∈D

L(θ;x) =
|D|
|B|∑

t=1

L(θ;B(t)). (2)

SGD has been an important algorithm for machine learning because it was applied to
train back-propagating neural networks. Recently, Vishwanathan et al. (2006a) showed that
by cleverly adjusting the step size in SGD, a large scale CRF model can be trained by
scanning the training examples about 10 passes, while the best performing off-line algorithm
requires several hundred passes. They also showed that their step size adjustment method,
SMD, is applicable to large margin kernel methods for structured prediction (Vishwanathan
et al. 2006b). Although SMD still takes longer CPU time to complete than the best off-
line algorithm, their work demonstrated that on-line learning is promising for large scale
structured prediction.

More recently, Bottou and Bousquet (2008) showed that well-tuned SGD can be very
efficient for both SVM and CRF. In the case of SVMs with linear kernel, they showed that
for a very large scale problem, widely used SVM packages, including LIBSVM (Chang
and Lin 2001) and SVMlight (Joachims 1998, 2006), took hours to converge, but SGD only
took less than 10 seconds. In fact, about ten years ago, LeCun et al. (1998b) and LeCun et al.
(1999) already showed that SGD is feasible for training multiple-layered hierarchical models
for large scale hand-written digit recognition and object recognition tasks. Their results lead
the machine learning community re-consider SGD as a useful optimization algorithm and
sheds new light on large scale structured prediction.

However, plain SGD and many of its variants still require scanning the training examples
many passes to achieve the same level of generalization performance as their off-line coun-
terparts. In fact, by appropriately adjusting the step size, a single pass through a large set of
training examples is sufficient for SGD to reach the empirical optimum. To see why this is
the case, consider solving (1) with Newton’s method:

θ(t+1) = θ(t) − H−1(θ (t))∇L(θ(t);D), (3)

where H−1 is the inverse of the Hessian matrix of the objective function, defined by

H(θ) := ∂2

∂θ∂θ
L(θ;D).

Replacing η in step 3 of the algorithm in Fig. 2(a) with H−1 yields exactly the same equation.
Based on Newton’s method, Benveniste et al. (1990) showed that updating the step size with
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the following equation is asymptotically optimal for SGD:

η(t)
∗ = H−1(θ∗)

t + 1
, t ≥ 0. (4)

This is referred to as the second-order SGD (2SGD). Bottou and LeCun (2005) elaborated
this result further, showing that given a sufficiently large n, the relation between the empir-
ical optima given n − 1 and n training examples is essentially the same Newton step given
in (3): Once an empirical optimum for n training examples is reached, given an additional
training example, a Newton step will bring the search to the empirical optimum for n + 1
training examples. In other words, a single pass of 2SGD will generalize as well as empirical
optimum.

However, computing the inverse of Hessian is prohibitively expensive even for a low
dimensional problem. Alternatively, since many algorithms have been developed to ap-
proximate the Hessian for off-line learning, extending them for on-line learning could be
a promising approach. One of the off-line algorithms that approximates the Hessian effec-
tively is the L-BFGS algorithm (Nocedal and Wright 1999), which becomes well-known
to machine learning community because of its efficiency for training large scale CRF mod-
els (Malouf 2002; Sha and Pereira 2003). An attempt was made to modify L-BFGS for
on-line learning (Schraudolph et al. 2007). Their experimental result, however, showed that
their new algorithm, oL-BFGS, requires 30 passes to train a CRF model for which their
previous work SMD only needs about 7 passes. Though L-BFGS performs very well in
off-line settings, it is challenging to modify L-BFGS for on-line learning because the ap-
proximation made by L-BFGS depends on the difference between gradient estimations in
two consecutive iterations based on the entire set of training examples. In on-line settings,
two consecutive gradients are obtained from two small batches. Their difference is no longer
reliable for accurate approximation. Also, it is difficult to modify the line search used in L-
BFGS to fit in on-line settings. A line search based on small batches usually leads to an
inaccurate search direction, as in the case of conjugate gradient descent (Schraudolph and
Graepel 2002). Instead, we should focus on how to minimize variance of Hessian approxi-
mation given that only a small batch of training examples is available at each iteration.

Other attempts of approximating the Hessian include diagonal approximation (Becker
and LeCun 1988) and low rank approximation (LeCun et al. 1998b). Amari (1998) and
more recently LeRoux et al. (2008) proposed stochastic algorithms based on the natural
gradient, which can be proved to be asymptotically optimal, too. However, none of them
is actually sufficient to achieve theoretical single-pass performance in practice. Compared
to plain SGD, these 2SGD methods have almost no advantage in terms of computational
cost (Bottou and Bousquet 2008).

The exponential gradient (EG) algorithm (Collins et al. 2008) is substantially different
from stochastic gradient methods in that though they both process a single training example
at a time, EG corresponds to block-coordinate descent in the dual, and uses the exact gradient
with respect to the block being updated. As a result, EG is not a real on-line learning algo-
rithm in the sense that EG cannot discard used training examples and learn incrementally in
a single pass through the training examples as the scenario illustrated in Fig. 1. Moreover,
when multiple-pass training is desirable, 2SGD is superior to EG because iterations required
by EG is bounded by O(n logn) while 2SGD can reach an empirical optimum with O(n)

iterations.
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3 Approximating Jacobian

This section reviews an efficient method to estimate the eigenvalues of the Jacobian in a
fixed-point iteration mapping and an off-line learning method derived from this estimation
method.

3.1 Jacobian of fixed-point mappings

Let θ be a d-dimensional vector in space R
d and M be a mapping M : R

d → R
d . The fixed-

point iteration method solves the equation of the form θ = M(θ) by iteratively substituting
the input of M with the output of M in the previous iteration:

θ(t+1) = M(θ (t)), θ (t+2) = M(θ (t+1)), . . . .

The equation is solved when θ(t) converges to θ∗ with θ∗ = M(θ∗). Many optimization
algorithms, such as the EM algorithm (Dempster et al. 1977), can be formulated as a fixed-
point iteration method.

Suppose that we apply a fixed-point iteration method from θ(t) in the neighborhood of θ∗
and the iteration converges at θ∗. Also suppose that the mapping M is differentiable. Then
we can apply a linear Taylor expansion of M around θ∗ so that

θ(t+1) = M(θ (t)) ≈ θ∗ + J(θ (t) − θ∗), (5)

where J abbreviates M′(θ∗), the Jacobian of the mapping M at θ∗. When λi := eig(J) ∈
(−1,1), the mapping is guaranteed to converge. If λi is positive, M converges monotoni-
cally along the i-th dimension; otherwise, M converges in an oscillating manner (Burden
and Faires 1988), as illustrated in Fig. 3.

From (5), we have

θ(t+1) ≈ θ∗ + J(θ (t) − θ∗),

θ (t) ≈ θ∗ + J(θ (t−1) − θ∗)

⇒ θ(t+1) − θ(t) ≈ J(θ (t) − θ(t−1)).

Fig. 3 In a univariate fixed-point iteration, the solution of θ = M(θ) is at the intersection of y = M(θ)

(solid black curve) and y = θ (black diagonal line). Dash-dot line tracks the progress of the convergence.
When 0 < M′ < 1, the fixed-point iteration converges monotonically (left). Otherwise, when −1 < M′ < 0,
we have oscillating convergence (right)
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Assume that there exists a scalar γ such that θ(t+1) − θ(t) ≈ γ (θ(t) − θ(t−1)). Then we can
approximate J by γ I with

γ := ‖θ(t+1) − θ(t)‖
‖θ(t) − θ(t−1)‖ . (6)

We note that I denotes the identity matrix with the same size as J.
In fact, γ is an approximation of λmax, the largest eigenvalue of J (Schafer 1997;

McLachlan and Krishnan 1997; Hesterberg 2005; Huang et al. 2005). The approximation
will become exact as t → ∞. This approximation is entailed from the rate of convergence of
the EM algorithm, which is dependent on the largest eigenvalue of J (Dempster et al. 1977;
Meng and Rubin 1994). The global rate of convergence of a fixed-point iteration method is
defined as the ratio:

R := lim
t→∞R(t) ≡ lim

t→∞
‖θ(t+1) − θ∗‖
‖θ(t) − θ∗‖ .

Dempster et al. (1977) showed that R = λmax, the largest eigenvalue of J for the EM al-
gorithm. Salakhutdinov and Roweis (2003) generalized this result to the family of bound
optimization methods. In fact, it can be applied to any fixed-point iteration mapping. Since
θ∗ is unknown a priori, we replace it by empirical values to obtain γ as an estimate of λmax.
When t is sufficiently large, it can be expected that γ will be close to λmax.

Similarly, the i-th component-wise rate of convergence is defined as (Meng and Rubin
1994):

Ri := lim
t→∞R

(t)
i ≡ lim

t→∞
θ

(t+1)
i − θ∗

i

θ
(t)
i − θ∗

i

.

We can estimate the i-th eigenvalue λi similarly by

γi := θ
(t+1)
i − θ

(t)
i

θ
(t)
i − θ

(t−1)
i

, ∀i. (7)

One of the advantages of the estimate defined above is that it takes only 2d subtractions
and a division to complete. Fraley (1999) empirically assessed the accuracy of the estimates
given in (6) and (7) based on bivariate normal data with missing values and showed that both
are reasonably good, especially when there are high percentages of missing data.

As a caveat, these estimates may fall out of the range or become numerically unstable
either due to roundoff errors or to the fact that the iterates are not sufficiently close to a local
optimum (Fraley 1999). Section 4.2 explains how to deal with these issues.

Previously, Hesterberg (2005) provided an informal proof that γ ≤ λmax from the eigen
decomposition of J. We can analyze γi similarly as follows. Let eigen decomposition J =
QΛQ−1 and ui be column vectors of Q and vT

i be row vectors of Q−1. Then we have

Jt =
d∑

j=1

λt
j uj vT

j ,

where λj is the j -th eigenvalue of J. From (5),

θ(t) − θ∗ ≈ Jt (θ (0) − θ∗),
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θ(t−1) − θ∗ ≈ Jt−1(θ (0) − θ∗)

⇒ Δ(t) = θ(t) − θ(t−1) ≈ JtJ−1(J − I)(θ (0) − θ∗)

=
d∑

j=1

λt
j uj vT

j J−1(J − I)(θ (0) − θ∗)

⇒ Δ(t+1) = θ(t+1) − θ(t) ≈
d∑

j=1

λjλ
t
j uj vT

j J−1(J − I)(θ (0) − θ∗).

Now let

wij := eT
i uj vT

j J−1(J − I)(θ (0) − θ∗),

where ei is the i-th column of I. Let Δi be the i-th element of Δ and λji be the largest
eigenvalue of J such that wij �= 0. Then

γi ≡ Δ
(t+1)
i

Δ
(t)
i

=
∑d

j=1 λt+1
j wij

∑d

j=1 λt
jwij

= λji + ∑
j �=ji

(λj /λji )
tλjwij /wiji

1 + ∑
j �=ji

(λj /λji )
twij /wiji

.

Therefore, we can conclude that

• γi → λji as t → ∞ because ∀i, if wij �= 0 then λj/λji ≤ 1. λji ≡ Ri is the i-th compo-
nentwise rate of convergence (Meng and Rubin 1994).

• γi = λi if J is a diagonal matrix. In this case, our approximation is exact. This happens
when there are high percentages of missing data for a Bayesian network model trained by
EM (Hsu et al. 2006) and when features are uncorrelated for training a CRF model (Huang
et al. 2009).

• γi is the average of eigenvalues weighted by λt
jwij . Since wij is usually the largest when

i = j , we have γi ≈ λi .

3.2 Aitken’s acceleration

The estimates γ and γi have been applied in the framework of Aitken’s acceleration to
speed up the convergence of the EM algorithm (Hesterberg 2005; Huang et al. 2005; Hsu et
al. 2006), suggesting that both γ and γi can be sufficiently accurate to allow for substantial
speedup for the convergence of EM.

Let J be the Jacobian matrix of the fixed-point mapping M that we want to accelerate.
The multivariate Aitken’s acceleration is given by (McLachlan and Krishnan 1997):

θ(t+1) = θ(t) + (I − J)−1(M(θ (t)) − θ(t)), (8)

which is derived by successively applying (5) as follows:

θ∗ ≈ θ(t) +
∞∑

h=0

(θ (t+h+1) − θ(t+h))
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≈ θ(t) +
∞∑

h=0

Jh(θ (t+1) − θ(t))

= θ(t) + (I − J)−1(θ (t+1) − θ(t)),

assuming that eig(J) ∈ (−1,1) given that M will converge. Therefore, Aitken’s acceleration
can be considered as computing an extrapolation in an attempt to reach the solution θ∗ in
one step.

However, J may not have a closed form and computing J could be intractable even for a
very simple model with a low dimensional weight space. A solution to this issue is to replace
(I − J)−1 in (8) by the estimated eigenvalues of J. Let J = QΛQ−1 be the eigen decomposi-
tion of J at θ∗ and ψ∗ := Q−1θ∗ be the eigen transformed θ∗. Then in the eigenspace of J,
we have

ψ∗
i ≈ ψ

(t)
i + 1

1 − λi

([M(ψ(t))]i − ψ
(t)
i ),

where λi is the i-th eigenvalue of J. Then with the estimated eigenvalues γ
(t)
i given in (7),

we can perform extrapolation for each component by

θ
(t+1)
i = θ

(t)
i + (1 − γ

(t)
i )−1([M(θ (t))]i − θ

(t)
i ), ∀i. (9)

In this case, in order not to be confused, we replace θ
(t+1)
i in (7) by M(θ (t))i and rewrite the

definition of γi as

γ
(t)
i := [M(θ (t))]i − θ

(t)
i

θ
(t)
i − θ

(t−1)
i

, ∀i. (10)

It can be seen that to extrapolate to θ(t+1), we need to apply M to θ(t−1) consecutively to
obtain γ (t). Huang et al. (2005) named this method as the Triple Jump extrapolation. This
method can also be considered as a variant of Steffensen methods (Ortega and Rheinboldt
1970) in numerical analysis and is closely related to the QuickProp method (Fahlmann 1988)
in neural networks. We will compare these related methods as well as PSA in Sect. 4.4.1.

3.3 Accelerating GIS with CTJPGIS

We present an application of the triple jump extrapolation to demonstrate that approximating
Jacobian with (7) can be as effective for other fixed-point iteration methods as for EM. In
this application, we try to accelerate generalized iterative scaling (GIS) for CRF training.
GIS is a classical method for training exponential probabilistic models. When applied to
large training sets for CRF, GIS is known to be prohibitively slow to converge (Malouf
2002; Sha and Pereira 2003). We derived a method called CTJPGIS, abbreviation of “the
component-wise triple jump method for penalized generalized iterative scaling.” We will
show that CTJPGIS can accelerate GIS drastically, reducing the convergence time to a level
that is comparable with L-BFGS for CRF training in terms of both rate of convergence and
quality of trained models.

Let D := {x1, . . . , xn} denote a set of n data sequences and {y1, . . . , yn} their cor-
responding labels. A CRF defines d features extracted from a given instance (x, y):
F(x, y) = (f1(x, y), . . . , fd(x, y))T and is parameterized by the weights for all features:
θ = (θ1, . . . , θd)

T . Training of CRFs is to search for the weight vector θ that minimizes
the negative penalized log-likelihood function as the objective function. Usually we use a
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Gaussian prior (Chen and Rosenfeld 1999) to avoid overfitting. Let L(θ;D) be the log-
likelihood of D given θ . The penalized negative log-likelihood function L(θ;D) is

L(θ;D) = −L(θ;D) +
∑

i

(θi − μ)2

2σ 2
+ const. (11)

Usually, μ is assigned to zero. Clearly, the objective function of CRF training satisfies (2)
required for SGD to be applicable. The gradient of L along the direction of θi is

∇i L(θ;D) = Efi − Ẽfi + θi − μ

σ 2
, (12)

where Ẽfi and Efi are empirical and model expectation of fi , respectively.
To apply the triple jump extrapolation to the training of CRF, recall that the gradient for

CRF is given in (12). Solving ∇i L(θ;D) = 0 yields the penalized GIS (PGIS) mapping as
follows:

θi = θi + 1

S
log

Ẽfi

Efi + θi−μ

σ 2

, (13)

where 1
S

is an arbitrary constant in (0,1) as the learning rate. Assigning S := max(x,y)∈D ×∑
i fi(x, y), the maximum number of feature occurrences in a training sequence, we obtain

a new update rule, which is quite similar to the original GIS given in Lafferty et al. (2001).
Assigning M(θ) to be the RHS for (13) and applying the component-wise triple jump ex-
trapolation described in (9), we have the CTJPGIS algorithm for training CRF.

We implemented CTJPGIS by replacing the L-BFGS optimization part in CRF++ (Kudo
2006).1 We also ran CRF++ with default settings to obtain the performance results of L-
BFGS. We used a tight termination condition

∣∣∣∣
L(θ (t−1)) − L(θ (t))

L(θ (t))

∣∣∣∣ < 10−7

for all methods compared in this experiment, including L-BFGS, to ensure a fair comparison.
The experiment was run on a Fedora 7 x86-64 Linux machine with AMD Athlon 64 X2
3800+ CPU and 4 GB RAM. Table 12 shows the tasks chosen for our comparison in this
paper. The top four rows are sequence labeling tasks solved by CRF. These tasks have been

Table 1 Tasks for the experiments on sequence labeling

Task Training Test Tag Weight Target Reference

Base NP 8936 2012 3 1015662 94.0 (Sha and Pereira 2003)

Chunking 8936 2012 23 7448606 93.6 (Kudo 2006)

BioNLP/NLPBA 18546 3856 11 5977675 70.0 (Settles 2004)

BioCreative 2 15000 5000 3 10242972 86.5 (Hsu et al. 2008)

1Available under LGPL from the following URL: http://crfpp.sourceforge.net/.
2The target F-score for BioNLP/NLPBA is not >85%, as reported in Vishwanathan et al. (2006a), because it
was due to a bug that included true labels as a feature, according to the author.

http://crfpp.sourceforge.net/
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Table 2 Performance comparison of PGIS, CTJPGIS, and L-BFGS for CoNLL-2000, BioNLP/NLPBA-
2004 and BioCreative 2 data sets

Data set L-BFGS CTJPGIS PGIS

CoNLL-2000 Base NP CPU Time (sec) 583 816 >41463

Iteration 427 619 >30906

Final F-score (%) 93.95 93.94 >93.35

BioNLP/NLPBA-2004 CPU time (sec) 63158 38800 >162462

Iteration 1961 1279 >5161

Final F-score (%) 70.33 70.26 >62.13

BioCreative 2 CPU time (sec) 4615 3011 >17656

Iteration 895 639 >3926

Final F-score (%) 86.77 86.49 >69.30

used in competitions and the performance was measured by F-score, which is the harmonic
average of precision and recall:

p := TP · 100%

TP + FP
, r := TP · 100%

TP + FN
, F := 2pr

p + r
,

where TP, FP, and FN are shorthands of true positives, false positives, and false negatives,
respectively. The numbers of weights for CRF reported here are the values of “Number of
features” produced by CRF++.

Table 2 shows the comparison of three methods: CTJPGIS, PGIS (the penalized GIS with
Gaussian prior as given in (13)), and L-BFGS. The results show that CTJPGIS accelerates
PGIS drastically and that CTJPGIS can compete with L-BFGS by winning in two out of
three tasks in terms of both rate of convergence and CPU time. The achieved F-scores are
all as good as those reported in the literature. The results suggest that the performance of
approximating Jacobian by the triple jump extrapolation method is comparable to approx-
imating Hessian by L-BFGS. These results provide empirical evidence that approximating
Jacobian can be as effective as approximating Hessian in an off-line setting, suggesting that
approximating Jacobian may be effective in an on-line setting as well.

4 Periodic step-size adaptation

The key issue of the 2SGD method is how to effectively approximate the Hessian matrix. We
have presented a simple yet effective method to approximate the eigenvalues of the Jacobian
matrix of a fixed-point iteration mapping. This section describes how this method can be
applied to derive a new 2SGD method.

4.1 Approximating inverse of Hessian

In SGD, a batch is given at each iteration in an on-line setting and we apply

θ(t+1) = θ(t) − η • g(θ (t);B(t)) (14)

to update the weights at each iteration. The step size η ∈ R
d+ that we use is a positive vector-

valued step size and “•” denotes component-wise (Hadamard) product of two vectors.
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From (4), the optimal step size is one that asymptotically approaches to H−1, the inverse
of the Hessian matrix of L(θ∗;D). To avoid actually evaluating H−1, we can approximate
H−1 with its eigenvalues. Considering a SGD iterate M(θ) = θ − η • gB(θ), where gB is
now re-written as a stochastic function depending only on θ . Clearly, M is a fixed-point
iteration mapping, though a stochastic one, strictly speaking. Taking partial derivative of M
with respect to θ , we have

J = M′ = I − diag(η)H. (15)

By exploiting this linear relation between Jacobian and Hessian, we can approximate the
inverse of Hessian by approximating Jacobian. Since

eig(I − diag(η)H) = eig(M′) = eig(J) ≈ γ,

where γ is an estimated eigenvalue of J as given in (7). When H is a symmetric matrix, its
eigenvalue is given by

eig(J) = 1 − ηi eig(H)

⇒ eig(H) = 1 − eig(J)

ηi

.

Therefore,

eig(H−1) = ηi

1 − eig(J)
≈ ηi

1 − γi

, (16)

which implies that we can update the step size component-wise by

η
(t+1)
i ∝ η

(t)
i

1 − γ
(t)
i

. (17)

If the mapping M converges, eig(J) ∈ (−1,1) and we can guarantee that the estimated
eig(H−1) > 0, which is required for the single pass result of SGD to hold (Bottou and LeCun
2005). A complete update rule for the step size will also involve a decay factor to ensure
that the step size will approach zero.

4.2 Stability consideration

Due to the stochastic nature of small batch mapping, it is unlikely that we can obtain a
reliable eigenvalue estimation at each single iteration. To increase stationary of the mapping,
we take advantage of the law of large numbers and aggregate consecutive SGD mappings
into a new mapping

Mb = M(M(. . . M(θ) . . .))︸ ︷︷ ︸
b

.

Assume that the step size η is sufficiently small such that

‖g(θ (t);B(t)) − g(θ (t−1);B(t))‖ � ‖g(θ (t);B(t))‖.

Then at iteration t , applying SGD with a fixed step size η for b times yields
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θ(t+b) = Mb(θ (t))

= θ(t) − η

b−1∑

i=0

g(θ (t+i);B(t+i))

≈ θ(t) − η

b−1∑

i=0

g(θ (t);B(t+i))

= θ(t) − bη
1

b

b−1∑

i=0

g(θ (t);B(t+i)),

which reduces the variance of gradient estimation by 1
b
, compared to the plain SGD map-

ping M. The approximation is valid because θ(t+i), i = 0, . . . , b−1 are approximately fixed
when η is sufficiently small (Benveniste et al. 1990).

We can proceed to estimate the eigenvalues of Mb from θ(t), θ(t+b) and θ(t+2b). The es-
timation can be either by (6) to obtain a scalar-valued γ , or by (7) for each component to
obtain a vector-valued γ . As Bottou and LeCun (2005) suggested, a full-rank approxima-
tion is necessary to achieve theoretical single-pass performance. Therefore, we apply (7) to
estimate the eigenvalues of Mb for each component i:

γ̄ b
i = θ

(t+2b)
i − θ

(t+b)
i

θ
(t+b)
i − θ

(t)
i

. (18)

A large b may appear to increase the stationary of the mapping Mb and improve the
accuracy of our eigenvalue estimation. However, a too large b is inappropriate because in
that case, the assumption that θ(t+i) is approximately fixed will become invalid. We also
note that our aggregate mapping Mb is different from a mapping that takes b small batches
as the input in a single iteration. Their difference is similar to that between batch and sto-
chastic gradient descent. Aggregate mappings have b chances to adjust its search direction,
while mappings that use b small batches together only have one. Section 5.1.4 reports our
experimental study of the impact of b to the performance of PSA.

With the estimated eigenvalues, we can present the complete update rule to adjust the
step size vector η. To ensure that the estimated values of eig(J) ∈ (−1,1) and to ensure
numerical stability, we introduce a positive constant κ < 1 as the upper bound of |γ̄ b

i |. Let u
denote the constrained γ̄ b . Its components are given by

ui := sgn(γ̄ b
i )min(|γ̄ b

i |, κ), ∀i. (19)

Then we can update the step size every 2b iterations based on u by:

η(t+2b+1) = v • η(t+2b), (20)

where v is a discount factor with components defined by

vi := m + ui

m + κ + n
, ∀i. (21)

The discount factor is derived from (17) and the fact that when u < 1, 1
1−u

> eu ≈ 1 + u to
ensure numerical stability, with m and n controlling the range. Let α be the maximum value
and β be the minimum value of vi . We can obtain m and n by solving β ≤ vi ≤ α for all i.
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Since −κ ≤ ui ≤ κ , we have vi = α when ui = κ and vi = β when ui = −κ . Solving these
equations yields:

m = α + β

α − β
κ and n = 2(1 − α)

α − β
κ. (22)

For example, if we want to set α = 0.9999 and β = 0.99, then m and n will be 201κ and
0.0202κ , respectively. Setting 0 < β < α ≤ 1 ensures that the step size is decreasing and
approaches zero so that its convergence can be guaranteed (Benveniste et al. 1990; Spall
2003).

We informally describe the behavior of our step size update rule from the view point of
fixed-point iteration. We note that the step size will always be reduced after every update
in our setting. But according to (16), when the estimated eigenvalue γ̄ b

i is positive, SGD
converges monotonically to the optimum. In this case, vi will be large, or the reduction will
be less, to maintain a large step size along the i-th dimension. On the other hand, when γ̄ b

i

is negative, the convergence is oscillating and vi will be small to reduce the step size further.
Figure 3 illustrates different types of convergence dictated by the sign of the eigenvalue. The
scale of the reduction is controlled to be proportional to the estimated eigenvalues of H−1 in
an attempt to achieve theoretical single-pass performance.

In practice, we found that assigning α, β and κ to values within the following ranges is
sufficient to produce adequate convergence performance:

• α : [0.999,0.9999],
• β : [0.96,0.99],
• κ : [0.9,0.99].
That leaves b as the only additional parameter that requires careful tuning. In Sect. 5.1.4, we
will report an empirical study of the impact of b on the convergence and provide a practical
guideline to specify these parameters.

4.3 The PSA algorithm

Algorithm 1 shows the PSA algorithm. In a nutshell, PSA applies SGD with a fixed step
size and periodically updates the step size by approximating Jacobian of the aggregated
mapping. The complexity per iteration is O(d

b
) because the cost of eigenvalue estimation

given in (18) is 2d and it is required for every 2b iterations. For models with a regularization
term, such as CRF, we can apply a technique that represents a weight vector as the product
of a scalar and a vector to further reduce the per iteration cost (see, Bottou and Bousquet
2008). We will discuss this in details in Sect. 5.1.1.

4.4 Analysis of PSA

We first compare PSA, CTJPGIS and their related methods in the literature and then present
an analysis of PSA’s asymptotic convergence property.

4.4.1 Comparison with QuickProp

PSA can be considered as a member in the family of the discretized Newton methods in
the numerical analysis literature (Ortega and Rheinboldt 1970). When the problem is to
solve a system of nonlinear equations g(θ) = 0, the first order optimality condition of an
optimization problem, the general form of these methods is

θ(t+1) = θ(t) − A[θ,h]−1g(θ (t)),
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Algorithm 1 The PSA Algorithm
1: Given: α, β , κ < 1 and b

2: Initialize θ(0) and η(0); t ← 0
3: m ← α+β

α−β
κ and n ← 2(1−α)

α−β
κ � Equation (22)

4: repeat
5: Choose a small batch B(t) uniformly at random from the set of training examples D
6: update θ(t+1) ← θ(t) − η • g(θ (t);B(t)) � Equation (14) i.e., SGD update
7: if (t + 1) mod 2b = 0 then � Update η

8: update γ̄ b
i ← θ

(t+2b)
i

−θ
(t+b)
i

θ
(t+b)
i

−θ
(t)
i

� Equation (18)

9: For all i, update ui ← sgn(γ̄ b
i )min(|γ̄ b

i |, κ) � Equation (19)
10: For all i, update vi ← m+ui

m+κ+n
� Equation (21)

11: update η(t+1) ← v • η(t) � Equation (20)
12: else
13: η(t+1) ← η(t)

14: end if
15: t ← t + 1
16: until Convergence

where A is a matrix designed to approximate H without explicitly computing the partial
derivatives to save computational time. Since full-matrix approximation is too costly, we
can use a divided difference for each component:

A[θ,h] = diag

(
gi (θ) − gi (θ − h)

hi

)
.

We discuss two well-known discretized Newton methods here: the secant method and the
Steffensen method. Each of them has many variants (Ortega and Rheinboldt 1970). We will
focus on their variants that are closely related to PSA and CTJPGIS discussed in Sect. 3.3.

When applied to accelerate gradient-descent, an instantiation of the multivariate secant
method can be defined as the following iterates:

θ(t+1) = S(θ (t)) := θ(t) − A
[
θ(t), θ (t) − θ(t−1)

]−1
g(θ (t)).

This method is also known as QuickProp (Fahlmann 1988) in the neural network literature.
Its update rule for each component can be expressed as:

θ
(t+1)
i = θ

(t)
i −

[
θ

(t)
i − θ

(t−1)
i

gi (θ (t)) − gi (θ (t−1))

]
gi (θ

(t)), ∀i. (23)

The Steffensen method is a generalized form of (9) and (10). It is an improved version of
Aitken’s acceleration. When applied to a gradient-descent mapping, the update rule of the
Steffensen method for each component is given by

θ
(t+1)
i =

⎧
⎨

⎩
[M(θ (t))]i = θ

(t)
i − ηgi (θ

(t)) if t mod 2 = 0,

θ
(t+1)
i = θ

(t)
i − [ θ

(t)
i

−θ
(t−1)
i

gi (θ
(t))−gi (θ

(t−1))

]
gi (θ

(t)) otherwise.
(24)
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Fig. 4 Iterations of discretized Newton methods. A straight line indicates an application of M, in our case
the gradient-descent. A curve line indicates applying an approximated Newton step. A dash line in (a) indi-
cates a gradient evaluation but no new weight vector is derived

The “otherwise” case turns out to be identical with the secant method. However, if we rewrite
(24) as a single mapping rule, we obtain

θ
(t+1)
i = θ

(t)
i −

[
ηgi (θ

(t))

gi (θ (t)) − gi (θ (t) − ηg(θ (t)))

]
gi (θ

(t)),

which is equivalent to the following general form:

θ(t+1) = θ(t) − A[θ(t), ηg(θ (t))]−1g(θ (t)).

Figure 4(a)–(c) illustrates the progressions of the secant and Steffensen methods. We can
see that they are indeed quite different. Both methods apply the same approximated Newton
step (i.e., (23)), which approximates the tangent hyperplane with slope H by a secant A with
respect to a pair of weight vectors. The secant method estimates H with respect to θ(t−1) and
S(θ (t−1)), while the Steffensen method is based on θ(t−1) and M(θ (t−1)). The approximation
made by the Steffensen method could be more accurate than that by the secant method
because intuitively, the secant line measured from a pair of points is close to the tangent line
if the pair are close together and it is likely that ‖M(θ (t−1))−θ(t−1)‖ < ‖S(θ (t−1))−θ(t−1)‖.
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In fact, it is well-known that the secant method and its variants have guaranteed local
convergence of order (1 + √

5)/2 ≈ 1.61, while the Steffensen method and its variants have
local quadratic convergence, which is as efficient as Newton (with exact evaluation of H−1).
Given that all discretized Newton methods have an advantage that they need not to explic-
itly compute the partial derivatives to obtain H−1, they are promising candidates of approxi-
mated 2SGD. Among them, the Steffensen method is a better choice than the secant method
because of its higher order of convergence.

PSA, however, is not a secant nor a Steffensen method. PSA is a variant of “m-step
parallel-chord Newton” method (Ortega and Rheinboldt 1970, p. 187). A parallel-chord
Newton method evaluates H−1 at t = 0, and then uses the result for the rest of the iterations.
A “m-step” parallel-chord Newton method re-evaluate H−1 periodically when t mod m = 0,
which can be written as the following two-layered iteration:

θ(k+1,0) = θ(k,m), θ (k,t+1) = θ(k,t) − H−1(θ (k,0))g(θ (k,t)), t = 0, . . . ,m − 1.

Traub (1964) showed that the m-step parallel-chord Newton method with exact Hessians
has local convergence of order m + 2:

‖θ(k+1) − θ(∗)‖ ≤ c‖θ(k) − θ(∗)‖(m+2).

In 1967, Šamanskii (Ortega and Rheinboldt 1970, p. 365) has shown that under certain con-
ditions, m-step parallel-chord Newton with discrete approximation A(θ,h) still converges
locally and the order is m + 1. Consequently, it has been established that a periodic update
method with discrete approximation of H−1 in an off-line optimization setting not only save
computational cost but can also achieve an excellent rate of convergence.

PSA can be considered as an on-line variant of the m-step parallel-chord Newton method
with m = 3 and each mapping is a composite mapping of 2b discrete Newton steps:

θ(k+1,0) = θ(k,2b), θ (k,t+1) = θ(k,t) − η(k)g(θ(k,t)), t = 0, . . . ,2b − 1,

η(k+1) = η(k)G(θ(k,0))

G(θ(k;b)) − G(θ(k;0))
, G(θ(k,0)) =

b−1∑

j=0

g(θ(k,j)).

Figure 4(d) illustrates this iteration. Therefore, if the estimation is sufficiently accurate, as-
ymptotic behavior of PSA is supposed to be close to order 4.

4.4.2 Asymptotic convergence property

Previously, Murata (1998) has derived a general form of the expectation and variance of θ(t)

obtained by SGD. When we have the least possible step size η(t+1) = βη(t) for all t mod 2b =
0 in PSA, the expectation of θ(t) obtained by PSA can be shown to be:

E(θ(t)) = θ∗ +
t∏

k=1

(
I − η(0)β� k

b
�H(θ∗;D)

)
(θ (0) − θ∗) (25)

= θ∗ + S(t)(θ (0) − θ∗). (26)

The rate of convergence is governed by the largest eigenvalue of S(t). We now derive a bound
of this eigenvalue.
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Theorem 1 Let λh be the least eigenvalue of H(θ∗;D). The asymptotic rate of convergence
of PSA is bounded by

eig(S(t)) ≤ exp

{−η(0)λhb

1 − β

}
.

Proof We can show that

eig(S(t)) =
t∏

k=1

(
1 − η(0)β� k

b
�λh

)

≤ exp

{
−

t∑

k=1

η(0)λhβ
� k

b
�
}

= exp

{
−η(0)λh

t∑

k=1

β� k
b
�
}

because for any 0 ≤ aj < 1, since 1 − aj ≤ e−aj ,

0 ≤
n∏

j=1

(1 − aj ) ≤
n∏

j=1

e−aj = e
−∑n

j=1 aj .

Now, since

t∑

k=1

β� k
b
� ≈

⎛

⎝
� t

b
�∑

l=0

bβl

⎞

⎠ = b

� t
b
�∑

l=0

βl → b

1 − β
when t → ∞,

we have

eig(S(t)) ≤ exp

{
−η(0)λh

t∑

k=1

β� k
b
�
}

→ exp

{−η(0)λhb

1 − β

}
when t → ∞.

�

Though this analysis suggests that for rapid convergence to θ∗, we should assign β ≈ 1
with a large b and η(0), it is based on a worst-case scenario and thus insufficient as a prac-
tical guideline for parameter assignment. Section 5.1.4 will provide an empirically derived
guideline for the purpose.

5 Experimental results

This section reports the experimental results of applying PSA to a variety of models and
large scale tasks, including CRF training for sequence labeling tasks, large scale training
of linear SVM for binary classification, and multi-classification by a convolutional neural
network model.

5.1 Conditional random fields

We compared PSA with plain SGD and SMD (Vishwanathan et al. 2006a) to evaluate PSA’s
performance for the four tasks as given in Table 1. Again, we implemented PSA by replac-
ing the L-BFGS optimizer in CRF++. For SMD, we used the implementation available
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in the public domain.3 Our SGD implementation for CRF is from Bottou.4 All the above
implementations are revisions of CRF++. Finally, we ran the original CRF++ with de-
fault settings to obtain the performance results of L-BFGS. The parameter settings in our
experiments are as follows:

• SGD: We simply keep the original settings intact.
• SMD: We used the typical setting described in Vishwanathan et al. (2006a), that is, μ =

0.1, λ = 1.0, and η(0) = 0.1. The batch size is set to 6 or 8 for different tasks as specified
in Vishwanathan et al. (2006a).

• PSA: We used κ = 0.9, (α,β) = (0.9999,0.99), b = 10, and η
(0)
i = 0.1, ∀i. The batch

size is one for all tasks.

All of the experiments reported here for CRF were ran on an Intel Q6600 Fedora 8 i686
PC with 4 G RAM.

5.1.1 Single-pass performance comparison

Table 3 compares SGD variants in terms of the execution time and F-scores achieved after
processing the training examples for a single pass. Since the loss function in CRF training
is convex, the convergence results of L-BFGS can be considered as the empirical minimum.
The results show that single-pass F-scores achieved by PSA are about as good as the em-
pirical minima, suggesting that PSA has effectively approximated Hessian in CRF training.
This is important because an on-line algorithm is useful when the training examples can be
discarded after they are used.

In the BioCreative 2 task, PSA’s single pass F-score is much better than the other two
SGD variants, but still is about 6 percentage point below the empirical optimum. However,
in less than two passes, PSA catches up to 85 and in 4 passes reaches 86.46. Single-pass F-
scores of plain SGD and SMD are way below empirical optima. We note that for BioCreative
2, the F-score achieved by plain SGD in a single pass is much lower than other methods. In
fact, plain SGD reached 68.25 after 0.8 passes but dropped sharply to 34.33 when it finished
one pass. This is because its learning curves fluctuate wildly, as shown in Fig. 5.

In terms of the CPU time, though as expected, plain SGD is the fastest, it is remarkable
that PSA is faster than SMD for all tasks. SMD is supposed to have an edge here because the
mini-batch size for SMD was set to 6 or 8, as specified in Vishwanathan et al. (2006a), while

Table 3 CPU time in seconds and F-scores achieved after a single pass for CRF training for SGD variants
and after convergence for L-BFGS

Method (pass) Base NP Chunking BioNLP/NLPBA BioCreative 2

time F-score time F-score time F-score time F-score

SGD (1) 1.15 92.42 13.04 92.26 12.23 66.37 3.18 34.33

SMD (1) 41.50 91.81 350.00 91.89 522.00 66.53 497.71 69.04

PSA (1) 16.30 93.31 160.00 93.16 206.00 69.41 191.61 80.79

L-BFGS (batch) 221.17 93.91 8694.40 93.78 20130.00 70.30 1601.50 86.82

3Available under LGPL from the following URL: http://sml.nicta.com.au/code/crfsmd/.
4http://leon.bottou.org/projects/sgd.

http://sml.nicta.com.au/code/crfsmd/
http://leon.bottou.org/projects/sgd
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PSA used one for all tasks, implying that PSA must perform many times more gradient-
descent iterates than SMD in a pass. But PSA is still faster than SMD partly because PSA
can take advantage of the sparsity trick as plain SGD (Shalev-Shwartz et al. 2007).

For very high dimensional models, variants of SGD could be slow due to the need to
update the entire vector for every small batch in the set of training examples. But for SGD,
the sparsity trick can be applied to drastically reduce the cost of updating. In the case of CRF
training, given a small batch B(t) in a sparse data set, it is quite likely that the expected value

of the i-th feature is zero. In that case, we have ∇i L(θ (t),B(t)) = θ
(t)
i

σ 2 and we can update θ
(t)
i

by

θ
(t+1)
i = θ

(t)
i − η(t) θ

(t)
i

σ 2
= θ

(t)
i

(
1 − η(t)

σ 2

)
.

That is, most weights can be updated by multiplying (1 − η(t)

σ 2 ).
SGD can take advantage of this trick by decomposing θ to sφ, where s is a scaling factor

and φ a vector. Then, the weight update is performed based on the expected occurrences of
the features as follows:

1. s(t+1) = s(t)(1 − η(t)

σ 2 );
2. if the expected occurrence of feature i is 0, φi remains unchanged;
3. otherwise, φ

(t+1)
i = (s(t)φ

(t)
i − η(t)∇i L(θ (t),B(t)))/s(t+1).

The sparsity trick can be applied to PSA in almost the same manner during every 2b iterates
before updating the step size. However, it is not applicable to SMD because SMD performs
a local step-size updates independently at every iteration. This could be one of the reasons
why the batch size for SMD must be set to more than one to avoid intensive weight updates.
PSA can save more time if the data is very sparse, as more features will have zero expected
occurrence in B(t). The chance usually decreases if we have more labels in the model, as in
the case of the CoNLL 2000 chunking task, where 23 labels are used.

5.1.2 Convergence performance comparison

Figure 5 shows the learning curves of all methods for the four chosen tasks. The learning
curves plot the progress of test-set F-scores as a function of the number of processed exam-
ples, measured by the number of passes through the entire training data set. We reported the
learning curves for only the first 50 passes because by then all on-line methods have already
converged, though L-BFGS would still require many more passes to converge. As expected,
the learning curves show that PSA clear outperformed all methods in terms of the number
of passes, with its F-scores approaching the optimum immediately after one pass. The su-
periority of PSA becomes even more obvious for the two biological entity recognition tasks
that are more challenging. Both of the tasks require a large set of features. The fluctuation
of plain SGD is notable in all tasks, especially for BioCreative 2.

Figure 6 also shows the learning curves but they plot the progress of training set objective
(loss) values as a function of passes. Again, PSA outperformed all other methods, while
SGD is the slowest and has the widest fluctuation among all SGD variants. However, though
its progress appears to stall at a much higher objective value than other methods, it seems
that its F-scores were not suffered and remain only slightly lower than those of PSA and
SMD after 20 passes.
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Fig. 5 Comparing convergence performance in terms of F-scores by PSA, SGD, SMD and L-BFGS for four
sequence labeling tasks with CRF

5.1.3 Execution time comparison

We also compare the CPU time required to reach a certain F-score for these SGD variants.
Figure 7 shows the learning curves with respect to the CPU time. In the beginning, plain
SGD appears to be the fastest but as it flattens out, PSA quickly catches up, usually immedi-
ately after scanning one pass of the training examples. Similar results can be observed from
the learning curves of objective values with respect to the CPU time, given in Fig. 8.

We also performed a bootstrap test to compare the performance of single-pass PSA and
other methods given the same CPU time spent. That is, we stopped all methods when they
had run for as much CPU time as single-pass PSA. Then we used bootstrap resampling on
the test set for each task. For 1,000 trials, a random sample of the same size as the test set
was selected with replacement from the test set and the F-score was computed using the
selected sample for the model obtained by each method. Single-pass PSA is statistically
significantly better than another method if the proportion of the times that in these 1,000
trials, the F-score by PSA exceeded the F-score of that method is greater than 95%, and
vice versa. Table 4 gives the results, which show that single-pass PSA outperforms SMD
in all tasks and L-BFGS in three out of four tasks with statistical significance. Single-pass
PSA’s performance is comparable with plain SGD given the same CPU time, but PSA has
the advantage that it only needs one pass through the training examples.
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Fig. 6 Comparing convergence performance in terms of objective (loss) values by PSA, SGD, SMD and
L-BFGS for four sequence labeling tasks with CRF

5.1.4 Guideline for parameter assignment

We provide here an empirically derived guideline for parameter assignment and discuss why
this guideline is reasonable. Initially, we investigated the impact of the update frequency b

for PSA. In Sect. 4.2, our analysis suggested that a too large or too small b should be avoided.
We ran PSA with different values of b for the base NP task to validate this analysis. Figure 9
shows the resulting learning curves. When b is too small, the curve rises rapidly but can only
converge at a poor F-score, as the case when b = 5. When b is between 7 to 15, the learning
curves are nearly the same. We only plotted the case when b = 10, which is also the number
we used for other experiments. When b = 20, the increasing of the F-score slowed down
but not very obviously so we did not plot the curve here. When b is as large as 50 or 100,
the tendency becomes clear. In those cases, PSA can still converge at a good F-score but the
convergence is slower.

The results confirmed that a moderately large b is optimal for single-pass PSA, but it
is still not precise to guide the tuning. To obtain optimal single-pass generalization perfor-
mance, b should be assigned according to the expected size of training examples |D|. We
found that when |D| � 2000, a value for b in the order of 0.5|D|

1000 is usually sufficent. This
setting implies that the step size will be adjusted per |D|

1000 training examples.
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Fig. 7 Comparing F-scores achieved given the same CPU time spent by PSA, SGD, SMD and L-BFGS for
four sequence labeling tasks with CRF

The range of b also depends on the setting of other parameters. In fact, the following
settings all yield nearly identical single-pass F-score for the Base NP task:

1. b = 10, α = 0.9999, β = 0.99;
2. b = 100, α = 0.999, β = 0.9;
3. b = 1, α = 0.99999, β = 0.999,

where the first setting was used in the above experiment. To see why this is the case,
consider the decreasing factor vi , which will be confined within the interval defined by
(α,β). Assuming that vi is selected by PSA at ransom uniformly, we have the mean of
vi = 0.995 when (α,β) = (0.9999,0.99) and the step size ηi will be decreased by a fac-
tor of 0.995 on average in each PSA adjustment. When b = 10, PSA will update ηi per 20
training examples. After reading 200 training examples, PSA will decrease ηi 10 times by
a combined factor of 0.9511. Similarly, we can obtain that the same factors for settings 2
and 3 are 0.95 and 0.9512, respectively, nearly identical. Consequently, we suggest select
(α,β) = (0.9999,0.99) and search for an optimal b according to the expected data size.

5.2 Linear SVM

To verify that PSA can be applied to a wide variety of models, we also evaluated PSA’s
single-pass performance for training linear SVM. It is straightforward to apply PSA as a



218 Mach Learn (2009) 77: 195–224

Fig. 8 Comparing objective (loss) values obtained given the same CPU time spent by PSA, SGD, SMD and
L-BFGS for four sequence labeling tasks with CRF

Table 4 Results of bootstrap tests comparing single-pass PSA with other methods given the same CPU time
spent. Cells in an italic font indicate that two methods have no significant difference, asterisked indicate that
PSA achieved lower F-scores, and in a normal font indicate that PSA performed statistically significantly
better

Base NP Chunking NLPBA BioCreative 2

PSA vs. SGD 430 66 4∗ 19∗
PSA vs. SMD 1000 1000 1000 1000

PSA vs. L-BFGS 1000 1000 1000 670

primal optimizer for linear SVM. We used the task RCV1-C2 from (Bottou 2007) (see Ta-
ble 5) and “SvmSgd,” a SGD implementation for linear SVM from the same site to obtain
the target empirical optimal error rate. Both PSA and SvmSgd used hinge loss. The para-
meter settings for PSA are κ = 0.95, (α,β) = (0.9999,0.99), and b = 10, following the
guideline given in Sect. 5.1.4. For η(0), SvmSgd has a function that uses a very small subset
of training examples to select the value of η(0). We used this function to select η

(0)
i = 0.1, ∀i

for PSA. Finally, the mini-batch size is one. All experiments reported here for linear SVM
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Fig. 9 Learning curves of PSA with different update frequencies for CoNLL base NP task: 50-pass view
(left) and enlarged view (right)

Table 5 Tasks for the experiments on classifiers

Task Model Training Test Class Weight Target

RCV1-C2 SVM 781265 23149 2 47152 6.01%

MNIST-BIN SVM 60000 10000 2 784 9.87%

MNIST CNN 60000 10000 10 134066 0.99%

Table 6 CPU time in seconds, percentage test error rates and primal objective values by various linear SVM
solvers

RCV1-C2 MNIST-BIN

Method (pass) time error Method (pass) time error object Method (pass) time error object

SvmSgd (1) 0.3 6.02 SGD L1 (1) 0.56 11.90 27707 SGD L2 (1) 0.62 11.62 23068

SvmSgd (300) 87.0 6.02 PSA L1 (1) 0.69 10.48 17387 PSA L2 (1) 0.72 10.50 18683

PSA (1) 105.0 5.63 LibLinear (n/a) 3.12 9.87 n/a

were run on a Fedora 5 x86-64 Linux machine with Intel Core2 Duo E6550 CPU (2.33 GHz)
and 2 GB RAM.

The experimental results are shown in Table 6. In one pass, PSA achieves a test error rate
lower than the target rate. Since the data is extremely sparse and its dimensionality is very
high, SGD can take full advantage of the sparse trick and complete a pass much faster than
PSA. But SvmSgd converges after one pass. Its error rate never gets improved no matter
how long we run it.

In a less sparse task, we used PSA to train linear SVM with the MNIST data set (Le-
Cun and Cortes 1998) to distinguish images of hand-written odd digits from even ones (see
MNIST-BIN in Table 5). To obtain target empirical optimum, we used the latest release of
LibLinear (Chang and Lin 2001) (June 2, 2008). Since LibLinear used L2-norm loss, we
modified our SGD and PSA programs to use the same loss functions. The L2-norm loss
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function of a linear SVM given training examples D = (xi , yi); i = 1,2, . . . , n, is defined by

PD(w, b) := 1

2
‖w‖2 + C

n∑

i=1

max(0,1 − yi(wT xi + b))2,

where w is the weight vector. Then the on-line loss function is:

P(x,y)(w, b) := 1

2n
‖w‖2 + C max(0,1 − y(wT x + b))2.

The gradient is given by:

∂P

∂wk

= 1

n
wk + 2C(−yxk + y2wkx

2
k + y2bxk), k = 1, . . . , d,

∂P

∂b
= 2C(−y + y2wT x + y2b)

when 1 − y(wT x + b) > 0. Otherwise, it is:

∂P

∂wk

= 1

n
wk.

The parameter settings for PSA for this task is the same as those for RCV1-C2 except
for η(0). Again, we used SGD to select its values and assigned the values for both SGD and
PSA. The selected values are 0.1 for all elements for L1(hinge)-loss and 0.01 for L2-loss.

The experimental results for MINST are shown in Table 6. In one pass, PSA achieves a
test error rate close to LibLinear with the CPU time comparable to SGD. PSA achieved a
much lower primal objective values than SGD. We note that for both tasks, it may take hours
to complete for a conventional dual SVM solver. We did not compare with other linear SVM
methods because our main purpose is to evaluate PSA’s single-pass performance.

We performed the same bootstrap test as described in Sect. 5.1.3 to compare single-
pass PSA and SGD given the same CPU time. The result shows that in 10,000 trials, the
accuracies of PSA L2 exceeded those of SGD L2 in 10,000 times.

5.3 Convolutional neural network

Approximating Hessian is particularly challenging when the loss function is non-convex. We
tested PSA in such a setting by applying PSA to train a large convolutional neural network
(CNN) for the original 10-class MNIST task (see Table 5).

Let xji be the ith input of the j -th unit of the output layer in a CNN, oj the computed
output of the j th unit, and tj the target output (answer) of the j th unit. The output o is a
non-linear function:

o = σ(y) = 1

1 + e−y
,

where y is a linear function of a current weight vector w. The loss function is the mean
square error of w given the training data set D:

E(w) := 1

2

∑

d∈D

∑

k∈outputs

(tkd − okd)
2.
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The loss function for each training example d is:

Ed(w) := 1

2

∑

k∈outputs

(tk − ok)
2,

and the gradient is:

gji = ∂Ed

∂wji

= (tj − oj )oj (1 − oj )xji .

We tried to duplicate the implementation of LeNet described in LeCun et al. (1998b) in
C++. Our implementation, referred to as “LeNet-S”, is a simplified variant of LeNet-5. The
differences include that the sub-sampling layers in LeNet-S picks only the upper-left value
from a 2×2 area and abandons the other three, while in LeNet-5 all four values are averaged
and sent to a trainable biased sigmoid node. LeNet-S used more maps (50 vs. 16) in the third
layer where LeNet-5 chooses inputs from the second layer based on a user-defined template
filter. In the fifth layer, LeNet-S used less nodes (120 vs. 100) due to the difference in the
previous sub-sampling layer. Finally, we did not implement the Gaussian connections in the
last layer.

We trained LeNet-S by plain SGD and PSA. The initial η for SGD was 0.7 and decreased
by 3 percent per pass. For PSA, we used κ = 0.9, (α,β) = (0.99999,0.999), b = 10, η

(0)
i =

0.5, ∀i, and the mini-batch size is one for all trials. We also adapted a trick given in LeCun
et al. (1998a) which advises that step sizes in the lower layers should be larger than in the
higher layer. Following their trick, the initial step sizes for the first and the third layers were
5 and

√
2.5 times as large as those for the other layers, respectively. The experiments were

run on the same machine as for the CRF experiments.
Table 7 shows the results. To obtain the empirical optimal error rate of our LeNet-S

model, we ran plain SGD with sufficient passes and obtained 0.99% error rate at conver-
gence, slightly lower than LeNet-5’s 0.95% (LeCun et al. 1998b). Single-pass performance
of PSA with the layer trick is within one percentage point to the target. However, though
single-pass PSA reached a mean square error lower than single-pass SGD, there is much
room for minimization, as 140-pass SGD can reach a mean square error as low as 82.22.
Starting from an initial weight closer to the optimum helped improving PSA’s performance
further. We ran SGD 100 passes with randomly selected 10 K training examples then re-
started training with PSA using the rest 50 K training examples for a single pass. Though
PSA did achieve a better error rate, this is infeasible because it took 4492 seconds to run
SGD 100 passes. Finally, though not directly comparable, we also report the performance of
TONGA given in LeRoux et al. (2008) as a reference. TONGA is a 2SGD method based on
natural gradient. After 500 seconds, TONGA reaches 2% of error with 50 K training exam-
ples, but we have no information about the detailed configuration of their implementation.

We performed the same bootstrap test as described in Sect. 5.1.3 to compare CNN with
and without the layer trick. The result shows that in 10,000 trials, the accuracies of CNN

Table 7 CPU time in seconds, percentage test error rates, and mean square errors by various neural network
trainers

Method (pass) time error mse Method (pass) time error mse

SGD (1) 266.77 2.36 2785.01 PSA w/o layer trick (1) 311.95 2.31 2389.65

SGD (140) 37336.20 0.99 82.22 PSA w/ layer trick (1) 311.00 1.97 2112.77

TONGA (n/a) 500.00 2.00 n/a PSA re-start (1) 253.72 1.90 –
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with the layer trick exceeded those of without the layer trick in 9986 times, implying that
the result reported here is statistically significant.

6 Conclusions

It has been shown that given a sufficiently large training set, a single pass of 2SGD gen-
eralizes as well as the empirical optimum. Our results show that PSA provides a practical
solution to accomplish near optimal performance of 2SGD as predicted theoretically for a
variety of large scale models and tasks with a reasonably low cost per iteration compared
to competing 2SGD methods. The benefit of 2SGD with PSA over plain SGD becomes
clearer when the scale of the tasks are increasingly large. For non-convex neural network
tasks, since the curvature of the error surface is so complex, it is still very challenging for
an eigenvalue approximation method like PSA. Our future work is to extend PSA to kernel
methods.
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