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Abstract
In this paper, we focus on subspace learning problems on the Grassmann manifold. Inter-
esting applications in this setting include low-rank matrix completion and low-dimensional
multivariate regression, among others. Motivated by privacy concerns, we aim to solve such
problems in a decentralized setting where multiple agents have access to (and solve) only a
part of the whole optimization problem. The agents communicate with each other to arrive
at a consensus, i.e., agree on a common quantity, via the gossip protocol. We propose a novel
cost function for subspace learning on the Grassmann manifold, which is a weighted sum
of several sub-problems (each solved by an agent) and the communication cost among the
agents. The cost function has a finite-sum structure. In the proposed modeling approach, dif-
ferent agents learn individual local subspaces but they achieve asymptotic consensus on the
global learned subspace. The approach is scalable and parallelizable. Numerical experiments
show the efficacy of the proposed decentralized algorithms on various matrix completion and
multivariate regression benchmarks.
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1 Introduction

Learning a low-dimensional representation of vast amounts of data is a fundamental problem
in machine learning. It is motivated by considerations of low memory footprint or low com-
putational complexity, model compression, better generalization performance, robustness to
noise, among others. The applicability of low-dimensional modeling is ubiquitous, including
images in computer vision, text documents in natural language processing, genomics data in
bioinformatics, and customers’ record or purchase history in recommender systems.

Principal component analysis (PCA) is one of the most well known algorithms employed
for low-dimensional representation in data analysis (Bishop 2006). PCA is employed to learn
a low-dimensional subspace that captures the most variability in the given data. Collabora-
tive filtering based applications, such as movie or product recommendation, desire learning a
latent low-dimensional subspace that captures users’ preferences (Rennie and Srebro 2005;
Zhou et al. 2008; Abernethy et al. 2009). The underlying assumption here is that similar users
have similar preferences. A common approach to model this problem is via low-rank matrix
completion: recovering low-rankmatriceswhenmost entries are unknown (Candès andRecht
2009; Cai et al. 2010; Wen et al. 2012). Motivated by similar requirements of learning a low-
dimensional subspace, low-rank matrix completion algorithms are also employed in other
applications such as system identification (Markovsky and Usevich 2013), subspace identi-
fication (Balzano et al. 2010), sensor networks (Keshavan et al. 2009), and gene expression
prediction (Kapur et al. 2016), to name a few.

In several multivariate regression problems, we need to learn the model parameters for
several related regression tasks (problems), but the amount of labeled data available for each
task is low. In such data scarce regime, learning each regression problem (task) only with its
own labeled data may not give good enough generalization performance (Baxter 1997, 2000;
Jalali et al. 2010; Álvarez et al. 2012; Zhang and Yang 2017). The paradigm of multitask
learning (Caruana 1997) advocates learning these related tasks jointly, i.e., each tasks not
only learns from its own labeled data but also from the labeled data of other tasks. Multitask
learning is helpful when the tasks are related, e.g., the model parameters of all the tasks
have some common characteristics that may be exploited during the learning phase. Existing
multitask literature have explored various ways of learning the tasks jointly (Evgeniou and
Pontil 2004; Jacob et al. 2008; Zhang and Yeung 2010; Zhong and Kwok 2012; Jawanpuria
andNath 2012; Kumar andDaume 2012; Zhang 2015). Enforcing themodel parameters of all
the tasks to share a common low-dimensional latent feature space is a common approach in
multitask (feature) learning (Ando and Zhang 2005; Amit et al. 2007; Argyriou et al. 2008).

A low-dimensional subspace can be viewed as an instance of the Grassmann manifold
Gr(r ,m), which is the set of r -dimensional subspaces in R

m . A number of Grassmann
algorithms exploiting the geometry of the search space exist for subspace learning, in both
batch (Absil et al. 2008) and online variants (Bonnabel 2013; Zhang et al. 2016; Sato et al.
2017). Several works (Balzano et al. 2010; Dai et al. 2011; He et al. 2012; Boumal and
Absil 2015) discuss a subspace learning approach based on the Grassmann geometry from
incomplete data. Meyer et al. (2009, 2011) exploit the Grassmann geometry in distance
learning problems through low-rank subspace learning. More recently, Harandi et al. (2016,
2017, 2018) show the benefit of the Grassmann geometry in low-dimensional dictionary and
metric learning problems. Subspace constraints are also employed in many applications of
computer vision and medical image analysis (Cetingul and Vidal 2009; Turaga et al. 2008).
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In this paper, we are interested in a decentralized learning setting on the Grassmann man-
ifold, which is less explored for the considered class of problems. To this end, we assume
that the given data is distributed across several agents, e.g., different computer systems. The
agents can learn a low-dimensional subspace only from the data that resides locally within
them, and cannot access data residing within other agents. This scenario is common in situ-
ations where there are privacy concerns of sharing sensitive data. Ling et al. (2012), Lin and
Ling (2015) discuss decentralized algorithms for the problem of low-rankmatrix completion.
The agents can communicate with each other to develop consensus over a required objective,
which in our case, is the low-dimensional subspace. The communication between agents
causes additional computational overheads, and hence should ideally be as little as possible.
This, in addition to privacy concerns, motivate us to employ the so-called gossip protocol in
our setting (Boyd et al. 2006; Shah 2009; Colin et al. 2016). In the gossip framework, an agent
communicates with only one other agent at a time (Boyd et al. 2006). The gossip framework
has been also explored in several works in the context of optimization for machine learning
problems (Jin et al. 2016; Ormándi et al. 2013; Blot et al. 2016).

Recently, Bonnabel (2013, Section 4.4) discusses a non-linear gossip algorithm for esti-
mating covariance matrix W on a sensor network of multiple agents. Each agent is initialized
with a local covariance matrix estimate, and the aim there is to reach a common (average)
covariance matrix estimate via communication among the agents. If Wi is the estimate of
the covariance matrix possessed by agent i , Bonnabel (2013) proposes to minimize the cost
function

m−1∑

i=1

d2(Wi , Wi+1),

to arrive at consensus, where the total number of agents is m and d is a distance function
between covariance matrix estimates. At each time slot, a randomly chosen agent i(< m)

communicates with its neighbor agent i + 1 and both update their covariance matrix esti-
mates. Bonnabel (2013) shows that undermild assumptions, the agents converge to a common
covariance matrix estimate, i.e., the agents achieve consensus. It should be noted that con-
sensus learning on manifolds has been in general a topic of much research, e.g., Sarlette and
Sepulchre (2009) and Tron et al. (2011, 2013) study the dynamics of agents which share their
relative states over a more complex communication graph (than the one in (Bonnabel 2013,
Section 4.4)) . The aim in (Sarlette and Sepulchre 2009; Tron et al. 2011, 2013; Bonnabel
2013) is to make the agents converge to a single point. In this paper, however, we dwell on
consensus learning of agents along with optimizing the sub-problems handled by the agents.
For example, at every time instance a randomly chosen agent locally updates its local sub-
space (e.g., with a gradient update) and simultaneously communicates with its neighbor to
build a consensus on the global subspace. This is a typical set up encountered in machine
learning based applications. The paper does not aim at a comprehensive treatment of con-
sensus algorithms on manifolds, but rather focuses on the role of the Grassmann geometry
in coming out with a simple cost problem formulation for decentralized subspace learning
problems.

We propose a novel optimization formulation on the Grassmann manifold that combines
together a weighted sum of tasks (accomplished by agents individually) and consensus terms
(that couples subspace information transfer among agents). The weighted formulation allows
an implicit averaging of agents at every time slot. The formulation allows to readily propose
a stochastic gradient algorithm on the Grassmann manifold and further allows a parallel
implementation (via a modified sampling strategy). For dealing with ill-conditioned data, we
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also propose a preconditioned variant, which is computationally efficient to implement. We
apply the proposed approach on two popular subspace learning problems: low-rank matrix
completion (Cai et al. 2010; Keshavan et al. 2010; Balzano et al. 2010; Boumal and Absil
2015, 2011; Dai et al. 2011) and multitask feature learning (Ando and Zhang 2005; Argyriou
et al. 2008; Zhang et al. 2008; Zhang and Yang 2017). Empirically, the proposed algorithms
compete effectively with state-of-the-art on various benchmarks.

The organization of the paper is as follows. Section 2 presents a discussion on the Grass-
mann manifold. Both low-rank matrix completion and multitask feature learning problems
aremotivated in Sect. 3 as finite-sum problems on theGrassmannmanifold. In Sect. 4, we dis-
cuss the decentralized learning setup and propose a novel problem formulation. In Sect. 5, we
discuss the proposed stochastic gradient based gossip algorithm along with preconditioned
and parallel variants. Experimental results are discussed in Sect. 6. The present paper extends
the unpublished technical report (Mishra et al. 2016). The Matlab codes for the proposed
algorithms are available at https://bamdevmishra.in/gossip.

2 Grassmannmanifold

The Grassmann manifold Gr(r ,m) is the set of r -dimensional subspaces in R
m . In matrix

representation, an element of Gr(r ,m) is represented by the column space of a full rank
matrix of size m × r . Equivalently, if U is a full rank matrix of size m × r , an element of
Gr(r ,m) is represented as

U := the column space of U. (1)

Without loss of generality, we impose orthogonality on U, i.e., U�U = I. This characterizes
the columns space in (1) and allows to represent U as follows:

U := {UO : O ∈ O(r)}, (2)

where O(r) denotes the orthogonal group, i.e., the set of r × r orthogonal matrices. An
implication of (2) is that each element of Gr(r ,m) is an equivalence set. This allows the
Grassmann manifold to be treated as a quotient space of the larger Stiefel manifold St(r ,m),
which is the set of matrices of size m × r with orthonormal columns. Specifically, the
Grassmann manifold has the quotient manifold structure

Gr(r ,m) := St(r ,m)/O(r). (3)

A popular approach to optimization on a quotient manifold is to recast it to into a Rieman-
nian optimization framework (Edelman et al. 1998; Absil et al. 2008). In this setup, while
optimization is conceptually on the Grassmann manifold Gr(r ,m), numerically, it allows
to implement operations with concrete matrices, i.e., with elements of St(r ,m). Geometric
objects on the quotient manifold can be defined by means of matrix representatives. Below,
we show the development of various geometric objects that are are required to optimize a
smooth cost function on the quotient manifold with a first-order algorithm (including the
stochastic gradient algorithm). Most of these notions follow directly from (Absil et al. 2008).

A fundamental requirement is the characterization of the linearization of the Grassmann
manifold, which is the called its tangent space. Since the Grassmann manifold is the quotient
space of the Stiefel manifold, shown in (3), its tangent space has matrix representation in
terms of the tangent space of the larger Stiefel manifold St(r ,m). Endowing the Grassmann
manifold with a Riemannian submersion structure (Absil et al. 2008), the tangent space of
St(r ,m) at U has the characterization
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TUSt(r ,m) := {ZU ∈ R
m×r : U�ZU + Z�

UU = 0}. (4)

The tangent space of Gr(r ,m) at an element U identifies with a subspace of TUSt(r ,m) (4),
and specifically, which has the matrix characterization, i.e.,

matrix characterization of TUGr(r ,m) := {ξU ∈ R
m×r : U�ξU = 0}, (5)

whereU is thematrix characterization ofU . In (5), the vector ξU is thematrix characterization
of the abstract tangent vector ξU ∈ TUGr(r ,m) at U ∈ Gr(r ,m).

A second requirement is the computation of the Riemannian gradient of a cost function,
say f : Gr(r ,m) → R. Again exploiting the quotient structure of the Grassmann manifold,
the Riemannian gradient gradU f of f at U ∈ Gr(r ,m) admits the matrix expression

gradU f = GradU f − U(U�GradU f ),

where GradU f is the (Euclidean) gradient of f in the matrix space Rm×r at U.
A third requirement is the notion of a straight line along a tangential direction on the

Grassmann manifold. This quantity is captured with the exponential mapping operation on
the Grassmann manifold. Given a tangential direction ξU ∈ TUGr(r ,m) that has the matrix
expression ξU belonging to the subspace (5), the exponential mapping along ξU has the
expression (Absil et al. 2008, Section 5.4)

ExpU (ξU ) := UV cos(�) + W sin(�), (6)

where W�V� is the rank-r singular value decomposition of ξU. The cos(·) and sin(·) oper-
ations are on the diagonal entries.

Finally, a fourth requirement is the notion of the logarithm map of an element Ũ at U on
the Grassmann manifold. The logarithm map operation maps Ũ onto a tangent vector at U ,
i.e., if Ũ and U have matrix operations Ũ and U, respectively, then the logarithm map finds
a vector in (5) at U. The closed-form expression of the logarithm map LogU (Ũ), i.e.,

LogU (Ũ) = P arctan(S), (7)

where PSQ� is the rank-r singular value decomposition of (Ũ − UU�Ũ)(U�Ũ)−1 and
arctan(·) operation is on the diagonal entries.

3 Motivation

We look at a decentralized learning of the subspace learning problem of the form

min
U∈Gr(r ,m)

N∑

i=1

fi (U), (8)

whereGr(r ,m) is theGrassmannmanifold.We assume that the functions fi : Rm×r → R for
all i = {1, . . . , N } are smooth. In this section, we formulate two popular class of problems as
subspace learning problems of the form (8) on the Grassmannmanifold. The decentralization
learning setting for (8) is considered in Sect. 4.

3.1 Low-rankmatrix completion as subspace learning

The problem of low-rank matrix completion amounts to completing a matrix from a small
number of entries by assuming a low-rank model for the matrix. The rank constrained matrix
completion problem can be formulated as
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min
Y∈Rm×n

1

2
‖PΩ(Y) − PΩ(Y�)‖2F + λ‖Y − PΩ(Y)‖2F

subject to rank(Y) = r ,
(9)

where ‖ · ‖F is the Frobenius norm, λ is the regularization parameter (Boumal and Absil
2015, 2011), and Y� ∈ R

n×m is a matrix whose entries are known for indices if they belong
to the subset (i, j) ∈ Ω and Ω is a subset of the complete set of indices {(i, j) : i ∈
{1, ...,m} and j ∈ {1, ..., n}}. The operator [PΩ(Y)]i j = Yi j if (i, j) ∈ Ω and [PΩ(Y)]i j =
0 otherwise is called the orthogonal sampling operator and is a mathematically convenient
way to represent the subset of known entries. The rank constraint parameter r is usually set
to a low value, e.g., r � (m, n). The particular regularization term ‖Y −PΩ(Y)‖2F in (9) is
motivated in (Dai et al. 2011; Boumal and Absil 2015, 2011), and it specifically penalizes
the large predictions. An alternative to the regularization term in (9) is ‖Y‖2F .

A way to handle the rank constraint in (9) is by using the parameterization Y = UW�,
where U ∈ St(r ,m) and W ∈ R

n×r (Boumal and Absil 2015, 2011; Mishra et al. 2014).
The problem (9) reads

min
U∈St(r ,m)

min
W∈Rn×r

1

2
‖PΩ(UW�) − PΩ(Y�)‖2F + λ‖UW� − PΩ(UW�)‖2F . (10)

The inner least-squares problem in (10) admits a closed-form solution. Consequently, it is
straightforward to verify that the outer problem in U only depends on the column space of U,
and therefore, is on the Grassmann manifold Gr(r ,m) and not on St(r ,m) (Dai et al. 2012;
Boumal and Absil 2015, 2011). Solving the inner problem in closed form, the problem at
hand is

min
U∈Gr(r ,m)

1

2
‖PΩ(UW�

U) − PΩ(Y�)‖2F + λ ‖UW�
U − PΩ(UW�

U)‖2F , (11)

whereWU is the unique solution to the inner optimization problem in (10) andU is the column
space of U (Dai et al. 2012). It should be noted that (11) is a problem on the Grassmann
manifold Gr(r ,m), but computationally handled with matrices U in St(r ,m).

Consider the case when Y� = [Y�
1, Y�

2, . . . , Y�
N ] is partitioned along the columns such

that the size of Y�
i is m × ni with

∑
ni = n for i = {1, 2, . . . , N }. Ωi is the local set of

indices for each of the partitions. The column-partitioning of Y� implies that W� can also
partitioned in (10) along the columns similarly, i.e., W� = [W�

1 , W�
2 , . . . , W�

N ], where
Wi ∈ R

ni×r . Hence, an equivalent reformulation of (11) is the finite-sum problem

min
U∈Gr(r ,m)

N∑

i=1

fi (U), (12)

where fi (U) := 0.5‖PΩi (UW�
iU) − PΩi (Y

�
i )‖2F + λ‖UW�

iU − PΩ(UW�
iU)‖2F and WiU

is the least-squares solution to argminWi∈Rni×r ‖PΩi (UW�
i ) − PΩi (Y

�
i )‖2F + λ‖UW�

i −
PΩi (UW�

i )‖2F for each of the data partitions. The problem (12) is of type (8).

3.2 Low-dimensional multitask feature learning as subspace learning

Wenext transforman important problem in themultitask learning setting (Caruana 1997;Bax-
ter 1997; Evgeniou et al. 2005) as a subspace learning problem on the Grassmann manifold.
The paradigm of multitask learning advocates joint learning of related learning problems.
A common notion of task-relatedness among different tasks (problems) is as follows: tasks
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share a latent low-dimensional feature representation (Ando and Zhang 2005; Argyriou et al.
2008; Zhang et al. 2008; Jawanpuria and Nath 2011; Kang et al. 2011). We propose to learn
this shared feature subspace. We first introduce a few notations related to multitask setting.

Let T be the number of given tasks, with each task t having dt training examples. Let
(Xt , yt ) be the training instances and corresponding labels for task t = 1, . . . , T , where
Xt ∈ R

dt×m and yt ∈ R
dt . Argyriou et al. (2008) proposed the following formulation to

learn a shared latent feature subspace:

min
O∈Rm×m ,wt∈Rm

1

2

∑

t

‖XtOwt − yt‖2F + λ‖W�‖22,1. (13)

Here, λ is the regularization parameter, O is an orthogonal matrix of size m × m that is
shared among T tasks, wt is the weight vector (also know as task parameter) for task t ,
and W := [w1, w2, . . . , wT ]�. The term ‖W�‖2,1 := ∑

j (
∑

i W2
i j )

1/2 is the (2, 1) norm

over the matrix W�. It enforces the group sparse structure (Yuan and Lin 2006) across the
columns of W. The sparsity across columns in W ensures that we learn a low-dimensional
latent feature representation for the tasks. The basis vectors of this low-dimensional latent
subspace are the columns of O corresponding to non-zeros columns of W. Hence, solving
(13) leads to a full rank m × m latent feature space O and performs feature selection (via
sparse regularization) in this latent space. This is computationally expensive especially in
large-scale applications desiring a low (r ) dimensional latent feature representation where
r � m. In addition, the sparsity inducing 1-norm is non-smooth which poses additional
optimization challenges.

We instead learn only the basis vectors of the low-dimensional latent subspace, by restrict-
ing the dimension of the subspace (Ando and Zhang 2005; Lapin et al. 2014). The proposed
r -dimensional multitask feature learning problem is

min
U∈St(r ,m)

∑

t

min
wt∈Rr

1

2
‖XtUwt − yt‖2F + λ‖wt‖22, (14)

where U is an m × r matrix in St(r ,m) representing the low-dimensional latent subspace.
Similar to the earlier matrix completion case, the inner least-squares optimization problem
in (14) is solved in closed form by exploiting the least-squares structure. It is readily verified
that the outer problem (14) is on U , i.e., the search space is the Grassmann manifold. To this
end, the problem is

min
U∈Gr(r ,m)

∑

t

1

2
‖XtUwtU − yt‖2F , (15)

where wtU is the least-squares solution to argminwt∈Rr ‖XtUwt − yt‖2F + λ‖wt‖22. More
generally, we distribute the T tasks in (15) into N groups such that

∑
ni = T . This leads to

the formulation

min
U∈Gr(r ,m)

N∑

i=1

⎧
⎨

⎩ fi (U) :=
∑

t∈Ti

1

2
‖XtUwtU − yt‖2F

⎫
⎬

⎭ , (16)

where Ti is the set of the tasks in group i . The problem (16) is also a particular case of (8).
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4 Decentralized subspace learning with gossip

We exploit the finite-sum (sum of N sub cost functions) structure of the problem (8) by
distributing the tasks among N agents, which perform certain computations, e.g., computa-
tion of the functions fi given U , independently. Although the computational workload gets
distributed among the agents, all agents require the knowledge of the common U , which is an
obstacle in decentralized learning. To circumvent this issue, instead of one shared subspace
U for all agents, each agent i stores a local subspace copy Ui , which it then updates based
on information from its neighbors. For minimizing the communication overhead between
agents, we additionally put the constraint that at any time slot only two agents communi-
cate, i.e, each agent has exactly only one neighbor. This is the basis of the standard gossip
framework (Boyd et al. 2006). A similar architecture is also exploited in Bonnabel (2013)
for decentralized covariance matrix estimation. It should be noted that although we focus on
this agent network, our cost formulation can be extended to any arbitrary network of agents.

Following (Bonnabel 2013), the agents are numbered according to their proximity, e.g.,
for i � N−1, agents i and i+1 are neighbors. Equivalently, agents 1 and 2 are neighbors and
can communicate. Similarly, agents 2 and 3 communicate, and so on. This communication
between the agents allows to reach a consensus on the subspaces Ui . Our proposed approach
to handle the finite-sum problem (8) in a decentralized setting is to solve the problem

min
U1,...,UN∈Gr(r ,m)

N∑

i=1

fi (Ui )︸ ︷︷ ︸
task handled by agent i

+ρ

2
(d21 (U1,U2) + . . . + d2N−1(UN−1,UN ))
︸ ︷︷ ︸

consensus among agents

, (17)

where di in (17) is specifically chosen as the Riemannian distance between the subspaces Ui

and Ui+1 for i � N − 1 and ρ � 0 is a parameter that trades off individual (per agent) task
minimization with consensus.

For a large ρ, the consensus term in (17) dominates, minimizingwhich allows the agents to
arrive at consensus, i.e., their subspaces converge. For ρ = 0, the optimization problem (17)
solves N independent tasks and there is no consensus among the agents. For a sufficiently large
ρ, the problem (17) achieves the goal of approximate task solving along with approximate
consensus. It should be noted that the consensus term in (17) has only N − 1 pairwise
distances. For example, (Bonnabel 2013) uses this consensus term structure for covariance
matrix estimation. It allows to parallelize subspace learning, as discussed later in Sect. 5.3.
Additionally, the standard gossip formulation allows to show the benefit of the trade-off
weight ρ in practical problems.

It should be noted that although we focus on a particular agent-agent network, our cost
formulation can be extended to any arbitrary network of agents. For other complex (and
communication heavy) agent-agent networks, the consensus part of (17) has additional terms.
In particular, let the agent network be a graph G(V , E), where V represents the set of nodes
(node vi ∈ V corresponds to agent i) and E represents the set of edges. The edge ei j ∈ E
between the nodes vi and v j represents that the nodes communicate. Then, the general
formulation is as follows:

min
U1,...,U|V |∈Gr(r ,m)

∑

i∈V
fi (Ui ) + ρ

2

∑

{(i, j):ei j∈E}
d2i j (Ui ,U j ), (18)

where di j is the Riemannian distance between the subspaces Ui and U j . In subsequent sec-
tions, we focus on (17) to keep the exposition simple. However, our proposed algorithm and
the discussion can be extended to (18).
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Algorithm 1 Proposed stochastic gossip algorithm for (19).
1. At each time slot k, pick gi with i � N − 1 randomly with uniform probability. This is equivalent to

picking up the agents i and i + 1.
2. Compute the Riemannian gradients gradUi

gi and gradUi+1
gi .

3. Given a stepsize γk (e.g., γk := a/(1 + bk); a and b are constants), update Ui and Ui+1 as

(Ui )+ = ExpUi
(−γkgradUi

gi )
(Ui+1)+ = ExpUi+1

(−γkgradUi+1
gi ),

where (Ui )+ and (Ui+1)+ are the updated subspaces and ExpUi
(ξUi

) is the exponential mapping that
maps the tangent vector ξUi

∈ TUi
Gr(r ,m) onto Gr(r ,m).

4. Repeat.

5 The Riemannian gossip algorithm for (17)

In this section, we focus on proposing a stochastic algorithm for (17) by appropriately sam-
pling the terms in the cost function of (17). This leads to simpler updates of the agent specific
subspaces. Additionally, it allows to exploit parallelization of updates. To this end, we exploit
the stochastic gradient algorithm framework on Riemannianmanifolds (Bonnabel 2013; Sato
et al. 2017; Zhang et al. 2016).

As a first step, we reformulate the problem (17) as a single sum problem, i.e.,

min
U1,...,UN∈Gr(r ,m)

N−1∑

i=1

gi (Ui ,Ui+1), (19)

where gi (Ui ,Ui+1) := αi fk(Ui ) + αi+1 fi+1(Ui+1) + 0.5ρd2k (Ui ,Ui+1). Here, αi is a scalar
that ensures that the cost functions of (19) and (17) remain the same with the reformulation,
i.e.,

∑
gi = f1 + · · · + fN + 0.5ρ(d21 (U1,U2) + d22 (U2,U3) + · · · + d2N−1(UN−1,UN )).

Equivalently, αi = 1 if i = {1, N }, else αi = 0.5.
At each iteration of the stochastic gradient algorithm, we sample a sub cost function gi

from the cost function in (19) uniformly at random (we stick to this sampling process for
simplicity). Based on the chosen sub cost function, the subspaces Ui and Ui+1 are updated by
following the negative Riemannian gradient (of the sub cost function gi ) with a stepsize. The
stepsize sequence over the iterations satisfies the conditions that it is square integrable and
its summation is divergent (this is explicitly mentioned in the proof of Proposition 1 later).

The overall algorithm is listed as Algorithm 1, which converges to a critical point of (19)
almost surely (Bonnabel 2013). An outcome of the updates from Algorithm 1 is that agents
1 and N update twice the number of times the rest of agents update.

The matrix characterizations of implementing Algorithm 1 are shown in Table 1. The
development of some of the expressions are discussed earlier in Sect. 2. The asymptotic
convergence analysis of Algorithm 1 follows directly from the proposition below.

Proposition 1 Algorithm 1 converges to a first-order critical point of (19).

Proof The problem (19) can be modeled as

min
V∈M

1

N − 1

N−1∑

i=1

hi (V), (20)

where V := (U1,U2, . . . ,UN ), M is the Cartesian product of N Grassmann manifolds
Gr(r ,m), i.e., M := GrN (r ,m), and hi : M → R : V �→ hi (V) = gi (Ui ,Ui+1). The
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Table 1 Matrix characterizations of ingredients needed to implement Algorithm 1

Ingredients Matrix formulas

d2i (Ui ,Ui+1) 0.5‖LogUi
(Ui+1)‖2F

LogU (Ũ) Parctan(S)Q�, where PSQ� is the rank-r singular value decomposition of
(Ũ − U(U�Ũ))(U�Ũ)−1. Here, U and Ũ are the matrix representations of U and Ũ

gi (Ui ,Ui+1) αi fi + 0.5ρd2i (Ui ,Ui+1)

gradUi
gi αigradUi

fi + ρgradUi
di

gradUi
fi GradUi

fi − Ui (U�
i GradUi

fi ), where for the matrix completion cost (12), GradUi
fi

is GradUi
fi = (PΩi (UiW�

iUi
) − PΩi (Y

�
i ))WiUi , and for the multitask feature

learning cost (16) GradUi
fi is GradUi

fi = ∑
t∈Ti X�

t (XtUwtUi − yt )w�
tUi

. Here,
WiUi and wtUi are the solutions of the inner least-squares problems for the
respective problems

gradUi
di −LogUi

(Ui+1) (Bonnabel 2013)

ExpUi
(ξUi

) UiV cos(�)V� + W sin(�)V�, where W�V� is the rank-r singular value
decomposition of ξUi

. The cos(·) and sin(·) operations are on the diagonal entries

updates shown in Algorithm 1 precisely correspond to stochastic gradients updates for the
problem (20).

It should be noted that M is compact and has a Riemannian structure, and consequently,
the problem (20) is an empirical risk minimization problem on a compact manifold. The
key idea of the proof is that for a compact Riemannian manifold, all continuous functions
of the parameter are bounded, e.g., the Riemannian Hessian of h(V) is upper bounded for
all V ∈ M. We assume that 1) the stepsize sequence satisfies the condition that

∑
γk = ∞

and
∑

(γk)
2 < ∞ and 2) at each time slot k, the stochastic gradient estimate gradVhi is an

unbiased estimator of the batch Riemannian gradient
∑

i gradVhi . Under those assumptions,
Algorithm 1 converges to a first-order critical point of (19). A rigorous convergence analysis
of stochastic gradients on compact manifolds to first-order critical points is presented in
(Bonnabel 2013, Theorem 1). 	


5.1 Computational complexity

For an update of Ui with the formulas shown in Table 1, the computational complexity
depends on the computation of partial derivatives of the cost functions in (9) and (13), e.g.,
the gradient GradUi fi computation of agent i . The three main sources of computations are
shown below.

1. Task-related computations

– Matrix completion problem (9): the computational cost of the partial derivatives for
agent i is O(|Ωi |r2 + nir3 + mr2).

– Multitask feature learning problem (13): the computational cost of the partial deriva-
tives is O(m|Ti |r2 + |Ti |r3 + mr2 + (

∑
t=Ti

dt )m), where Ti is the group of tasks
assigned to agent i .

2. Consensus-related computations Communication between agents i and i + 1 involves
computing di (Ui ,Ui+1) which costs O(mr2 + r3).
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3. Manifold-related computations Computing the exponential and logarithmmappings cost
O(mr2 + r3). Computation of the Riemannian gradient costs O(mr2).

As discussed above, the computational cost in the matrix completion problem scales
linearlywith the number of known entries. In themultitask feature learning problem, the com-
putational cost scales linearly with the number of training examples. In both the problems,
the task-related computations dominate over the manifold and consensus related computa-
tions, which make the proposed algorithm scalable to large-scale problem instances (shown
in Sect. 6).

5.2 Preconditioned variant

The performance of first order algorithms (including stochastic gradients) often depends on
the condition number of the Hessian of the cost function (at the minimum). For the matrix
completion problem (9), the issue of ill-conditioning arises when data Y� have power law
distributed singular values. Additionally, a large value of ρ in (17) leads to convergence
issues for numerical algorithms. The recent works (Ngo and Saad 2012; Mishra and Sepul-
chre 2014; Boumal and Absil 2015) exploit the concept of manifold preconditioning for
the matrix completion problem (9). In particular, the Riemannian gradients are scaled by
computationally cheap matrix terms that arise from the second order curvature information
of the cost function. This operation on a manifold requires special attention. In particular,
the matrix scaling must be a positive definite operator on the tangent space of the manifold
(Mishra and Sepulchre 2014; Boumal and Absil 2015).

Given the Riemannian gradient, e.g, gradUi
gi for agent i , the proposed preconditioner for

(17) is

gradUi
gi �→ (gradUi

gi )

⎛

⎜⎝ W�
iUi

WiUi︸ ︷︷ ︸
from the task term

+ ρI︸︷︷︸
from the consensus term

⎞

⎟⎠

−1

, (21)

where I is the r × r identity matrix. The use of preconditioning (21) costs O(nir2 + r3),
which is computationally cheap to implement. The termW�

iUi
WiUi captures a block diagonal

approximation of the Hessian of the simplified (but related) cost function ‖UiW�
iUi

− Y�
i ‖2F ,

i.e., an approximation for (9) and (13) (Ngo and Saad 2012; Mishra and Sepulchre 2014;
Boumal and Absil 2015). The term ρI is an approximation of the second order derivative of
the square of the Riemannian distance. Finally, it should be noted that W�

iUi
WiUi + ρI � 0.

5.3 Parallel variant

The particular structure (also known as the red–black ordering structure in domain decompo-
sition methods) of the cost terms in (19), allows for a straightforward parallel update strategy
for solving (19). We look at the following separation of the costs, i.e., the problem is

min
U1,...,UN∈Gr(r ,m)

g1 + g3 + · · ·︸ ︷︷ ︸
godd

+ g2 + g4 + · · ·︸ ︷︷ ︸
geven

,
(22)

where the subspace updates corresponding to godd (and similarly geven) are parallelizable.
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We apply Algorithm 1, where we pick the sub cost function godd (or geven) with uniform
probability. The key idea is that sampling is on godd and geven and not on the sub cost functions
gi directly. This strategy allows to perform �(N − 1)/2
 updates in parallel.

6 Numerical comparisons

Our proposed algorithm (Stochastic Gossip) presented as Algorithm 1 and its preconditioned
(Precon Stochastic Gossip) and parallel (Parallel Gossip and Precon Parallel Gossip) variants
are compared on various different benchmarks onmatrix completion andmultitask problems.
In many cases, our decentralized gossip algorithms match the generalization performance of
competing (tuned) batch algorithms.

Stochastic algorithms with N agents are run for a maximum of 200(N −1) iterations. The
parallel variants are run for 400N iterations. Overall, because of the agent–agent network
structure, agents 1 and N end up performing a maximum of 200 updates and rest all other
agents perform 400 updates. The stepsize sequence is defined as γk = a/(1 + bk), where k
is the time slot. The constants a and b are set using fivefold cross validation on the training
data.

Our implementations are based on the Manopt toolbox (Boumal et al. 2014). All simula-
tions are performed in Matlab on a 2.7GHz Intel Core i5 machine with 8GB of RAM. The
comparisons on the Netflix and MovieLens-10M datasets are performed on a cluster with
larger memory.

6.1 Benefit of the Grassmann geometry against the Euclidean geometry

In contrast to the proposed formulation (17), an alternative is to consider the formulation

min
U1,...,UN∈Rm×r

∑

i

fi (Ui ) + ρ

2
(‖U1 − U2‖2F + . . . + ‖UN−1 − UN‖2F ), (23)

where the problem is in the Euclidean space and the consensus among the agents is with
respect to the Euclidean distance. Although this alternative choice is appealing for its numer-
ical simplicity, the benefit of exploiting the geometry of the problem is shown in Fig. 1. We
consider a matrix completion problem instance in Fig. 1, where we apply Stochastic Gossip
algorithms with N = 6 agents. Figure 1 shows the performance of only two agents for clarity,
where agent 1 performs 200 updates and agent 2 performs 400 updates. This because of the
agent-agent network structure as discussed in Sect. 5. As shown in Fig. 1, the algorithm with
the Euclidean formulation (23) performs poorly due to a very slow rate of convergence. Our
approach, on the other hand, exploits the geometry of the problem and obtains a lower mean
squared error (MSE).

6.2 Matrix completion comparisons

For each synthetic example considered here, two matrices A ∈ R
m×r and B ∈ R

n×r are
generated according to a Gaussian distribution with zero mean and unit standard deviation.
The matrix product AB� gives a random matrix of rank r (Cai et al. 2010). A fraction of the
entries are randomly removed with uniform probability. Noise (sampled from the Gaussian
distribution with mean zero and standard deviation 10−6) is added to each entry to construct
the training set Ω and Y�. The over-sampling ratio (OS) is the ratio of the number of known
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(b) The Grassmann geometry allows to
agents to achieve consensus.

Fig. 1 Exploiting the Grassmann geometry leads to better optimization. The weight factor ρ is best tuned for
both the algorithms. This experiment is on a matrix completion problem instance. Figures best viewed in color

entries to the matrix dimension, i.e, OS = |Ω|/(mr + nr − r2). We also create a test set by
randomly picking a small set of entries fromAB�. ThematricesY�

i are created by distributing
the number of n columns of Y� equally among the agents. The train and test sets are also
partitioned similarly among N agents. All the algorithms are initialized randomly and the
regularization parameter λ in (11) is set to λ = 0 for all the below considered cases (except
in Case 5 below, where λ = 0.01). For cases 1 to 4 below, we fix the number of agents N to
6. In Figs. 2 and 3, however, we show the plots for agents 1 and 2 to make the performance
distinctions clearer.

Case 1: effect of ρ. Here, we consider a problem instance of size 10,000 × 100,000 of
rank 5 and OS 6. Two scenarios with ρ = 103 and ρ = 1010 are considered. Figure 2a, b
show the performance of Stochastic Gossip. Not surprisingly, for ρ = 1010, we only see
consensus (the distance between agents 1 and 2 tends to zero). For ρ = 103, we observe both
a low MSE on the matrix completion problem as well as consensus among the agents.

Case 2: performance of Stochastic Gossip versus Parallel Gossip. We consider Case 1
with ρ = 103. Figure 2c, d show the performance of Stochastic Gossip and Parallel Gossip,
both of which show a similar behavior on the training set (as well as on the test set, which is
not shown here for brevity).

Case 3: ill-conditioned instances. We consider a problem instance of size 5000×50,000
of rank 5 and impose an exponential decay of singular values with condition number 500 and
OS 6. Figure 2e, f show the performance of Stochastic Gossip and its preconditioned variant
for ρ = 103. During the initial updates, the preconditioned variant aggressively minimizes
the completion term of (17), which shows the effect of the preconditioner (21). Eventually,
consensus among the agents is achieved.

Case 4: Comparisons with state-of-the-art.We show comparisonswithD-LMaFit (Ling
et al. 2012; Lin and Ling 2015), the only publicly available decentralized algorithm to the
best of our knowledge. It builds upon the batch matrix completion algorithm in (Wen et al.
2012) and is adapted to decentralized updates of the low-rank factors. It requires an inexact
dynamic consensus step at every iteration by performing an Euclidean average of low-rank
factors (of all the agents). In contrast, our algorithms enforce soft averaging of only two
agents at every iteration with the consensus term in (17). We employ a smaller problem
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(c) Stochastic and parallel variants perform
similarly on local subspace learning tasks
(Case 2).
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(d) Both stochastic and parallel variants
achieve consensus between the agents (Case
2).
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(e) Precon Gossip performs better than
Stochastic Gossip on ill-conditioned data
(Case 3).
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(f) Both Precon Gossip and Stochastic Gos-
sip allow agents to reach consensus (Case 3).

Fig. 2 Performance of the proposed algorithms on low-rank matrix completion problems. a, b correspond to
the experimental setup described in Case 1, c, d correspond to Case 2, and e, f correspond to Case 3. Figures
best viewed in color

instance in this experiment since the D-LMaFit code (supplied by its authors) does not scale
to large-scale instances. D-LMaFit is run for 400 iterations, i.e., each agent performs 400
updates. We consider a problem instance of size 500× 12,000, rank 5, and OS 6. D-LMaFit
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Fig. 3 Comparisons with D-LMaFit (Case 4). Figures best viewed in color

Table 2 Mean test RMSE on the
Netflix dataset with different
number of agents (N ) and rank
10 (Case 5)

Stochastic Gossip Batch method

N=2 N=5 N=10 N=15 N=20 RTRMC

0.877 0.885 0.891 0.894 0.900 0.873

Our decentralized approach, Stochastic Gossip, is comparable to the
state-of-the-art batch algorithm, RTRMC

is run with the default parameters. For Stochastic Gossip, we set ρ = 103. As shown in
Fig. 3, Stochastic Gossip quickly outperforms D-LMaFit. Overall, Stochastic Gossip takes
fewer number of updates of the agents to reach a high accuracy.

Case 5: comparisons on the Netflix and the MovieLens-10M data-sets. The Netflix
dataset (obtained from the code of Recht and Ré (2013)) consists of 100,480,507 ratings by
480,189 users for 17,770 movies. We perform 10 random 80/20-train/test partitions. The
training ratings are centered around 0, i.e., the mean rating is subtracted. We split both the
train and test data among the agents along the number of users.We run Stochastic Gossip with
ρ = 107 (set with cross validation) and for 400(N − 1) iterations and N = {2, 5, 10, 15, 20}
agents. We show the results for rank 10 (the choice is motivated in (Boumal and Absil
2015)). Additionally for Stochastic Gossip, we set the regularization parameter to λ = 0.01.
For comparisons, we show the best test root mean square error (RMSE) score obtained by
RTRMC (Boumal and Absil 2011, 2015), which is a fine tuned batch method for solving the
matrix completion problem on the Grassmann manifold. RTRMC employs a second-order
preconditioned trust-region algorithm. In order to compute the test RMSE for Stochastic
Gossip on the full test set (not on the agent-partitioned test sets), we use the (Fréchet) mean
subspace of the subspaces obtained by the agents as the final subspace obtained by our
algorithm. Table 2 shows the RMSE scores for Stochastic Gossip and RTRMC averaged
over ten runs. Table 2 shows that the proposed gossip approach allows to reach a reasonably
good solution on the Netflix data with different number of agents (which interact minimally
among themselves). It should be noted that as the number of agents increases, the consensus
problem (17) becomes challenging. Similarly, consensus of agents at higher ranks is more
challenging as we need to learn a larger common subspace. Figure 4 shows the consensus of
agents for the case N = 10 (shown only three plots for clarity).
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Fig. 4 Matrix completion
experiment on the Netflix dataset
(Case 5). Our decentralized
approach, Stochastic Gossip,
achieves consensus between the
agents. Figure best viewed in
color
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Table 3 Mean test RMSE on
MovieLens 10M dataset with
different number of agents (N )
and across ranks (Case 5)

Rank 3 Rank 5 Rank 7 Rank 9

N = 10 0.844 0.836 0.845 0.860

N = 5 0.834 0.821 0.829 0.841

RTRMC (batch) 0.829 0.814 0.812 0.814

Our decentralized approach, Stochastic Gossip, is comparable to the
state-of-the-art batch algorithm, RTRMC

We also show the results on the MovieLens-10M dataset of 10,000,054 ratings by 71,567
users for 10,677 movies (MovieLens 1997). The setup is similar to the earlier Netflix case.
We run Stochastic gossip with N = {5, 10} and ρ = 105. We show the RMSE scores for
different ranks in Table 3.

6.3 Multitask comparisons

In this section, we discuss the numerical results on the low-dimensional multitask feature
learning problem (16) on different benchmarks. The regularization parameter λ that is used
to solve for wt in (16) is set to λ = 0 for Case 6 and is set to λ = 0.1 for Case 7.

Case 6: synthetic datasets.We consider a toy problem instancewith T = 1000 tasks. The
number of training instance in each task t is between 10 and 50 (dt chosen randomly). The
input space dimension is m = 100. The training instances Xt are generated according to the
Gaussian distribution with zero mean and unit standard deviation. A 5-dimensional feature
subspace U∗ for the problem instance is generated as a random point on U∗ ∈ St(5, 100).
The weight vector wt for the task t is generated from the Gaussian distribution with zero
mean and unit standard deviation. The labels for training instances for task t are computed
as yt = XtU∗U∗�wt . The labels yt are subsequently perturbed with a random mean zero
Gaussian noise with 10−6 standard deviation. The tasks are uniformly divided among N = 6
agents and Stochastic Gossip is initialized with r = 5 and ρ = 103.

Figure 5a shows that all the agents are able to converge to the optimal subspace U∗.

Case 7: comparisons on multitask benchmarks. We compare the generalization perfor-
mance with formulation (16) solved by the proposed gossip algorithm against state-of-the-art
multitask feature learning algorithms Alt-Min (proposed by Argyriou et al. (2008) for for-
mulation (13)). Alt-Min solves an equivalent convex problem of (13). Conceptually, Alt-Min
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Fig. 5 Comparisons on multitask learning benchmarks. Figures best viewed in color

alternates between the subspace learning step and task weight vector learning step. Alt-Min
does optimization over anm×m-dimensional space. In contrast, we learn a low-dimensional
m × r subspace in (16), where r ≤ m. As discussed below, the experiments show that our
algorithms obtain a competitive performance even for values of r where r < m, thereby
making the formulation (16) suitable for low-rank multitask feature learning. As a baseline,
we also compare against a batch variant for (16) on the Grassmann manifold. In particular,
we implement a trust-region algorithm for (16). Similar to Stochastic Gossip, the trust-region
method learns a low-dimensional m × r subspace.

We compare Stochastic Gossip, Alt-Min, and Trust-region on two real-world multitask
benchmark datasets: Parkinsons and School. In the Parkinsons dataset, the goal is to predict
the Parkinson’s disease symptom score at different times of 42 patients with m = 19 bio-
medical features (Frank and Asuncion; Jawanpuria and Nath 2012; Muandet et al. 2013). A
total of 5,875 observations are available. The symptom score prediction problem for each
patient is considered as a task (T = 42). The School dataset consists of 15,362 students
from 139 schools (Goldstein 1991; Evgeniou et al. 2005; Argyriou et al. 2008). The aim
is to predict the performance (examination score) of the students from the schools, given
the description of the schools and past record of the students. A total of m = 28 features
are given. The examination score prediction problem for each school is considered as a task
(T = 139).

We perform 10 random 80/20-train/test partitions. We run Stochastic Gossip with ρ =
106, N = 6, and for 200(N − 1) iterations. Alt-Min and Trust-region are run till the relative
change in the objective function (across consecutive iterations) is below the value 10−8.
Following (Argyriou et al. 2008; Jawanpuria and Nath 2011; Chen et al. 2011), we report the
performance of multitask algorithms in terms of normalized mean squared error (NMSE). It
is defined as the ratio of the mean squared error (MSE) and the variance of the label vector.

Table 4 shows the NMSE scores (averaged over all T tasks and ten runs) for all the
algorithms. The comparisons on benchmark multitask learning datasets show that we are
able to obtain smaller NMSE: 0.339 (Parkinsons, r = 5) and 0.761 (School, r = 3). We
also obtain these NMSE at a much smaller rank compared to Alt-Min algorithm. The table
also shows that Stochastic Gossip obtains NMSE scores close to the trust-region algorithm
across different ranks.
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Table 4 Mean test NMSE scores obtained on multitask datasets across different ranks r (Case 7)

Datasets Stochastic Gossip with N=6 Alt-Min (batch) Trust-region (batch)

r = 3 r = 5 r = 7 r = 9 r = 3 r = 5 r = 7 r = 9

Parkinsons 0.345 0.339 0.342 0.341 0.340 0.344 0.344 0.331 0.323

School 0.761 0.786 0.782 0.786 0.781 0.754 0.757 0.767 0.773

The search space of our decentralized approach (Stochastic Gossip) and batch Trust-region ism×r while that
of the batch algorithm Alt-Min is m ×m. The generalization performance of Stochastic Gossip is comparable
to Alt-Min

Figure 5b shows the NMSE scores obtained by different agents, where certain agents
outperform Alt-Min. Overall, the average performance across the agents matches that of the
batch Alt-Min algorithm.

7 Conclusion

We have proposed a decentralized Riemannian gossip approach to subspace learning prob-
lems. The sub-problems are distributed among a number of agents, which are then required to
achieve consensus on the global subspace. Building upon the non-linear gossip framework,
we modeled this as minimizing a weighted sum of task solving and consensus terms on
the Grassmann manifold. The consensus term exploits the rich geometry of the Grassmann
manifold, which allows to propose a novel stochastic gradient algorithm for the problem
with simple updates. Experiments on two interesting applications—low-rank matrix com-
pletion andmultitask feature learning—show the efficacy of the proposed Riemannian gossip
approach. Our experiments demonstrate the benefit of exploiting the geometry of the search
space that arise in subspace learning problems.

Currently in our gossip framework setup, the agents are tied with a single learning stepsize
sequence, which is akin toworkingwith a single universal clock. As future research direction,
we intend towork on decoupling the learning rates used by different agents (Colin et al. 2016).
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