
Machine Learning (2019) 108:945–970
https://doi.org/10.1007/s10994-018-5768-3

Constructing effective personalized policies using
counterfactual inference from biased data sets with many
features

Onur Atan1 ·William R. Zame1,2 ·Qiaojun Feng3 ·Mihaela van der Schaar1,4

Received: 15 December 2016 / Accepted: 3 October 2018 / Published online: 5 December 2018
© The Author(s) 2018

Abstract
This paper proposes a novel approach for constructing effective personalized policies when
the observed data lacks counter-factual information, is biased and possesses many features.
The approach is applicable in a wide variety of settings from healthcare to advertising to
education to finance. These settings have in common that the decision maker can observe,
for each previous instance, an array of features of the instance, the action taken in that
instance, and the reward realized—but not the rewards of actions that were not taken: the
counterfactual information. Learning in such settings is made even more difficult because
the observed data is typically biased by the existing policy (that generated the data) and
because the array of features that might affect the reward in a particular instance—and hence
should be taken into account in deciding on an action in each particular instance—is often
vast. The approach presented here estimates propensity scores for the observed data, infers
counterfactuals, identifies a (relatively small) number of features that are (most) relevant for
each possible action and instance, and prescribes a policy to be followed. Comparison of the
proposed algorithm against state-of-art algorithms on actual datasets demonstrates that the
proposed algorithm achieves a significant improvement in performance.

Editor: Csaba Szepesvari.

B Onur Atan
oatan@ucla.edu

William R. Zame
zame@econ.ucla.edu

Qiaojun Feng
fqj13@mails.tsinghua.edu.cn

Mihaela van der Schaar
mihaela.vanderschaar@eng.ox.ac.uk

1 University of California, Los Angeles, Los Angeles, USA

2 Nuffield College, Oxford University, Oxford, UK

3 Tsinghua University, Beijing, China

4 Oxford-Man Institute, Oxford University, Oxford, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-018-5768-3&domain=pdf

946 Machine Learning (2019) 108:945–970

Keywords Inferring counterfactuals · Identifying relevant features · Constructing
personalized policies

1 Introduction

The “best” treatment for the current patient must be learned from the treatment(s) of previ-
ous patients. However, no two patients are ever exactly alike, so the learning process must
involve learning the ways in which the current patient is alike to previous patients—i.e.,
has the same or similar features—and which of those features are relevant to the treat-
ment(s) under consideration.This already complicated learningprocess is further complicated
because the history of previous patients records only outcomes actually experienced from
treatments actually received—not the outcomes that would have been experienced from alter-
native treatments—the counterfactuals. And this learning process is complicated still further
because the treatments received by previous patients were (typically) chosen according to
some protocol that might or might not be known but was almost surely not random—so the
observed data is biased.

The same complications arise in many other settings. Which mode of advertisement
would be most effective for a given product? Which materials would best promote learn-
ing/performance for a given student? Which investment strategy would yield higher returns
or lower risk in a particular macroeconomic environment? As in themedical setting, choosing
the ”best” policy in these settings (and in others too numerous to mention) requires learning
which features of each context are relevant for the decision/action at hand and learning about
the consequences of decisions/actions not taken in previous contexts—the counterfactuals;
such learning is especially complicated because the observed data may be biased (because
it was created by an existing—perhaps less effective—policy) and because each observed
instance and action may be informed by a vast array of features. (Counterfactuals are seldom
seen in observed data. One possible way to obtain counterfactual information would be to
conduct controlled experiments—but in many contexts, experimentation will be impractical
or even impossible. Absent controlled experiments, counterfactuals must be inferred.)

This paper proposes a novel approach to addressing such problems. We construct an
algorithm that learns a nonlinear policy to recommend an action for each (new) instance.
During the training phase, our algorithm learns the action-dependent relevant features and
then uses a feedforward neural network to optimize a nonlinear stochastic policy the output
of which is a probability distribution over the actions given the relevant features. When we
apply the trained algorithm to a new instance, we choose the action which has the highest
probability. In the settings mentioned above our algorithm constructs: (in the medical con-
text) a personalized plan of patient treatment; (in the advertising context) a product-specific
plan of advertisement; (in the educational context) a student-specific plan of instruction;
(in the financial context) a situationally-specific investment strategy. We use actual data to
demonstrate that our algorithm is significantly superior to existing state-of-the-art algorithms.
We emphasize that our methods and the algorithms we develop are widely applicable to an
enormous range of settings, from healthcare to advertisement to education to finance to rec-
ommender systems to smart cities. (See Athey and Imbens (2015), Hoiles and van der Schaar
(2016) and Bottou et al. (2013), for just a few examples.)
Aswehavenoted, ourmethods and algorithms apply inmany settings, eachofwhich comes

with specific features, actions and rewards. In the medical context, typical features are items
available in the electronic health record (laboratory tests, previous diagnoses, demographic

123

Machine Learning (2019) 108:945–970 947

Table 1 Success rates of two treatments for kidney stones (Bottou et al. 2013)

Overall Small stones Large stones

Open surgery 78%(273/350) 93%(81/87) 73%(192/263)

Percutaneous nephrolithotomy 83%(289/350) 87%(234/270) 69%(55/80)

Bold values indicate “better” performance

information, etc.), typical actions are choices of treatments (perhaps including no treatment at
all), and typical rewards are recovery rates or 5-year survival rates. In the advertising context,
typical features are the characteristics of a particular website and user, typical actions are
the placements of an advertisement on a webpage, and typical rewards are click-rates. In
the educational context, typical features are previous coursework and grades, typical actions
are materials presented or subsequent courses taken, and typical rewards are final grades or
graduation rates. In the financial context, typical features are aspects of the macroeconomic
environment (interest rates, stock market information, etc.), typical actions are the timing of
particular investment choices, and typical rewards are returns on investment.

For a simple but striking example from the medical context, consider the problem of
choosing the best treatment for a patient with kidney stones. Such patients are usually classi-
fied by the size of the stones: small or large; the most common treatments are Open Surgery
and Percutaneous Nephrolithotomy. Table 1 summarizes the results. Note that Open Surgery
performs better than Percutaneous Nephrolithotomy for patients with small stones and for
patients with large stones but Percutaneous Nephrolithotomy performs better overall.1 Of
course this would be impossible if the subpopulations that received the two treatments were
identical—but they were not. And in fact we do not know the policy that created these sub-
populations by assigning patients to treatments. We do know that patients are distinguished
by a vast array of features in addition to the size of stones—age, gender, weight, kidney
function tests, etc.—but we do not know which of these features is relevant. And of course
we know the result of the treatment actually received by each patient—but we do not know
what the result of the alternative treatment would have been (the counterfactual).

Three more points should be emphasized. Although Table 1 shows only two actions, in
fact there are a number of other possible actions for kidney stones: they could be treated
using any of a number of different medications, they could be treated by ultrasound, or they
could not be treated at all. This is important for several reasons. The first is that a number of
existing methods assume that there are only two actions (corresponding to treat or not-treat);
but as this example illustrates, in many contexts (and in the medical context in particular), it
is typically the case that there are many actions, not just two—and, as the papers themselves
note, these methods simply do not work when there are more than two actions; see Johansson
et al. (2016). The second is that the features that are relevant for predicting the success
of a particular action typically depend on the action: different features will be found to be
relevant for different actions. (The treatment of breast cancer, as discussed in Yoon et al.
(2017), illustrates this point well. The issue is not simply whether or not to apply a regime
of chemotherapy, but which regime of chemotherapy to apply. Indeed, there are at least six
widely used regimes of chemotherapy to treat breast cancer, and the features that are relevant
for predicting success of a given regime are different for different regimes.) The third is that
we go much further than the existing literature by allowing for nonlinear policies. To do
this, we use a feedforward neural network, rather than relying on familiar algorithms such

1 This is a particular instance of Simpson’s Paradox.

123

948 Machine Learning (2019) 108:945–970

as POEM (Swaminathan and Joachims 2015a). To determine the best treatment, the bias in
creating the populations, the features that are relevant for each action and the policy must all
be learned. Our methods are adequate to this task.

The remainder of the paper is organized as follows. In Sect. 2, we describe some related
work and highlight the differences with respect to our work. In Sect. 3, we describe the
observational data on which our algorithm operates. In Sect. 4, we begin with an informal
overview, then give the formal description of our algorithm (including substantial discussion).
Section 5 gives the pseudo-code for the algorithm. Some extensions are discussed in Sect. 6.
In Sect. 7, we demonstrate the performance of our algorithm on a variety of real datasets.
Section 8 concludes. Proofs are in the Appendix.

2 Related work

From a conceptual point of view, the paper most closely related to ours—at least among
recent papers—is perhaps Johansson et al. (2016) which treats a similar problem: learning
relevance in an environment in which the counterfactuals are missing, data is biased and
each instance may have many features. The approach taken there is somewhat different
from ours in that, rather than identifying the relevant features, they transfer the features to a
new representation space. [This process is referred as domain adaptation (Johansson et al.
2016).] A more important difference from our work is that it assumes that there are only two
actions: treat and don’t treat. As we have discussed in the Introduction, the assumption of
two actions is unrealistic; in most situations there will be many (possible) actions. It states
explicitly that the approach taken there does not work when there are more than two actions
and offers the multi-action setting as an obvious but difficult challenge. One might think of
our work as “solving” this challenge—but we stress that the “solution” is not at all a routine
extension.Moreover, in addition to this obvious challenge, there is amore subtle—but equally
difficult—challenge: when there are more than two actions, it will typically be the case that
some features will be relevant for some actions and not for others, and—as discussed in the
Introduction—it will be crucial to learn which features are relevant for which actions.

From a technical point of view, our work is perhaps most closely related to Swaminathan
and Joachims (2015a) in that we use similar methods (IPS-estimates and empirical Bernstein
inequalities) to learn counterfactuals. However, it does not treat observational data in which
the bias is unknown and does not learn/identify relevant features. Another similar work on
policy optimization from observational data is Strehl et al. (2010).

The work in Wager and Athey (2015) treats the related (but somewhat different) problem
of estimating individual treatment effects. The approach there is through causal forests as
developed by Athey and Imbens (2015), which are variations on the more familiar random
forests. However, the emphasis in this work is on asymptotic estimates, and in the many
situations for which the number of (possibly) relevant features is large the datasets will
typically not be large enough that asymptotic estimates will be of more than limited interest.
There are many other works focusing on estimating treatment effects; some include Tian
et al. (2012), Alaa and van der Schaar (2017), Shalit et al. (2016).

More broadly, our work is related to methods for feature selection and counterfactual
inference. The literature on feature selection can be roughly divided into categories according
to the extent of supervision: supervised feature selection (Song et al. 2012; Weston et al.
2003), unsupervised feature selection (Dy and Brodley 2004; He et al. 2005) and semi-
supervised feature selection (Xu et al. 2010). However, our work does not fall into any of

123

Machine Learning (2019) 108:945–970 949

these categories; instead we need to select features that are informative in determining the
rewards of each action. This problemwas addressed in Tekin and van der Schaar (2014) but in
an online Contextual Multi-Armed Bandit (CMAB) setting in which experimentation is used
to learn relevant features. In the present paper, we treat the logged CMAB setting in which
experimentation is impossible and relevant features must be learned from the existing logged
data. As we have already noted, there are many circumstances in which experimentation is
impossible. The difference between the settings is important—and the logged setting is much
more difficult—because in the online setting it is typically possible toobserve counterfactuals,
while in the current logged setting it is typically not possible to observe counterfactuals, and
because in the online setting the decision-maker controls the observations so whatever bias
there is in the data is known.

With respect to learning, feature selection methods can be divided into three categories—
filter models, wrapper models, and embedded models (Tang et al. 2014). Our method is
most similar to filter techniques in which features are ranked according to a selected criterion
such as a Fisher score (Duda et al. 2012), correlation based scores (Song et al. 2012),
mutual information based scores (Koller and Sahami 1996; Yu and Liu 2003; Peng et al.
2005), Hilbert–Schmidt Independence Criterion (HSIC) (Song et al. 2012) and Relief and
its variants (Kira and Rendell 1992; Robnik-Šikonja and Kononenko 2003) etc., and the
features having the highest ranks are labeled as relevant. However, these existing methods
are developed for classification problems and they cannot easily handle datasets in which the
rewards of actions not taken are missing.

The literature on counterfactual inference can be categorized into three groups: direct,
inverse propensity re-weighting and doubly robust methods. The direct methods compute
counterfactuals by learning a function mapping from feature-action pair to rewards (Pren-
tice 1976; Wager and Athey 2015). The inverse propensity re-weighting methods compute
unbiased estimates by weighting the instances by their inverse propensity scores (Swami-
nathan and Joachims 2015a; Joachims and Swaminathan 2016). The doubly robust methods
compute the counterfactuals by combining direct and inverse propensity score reweighing
methods to compute more robust estimates (Dudík et al. 2011; Jiang and Li 2016). With
respect to this categorization, our techniques might be view as falling into doubly robust
methods.

Ourwork can be seen as building on and extending thework of Swaminathan and Joachims
(2015a, b), which learn linear stochastic policies. We go much further by learning a non-
linear stochastic policy. Our work can also be seen as an off-line variant of the on-line
REINFORCE algorithm (Williams 1992).

We should also note two papers that were written after the current paper was originally
submitted. The work of Joachims et al. (2018) extends the earlier work of Swaminathan and
Joachims (2015a, b) to non-linear policies. Our own (preliminary) work (Atan et al. 2018)
propose a different approach for learning a representation function and a policy. Unlike the
present paper, our more recent work uses a loss function that embodies both a policy loss
(similar to, but slightly different than, the policy loss used in the present paper) and a domain
loss (which quantifies the divergence between the logging policy and the uniformpolicy under
the representation function). The advantage of these changes is that they make it possible to
learn the representation function and the policy in an end-to-end fashion.

123

950 Machine Learning (2019) 108:945–970

3 Data

We consider logged contextual bandit data: that is, data for which we know the features of
each instance, the action taken and the reward realized in that instance—but not the reward
that would have been realized had a different action been taken. We assume that the data has
been logged according to some policy which we may not know, but which is not necessarily
random and so the data is biased. Each data point consists of a feature, an action and a reward.
A feature is a vector (x1, . . . , xd)where each xi ∈ Xi is a feature type. The space of all feature
types is F = {1, . . . , d}, the space of all features is X = Πd

i=1Xi and the set of actions is
A. We assume that the sets of feature types and actions are finite; we write bi = |Xi | for the
cardinality of Xi and A = {1, 2, . . . , k} for the set of actions. For x ∈ X and S ⊂ F we
write xS for the restriction of x to S; i.e. for the vector of feature types whose indices lie in
S. It will be convenient to abuse notation and view xS both as a vector of length |S| or as a
vector of length d = |F | which is 0 for feature types not in S. A reward is a real number; we
normalize so that rewards lie in the interval [0, 1]. In some cases, the reward will be either 1
or 0 (success or failure; good or bad outcome); in other cases the reward may be interpreted
as the probability of a success or failure (good or bad outcome).

We are given a data set

Dn = {(X1, A1, R
obs
1), . . . , (Xn, An, R

obs
n)}

We assume that the j th instance/data point (X j , A j , Robs
j) is generated according to the

following process:

1. The instance is described by a feature vector X j that arrives according to the fixed but
unknown distribution Pr(X); X j ∼ Pr(X).

2. The action taken was determined by a policy that draws actions at random according to a
(possibly unknown) probability distribution p0(A|X j) on the action spaceA. (Note that
the distribution of actions taken depends on the vector of features).

3. Only the reward of the action actually performed is recorded into the dataset, i.e., Robs
j ≡

R j (A j).
4. For every action a, either taken or not taken, the reward R j (a) ∼ Φa(·|X j) that would

have been realized had a actually been taken is generated by a random draw from an
unknown family {Φa(·|x)}x∈X ,a∈A of reward distributions with support [0, 1].

The logging policy corresponds to the choices made by the existing decision-making proce-
dure and so will typically create a biased distribution on the space of feature-action pairs.

Wemake two natural assumptions about the rewards and the logging policy; taken together
they enable us to generate unbiased estimates of the variables of the interest. The first
assumption guarantees that there is enough information in the data-generating process so
that counterfactual information can be inferred from what is actually observed.

Assumption 1 (Common support) p0(a|x) > 0 for all action-feature pairs (a, x).

The second assumption is that the logging policy depends only on the observed features—
and not on the observed rewards.

Assumption 2 (Unconfoundness) For each feature vector X , the rewards of actions
{R(a)}a∈A are statistically independent of the action actually taken; {R(a)} ⊥⊥ A

∣
∣X .

These assumptions are universal in the counterfactual inference literature—see Johansson
et al. (2016), Athey and Imbens (2015) for instance—although they can be criticized on the
grounds that their validity cannot be determined on the basis of what is actually observed.

123

Machine Learning (2019) 108:945–970 951

4 The algorithm

It seems useful to begin with a brief overview; more details and formalities follow below.
Our algorithm consists of a training phase and an execution phase; the training phase consists
of three steps.

A. In the first step of the training phase, the algorithm either inputs the true propensity scores
(if they are known) or uses the logged data to estimate propensity scores (when the true
propensity scores are not known); this (partly) corrects the bias in the logged data.

B. In the second step of the training phase, the algorithm uses the known or estimated
propensity scores to compute, for each action and each feature, an estimate of relevance
for that feature with respect to that action. The algorithm then retains the more relevant
features—those forwhich the estimate is above a threshold—anddiscards the less relevant
features—those for which the estimate is below the threshold. (For reasons that will be
discussed below, the threshold used depends on both the action and the feature type.)

C. In the third step of the training phase, the algorithm uses the known or estimated propen-
sity scores and the features identified as relevant, and trains a feedforward neural network
model to learn a non-linear stochastic policy that minimizes the “corrected” cross entropy
loss.

In the execution phase, the algorithm is presented with a new instance and uses the policy
derived in the training phase to recommend an action for this new instance on the basis of
the relevant features of that instance.

Not surprisingly, the setting in which the propensity scores are known is simpler than the
setting in which the propensity scores must be estimated. In the latter case, in addition to the
complication of the estimation itself, we shall need to be careful about estimated propensity
scores that are “too small”—thiswill require a correction—and our error estimateswill be less
good. Because clarity of exposition seems more importance than compactness, we therefore
present first the algorithm for the case in which true propensity scores are known and then
circle back to present the necessary modifications for the case in which true propensity scores
are not known but must be estimated.

4.1 True propensities

We begin with the setting in which propensities of the randomized algorithm are actually
tracked and available in the dataset. This is often the case in the advertising context, for
example. In this case, for each j , set p0, j = p0(A j |X j), and write P0 = [p0, j]nj=1; this is
the vector of true propensities.

4.2 Relevance

It might seem natural to define the set S of feature types to be irrelevant (for a particular
action) if the distribution of rewards (for that action) is independent of the features in S, and
to define the set S to be relevant otherwise. In theoretical terms, this definition has much
to recommend it. In operational terms, however, this definition is not of much use. That is
because finding irrelevant sets of feature typeswould requiremany observations (to determine
the entire distribution of rewards) and intractable calculations (to examine all sets of feature
types). Moreover, this notion of irrelevance will often be too strong because our interest will
often be only in maximizing expected rewards (or more generally some statistical function

123

952 Machine Learning (2019) 108:945–970

of rewards), as it would be in the medical context if the reward is five-year survival rate, or
in the advertising or financial settings, if the reward is expected revenue or profit and the
advertiser or firm is risk-neutral.

Given these objections, we take an alternative approach. We define a measure of how rel-
evant a particular feature type is for the expected reward of a particular action, learn/estimate
thismeasure fromobserved data, retain features forwhich thismeasure is above some endoge-
nously derived threshold (the most relevant features) and discard other features (the least
relevant features). Of course, this approach has drawbacks. Most obviously, it might happen
that two feature types are individually not very relevant but are jointly quite relevant. (We
leave this issue for future work.) However, as we show empirically, this approach has the
virtue that it works: the algorithm we develop on the basis of this approach is demonstrably
superior to existing algorithms.

4.2.1 True relevance

To begin formalizing our measure of relevance, fix an action a, a feature vector x and a
feature type i . Define expected rewards and marginal expected rewards as follows:

r̄(a, x) = E [R(a)|X = x]

r̄(a, xi) = EX−i [r̄(a, X)

∣
∣
∣
∣
X i = xi]

r̄(a) = EX [r̄(a, X)] (1)

We define the true relevance of feature type i for action a by

g(a, i) = E [� (r̄(a, Xi) − r̄(a))] , (2)

where the expectation is taken with respect to the arrival probability distribution of Xi and
�(·) denotes the loss metric. (Keep in mind that the true arrival probability distribution of
X j is unknown and must be estimated from the data.) Our results hold for an arbitrary loss
function, assuming only that it is strictly monotonic and Lipschitz; i.e. there is a constant
B such that

∣
∣�(r) − �(r ′)

∣
∣ ≤ B|r − r ′|. These conditions are satisfied by a large class of

loss functions including l1 and l2 losses. The relevance measure g expresses the weighted
difference between the expected reward of a given action conditioned on the feature type i
and the unconditioned expected reward; g(a, i) = 0 exactly when feature type i does not
affect the expected reward of action a.2

We refer to g as true relevance because it is computed using the true arrival distribution—
but the true arrival distribution is unknown.Hence, evenwhen the true propensities are known,
relevance must be estimated from observed data. This is the next task.

4.2.2 Estimated relevance

We now derive estimates of relevance based on observed data (continuing to assume that true
propensities are known). To do so, we first need to estimate r̄(a) and r̄(a, xi) for xi ∈ Xi ,
i ∈ F and a ∈ A from available observational data. An obvious way to do this is through
classical supervised learning based estimators; most obviously, the sample mean estimators
for r̄(a) and r̄(a, xi). However using straightforward sample mean estimation would be

2 Other measures of relevance have been used in the feature selection literature [e.g., especially Pearson
correlation (Hall 1999) and mutual information (Yu and Liu 2003)]—but not for relevance of actions.

123

Machine Learning (2019) 108:945–970 953

wrong because the logging policy introduces a bias into observations. Following the idea
of Inverse Propensity Scores (Rosenbaum and Rubin 1983), we correct this bias by using
Importance Sampling.

Write N (a), N (xi), N (a, xi) for the number of observations (in the given data set) with
action a, with feature xi , and with the pair consisting of action a and feature xi , respectively.
We can rewrite our previous definitions as:

r̄(a, xi) = E(X,A,Robs)∼p0

[
I(A = a)Robs

p0(A|X)

∣
∣
∣
∣
Xi = xi

]

r̄(a) = E(X,A,Robs)∼p0

[
I(A = a)Robs

p0(A|X)

]

(3)

where I(·) is the indicator function. (Note that we are taking expectations with respect to the
true propensities.)

Let J (xi) denote the time indices in which feature type-i is xi , i.e., J (xi) = { j ⊆
{1, 2, . . . , n} : Xi, j = xi }. The Importance Sampling approach provides unbiased estimates
of r̄(a) and r̄(a, xi) as

R̂(a, xi ; P0) = 1

N (xi)

∑

j∈J (xi)

I(A j = a)Robs
j

p0, j
,

R̂(a; P0) = 1

n

n
∑

j=1

I(A j = a)Robs
j

p0, j
, (4)

(We include the propensities P0 in the notation as a reminder that these estimators are using
the true propensity scores.)

We now define the estimated relevance of feature type i for action a as

Ĝ(a, i; P0) = 1

n

∑

xi∈Xi

N (xi)�
(

R̂(a, xi ; P0) − R̂(a; P0)
)

. (5)

(Note that we have abused terminology/notation by suppressing reference to the particular
sample that was observed.)

4.2.3 Thresholds

By definition, Ĝ is an estimate of relevance so the obvious way to select relevant features is to
set a threshold τ , identify a feature i as relevant for action a exactly when Ĝ(a, i; P0) > τ ,
retain the features that are relevant according to this criterion and discard other features.

However, this approach is a bit too naive for (at least) two reasons. The first is that our
empirical estimate of relevance Ĝ may in fact be far from the true relevance g. The second
is that some features may be highly (positively or negatively) correlated with the remaining
features, and hence convey less information. To deal with these objections, we construct
thresholds τ(a, i) as a weighted sum of an empirical estimate of the error in using Ĝ instead
of g and the (average absolute) correlation of feature type i with other feature types.

To define the first term we need an empirical (data-dependent bound) on |Ĝ − g|. To
derive such a bound we use the empirical Bernstein inequality (Maurer and Pontil 2009;
Audibert et al. 2009). (We emphasize that our bound depends on the empirical variance of

the estimates.) To simplify notation, define random variables U (a; P0) ≡ I(A=a)Robs

p0(A|X)
and

123

954 Machine Learning (2019) 108:945–970

Uj (a; P0) ≡ I(A j=a)R j
p0, j

. The sample means and variances are:

E(X,A,Robs)∼p0 [U (a; P0)] = r̄(a),

E(X,A,Robs)∼p0 [U (a; P0)
∣
∣Xi = xi] = r̄(a, xi)

Û (a; P0) = R̂(a; P0)

= 1

n

n
∑

j=1

Uj (a; P0),

Û (a, xi ; P0) = R̂(a, xi ; P0)

= 1

N (xi)

∑

j∈J (xi)

Uj (a; P0),

Vn(a; P0) = 1

n − 1

n
∑

j=1

(

Uj (a; P0) − Û (a; P0)
)2

,

Vn(a, xi ; P0) = 1

N (xi) − 1

∑

j∈J (xi)

(

Uj (a; P0) − Û (a, xi ; P0)
)2

.

The weighted average sample variance is:

V̄n(a, i; P0) =
∑

xi∈Xi

N (xi)Vn(a, xi ; P0)

n
(6)

Our empirical (data-dependent) bound is given in Theorem 1.

Theorem 1 For every n > 0, every δ ∈ [

0, 1
3

]

, and every pair, (a, i) ∈ (A,D), with proba-
bility at least 1 − 3δ we have:

|Ĝ(a, i; P0) − g(a, i)| ≤ B

(
√

2bi ln(3/δ)V̄n(a, i; P0)

n

+
√

2 ln(3/δ)Vn(a; P0)

n

+M (bi + 1) ln 3/δ

n

)

+
√

2 (ln 1/δ + bi ln 2)

n
,

where M = maxa∈A maxx∈X 1/p0(a|x).

The error bound given by Theorem 1 consists of four terms: The first term arises from
estimation error of R̂(a, xi). The second term arises from estimation error of R̂(a). The third
term arises from estimation error of feature arrival probabilities. The fourth term arises from
randomness of the logging policy.

Now write ρi, j for the Pearson correlation coefficient between two feature types i and
j . (Recall that ρi, j = +1 if i, j are perfectly positively correlated, ρi, j = −1 if i, j are
perfectly negatively correlated, and ρi, j = 0 if i, j are uncorrelated.) Then the average
absolute correlation of feature type i with other features is

(
1

d − 1

)(
∑

j∈F\{i}

∣
∣ρi, j

∣
∣

)

123

Machine Learning (2019) 108:945–970 955

We now define the thresholds as

τ(a, i) = λ1

√

bi V̄n(a, i; P0)

n
+ λ2

(
1

d − 1

)(
∑

j∈F\{i}

∣
∣ρi, j

∣
∣

)

where λ1, λ2 are weights (hyper-parameters) to be chosen. Notice that the first term is the
dominant term in the error bound given in Theorem 1, and is used to set a higher bar for
the feature types that are creating the logging policy bias. The statistical distributions of
those features within the the action population and the whole population will be different. By
setting the threshold as above, we trade-off between three objective: (1) selecting the features
that are relevant for the rewards of the actions, (2) eliminating the features which create the
logging policy bias, (3) minimizing the redundancy in the feature space.

4.2.4 Relevant feature types

Finally, we identify the set of feature types that are relevant for an action a as

R̂(a) = {

i : Ĝ(a, i;P0) > τ(a, i)
}

(7)

Set R̂ = [R̂(a)
]

a∈A. Let f a denote a d dimensional vector whose j th element is 1 if j is
contained in the set R(a) and 0 otherwise.

4.3 Policy optimization

We now build on the identified family of relevant features to construct a policy. By definition,
a (stochastic) policy is a map h : X → �(A) which assigns to each vector of features a
probability distribution h(·|x) over actions.

A familiar approach to the construction of stochastic policies is to use the POEMalgorithm
(Swaminathan and Joachims 2015a). POEMconsiders only linear stochastic policies; among
these, POEM learns one that minimizes risk, adjusted by a variance term. Our approach is
substantially more general because we consider arbitrary non-linear stochastic policies. We
use a novel approach that uses a feedforward neural network to find a non-linear policy that
minimizes the loss, adjusted by a regularization term. Note that we allow for very general
loss and regularization terms so that our approach includes many policy optimizers. If we
restricted to a neural network with no hidden layers and a specific regularization term, we
would recover POEM.

We propose a feedforward neural network for learning a policy h∗(·|x); the architecture
of our neural network is depicted in Fig. 1. Our feedforward neural network consists of
policy layers (L p hidden layers with h(l)

p units in the lth layer) that use the output of the
concatenation layer to generate a policy vector Φ(x, a), and a softmax layer that turns the
policy vector into a stochastic policy.

For each action a, the concatenation layer takes the feature vector x as an input and
generates a action-specific representations φ(x, a) according to:

xR̂(a) = x
 f a
φ(x, a) = [xR̂(ã)I(ã = a)]ã∈A

Note that our action-specific representation φ(x, a) is a d×k dimensional vector where only
the parts corresponding to action a is non-zero and equals to xR̂(ã). For each action a, the

123

956 Machine Learning (2019) 108:945–970

Fig. 1 Neural network architecture

policy layers uses the action-specific representation φ(x, a) generated by the concenation
layers and generates the output vector Φ(x, a) according to:

Φ(x, a) = ρ
(

. . . ρ
(

W (p)
1 φ(x, a) + b(p)

1

)

. . . + b(p)
L p

)

whereW (p)
l and b(p)

l are the weights and bias vectors of the lth layer accordingly. The outputs
of the policy layers are used to generate a policy by a softmax layer:

h(a|x) = exp(wTΦ(x, a))
∑

a′∈A exp(wTΦ(x, a′))
.

Then, we choose the parameters of the policy to minimize an objective of the follow-
ing form: Loss(h∗;D) + λ3R(h∗;D); where Loss(h∗;D) is the loss term, R(h∗;D) is a
regularization term and λ3 > 0 represents the trade-off between loss and regularization.
The loss function can be either the negative IPS estimate or the corrected cross entropy loss
introduced in the next section. Depending on the choice of the loss function and regularizer,
our policy optimizer can include a wide-range of objectives including the POEM objective
(Swaminathan and Joachims 2015a).

In the next subsection, we propose a new objective, which we refer to as the Policy Neural
Network (PONN) objective.

4.4 Policy neural network (PONN) objective

Our PONN objective is motivated by the cross-entropy loss used in the standard multi-class
classification setting. In the usual classification setting, usual loss function used to train the
neural network is the standard cross entropy:

L̂ossc(h) = 1

n

n
∑

j=1

∑

a∈A
−R j (a) log h(a|X j).

However, this loss function is not applicable in our setting, for two reasons. The first is that
only the rewards of the action taken by the logging policy are recorded in the dataset, not the
counterfactuals. The second is that we need to correct the bias in the dataset by weighting the
instances by their inverse propensities. Hence, we use the following modified cross entropy
loss function:

123

Machine Learning (2019) 108:945–970 957

L̂ossb(h; P0) = 1

n

n
∑

j=1

∑

a∈A

−R j (a) log h(a|X j)I(A j = a)

p0, j

= 1

n

n
∑

j=1

−Robs
j log h(A j |X j)

p0, j
. (8)

Note that this loss function is an unbiased estimate of the expected cross entropy loss, that

is E(X,A,R)∼p0

[

L̂ossb(h∗; P0)
]

= E

[

L̂ossc(h∗)
]

. We train our neural network to minimize

the regularized loss by Adam optimizer:

h∗ = argmin
h∈H

L̂ossb(h; P̂0) + λ3R(h),

where R(h) is the regularization term to avoid overfitting and λ3 is the hyperparameter to
trade-off between the loss and regularization.

4.5 Unknown propensities

As we have noted, in most settings the logging policy is unknown and hence the actual
propensities are also unknown so we must estimate propensities from the dataset and use
the estimated propensities to correct the bias. In general, this can be accomplished by any
supervised learning technique.

For our purposes we estimate propensities by fitting the multinomial logistic regression
model:

ln(Pr (A = a)) = βT
0,aX − ln Z (9)

where Z = ∑

a∈A exp
(

βT
0,aX

)

. The estimated propensities are

p̂0, j ≡
exp(βT

0,A j
X j)

Z j

where we have written Z j = ∑

a∈A exp(βT
0,aX j). Write P̂0 = [p̂0, j]nj=1 for the vector of

estimated propensities.
In principle, we could use these estimated propensities in place of known propensities and

proceed exactly as we have done above. However, there are two problems with doing this.
The first is that if the estimated propensities are very small (which might happen because the
data was not completely representative of the true propensities), the variance of the estimate
Ĝ will be too large. The second is that the thresholds we have constructed when propensities
are known may no longer be appropriate when propensities must be estimated.

To avoid the first problem, we follow Ionides (2008) and modify the estimated rewards
by truncating the importance sampling weights. This leads to “truncated” estimated rewards
as follows:

R̂m(a, xi ; P̂0) = 1

N (xi)

∑

j∈J (xi)

min

(
I(A j = a)

p̂0, j
,m

)

Robs
j ,

R̂m(a; P̂0) = 1

n

n
∑

j=1

min

(
I(A j = a)

p̂0, j
,m

)

Robs
j .

123

958 Machine Learning (2019) 108:945–970

Algorithm Training Phase of the Algorithm PONN-B

1: Input: λ1, λ2, λ3, Lr , L p , hri , h
a
j

Step A: Estimate propensities using a logistic regression
2: Compute β0,a for each a by training Logistic regression model from (9).
3: Set p̂0, j = exp(βT

0,A j
X j)/Z j with Z j = ∑

a∈A exp(βT
0,aX j).

Step B: Identify the relevant features
4: Compute R̂(a, xi ; P̂0), R̂(a; P̂0), V̄n(a, i; P̂0), ρi,l for each a, xi , i , l.
5: Compute Ĝ(a, i; P̂0) for each action-feature type pair.
6: Solve R̂(a) from (7).

Step C: Policy Optimization
7: while until convergence do

8:
(

w,W (l)
p

)

← Adam
(

D(n),w,W (l)
p

)

9: end while
Output of Training Phase: Policy h∗, Features R̂

Algorithm Execution Phase of the Algorithm PONN-B

1: Input: Instance with feature X
2: Set â(X) = argmaxa∈A h∗(a|X)

Output of Execution phase: Recommended action â(X)

Given these “truncated” estimated rewards, we define a “truncated” estimator of relevance
by

Ĝm(a, i; P̂0) =
∑

xi∈Xi

N (xi)

n
l
(

R̂m(a, xi ; P̂0) − R̂m(a; P̂0)
)

From this point on, we proceed exactly as before, using the “truncated” estimator Ĝm

instead of Ĝ.
Note that R̂m(a, xi ; P̂0) and R̂m(a; P̂0) are not unbiased estimators of r̄(a, xi) and r̄(a).

The bias is due to using estimated truncated propensity scores which may deviate from true
propensities. Let bias(R̂m(a; P̂0)) denote the bias of R̂m(a; P̂0), which is given by

bias(R̂m(a; P̂0)) = r̄(a) − E
[

R̂m(a; P̂0)
]

.

In the Appendices, we show the effect of this bias on the learning process.

5 Pseudo-code for the algorithm PONN-B

Below, we provide the pseudo-code for our algorithm which we call PONN-B (because
it uses the PONN objective and Step B) exactly as discussed above. The first three steps
constitute the offline training phase; the fourth step is the online execution phase. Within
the training phase the steps are: Step A: Input propensities (if they are known) or estimate
them using a logistic regression (if they are not known). Step B: Construct estimates of
relevance (truncated if propensities are estimated), construct thresholds (using given hyper-
parameters) and identify the relevant features as those for which the estimated relevance is
above the constructed thresholds. Step C: Use the Adam optimizer to train neural network

123

Machine Learning (2019) 108:945–970 959

parameters. In the execution phase: Input the features of the new instance, apply the optimal
policy to find a probability distribution over actions, and draw a random sample action from
this distribution.

6 Extension: relevant feature selection with fine gradations

Our algorithm might be inefficient when there are many features of a particular type—in
particular, if one or more feature types are continuous. In that setting, we can modify our
algorithm to create bins that consist of similar feature values and treat all the values in a single
bin identically. In order to conveniently formalize this problem, we assume that the feature
space is actually continuous; for simplicity we assume each feature type is Xi = [0, 1] (or a
bounded subset). In this case, we can partition the feature space into subintervals (bins), view
features in each bin as identical, and apply our algorithm to the finite set of bins.3 To offer
a theoretical justification for this procedure, we assume that similar features yield similar
expected rewards. We formalize this as a Lipschitz condition.

Assumption 3 There exists L > 0 such that for all a ∈ A, all i ∈ F and all xi ∈ Xi , we have
|r̄(a, xi) − r̄(a, x̃i)| ≤ L|xi − x̃i |.
(In the Multi-Armed Bandit literature (Slivkins 2014; Tekin and van der Schaar 2014) this
assumption is commonly made and sometimes referred to as similarity.)

For convenience, we partition each feature type Xi into s equal subintervals (bins) of
length 1/s. If s is small, the number of bins is small so, given a finite data set, the number of
instances that lie in each bin is relatively large; this is useful for estimation. However, when s
is small the size 1/s of each bin is relatively large so the (true) variation of expected rewards
in each bin is relatively large. Because we are free to choose the parameter s, we can balance
the trade-off implicit between choosing few large bins or choosing many small bins; a useful
trade-off is achieved by taking s = ⌈

n1/3
⌉

.
So begin by fixing s = ⌈

n1/3
⌉

and partition each Xi = [0, 1] into s intervals of length
1/s. Write Ci for the sets in the partition of Xi and write ci for a typical element of Ci . For
each sample j , let ci, j denote the set in which the feature xi, j belongs. Let J (ci) be the set
of indices for which xi, j ∈ ci ; J (ci) = { j ∈ {1, 2, . . . , n} : Xi, j ∈ ci }. We define truncated
IPS estimate as

r̄m(a, ci ; P̂0) = E
[

U (a; P̂0)|Xi ∈ ci
]

= E

[

min

(
I(A = a)

p̂0(A|X)
,m

)

Robs
∣
∣
∣
∣
Xi ∈ ci

]

,

R̂m(a, ci ; P̂0) = 1

N (ci)

∑

j∈J (ci)

min

(
I(A j = a)

p̂0, j
,m

)

Robs
j ,

where N (ci) = |J (ci)|. In this case, we define estimated information gain as

Ĝm(a, i) =
∑

ci∈Ci

N (ci)

n
l
(

R̂m(a, ci ; P̂0) − R̂m(a; P̂0)
)

.

3 The binning procedure loses the ordering in the interval [0, 1]. If this ordering is in fact relevant to the
feature, then the binning procedure loses some information that a different procedure might preserve. We
leave this for future work.

123

960 Machine Learning (2019) 108:945–970

We define the following sample mean and variance :

Û (a, ci ; P̂0) = R̂m(a, ci ; P̂0) = 1

N (xi)

∑

j∈J (ci)

Uj (a; P̂0),

Vn(a, ci ; P̂0) = 1

n − 1

∑

j∈J (ci)

(Uj (a, ci ; P̂0) − Û (a, ci ; P̂0))
2.

Let V̄n(a, i; P̂0) = ∑

ci∈Ci
N (ci)Vn(a,ci ; P̂0)

n denote the weighted average sample variance.
Given these definitions, we establish a data-dependent bound analogous to Theorem 1.

Theorem 2 For every n ≥ 1 and δ ∈ [

0, 1
3

]

, if s = ⌈

n1/3
⌉

, then with probability at least
1 − 3δ we have, for all pairs (a, i) ∈ (A,D),

|Ĝm(a, i; P̂0) − g(a, i)| ≤ B

(√
4 ln 3/δ

n1/3

(√

V̄n(a, i; P̂0) +
√

Vn(a; P̂0)

)

+ L

n1/3

+ ∣
∣bias(R̂m(a; P̂0))

∣
∣ + E

∣
∣bias(R̂m(a, Xi ; P̂0))

∣
∣

)

+ 4mB ln 3/δ + √
2 ln 1/δ + ln 2

n2/3
.

There are two main differences between Theorems 1 and 2. The first is that the estimation
error is decreasing as n1/3 (Theorem 2) rather than as n1/2 (Theorem 1). The second is that
there is an additional error in Theorem 2 arising from the Lipschitz bound.

Theorem 2 suggests a different choice of thresholds, namely:

τ(a, i) = λ1n
−1/3

√

Vn(a, i; P̂0) + λ2

(
1

d − 1

)
⎛

⎝
∑

l∈F\{i}

∣
∣ρi,l

∣
∣

⎞

⎠ .

With this change we proceed exactly as before.

7 Numerical results

Here we describe the performance of our algorithm on some real datasets. Note that
it is difficult (perhaps impossible) to validate and test the algorithm on the basis of actual
logged CMABdata unless the counterfactual action rewards for each instance are available—
which would (almost) never be the case. One way to validate and test our algorithm is to
use a multi-class classification dataset, generate a biased CMAB dataset for training by
“forgetting” (stripping out) the counterfactual information, apply the algorithm, and then test
the predictions of the algorithm against the actual data (Beygelzimer et al. 2009). This is the
route we follow in the first experiment below. Another way to validate and test our algorithm
is to use an alternative accepted procedure to infer counterfactuals and to test the prediction
of our algorithm against this alternative accepted procedure. This is the route we follow in
the second experiment below.

123

Machine Learning (2019) 108:945–970 961

Table 2 Data summary

Dataset # of Feature types (d) # of Labels (k) # of Instances (n)

Pendigits 16 10 7494

Satimage 36 6 4435

Optdigits 64 10 3893

7.1 Multi-class classification

For this experiment we use existing multi-class classification datasets from the well-known
UCI Machine Learning Repository.

– In the Pendigits and Optdigits datasets, each instance is described by a collection of
pixels extracted from the image of a handwritten digit 0-9; the objective is to identify the
digit from the features.

– In the Satimage dataset, each instance is described by an array of features extracted from
a satellite image of a plot of ground; the objective is to identify the true description of
the plot (barren soil, grass, cotton crop, etc.) from the features.

These datasets have in common that that they have many instances, many feature types and
many labels, so they are extremely useful for training and testing.

In supervised learning systems, we assume that features and labels are generated by an
i.i.d. process, i.e., (X, Y) ∼ Z where X ∈ X is the feature space and Y ∈ {1, 2, . . . , k} is the
label space. The supervised learning data with n-samples is denoted asDn = (

X j , Y j
)n
j=1. In

our simulation setup, we treat each class as an action. We also included 16 irrelevant features
in addition to actual features in the dataset, drawn randomly from normal distribution. The
reward of an action is given by R j (a) = I(Y j = a). A complete dataset then is Dn

com =
(

X j , R j (1), . . . , R j (k)
)

. A summary of the data is given in Table 2.

7.2 Comparisons

We compare the performance of our algorithm (PONN-B) with

– PONN is PONN-B but without Step B (feature selection).
– POEM is the standard POEM algorithm (Swaminathan and Joachims 2015a).
– POEM-B applies Step B of our algorithm, followed by the POEM algorithm.
– POEM-L1 is the POEM algorithm with the addition of L1 regularization.
– Multilayer Perceptron with L1 regularization (MLP-L1) is the MLP algorithm on

concatenated input (X, A) with L1 regularization.
– Logistic Regression with L1 regularization (LR-L1) is the separate LR algorithm on

input X on each action a with L1 regularization.
– Logging is the logging policy performance.

(In all cases, the objective is optimized with the Adam Optimizer.)

7.2.1 Simulation setup

We generate artificially biased dataset by the following logistic model. We first draw weights
for each label from an multivariate Gaussian distribution, that is θ0,y ∼ N (0, κ I). We then

123

962 Machine Learning (2019) 108:945–970

use the logistic model to generate an artificially biased logged off-policy dataset Dn =
(

X j , A j , Robs
j

)n

j=1
by first drawing an action A j ∼ p0(·|X j), then setting the observed

reward as Robs
j ≡ R j (A j). (We use κ = 0.25 for pendigits and κ = 0.5 for satimage

and optdigits.) This bandit generation process makes the learning very challenging as the
generated off-policy dataset has less number of observed labels.

We randomly divide the datasets into 70% training and 30% testing sets.We also randomly
sequester 30%of the training set as a validation set.We train all algorithms for various param-
eter sets on the training set, validate the hyper parameters on the validation set and test on the
testing set. We evaluate our algorithm with Lr = 2 representation layers, and L p = 2 policy
layers with 50 hidden units for representation layers and 100 hidden units (sigmoid activa-
tion) with policy layers. We implemented/trained all algorithms in a Tensorflow environment
using Adam Optimizer.

For j th instance in testing data, let h∗
g denote the optimized policy of algorithm g. Let

Jtest denote the instances in testing set and Ntest = |Jtest | denote number of instances in
testing dataset. We define (absolute) accuracy of an algorithm g as

Acc(g) = 1

Ntest

∑

j∈Jtest

∑

a∈A
h∗
g(a|X j)R j (a).

We select the parameters λ∗
1 ∈ [0.005, 0.1], λ∗

2 ∈ [0, 0.01] and λ∗
3 ∈ [0.0001, 0.1] that

minimize the loss given in (8) estimated from the samples in the validation set. In the testing
dataset, we use the full dataset to compute the accuracy of each algorithm.

In the next subsection, we describe the performance of each algorithm on the third publicly
available datasets. In each case,we run25 iterations, following the procedure described above;
we report the average of the iterations with 95% confidence intervals.

7.2.2 Results

In order to present a tough challenge to our algorithm we assume that the true propensities
are not known and so must be estimated. Table 3 describes the absolute accuracy of each
algorithm on each dataset. As can be seen, our algorithm outperforms all the benchmarks in
each dataset within 95% confidence levels.

We define loss with respect to the “perfect” algorithm that would predict accurately all of
the time, so the loss of the algorithm g is 1 − Acc(g). We evaluate the improvement of our

Table 3 Absolute accuracy in the UCI experiment (with 95% CI)

Algorithm/dataset Pendigits (%) Satimage (%) Optdigits (%)

PONN-B 88.01± 1.52 79.22± 0.42 79.98± 0.62

PONN 85.45 ± 0.85 77.90 ± 0.45 75.46 ± 0.57

POEM-B 71.32 ± 0.73 45.15 ± 2.05 62.14 ± 0.75

POEM 68.98 ± 1.54 41.76 ± 2.05 59.49 ± 1.53

POEM-L1 70.84 ± 0.75 45.93 ± 1.01 60.75 ± 0.83

MLP-L1 83.16 ± 0.51 65.95 ± 6.42 75.28 ± 0.83

LR-L1 80.84 ± 0.35 67.45 ± 4.28 77.07 ± 0.07

Logging 10.12 ± 0.04 16.55 ± 0.54 10.24 ± 0.08

Bold values indicate “better” performance

123

Machine Learning (2019) 108:945–970 963

Table 4 Improvement scores in the UCI experiment

Algorithm/dataset Pendigits (%) Satimage (%) Optdigits (%)

PONN 17.59 5.52 18.41

POEM-B 58.19 61.93 47.12

POEM 61.34 64.32 50.58

POEM-L1 58.88 61.56 48.99

MLP-L1 28.80 38.97 53.71

LR-L1 37.42 36.15 19.01

Logging 86.65 75.09 77.69

algorithm over each other algorithm as the ratio of the actual loss reduction to the possible
loss reduction, expressed as a percentage:

Improvement Score(g) = Acc(PONN−B) − Acc(g)

1 − Acc(g)

The Improvement Score of each algorithm g with respect to our algorithm is presented in
Table 4. Note that our algorithm achieves significant Improvement Scores in all three datasets.

7.3 Chemotherapy regimens for breast cancer patients

In this subsection, we apply our algorithm to the choice of recommendations of chemotherapy
regimen for breast cancer patients. We evaluate our algorithm on a dataset of 10,000 records
of breast cancer patients participating in the National Surgical Adjuvant Breast and Bowel
Project (NSABP) by Yoon et al. (2017). Each instance consists of the following information
about the patient: age, menopausal, race, estrogen receptor, progesterone receptor, human
epidermal growth factor receptor 2 (HER2NEU), tumor stage, tumor grade, Positive Axillary
Lymph Node Count(PLNC), WHO score, surgery type, Prior Chemotherapy, prior radiother-
apy and histology. The treatment is a choice among six chemotherapy regimes AC, ACT,
AT, CAF, CEF, CMF. The outcomes for these regimens were derived based on 32 references
from PubMed Clinical Queries. The rewards for these regimens were derived based on 32
references from PubMedClinical Queries; this is a medically accepted procedure. The details
are given in Yoon et al. (2017).

Using these derived rewards, we construct a dataset. In this dataset, an instance is described
by a triple (X, A, R), where X is the 15-dimensional feature vector encoding the information
about the particular patient, A is a chemotherapy regime, and R is the reward (survival/non-
survival) for that chemotherapy regime for that patient. In the dataset, A is a chemotherapy
regime generated in the same way as in the first experiment (with κ = 0.25) and R is the
reward derived by Yoon et al. (2017).4

As in the previous experiment, in comparing algorithms, we consider absolute accuracy
and the improvement score. In this context, we define the absolute accuracy of an algorithm
g as the probability that its recommendation matches the chemotherapy regimen with the
highest reward (according to best medical practice); i.e.

Acc(g) = 1

Ntest

∑

j∈Jtest

∑

a∈A
h∗
g(a|X j)I(a = A∗

j)

4 Unfortunately, our dataset does not record which chemotherapy regime was actually chosen for each patient.

123

964 Machine Learning (2019) 108:945–970

Table 5 Performance in the
breast cancer experiment

Metric Accuracy (%) Improvement (%)

PONN-B 74.12± 1.25 –

PONN 62.81 ± 1.85 30.41

POEM-B 55.39 ± 0.36 41.98

POEM 52.78 ± 0.50 45.19

POEM-L1 52.72 ± 0.55 45.26

MLP-L1 61.47 ± 0.50 32.00

LR-L1 51.96 ± 0.43 46.12

Logging 18.20 + 1.30 68.36

Bold values indicate “better” performance

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

λ1

A
C
C

Fig. 2 Effect of the hyperparameter on the accuracy of our algorithm

As before, we define the Improvement Score with respect to relative loss.
Table 5 describes absolute accuracy and the Improvement Scores of the our algorithm. Our

algorithm achieves significant Improvement Scores with respect to all benchmarks. There
are twomain reasons for these improvements. The first is that using Step B (feature selection)
reduces over-fitting; this can be seen by the improvement of PONN-B over PONN and by the
fact that PONN-B improves more over POEM (which does not use Step B) than over POEM-
B (which does use feature selection). The second is that PONN-B allows for non-linear
policies, which reduces model misspecification.

Note that our action-dependent relevance discovery is also important for interpretability.
The selected relevant features given by our algorithm with λ1 = 0.03 is as follows: age,
tumor stage, tumor grade for AC treatment action, age, tumor grade, lymph node status for
ACT treatment action, menopausal status and surgery type for CAF treatment action, age and
estrogen receptor for CEF treatment action and estrogen receptor and progesterone receptor
for CMF treatment action.

Figure 2 shows the accuracy of our algorithm for different choices of the hyper parameter
λ1. As expected—and seen in Fig. 2—if λ1 is too small then there is overfitting; if it is
too large then a lot of relevant features are discarded. We have chosen the value of λ1 that
maximizes accuracy.

123

Machine Learning (2019) 108:945–970 965

8 Conclusion

This paper introduces a new approach and algorithm for the construction of effective policies
when the dataset is biased and does not contain counterfactual information. The heart of
our method is the ability to identify a small number of (most) relevant features—despite the
bias and missing counterfactuals. When tested on a wide variety of data, the algorithm we
introduce achieves significant improvement over state-of-the-art methods.

Acknowledgements This research was funded by Grants from NSF ECCS 1462245 and NSF IIP1533983.

Appendix

Here we collect the proofs of Theorems 1 and 2. It is convenient to begin by recording some
technical lemmas; the first two are in the literature; we give proofs for the other two.

Lemma 1 (Theorem 1, Audibert et al. (2009)) Let X1, X2, . . . , Xn be i.i.d. random variables
taking their values in [0, b]. Let μ = E[X1] be their common expected value. Consider the
empirical sample mean X̄n and variance Vn defined respectively by

X̄n =
∑n

i=1 Xi

n
and Vn =

∑n
i=1(Xi − X̄n)

2

n
. (10)

Then, for any n ∈ N and δ ∈ (0, 1), with probability at least 1 − δ,

|X̄n − μ| ≤
√

2Vn log 3/δ

n
+ 3b log 3/δ

n
. (11)

For two probability distributions P and Q on a finite set A = {1, 2, . . . , a}, let

‖P − Q‖1 =
a

∑

i=1

|P(i) − Q(i)| (12)

denote the L1 distance between P and Q.

Lemma 2 (Weissman et al. 2003) Let A = {1, 2, . . . , a}. Fix a probability distribution P
on A and draw n independent samples Xn = X1, X2, . . . , Xn from A according to the
distribution P . Let P̂ be the empirical distribution of Xn. Then, for all ε > 0,

Pr(‖P − P̂‖1 ≥ ε) ≤ (2a − 2)e−ε2n/2. (13)

The next two lemmas are auxiliary results used in the proof of Theorem 2.

Lemma 3 Let P0 = [p0(a|x)] be the actual propensities and P̂0 = [p̂0(a|x)] be the esti-
mated propensities. Assume that p̂0(a|x) > 0 for all a, x. The bias of the truncated IS
estimator with propensities P̂0 is:

bias(R̂m(a; P̂0)) =
n

∑

j=1

E

[
r̄(a, X j)

n

((

1 − p0, j
p̂0, j

)

I
(

p̂0, j ≥ m−1)

+ (

1 − p0, jm
)

I
(

p̂0, j ≤ m−1)
)]

.

123

966 Machine Learning (2019) 108:945–970

Proof of Lemma 3 The proof is similar to Joachims and Swaminathan (2016). We have

r̄(a) = 1

n

n
∑

j=1

EX j∼Pr(X)r̄(a, X j),

E(R̂m(a; P̂0)) = 1

n

n
∑

j=1

E(X j ,A j ,R j)∼p0

[

min

(
I(A j = a)

p̂0(A j |X j)
,m

)

R j

]

= 1

n

n
∑

j=1

E(X j ,A j)∼p0

[

min

(
I(A j = a)

p̂0(a|X j)
,m

)

r̄(a, X j)

]

=
n

∑

j=1

EX j∼Pr(X)

[
r̄(a, X j)

n
min

(
1

p̂0(a|X j)
,m

)

p0(a|X j)

]

.

It follows that

bias(R̂m(a; P)) =
n

∑

j=1

EX j∼Pr(X)

[
r̄(a, X j)

n

(

1 − min

(
1

p̂0(a|X j)
,m

)

p0(a|X j)

)]

.

(14)

Dividing (14) into the case for which p̂0(a|X j) ≥ m−1 and the case for which p̂0(a|X j) <

m−1 and then combining the results yields the desired conclusion.
To state Lemma 4, we first define the expected relevance gain with truncated IPS reward

using propensities P̂0 to be

gm(a, i; P̂0) = E
[∣
∣r̄m(a, Xi ; P̂0) − r̄m(a; P̂0)

∣
∣
]

where

r̄m(a; P̂0) = E(R̂m(a; P̂0))

= E(X,A,R)∼p0

[

min

(
I(A = a)

p0(A|X)
,m

)

R

]

,

r̄m(a, xi ; P̂0) = E(R̂m(a, xi ; P̂0))

= E(X,A,R)∼p0

[

min

(
I(A = a)

p0(A|X)
,m

)

R

∣
∣
∣
∣
Xi = xi

]

.

��

Lemma 4 We have:

|gm(a, i; P̂0) − g(a, i)| ≤ B
(

E
[∣
∣bias(R̂m(a, Xi ; P̂0))

∣
∣
] + ∣

∣bias(R̂m(a; P̂0))
∣
∣
)

.

Proof of Lemma 4 This follows immediately by iterated expectations:
∣
∣
∣
∣
E

(

�
(

E(R̂m(a, Xi ; P̂0)) − E(R̂m(a; P̂0))
) − � (r̄(a, xi) − r̄(a))

)∣
∣
∣
∣

≤ BE

(∣
∣
∣
∣
E(R̂m(a, Xi ; P̂0)) − r̄(a, Xi)

∣
∣
∣
∣

)

+ B|E(R̂m(a; P̂0)) − r̄(a)|. (15)

We now turn to the proofs of the theorems in the text. ��

123

Machine Learning (2019) 108:945–970 967

Proof of Theorem 1 Recall that the true relevance metric is g(a, i) = E [|r̄(a, xi) − r̄(a)|] =
∑

xi∈Xi
Pr(Xi = xi)l(r̄(a, xi) − r̄(a)). For any action a ∈ A and xi ∈ Xi , we can bound the

error between the estimated relevance metric and the relevance metric as

|Ĝ(a, i; P0) − g(a, i)| =
∣
∣
∣
∣

∑

xi∈Xi

N (xi)

n
�
(

R̂(a, xi ; P0) − R̂(a; P0)
)

−
∑

xi∈Xi

N (xi)

n
� (r̄(a, xi) − r̄(a))

+
∑

xi∈Xi

N (xi)

n
� (r̄(a, xi) − r̄(a))

−
∑

xi∈Xi

Pr(Xi = xi)� (r̄(a, xi) − r̄(a))

∣
∣
∣
∣

≤
∑

xi∈Xi

N (xi)

n

(

�
(

R̂(a, xi ; P0) − R̂(a; P0)
) − � (r̄(a, xi) − r̄(a))

)

+
∑

xi∈Xi

(
N (xi)

n
− Pr(Xi = xi)

)

� (r̄(a, xi) − r̄(a))

≤ B
∑

xi∈Xi

N (xi)

n

∣
∣R̂(a, xi ; P0) − r̄(a, xi)

∣
∣ + B

∣
∣R̂(a; P0) − r̄(a)

∣
∣

+
∑

xi∈Xi

∣
∣
∣
∣

N (xi)

n
− Pr(Xi = xi)

∣
∣
∣
∣
.

We bound each term separately. Applying Lemma 2, we see that with probability at least
1 − δ, we have

∑

xi∈Xi

∣
∣
∣
∣
Pr(Xi = xi) − N (xi)

n

∣
∣
∣
∣
≤

√

2 ln 2bi /δ

n

=
√

2 (bi ln 2 + ln 1/δ)

n
. (16)

Using Lemma 1 we see that, with probability at least 1 − δ, we have

∑

xi∈Xi

N (a, xi)

n

∣
∣R̂(a, xi ; P0) − r̄(a, xi)

∣
∣

≤
∑

xi∈Xi

N (a, xi)

n

(
√

2Vn(a, xi ; P0) ln 3/δ

N (a, xi)
+ 3M ln 3/δ

N (a, xi)

)

≤
√

2bi Vn(a, xi ; P0) ln 3/δ

n
+ 3Mbi ln 3/δ

n
, (17)

where the the second inequality follows from an application of Jensen’s inequality. Similarly,
using Lemma 1, we see that with probability at least 1 − δ, we have

123

968 Machine Learning (2019) 108:945–970

∣
∣R̂(a; P0) − r̄(a)

∣
∣ ≤

√

2Vn(a; P0) ln 3/δ

n
+ 3M ln 3/δ

n
. (18)

The desired result now follows by combining (16, 17 and 18). ��
Proof of Theorem 2 Let

g̃m(a, i) =
∑

ci∈Ci,n
Pr(Xi ∈ ci)�(r̄m(a, ci) − r̄m(a)).

Then, we can decompose the error into

|Ĝm(a, i; P̂0) − g(a, i)| ≤ |Ĝm(a, i; P̂0) − gm(a, i; P̂0)| + |gm(a, i; P̂0) − g(a, i)|
≤ |Ĝm(a, i; P̂0) − g̃m(a, i; P̂0)|

+ |g̃m(a, i; P̂0) − gm(a, i; P̂0)|
+ |gm(a, i; P̂0) − g(a, i)|. (19)

The first term (19) can be bounded by Theorem 1 by setting sn = ⌈

n1/3
⌉ ≤ n1/3 + 1, i.e.,

|Ĝm(a, i; P̂0) − g̃m(a, i; P̂0)| ≤
√

4B2 ln 3/δ

n1/3

(√

V̄n(a, i; P̂0) +
√

Vn(a; P̂0)

)

+ 4mB ln 3/δ + √
2 ln 1/δ + ln 2

n2/3
.

The third term in (19) is the bias of the estimation due to estimated propensity scores and
truncation, i.e.,

|gm(a, i; P̂0) − g(a, i)| ≤ B
(

E
[∣
∣bias(R̂m(a, Xi); P̂0)

∣
∣
] + ∣

∣bias(R̂m(a); P̂0)
∣
∣
)

.

We bound the second term in (19)

gm(a, i; P̂0) = E
[

�(r̄m(a, Xi ; P̂0) − r̄m(a; P̂0))
]

= E
[

�(r̄m(a, Xi ; P̂0) − r̄m(a, ci ; P̂0) + r̄m(a, ci ; P̂0) − r̄m(a; P̂0))
]

≤ E

[

�

(
L

n1/3
+ r̄m(a, ci ; P̂0) − r̄m(a; P̂0)

)]

≤ LB

n1/3
+ E

[

�(r̄m(a, ci ; P̂0) − r̄m(a; P̂0))
]

.

where the first inequality follows from Assumption 3 and the second inequality follows from
smoothness assumption on the loss function l(·), i.e.,

l

(
L

n1/3
+ r̄m(a, ci ; P̂0) − r̄m(a; P̂0)

)

− l
(

r̄m(a, ci ; P̂0) − r̄m(a; P̂0)
) ≤ LB

n1/3
.

��

References

Alaa, A.M., van der Schaar, M. (2017). Bayesian inference of individualized treatment effects using multi-task
gaussian processes. arXiv preprint arXiv:1704.02801

Atan, O., Zame, W. R., & van der Schaar, M. (2018). Learning optimal policies from observational data. arXiv
preprint arXiv:1802.08679

Athey, S., & Imbens, G. W. (2015). Recursive partitioning for heterogeneous causal effects. arXiv preprint
arXiv:1504.01132.

123

http://arxiv.org/abs/1704.02801
http://arxiv.org/abs/1802.08679
http://arxiv.org/abs/1504.01132

Machine Learning (2019) 108:945–970 969

Audibert, J. Y.,Munos, R.,&Szepesvári, C. (2009). Exploration–exploitation tradeoff using variance estimates
in multi-armed bandits. Theoretical Computer Science, 410(19), 1876–1902.

Beygelzimer, A., & Langford, J. (2009). The offset tree for learning with partial labels. In Proceedings of the
15th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 129–138).

Bottou, L., Peters, J., Candela, J. Q., Charles, D. X., Chickering,M., Portugaly, E., et al. (2013). Counterfactual
reasoning and learning systems: The example of computational advertising. Journal ofMachine Learning
Research, 14(1), 3207–3260.

Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification. Hoboken: Wiley.
Dudík, M., Langford, J., & Li, L. (2011). Doubly robust policy evaluation and learning. In International

conference on machine learning (ICML).
Dy, J. G., & Brodley, C. E. (2004). Feature selection for unsupervised learning. Journal of Machine Learning

Research, 5, 845–889.
Hall, M. A. (1999). Correlation-based feature selection for machine learning. PhD thesis, The University of

Waikato
He, X., Cai, D., & Niyogi, P. (2005). Laplacian score for feature selection. In Advances in neural information

processing systems (pp. 507–514).
Hoiles, W., & van der Schaar, M. (2016). Bounded off-policy evaluation with missing data for course

recommendation and curriculum design bounded off-policy evaluation with missing data for course
recommendation and curriculum design. In International conference on machine learning (pp 1596–
1604).

Ionides, E. L. (2008). Truncated importance sampling. Journal of Computational and Graphical Statistics,
17(2), 295–311.

Jiang, N., & Li, L. (2016). Doubly robust off-policy evaluation for reinforcement learning. In International
conference on machine learning (ICML).

Joachims, T., Grotov, A., Swaminathan, A., & de Rijke,M. (2018). Deep learning with logged bandit feedback.
In International conference on learning representations (ICLR).

Joachims, T., & Swaminathan, A. (2016). Counterfactual evaluation and learning for search, recommendation
and ad placement. In International ACM SIGIR conference on research and development in information
retrieval (pp 1199–1201).

Johansson, F., Shalit, U., & Sontag, D. (2016). Learning representations for counterfactual inference. In
International conference on machine learning (ICML)

Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Proceedings of the ninth
international workshop on Machine learning (pp. 249–256).

Koller, D., & Sahami, M. (1996). Toward optimal feature selection. Stanford InfoLab.
Maurer, A., & Pontil, M. (2009). Empirical bernstein bounds and sample variance penalization. In The 22nd

conference on learning theory.
Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-

dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(8), 1226–1238.

Prentice, R. (1976). Use of the logistic model in retrospective studies. Biometrics, 32(3), 599–606.
Robnik-Šikonja,M.,&Kononenko, I. (2003). Theoretical and empirical analysis of relieff and rrelieff.Machine

Learning, 53(1–2), 23–69.
Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for

causal effects. Biometrika, 70(1), 41–55.
Shalit, U., Johansson, F., & Sontag, D. (2016). Estimating individual treatment effect: Generalization bounds

and algorithms. arXiv preprint arXiv:1606.03976
Slivkins, A. (2014). Contextual bandits with similarity information. Journal of Machine Learning Research,

15(1), 2533–2568.
Song, L., Smola, A., Gretton, A., Bedo, J., & Borgwardt, K. (2012). Feature selection via dependence maxi-

mization. Journal of Machine Learning Research, 13(May), 1393–1434.
Strehl, A., Langford, J., Li, L., & Kakade S. M. (2010). Learning from logged implicit exploration data. In

Advances in neural information processing systems (pp. 2217–2225).
Swaminathan, A., & Joachims, T. (2015). Batch learning from logged bandit feedback through counterfactual

risk minimization. Journal of Machine Learning Research, 16, 1731–1755.
Swaminathan, A., & Joachims, T. (2015b). The self-normalized estimator for counterfactual learning. In

advances in neural information processing systems (pp. 3231–3239).
Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classification: A review. Data Classification:

Algorithms and Applications, 37.
Tekin, C., & van der Schaar, M. (2014). Discovering, learning and exploiting relevance. In Advances in neural

information processing systems (pp. 1233–1241).

123

http://arxiv.org/abs/1606.03976

970 Machine Learning (2019) 108:945–970

Tian, L., Alizadeh,A.,Gentles,A.,&Tibshirani, R. (2012).A simplemethod for detecting interactions between
a treatment and a large number of covariates. arXiv preprint arXiv:1212.2995

Wager, S., & Athey, S. (2015). Estimation and inference of heterogeneous treatment effects using random
forests. arXiv preprint arXiv:1510.04342

Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S., & Weinberger, M. J. (2003). Inequalities for the l1
deviation of the empirical distribution. Hewlett-Packard Labs, Tech Rep.

Weston, J., Elisseeff, A., Schölkopf, B., & Tipping, M. (2003). Use of the zero-norm with linear models and
kernel methods. Journal of Machine Learning Research, 3, 1439–1461.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learn-
ing. Machine Learning, 8(3–4), 229–256.

Xu, Z., King, I., Lyu, M. R. T., & Jin, R. (2010). Discriminative semi-supervised feature selection via manifold
regularization. IEEE Transactions on Neural Networks, 21(7), 1033–1047.

Yoon, J., Davtyan, C., & van der Schaar, M. (2017). Discovery and clinical decision support for personalized
healthcare. IEEE Journal of Biomedical and Health Informatics, 21(4), 1133–1145.

Yu, L., & Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based filter solution.
International Conference on Machine Learning (ICML), 3, 856–863.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1212.2995
http://arxiv.org/abs/1510.04342

	Constructing effective personalized policies using counterfactual inference from biased data sets with many features
	Abstract
	1 Introduction
	2 Related work
	3 Data
	4 The algorithm
	4.1 True propensities
	4.2 Relevance
	4.2.1 True relevance
	4.2.2 Estimated relevance
	4.2.3 Thresholds
	4.2.4 Relevant feature types

	4.3 Policy optimization
	4.4 Policy neural network (PONN) objective
	4.5 Unknown propensities

	5 Pseudo-code for the algorithm PONN-B
	6 Extension: relevant feature selection with fine gradations
	7 Numerical results
	7.1 Multi-class classification
	7.2 Comparisons
	7.2.1 Simulation setup
	7.2.2 Results

	7.3 Chemotherapy regimens for breast cancer patients

	8 Conclusion
	Acknowledgements
	Appendix
	References

