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Abstract
The computational complexity of solving nonlinear support vector machine (SVM) is pro-
hibitive on large-scale data. In particular, this issue becomes very sensitive when the data
represents additional difficulties such as highly imbalanced class sizes. Typically, nonlin-
ear kernels produce significantly higher classification quality to linear kernels but introduce
extra kernel and model parameters which requires computationally expensive fitting. This
increases the quality but also reduces the performance dramatically. We introduce a general-
ized fast multilevel framework for regular and weighted SVM and discuss several versions
of its algorithmic components that lead to a good trade-off between quality and time. Our
framework is implemented using PETSc which allows an easy integration with scientific
computing tasks. The experimental results demonstrate significant speed up compared to the
state-of-the-art nonlinear SVM libraries. Reproducibility: our source code, documentation
and parameters are available at https://github.com/esadr/mlsvm.

Keywords Classification · Support vector machine · Parameter fitting · Imbalanced
learning · Hierarchical method · Multilevel method · PETSc

1 Introduction

Support vector machine (SVM) is one of the most well-known supervised classification
methods that has been extensively used in such fields as disease diagnosis, text categorization,
and fraud detection. Training nonlinear SVM classifier (such as Gaussian kernel based)
requires solving convex quadratic programming (QP) model whose running time can be
prohibitive for large-scale instances without using specialized acceleration techniques such
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as sampling, boosting, and hierarchical training. Another typical reason of increased running
time is complex data sets (e.g., when the data is noisy, imbalanced, or incomplete) that require
using model selection techniques for finding the best model parameters.

The motivation behind this work was extensive applied experience with hard, large-
scale, industrial (often highly heterogeneous) data sets for which fast linear SVMs produced
extremely low quality results (as well as many other fast methods), and various nonlinear
SVMs exhibited a strong trade off between running time and quality. It has been noticed in
multiple works that many different real-world data sets have a strong underlying multiscale
(in some works called hierarchical) structure (Kushnir et al. 2006; Karypis et al. 1999; Lee
et al. 2009; Sharon et al. 2006) that can be discovered through careful definitions of coarse-
grained resolutions. Not surprisingly, we found that among fast methods the hierarchical
nonlinear SVM was the best candidate for producing most satisfying results in a reasonable
time (Asharaf and Murty 2006). Although, several successful hierarchical SVM techniques
(Yu et al. 2003; Hao et al. 2007) have been developed since massive popularization of SVM,
we found that most existing algorithms do not sustainably produce high-quality results in a
short running time, and the behavior of hierarchical training is still not well studied. This is in
contrast to a variety of well studied unsupervised multiscale clustering approaches (Brandes
et al. 2008; Noack and Rotta 2009a; Rotta and Noack 2011).

In this paper, we discuss several techniques for engineering multilevel SVMs demonstrat-
ing their (dis)advantages and generalizing them in a framework inspired by the algebraic
multigrid and multiscale optimization strategies (Brandt and Ron 2003). We deliberately
omit the issues related to parallelization of multilevel frameworks as it has been discussed
in a variety of works related to multilevel clustering, partitioning, and SVM QP solvers. Our
goal is to demonstrate fast and scalable sequential techniques focusing on different aspects
of building and using multilevel learning with regular and weighted SVM. Also, we focus
only on nonlinear SVMs because (a) not much improvement can be introduced or required
in practice to accelerate linear SVMs, and (b) in many hard practical cases, the quality of
linear SVMs is incomparable to that of nonlinear SVMs. The most promising and stable
version of our multilevel SVMs are implemented in PETSc (Balay et al. 2016) which is a
well known scientific computing library. PETSc was selected because of its scalability of
linear algebra computations on large sparse matrices and available software infrastructure for
future parallelization. Our implementation also addresses a critical need (Berry et al. 2015)
of adding data analysis functionality to broadly used scientific computing software.

1.1 Computational challenges

There is a number of basic challenges one has to address when applying SVM which we
successfully tackle with the multilevel framework, namely, QP solver complexity for large-
scale data, imbalanced data, and SVM model parameter fitting.

Large-scale dataThe baseline SVMclassifier is typically formulated as a convexQP problem
whose solvers scale between O(n2) to O(n3) (Graf et al. 2004). For example, the solver we
compare our algorithm with, namely, LibSVM (Chang and Lin 2011), which is one of the
most popular and fast QP solvers, scales between O(n f ns2) to O(n f ns3) subject to how
effectively the cache is exploited in practice, where n f and ns are the number of features
and samples, respectively. Clearly, this complexity is prohibitive for nonlinear SVM models
applied on practical big data without using parallelization, high-performance computing
systems or another special treatment.
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Imbalanced data The imbalanced data is one of the issues in which SVM often outperforms
many fast machine learning methods. This problem occurs when the number of instances
of one class (negative or majority class) is substantially larger than the number of instances
that belong to the other class (positive or minority class). In multi-class classification, the
problem of imbalanced data is even bolder and use of the standard classification methods
become problematic in the presence of big and imbalanced data (López et al. 2015). This
may dramatically deteriorate the performance of the algorithm. It is worth noticing that
there are cases in which correct classification of the smaller class is more important than
misclassification of the larger class (Sun et al. 2007). Fault diagnosis (Yang et al. 2009; Zhu
and Song 2010), anomaly detection (Khreich et al. 2010; Tavallaee et al. 2010), medical
diagnosis (Mazurowski et al. 2008) are some of applications which are known to suffer of
this problem. Imbalanced data was one of our motivating factors because we have noticed
that most standard SVM solvers do not behave well on it. In order to reduce the effect of
minority class misclassification in highly imbalanced data, an extension of SVM, namely, the
cost-sensitive SVM (whose extensions are also known as weighted or fuzzy SVM; Lin and
Wang 2002), was developed for imbalanced classification problems. In cost-sensitive SVM,
a special control of misclassification penalization is introduced as a part of the SVM model.

Parameter tuning The quality of SVM models is very sensitive to the parameters (such
as penalty factors of misclassified data) especially in case of using kernels that typically
introduce extra parameters. There are many different parameter tuning approaches such as
Bao et al. (2013), Zhou et al. (2009), Lin et al. (2008), Chapelle et al. (2002), Cawley and
Talbot (2010), An et al. (2007), Luts et al. (2010) and Lessmann et al. (2006). However, in
any case, tuning parameters requires multiple executions of the training process for different
parameters and due to the k-fold cross-validation which significantly increases the running
time of the entire framework. In our experiments with industrial and healthcare data, not
surprisingly, we were unable to find an acceptable quality SVM models without parameter
fitting (also known asmodel selection Coussement and Van den Poel 2008; Zhang et al. 2010;
Schölkopf and Smola 2002) which also motivated our work.

1.2 Related work

Multiple approaches have been proposed to improve the performance of SVM solvers. Exam-
ples include efficient serial algorithms that use a cohort of decomposition techniques (Osuna
et al. 1997), shrinking and caching (Joachims 1999), and fast second order working set selec-
tion (Fan et al. 2005). A popular LibSVM solver (Chang and Lin 2011) implements the
sequential minimal optimization algorithm. In the cases of simple data for which nonlinear
SVM is not required such approaches as LibLINEAR (Fan et al. 2008) demonstrate excellent
performance for linear SVM using a coordinate descent algorithm which is very fast but,
typically, not suitable for complex or imbalanced data. Another approach to accelerate the
QP solvers is a chunking (Joachims 1999), in which the models are solved iteratively on the
subsets of training data until the global optimum is achieved.

A typical acceleration of support vectormachines is done through parallelization and train-
ing on high-performance computing systems using interior-point methods (IPM) (Mehrotra
1992) applied on the dual problem which is a convex QP. The key idea of the primal-dual
IPM is to remove inequality constraints using a barrier function and then resort to the iterative
Newton’s method to solve the KKT system of the dual problem. For example, in PSVM (Zhu
et al. 2008), the algorithm reducesmemory use, and parallelizes data loading and computation
in IPM. It improves the decomposition-based LibSVM from O(n2) to O(np2/m), where m
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is a number of processors (or heterogeneous machines used), and p is a column dimension of
a factorized matrix that is required for effective distribution of the data. The HPSVM solver
(Li et al. 2016) is also based on solving the primal-dual IPM and uses effective parallelizm
of factorization. The approach is specifically designed to take maximal advantage of the
CPU-GPU collaborative computation with the dual buffers 3-stage pipeline mechanism, and
efficiently handles large-scale training datasets. In HPSVM, the heterogeneous hierarchical
memory is explored to optimize the bottleneck of data transfer. The P-packSVM (Zhu et al.
2009) parallelizes the stochastic gradient descent solver of SVM that directly optimizes the
primal objective with the help of a distributed hash table and sophisticated data packing strat-
egy. Other works utilize many-core GPUs to accelerate the sequential minimal optimization
(Platt 1999), and other architectures (You et al. 2015).

One of the most well known works in which hierarchical SVM technique was introduced
to improve the performance and quality of a classifier is Yu et al. (2003). The coarsesning
consists of creating a hierarchical clustered representation of the data points that are merged
pairwise using Euclidean distance criterion. In this work, only linear classifiers are discussed
and no inheritance and refinement ofmodel parameterswas introduced.A similar hierarchical
clustering framework was proposed for non-linear SVM kernels in combination with feature
selection techniques to develop an advanced intrusion detection system (Horng et al. 2011).
Another coarsening approach that uses k-means clustering was introduced in Hsieh et al.
(2014). In all these works, the quality of classifiers strictly depends on how well the data is
clustered using a particular clustering method applied on it.Our coarsening scheme is more
gradual and flexible than the clustering methods in these papers. Most of them, however,
can be generalized as algebraic multigrid restriction operators (will be discussed further) in
special forms. Also, in our frameworks, we emphasize several important aspects of training
such as coarse level models, imbalanced coarsening, and parameter learning that are typically
not considered in hierarchical SVM frameworks.

Multilevel divide-and-conquer SVM (DC-SVM) was developed using adaptive cluster-
ing and early prediction strategy (Hsieh et al. 2014). It outperforms previously mentioned
methods, so we compare the computational performance and quality of classification for
both DC-SVM and our proposed framework. The training time of DC-SVM for a fixed set of
parameters is fast. However, in order to achieve high quality classifiers a parameter fitting is
typically required. While DC-SVMwith parameter fitting is faster than state-of-the-art exact
SVMs, it is significantly slower than our proposed framework. Our experimental results
(that include the parameter fitting component) show significant performance improvement
on benchmark data sets in comparison to DC-SVM.

In several works, a scalable parallelization of hierarchical SVM frameworks is developed
to minimize the communication (You et al. 2015; Graf et al. 2004; Cui et al. 2017). Such
techniques canbeusedon topof our framework. Successful results obtainedusinghierarchical
structures have been shown specifically for multi-class classification (Cheong et al. 2004;
Hao et al. 2007; Khan et al. 2007; Puget and Baskiotis 2015). Another relevant line of
research is related to multilevel clustering and segmentation methods (Kushnir et al. 2006;
Fang et al. 2010; Sharon et al. 2006). They produce solutions at different levels of granularity
which makes them suitable for visualization, aggregation of data, and building a hierarchical
solution.
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1.3 Multilevel algorithmic frameworks

In this paper, we discuss a practical construction ofmultilevel algorithmic frameworks (MAF)
for SVM. These frameworks are inspired by the multiscale optimization strategies (Brandt
and Ron 2003). (We note that there exist several frameworks termedmultilevel SVMs. These,
however, correspond to completely different ideas.Wepreserve the terminology ofmultilevel,
and multiscale optimization algorithms). The main objective of multilevel algorithms is to
construct a hierarchy of problems (coarsening), each approximating the original problem
but with fewer degrees of freedom. This is achieved by introducing a chain of successive
restrictions of the problem domain into low-dimensional or smaller-size domains and solving
the coarse problems in them using local processing (uncoarsening) (Lovaglio and Vittadini
2013; Dhillon et al. 2005). The MAF combines solutions obtained by the local processing
at different levels of coarseness into one global solution. Such frameworks have several key
advantages that make them attractive for applying on large-scale data: they typically exhibit
linear complexity (see Sect. 3.3), and are relatively easily parallelized. Another advantage
of the MAF is its heterogeneity, expressed in the ability to incorporate external appropriate
optimization algorithms (as a refinement) in the framework at different levels. For example,
if some SVM model selection technique is found to be particularly successful in parameter
finding and obtaining high-quality solutions on some class of datasets, one can incorporate
this technique at all levels of MAF and accelerate it by (1) applying it locally, (2) combining
local solutions into global, and (3) inheriting parameters trained at coarse levels. These
frameworks are extremely successful in various practical machine learning tasks such as
clustering (Noack and Rotta 2009b), segmentation (Sharon et al. 2006), and dimensionality
reduction (Lovaglio and Vittadini 2013).

The major difference between typical computational optimization MAF, and those that
we introduce for SVM is the output of the model. In SVM, the main output is the set of the
support vectors which is usually much smaller at all levels of the multilevel hierarchy than
the total number of data points at the corresponding levels. We use this observation in our
methods by redefining the training set during the uncoarsening and makingMAF scalable. In
particular, we inherit the support vectors from the coarse scales, add their neighborhoods, and
refine the support vectors at all scales. In other words, we improve the separating hyperplane
throughout the hierarchy by gradual refinement of the support vectors until a global solution
at the finest level is reached. In addition, we inherit the parameters of model selection and
kernel from the coarse levels, and refine them throughout the uncoarsening.

1.4 Our contribution

We introduce novel methods of engineering fast and high quality multilevel frameworks
for efficient and effective training of nonlinear SVM classifiers. We also summarize and
generalize existing (Razzaghi and Safro 2015; Razzaghi et al. 2016) approaches. We discuss
various coarsening strategies, and introduce the weighted aggregation framework inspired by
the algebraic multigrid (Brandt and Ron 2003) which significantly improves and generalizes
all of them. In the weighted aggregation framework, the data points are either partitioned in
hierarchical fashion where small groups of data points are aggregated or split into fractions
where different fractions of the same data point can belong to different aggregates. Without
any notable loss in the quality of classifiers, multilevel SVM frameworks exhibit substantially
faster running times and are able to generate several classifiers at different coarse-grained
resolutions in one complete training iteration which also helps to interpret these classifiers
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qualitatively (see Sect. 3.4.8). Depending on the size and structure of the training set, the
resulting final decision rule of our multilevel classifier will be either exactly the same as in
single SVM model or composed as voting of several smaller SVM models.

The proposed multilevel frameworks are particularly effective on imbalanced data sets
where fitting model parameters is the most computationally expensive component. Our
multilevel frameworks can be parallelized as any algebraic multigrid algorithm and their
superiority is demonstrated on several publicly available and industrial data sets. The perfor-
mance improvement over the best sequential state-of-the-art nonlinear SVM libraries with
high classification quality is significant. For example, on the average, for large data sets we
boost the performance 491 times over LibSVM and 45 times over the DC-SVM (which was
chosen because of its superiority over other hierarchical methodsmentioned above). On some
large datasets, a full comparison was impossible because of infeasible running time of the
competitive approaches which demonstrates superiority of the proposed method.

2 Preliminaries

Wedefine the optimization problems underlying SVMmodels for binary classification. Given
a set J that contains n data points xi ∈ R

d , 1 ≤ i ≤ n, we define the corresponding labeled
pairs (xi , yi ), where each xi belongs to the class determined by a given label yi ∈ {−1, 1}.
Data points with positive labels are called the minority class which is denoted by C+ with
|C+| = n+. The rest of the points belongs to the majority class which is denoted by C−,
where |C−| = n−, i.e., J = C+ ∪ C−. Solving the following convex optimization problem
by finding w, and b produces a hyperplane with maximum margin between C+, and C−

minimize
1

2
‖w‖2 + C

n∑

i=1

ξi (1)

subject to yi (w
Tφ(xi ) + b) ≥ 1 − ξi , i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n.

The mapping of data points to higher dimensional space is done by φ : Rd → R
p (d ≤

p) to make two classes separable by a hyperplane. The term slack variables {ξi }ni=1 are
used to penalize misclassified points. The parameter C > 0 controls the magnitude of the
penalization. The primal formulation is shown at (1) which is known as the soft margin SVM
(Wu and Zhou 2005).

The weighted SVM (WSVM) addresses imbalanced problems with assigning different
weights to classes with parameters C+ and C−. The set of slack variables is split into two
disjoint sets {ξ+

i }n+
i=1, and {ξ−

i }n−
i=1, respectively. In WSVM, the objective of (1) is changed

into

minimize
1

2
‖w‖2 + C+

n+∑

i=1

ξ+
i + C−

n−∑

j=1

ξ−
j . (2)

Solving the Lagrangian dual problem using kernel functions k(xi , x j ) = φ(xi )Tφ(x j )
produces a reliable convergence which is faster than methods for primal formulations (1)
and (2). In our framework, we use the sequential minimal optimization solver implemented
in LibSVM library (Chang and Lin 2011). The role of kernel functions is to measure the
similarity for pairs of points xi and x j . We present computational results with the Gaussian
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kernel (RBF), exp(−γ ||xi−x j ||2), which is known to be generally reliablewhenno additional
assumptions about the data are known. Experiments with other kernels exhibit improvements
that are similar to those with RBF if compared with regular (W)SVM solver with the same
kernels. Technically, using another kernel requires only switching to it in the refinement at
the uncoarsening stage (see Algorithm 3) including parameter inheritance, if required. We
note that some of our experimental datasets are not solved well with non-RBF kernels used
in regular (W)SVM solver, so here we demonstrate the results only for RBF.

In order to achieve an acceptable quality of the classifier, many difficult data sets require
reinforcement of (W)SVM with tuning methods for such model parameters as C , C+, C−,
and kernel function parameters (e.g., the bandwidth parameter γ for RBF kernel function).
This is one of the major sources of running time complexity of (W)SVM models which we
are aiming to improve.

In our framework we use the adapted nested uniform design (NUD) model selection
algorithm to fit the parameters (Huang et al. 2007) which is a popular model selection
technique for (W)SVM. The main intuition behind NUD is that it finds the close-to-optimal
parameter set in an iterative nested manner. The optimal solution is calculated in terms of
maximizing the required performancemeasure (such as accuracy andG-mean). Although, we
study binary classification problems, it can easily be extended to the multi-class classification
using either directed multi-class classification or transforming the problem into multiple
independent binary (W)SVMs that can be processed independently in parallel.

Two-level problem In order to describe the (un)coarsening algorithms, we introduce the two-
level problem notation that can be extended into full multilevel hierarchy (see Fig. 1).Wewill
use subscript (·) f and (·)c to represent fine and coarse variables, respectively. For example,
the data points of two consecutive levels, namely, fine and coarse, will be denoted by J f ,
and Jc, respectively. The sets of fine and coarse support vectors are denoted by sv f , and svc,
respectively. We will also use a subscript in the parentheses to denote the level number in the
hierarchy where appropriate. For example, J(i) will denote the set of data points at level i .

Proximity graphs All multilevel (W)SVM frameworks discussed in subsequent sections are
based on different coarsening schemes for creating a hierarchy of data proximity graphs.
Initially, at the finest level, J is represented as two k-nearest neighbor (kNN) graphs
G+

(0) = (C+, E+), and G−
(0) = (C−, E−) for minority and majority classes, respectively,

where each xi ∈ C+(−) corresponds to a node in G+(−)
(0) . A pair of nodes in G+(−)

(0) is con-

nected with an edge that belongs to E+(−) if one of them belongs to a set of k-nearest
neighbors of another. In practice, we are using approximate k-nearest neighbors graphs
(AkNN) as our experiments with the exact nearest neighbor graphs do not demonstrate any
improvement in the quality of classifiers whereas computing them is a time consuming task.
In the computational experiments, we used FLANN library (Muja and Lowe 2009, 2014).
Results obtained with other approximate nearest neighbor search algorithms are found to
be not significantly different. Throughout the multilevel hierarchies, in two-level represen-
tation, the fine and coarse level graphs will be denoted by G+(−)

f = (C+(−)
f , E+(−)

f ), and

G+(−)
c = (C+(−)

c , E+(−)
c ), respectively. All coarse graphs, except G+(−)

(0) are obtained using
respective coarsening algorithm.

Multiplemodels In the proposedmultilevel frameworks, when the data is too big, independent
training of several subsets of the data will be performed. As a result, a training on k subsets
will produce k models that will be denoted as {(sv f ,C

+
f ,C−

f , γ f )i }ki=1 to avoid introducing
additional index for each parameter.
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3 Multilevel support vector machines

The multilevel frameworks discussed in this paper include three phases (see Fig. 1), namely,
gradual training set coarsening, coarsest support vector learning, and gradual support vector
refinement (uncoarsening). In the training set coarsening phase, we create a hierarchy of
coarse training set representations, J(i), in which each next-coarser level (i + 1) contains a
fewer number of points than in the previous level (i) such that the coarse level learningproblem
approximates the fine level problem. The coarse level training points are not necessarily the
same fine level points (such as in Razzaghi and Safro 2015) or their strict small clusters (such
as in Yu et al. 2003).

When the size of training set is sufficiently small to apply a high quality training algorithm
for given computational resources, the set of coarsest support vectors and model parameters
are trained. We denote by M+(−) the upper limit for the sizes of coarsest training sets which
should depend on the ability of available computational resources to solve the problemexactly
in a reasonable time. In the uncoarsening, both the support vectors and model parameters
are inherited from the coarse level and improved using local refinement at the fine level. The
uncoarsening is continued from the coarsest to the finest levels as is shown in Fig. 1. Separate
coarsening hierarchies are created for classes C+, and C−, independently.

The main driving routine, mlsvm-•, of a multilevel (W)SVM framework is presented in
Algorithm 1. The SVM cost-sensitive framework is designed similarly with a parameter C ,
see Eq. (1). In Algorithm 1, the functions coarsen−•, uncoarsen−•, and refine−• are

Fig. 1 Multilevel SVM coarsening-uncoarsening framework scheme
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the building blocks of the multilevel framework discussed in this paper. These functions
will differ from multilevel framework to framework. The bullet “•” will be replaced with
corresponding method names.

Algorithm 1mlsvm-•(C+
f ,C

−
f ,G

+
f ,G

−
f , M

+, M−): multilevel (W)SVMmain driving rou-
tine. The functions coarsen−•, uncoarsen−•, and refine−• are the building blocks of the
multilevel framework. They will differ from multilevel framework to framework. “•” will be
replaced by method names described in following sections.

1: if |J f | ≤ M+ + M− then � Solve the problem exactly if the data is small
2: (sv f ,C

+,C−, γ ) ← train (W)SVM model on J f (including NUD)
3: else � Create and solve a coarse problem. Then refine its solution at level f .
4: if |C+

f | ≤ M+ then C+
c ← C+

f ; G+
c ← G+

f

5: else (C+
c ,G+

c ) ← coarsen−•(C+
f ,G+

f )

6: if |C−
f | ≤ M− then C−

c ← C−
f ; G−

c ← G−
f

7: else (C−
c ,G−

c ) ← coarsen−•(C−
f ,G−

f )

8: (svc, C̃+, C̃−, γ̃ ) ← mlsvm-•(C+
c ,C−

c , G
+
c , G

−
c , M

+, M−)
9: sv f ← uncoarsen−•(svc) � Project support vectors from c to f and add neighbors

� Get one or more (k) models if the data is too big at current level
10: {(sv f ,C

+,C−, γ )i }ki=1 ← refine−•(sv f , C̃
+, C̃−, γ̃ )

11: if f is the finest level then
12: Return k models {(sv f ,C

+,C−, γ )i }ki=1
13: else if f is not the finest level and k = 1
14: Return (sv f ,C

+,C−, γ )1 � Return a single model with updated parameters
15: else if f is not the finest level and k > 1

� Return all support vectors from all models and last inherited single parameter set
16: Return (∪{sv f from model i}ki=1, C̃

+, C̃−, γ̃ )

3.1 Iterative independent set multilevel framework

We describe the coarsening only for class C+
f as the same process works for C−

f . The multi-
level framework (mlsvm-IIS, Algorithm 1) with iterative independent set coarsening applies
several iterative passes in each of which a set of fine points is selected and added to the set
of coarse pointsC+

c . In order to cover the space of points uniformly, this is done by selecting
independent sets of nodes in G+

f . The independent set is a set of vertices in a graph whose
node-induced subgraph has no edges. We present this coarsening in details in Razzaghi and
Safro (2015).

Coarsening (coarsen-IIS in Algorithm 1) We start with selecting a random independent
set of nodes (or points), I0, using one pass over all nodes (i.e., choose a random node to
I0, eliminate it with its neighbors from the graph, and choose the next node). The obtained
independent set I0 is added to the set of coarse points. Then, we remove I0 from the graph
and repeat the same process to find another independent set I1 which is also added to the
set of coarse points. The iterations are repeated until

∑
k |Ik | ≤ Q|C+

f |, where Q is a
parameter controlling the size of coarse level space. In our experiments, Q = 0.5. However,
experimenting with different Q ∈ [0.4, .., 0.6] does not affect the quality demonstrating the
robustness of this parameter. For too small Q, the coarsening might be too fast and, thus,
similar to clustering-based coarsening. The process for C−

f is similar.
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Coarsest level (line 2, Algorithm 1) At the coarsest level ρ, when |J(r)| ≤ M+ + M− 

|J(0)|, we can apply an exact (or computationally expensive) algorithm for training the coars-
est classifier. Typically, |J(ρ)| depends on the available computational resources. However,
one can also consider some criteria of separability betweenC+

(ρ), andC
−
(ρ) (Wang 2008), i.e.,

if a fast test exists or some helpful data properties are known. In all our experiments, we used
a simple criterion limiting |J(ρ)| to 500. Processing the coarsest level includes an application
of NUD (Huang et al. 2007) model selection to get high-quality classifiers on the difficult
data sets. To this end, we obtained a solution of the coarsest level, namely, sv(ρ), C

+
(ρ), C

−
(ρ),

and γ(ρ).

UncoarseningGiven the solution of coarse level c, the primary goal of the uncoarsening is to
interpolate and refine this solution for the current fine level f . Unlike many other multilevel
algorithms, in which the inherited coarse solution contains projected variables only, in our
case, we inherit not only svc but also parameters for model selection. This is important
because the model selection is an extremely time-consuming component of (W)SVM, and
can be prohibitive at fine levels of the hierarchy. However, at the coarse levels, when the
problem is much smaller than the original, we can apply much heavier methods for the
model selection almost without any loss in the total complexity of the framework.

Algorithm 2 uncoarsen-IIS(svc): uncoarsening at level f

1: (N+
f , N−

f ) ← Find nearest neighbors of support vectors svc in G+
f and G−

f

2: T ← svc ∪ N+
f ∪ N−

f � T is a new training set for refinement
3: Return T

Algorithm 3 refine-IIS(sv f , C̃+, C̃−, γ̃ ): refinement at level f
1: if |sv f | < Qt then
2: CO ← (C̃+, C̃−); γ O ← γ̃

3: (sv f ,C
+
f ,C−

f , γ f ) ← train (W)SVM using NUD (or similar technique) initialized with (CO , γ O )

4: Return sv f , C
+
f , C

−
f , γ f

5: else
6: C+

f ← C̃+; C−
f ← C̃−; γ f ← γ̃ � Inherit the coarse parameters

7: CL ← partition sv f into K (almost) equal size clusters
8: ∀k ∈ CL find P nearest opposite-class clusters
9: {(sv f ,C

+
f ,C−

f , γ f )i }ki=1 ← train (W)SVMs on pairs of nearest clusters with inherited initial param-

eters C+
f , C

−
f , γ f , and generate k models

10: Return k models {(sv f ,C
+
f ,C−

f , γ f )i }ki=1
11: end if

The uncoarsening and refinement are presented in Algorithms 2 and 3, respectively. After
the coarsest level is solved exactly and reinforced by the model selection (line 2 in Algo-
rithm 1), the coarse support vectors svc and their nearest neighbors (in our experiments no
more than 5) in both classes (i.e., N+

f and N−
f ) initialize the fine level training set T (lines 1,

2 in Algorithm 2). This completes uncoarsen-IIS (the uncoarsening of svc), and T initializes
sv f .

In Algorithm 3, the refinement first verifies if |sv f | is still small (relatively to the existing
computational resources, and the initial size of the data) for applyingmodel selection, i.e., if it
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is less than a parameter Qt , then we use coarse parameters C̃+(−), and γ̃ as initializers for the
current level NUD grid search, and re-train (lines 2, 3 in Algorithm 3). Otherwise, the coarse
C̃+(−), and γ̃ are inherited in C+(−)

f , and γ f (line 6 in Algorithm 3). Then, being large for a
direct application of the (W)SVM, T is partitioned into several equal size clusters [using fast
solver of balanced k-partitioning (Buluç et al. 2016)], and pairs of nearest opposite clusters
are trained (see details in Sect. 3.4.6). The obtained K models are returned (lines 7–10 in
Algorithm 3). If the current level f is finest then we return all models (line 12 in Algorithm 1)
otherwise a returned union of support vectors and parameter initializations will pass to the
next level (see line 16 in Algorithm 1). We note that partition-based retraining can be done
in parallel, as different pairs of clusters are independent. Moreover, the total complexity
of the algorithm does not suffer from reinforcing the partition-based retraining with model
selection.

This coarsening scheme is one of the fastest and easily implementable. While the entire
framework (including uncoarsening) is definitely much faster than a regular (W)SVM solver
such as LibSVM (which is used in our implementation as a refinement), it is not the fastest
among the multilevel SVM frameworks. There is a typical trade-off in discrete multilevel
frameworks (Chevalier and Safro 2009; Safro et al. 2008), namely, when the quality of coars-
ening suffers, the most work is done at the refinement. A similar independent set coarsening
approach was used in multilevel dimensionality reduction (Fang et al. 2010). However, in
contrast to that coarsening scheme, we found that using only one independent set (including
possible maximization of it) does not lead to the best quality of classifiers. Instead, a more
gradual coarsening makes the framework much more robust to the changes in the parameters
and the shape of data manifold.

3.2 AMGmultilevel framework

The algebraicmultigrid (AMG) (W)SVMmultilevel framework (mlsvm-AMG,Algorithm1)
is inspired by the AMG aggregation solvers for computational optimization problems such as
Safro et al. (2015), Leyffer and Safro (2013), Kushnir et al. (2006), Safro and Temkin (2011).
Its first version was briefly presented in Sadrfaridpour et al. (2017). The AMG coarsening
generalizes the independent set and clustering (Hsieh et al. 2014) based approaches leverag-
ing a high quality coarsening and flexibility of AMG which belongs to the same family of
multiscale learning strategies with the same main phases, namely, coarsening, coarsest scale
learning, and uncoarsening. However, instead of eliminating a subset of the data points, in
AMG coarsening, the original problem is gradually restricted to smaller spaces by creating
aggregates of fine data points and their fractions (which is an important feature of AMG),
and turning them into the data points at coarse levels. The main mechanism underlying the
coarsening phase is the AMG (Trottenberg and Schuller 2001; Brandt and Ron 2003) which
successfully helps to identify the interpolation operator for obtaining a fine level solution
from the coarse aggregates. In the uncoarsening phase, the solution obtained at the coarsest
level (i.e., the support vectors and parameters) is gradually projected back to the finest level
by interpolation and further local refinement of support vectors and parameters. A critical
difference between AMG approach and the earlier work of Razzaghi et al. (2015) is that in
AMG approach the coarse level support vectors are not the original data points prolongated
from the finest level. Instead, they are centroids of aggregates that contain both full fine-level
data points and their fractions.
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Framework initialization The AMG framework is initialized with G+(−)
0 with the edge

weights that represent the strength of connectivity between nodes in order to “simulate” the
following interpolation scheme applied at the uncoarsening, in which strongly coupled nodes
can interpolate solution to each other. In the classifier learning problems, this is expressed
as a similarity measure between points. We define a distance function between nodes (or
corresponding data points) as an inverse of the Euclidean distance. More advanced distance
measure approaches such as Brannick et al. (2006), Chen and Safro (2011) are often essential
in similar multilevel frameworks.

Coarsening Phase (see Algorithm 4, coarsen-AMG) We describe the two-level process of
obtaining the coarse level training setC+

c with corresponding G+
c given the current fine level

G+
f and its training set (e.g., the transition from level f to c). The majority class is coarsened

similarly.
The process is started with selecting seed nodes that will serve as centers of coarse level

nodes, i.e., the aggregates at level f . Coarse nodes will correspond to the coarse data points
at level c. Structurally, each aggregate must include one full seed f -level point, and possibly
several other f -level points and their fractions. Intuitively, it is equivalent to grouping points
inC+

f intomany small subsets allowing intersections,where each subset of nodes corresponds
to a coarse point at level c. During the aggregation process,most coarse pointswill correspond
to aggregates of size greater than 1 (because, throughout the hierarchy, they accumulate many
fine points and their fractions), so we introduce the notion of a volume vi ∈ R+ for all i ∈ C+

f
to reflect the importance of a point or its capacity that includes finest-level aggregated points
and their fractions. We also introduce the edge weighting function w : E+

f → R≥0 to reflect
the strength of connectivity and similarity between nodes.

In Algorithm 4, we show the details of AMG coarsening. In the first step (line 2), we
compute the future-volumes ϑi for all i ∈ C+

f to determine the order in which f -level points
will be tested for declaring them as seeds, namely,

ϑi = vi +
∑

j∈Γi∩C+
f

v j · w j i∑

k∈Γ j∩C+
f

w jk
, (3)

where Γi is the neighborhood of node i in G
+
f . The future-volume ϑi is defined as a measure

[that is often used in multilevel frameworks (Safro et al. 2008)] of how much an aggregate
seeded by a point i may potentially grow at the next level c. This is computed in linear time.

We assume that in the finest level, all volumes are ones. We start with selecting a dom-
inating set of seed nodes S ⊂ C+

f to initialize aggregates. Nodes that are not selected to S

remain in F such that C+
f = F ∪ S. Initially, the set F is set to be C+

f , and S = ∅ since no

seeds have been selected. After that, points with ϑi > η · ϑ , i.e., those that are exceptionally
larger than the average future volume are transferred to S as the most “representative” points
(line 3). Then, all points in F are accessed in the decreasing order of ϑi updating S iteratively
(lines 7–11), namely, if with the current S, and F , for point i ∈ F ,

∑
j∈S wi j/

∑
j∈C+

f
wi j

is less than or equal to some threshold Q,1 i.e., the point is not strongly coupled to already
selected points in S, then i is moved from F to S.

The points with large future-volumes usually have a better chance to serve as seeds and
become centers of future coarse points. Selecting too few seeds (and then coarse level points)
causes “overcompressed” coarser levelwhich typically leads to the classification quality drop.
Therefore, in order to keep sufficiently many points at the coarse level, the parameter Q is

1 Similar parameter Q that controls the speed of coarsening appears in coarsen-IIS.
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set to 0.4-0.6. It has been observed that in most AMG algorithms, Q > 0.6 is not required
(however, it depends on the type and goals of aggregation). In our experiments Q = 0.5, and
η = 2. Other similar values do not significantly change the results.

Algorithm 4 coarsen-AMG(C+
f ,G

+
f ): AMG coarsening

1: S ← ∅, F ← C+
f � start select seeds for coarse nodes

2: Calculate using Eq. (3) ∀i ∈ F ϑi , and the average ϑ̄

3: S ← nodes with ϑi > η · ϑ

4: F ← V f \ S
5: Recompute ϑi ∀i ∈ F
6: Sort F in descending order of ϑ

7: for i ∈ F do

8: if

⎛

⎜⎝
∑
j∈S

wi j /
∑

j∈J+
f

wi j

⎞

⎟⎠ ≤ Q then

9: move i from F to S
10: end if
11: end for � end select seeds for coarse nodes
12: Build interpolation matrix P according to Eq. (4)
13: Build coarse graph G+

c with edge weights using Eq. (5)
14: Define volumes of coarse points using Eq. (6)
15: Compute coarse points C+

c using Eq. (7)
16: Return (C+

c ,G+
c )

When the set S is selected, we compute the AMG interpolation matrix P ∈ R
|C+

f |×|S| that
is defined as

Pi j =

⎧
⎪⎨

⎪⎩

wi j/
∑
k∈Γi

wik if i ∈ F, j ∈ Γi

1 if i ∈ S, j = I (i)
0 otherwise

⎫
⎪⎬

⎪⎭
, (4)

where Γi = { j ∈ S | i j ∈ E+
f } is the set of i th seed neighbors, and I (i) denotes the index

of a coarse point at level c that corresponds to the fine level aggregate around seed i ∈ S.
Typically, in AMGmethods, the number of non-zeros in each row is limited by the parameter
called the interpolation order or caliber (Brandt and Ron 2003) (see further discussion about r
and Table 6). This parameter, r , controls the complexity of a coarse-scale system (the number
of non-zero elements in the matrix of coarse k-NN graph). It limits the number of fractions a
fine point can be divided into (and thus attached to the coarse points). If a row in P contains
too many non-zero elements then it is likely to increase the number of non-zeros in the coarse
graphmatrix. In multigrid methods, this number is usually controlled by different approaches
that measure the strength of connectivity (or importance) between fine and coarse variables
[see discussion and implementation in Ron et al. (2011)].

Using the matrix P , the aggregated data points and volumes for the coarse level are
calculated. The edge between points p = I (i) and q = I ( j) is assigned with weight

wpq =
∑

k �=l
Pki · wkl · Pl j . (5)

The volume for the aggregate I (i) in the coarse graph is computed by
∑

j
v j Pji , (6)
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i.e., the total volume of all points is preserved at all levels during the coarsening. The coarse
point q ∈ C+

c seeded by i = I−1(q) ∈ C+
f is represented by

∑

j∈Ai

Pj,q · j, (7)

where Ai is a set of fine points in aggregate i . This set is extracted from the column of P
that corresponds to aggregate i by considering rows j with non-zero values.

The stopping criteria for the coarsening depends on the available computational resources
that can be used in order to train the classifier at the coarsest level. In our experiments, the
coarsening stops when the size is less than a threshold (typically, 500 points) that ensures a
fast performance of the LibSVM dual solver.

Uncoarsening (see Algorithm 4, uncoarsen-AMG) The uncoarsening of AMG multilevel
framework is similar to that of the mlsvm-IIS. The main difference is in lines 1, 2 in Algo-
rithm 2. Instead of defining the training set for the refinement at level f as

T ← svc ∪ N+
f ∪ N−

f ,

all coarse support vectors are uncoarsened by adding to T all elements of the corresponding
aggregates, namely,

T ← ∅; ∀p ∈ svc ∀ j ∈ Ap T ← T ∪ j . (8)

The rule in (8) means the following: (1) take all c-level support vectors p, (2) find all f -
level points that are aggregated in c-level support vectors, and (3) add them to T . The basic
refinement, refine-AMG, is similar to refine-IIS.

3.3 Complexity of multilevel framework

The complexity of MAF for (W)SVM consists of three parts, namely, generating approx-
imated k-NN graphs of both classes, coarsening and uncoarsening. The complexity of
generating approximate k-NN graphs is based on FLANN library implementation (Muja and
Lowe 2009, 2014) that was used in our experiments. It includes construction of a k-means
tree that is leveraged to search for approximate nearest neighbors. The overall complexity of
FLANN is O(|J | · d · (log n′/ log K )) where d is the data dimensionality, n′ is the number
of inner nodes the k-means tree, and K is the number of clusters or branching factor for the
k-means. When we compare the running time of 1 V-cycle of our solver and that of paral-
lelized FLANN preprocessing, we observe that FLANN does not significantly increases the
running time of the entire framework when we parametrize it to find 10 nearest neighbors.

In the coarsening phase, we need to consider the complexity of coarsening the approxi-
mated k-NN graphs of C+ and C− including aggregation of the data points. The complexity
of coarsening is similar to that ofAMGapplied on graphG = (V , E)which is proportional to
|V |+|E |, where |E | ≈ k|V |, where k is the number of nearest neighbors. In our experiments,
we found that no data set requires k > 10 to improve the quality of classification. Because
we do not anticipate to obtain exceptionally high-degree nodes during the coarsening, we
also do not expect to observe very fast increasing density of nonzero features (nnz) in data
points. Thus, we bound the complexity of coarsening with O(nnz(J )) (or O(|J |) for low
dimensional data) without having hidden coefficients, in practice.

The complexity of the uncoarsening mostly depends on that of the underlying QP solver
(call it QPS, such as LibSVM) applied at the refinement stage. Another factor that affects the
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complexity is the number of support vectors foundat each scalewhich is typically significantly
smaller than the number of data points. Typically, the complexity will be approximately
O(nnz(J )) + O(QPS(p points)) · |support vectors|/p, where p is the number of parts, the
set of support vectors is split to if partitioning is applied. Typically, if the application does
not include very dense data, the component O(nnz(J )) is much smaller than O(|J | · d).
Overall, the complexity of the entire framework is linear in the number of data points.

The computational time obtained in our experiments and the amount of work per unit is
presented in Sect. 4. In particular, in Table 14 we demonstrate the computational time per
data point and per feature value. In particular, in Fig. 3, we present the change in running
time while training the model with increasingly larger parts of the dataset.

3.4 Engineeringmultilevel framework

The AMG framework generalizes manymultilevel approaches by allowing a “soft” weighted
aggregation of points (and their fractions) in contrast to the “strict” clustering (Hsieh et al.
2014) and subset based aggregations such as our mlsvm-IIS (Razzaghi and Safro 2015). In
this section we describe a variety of improvements we experimented with to further boost
the quality of the multilevel classification framework, and improve the performance of both
the training and validation processes in terms of the quality and running time. All of them
are applicable in both “strict” or “soft” coarsening schemes.

3.4.1 Imbalanced classification

One of the major advantages of the proposed coarsening scheme is its natural ability to cope
with the imbalanced data in addition to the cost-sensitive and weighted models solved in
the refinement. When the coarsening is performed on both classes simultaneously, and in a
small class the number of points reaches an allowed minimum, this level is simply copied
throughout the rest of levels required to coarsen the big class. Since the number of points
at the coarsest level is small, this does not affect the overall complexity of the framework.
Therefore, the numbers of points in both classes are within the same range at the coarsest
level regardless of how imbalanced they were at the fine levels. Such training on the balanced
data mitigates the imbalance effects and improves the performance quality of trained models.

3.4.2 Coarse level density problem

Both mlsvm-IIS and mlsvm-AMG do not change the dimensionality during the coarsening
which potentially may turn into a significant computational bottleneck for a large-scale data.
In many applications, a high-dimensional data is sparse, and, thus, even if the number of
points is large, the space requirements are still not prohibitive. Examples include text tf-
idf data and categorical features that are converted into a binary representation. While the
mlsvm-IIS coarsening selects original (i.e., sparse) points for the coarse levels, the mlsvm-
AMG aggregates points using a linear combination such as in Eq. (7). Even when the original
j ∈ Ai are sparse, the points at coarse levels may eventually become much denser than the
original points.

The second type of coarse level density is related to the aggregation itself. When f -level
data points are divided into several parts to join several aggregates, the number of edges in
coarse graphs is increasing when it is generated by Lc ← PT L f P (subject to Lc diagonal
entry correction). Finest level graphs that contain high-degree nodes have a good chance to
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generate very dense graphs at the coarse levels if their density is not controlled. This can
potentially affect the performance of the framework.

The coarse level density problem is typical to most AMG and AMG-inspired approaches.
We control it by filtering weak edges and using the order of interpolation in aggregation. The
weak edges not only increase the density of coarse levels but also may affect the quality of
the training process during the refinement. In mlsvm-AMG framework, we eliminate weak
edges between i and j if wi j < θ · avgki {wki } and wi j < θ · avgk j {wk j } where avg{·} is the
average of corresponding adjacent edge weights. We experimented with different values of θ
between 0.001 and 0.005 which was typically a robust parameter that does not require much
attention.

The order of interpolation, r , is the number of nonzeros allowed per row in P . A single
nonzero j th entry in row i , Pi j = 1, means that a fine point i fully belongs to aggregate j
which leads to creation of small clusters of fine points without splitting them. Typically, in
AMG methods, increasing r improves the quality of solvers making them, however, slower.
We experiment with different values of r and conclude that high interpolation orders such as
2 and 4 perform better than 1. In the same time, we observed that there is no practical need
to increase it more (see further discussion and example in Sect. 4.2).

3.4.3 Validation for model selection

The problem of finding optimal parameters (i.e., the model selection) is important for achiev-
ing a better quality onmany data sets. Typically, this component is computationally expensive
because repetitive training is required for different choices of parameters. A validation data is
then required to choose the best trained model. A performance of model selection techniques
is affected by the quality and size of the validation data. (We note that the test data for which
the computational results are presented remains completely isolated from any training and
validation.)

The problem of a validation set choice requires a special attention in multilevel frame-
works because the models at the coarse levels should not necessarily be validated on the
corresponding coarse data. As such, we propose different approaches to find the most suit-
able types of validation data. We developed the following approaches to choose validation
set for multilevel frameworks, namely, coarse sampling (CS), coarse cross k-fold (CCkF),
finest full (FF), and fine sampling (FS).

CS The data in J+
(i) and J−

(i) is sampled and one part of it (in our experiments 10% or 20%) is
selected for a validation set formodel selection. In other words, the validation is performed on
the data at the same level. This approach is extremely fast on the data in which the coarsening
is anticipated to be uniform without generating a variability in the density of aggregation in
different parts of the data. Typically, its quality is acceptable on homogeneous data. However,
qualitatively, this approach may suffer from a small size of the validation data in comparison
to the size of test data.

CCkF In thismethodwe apply a complete k-fold cross validation at all levels using the coarse
data from the same level. The disadvantage of this method is that it is more time consuming
but the quality is typically improved. During the k-fold cross validation, all data is covered.
With this method, the performance measures are improved in comparison to the CS but the
quality of the finest level can degrade because of potential overfitting at the coarse levels.

FF This method exploits a multilevel framework by combining a coarse training set J+(−)
c

with a validation set that is a whole finest level training set J+(−)
(0) . The idea behind this
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approach is to choose the best model which increases a required performance measure (such
as accuracy, and G-mean) of coarse aggregates with respect to the original data rather than
the aggregates. This significantly increases the quality of final models. However, this method
is time consuming on very large data sets as all original points participate in validation.

FS This method resolves the complexity of FF by sampling J+(−)
(0) to serve as a validation

set at the coarse levels. The size of sampling should depend on computational resources.
However, we note that we have not observed any drop in quality if it is more than 10% of the
J+(−)

(0) . Both FF and FS exhibit the best performance measures.

3.4.4 Underlying solver

At all iterations of the refinement and at the coarsest level we used LibSVM (Chang and Lin
2011) as an underlying solver by applying it on the small subsets of data (see lines 3 and
9in Algorithm 3). Depending on the objective Eqs. (1) or (2), SVM or WSVM solvers are
applied. In this paper we report the results of WSVM in which the objective Eq. (2) is given
by

minimize
1

2
‖w‖2 + C

⎛

⎝W+
n+∑

i=1

ξ+
i + W−

n−∑

j=1

ξ−
j

⎞

⎠ , (9)

where the optimal C and γ are fitted using model selection, and the class importance coef-
ficients are W+ and W−. While for the single-level WSVM, the typical class importance
weighting scheme is

W+ = 1

|J+| , W− = 1

|J−| , (10)

in MAF, the aggregated points in each class have different importance due to the different
accumulated volume of finer points. The aggregated points which represent more fine points
are more important than aggregated points which represent small number of fine points.
Therefore, theMAF approach for calculating the classweights is based on sumof the volumes
in each class, i.e.,

W+ = 1
∑

i∈J+
vi

, W− = 1
∑

i∈J−
vi

. (11)

This method, however, ignores the importance of each point in its class. We find that the
most successful penalty scheme is the one that is personalized per point, and adapt (11) to
be

∀i ∈ J+(−) Wi = W+(−) vi
∑

j∈J+(−)

v j

. (12)

In other words, we consider the relative volume of the point in its class but also multiply it
by an inverse of the total volume of the class which gives more weight to a small class. This
helps to improve the correctness of a small class classification.
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3.4.5 Expanding training set in refinement

Typically, in many applications, the number of support vectors is much smaller than |J |. This
observation allows some freedom in exploring the space around support vectors inherited
from coarse levels. This can be done by adding more points to the refinement training set in
attempt to improve the quality of a hyperplane. We describe several possible strategies that
one can follow in designing a multilevel (W)SVM framework.

Full disaggregation This is a basic method presented in (8) in which all aggregates of coarse
support vectors contribute all their elements to the training set. It is a default method in
mlsvm-AMG.
k-distant disaggregation In some cases, the quality can be improved by adding to T the
k-distant neighbors of aggregate elements. In other words, after (8), we apply

∀p ∈ T T ← T ∪ N+(−)
f (p), (13)

where N+(−)
f (p) is a set of neighbors of p inG+(−)

f depending on the class of p. Similarly, one
can add points within distance k from the aggregates of inherited support vectors. Clearly, this
can only improve the quality. However, the refinement training is expected to be increasingly
slower especially when the G+(−)

f contains high-degree nodes. Even if the finest level graph
nodes are of a small degree, this could happen at the coarse levels if a proper edge filtering
and limiting interpolation order are not applied. In very rare cases, we observed a need for
adding distance 2 neighbors.

Sampling aggregates In some cases, the coarse level aggregates may become very dense
which does not improve the quality of refinement training. Instead, it may affect the running
time. One way to avoid of unnecessary complexity is to sample the elements of aggregates.
A better way to sample them than a random sampling (after adding the seed) is to order them
by the interpolation weights Pi j . The ascending order which gives a preference to the fine
points that are split across more than one aggregate was the most successful option in our
experiments. Fine non-seed points whose Pi j = 1 are likely to have high similarity with the
seeds which does not improve the quality of the support vectors.

3.4.6 Partitioning in the refinement

When the number of uncoarsened support vectors at level f is too big for the available com-
putational resources, multiple small-size models are trained and either validated or used as
a final output. Small-size models are required for applying model selection in a reasonable
computational time. For this purpose we partition the current level training sets C+(−)

f (see
lines 7–10 in Algorithm 3) into k parts of approximately equal size using fast graph partition-
ing solvers (Buluç et al. 2016). Note that applying similar graph clustering strategies may
lead to highly imbalanced parts whichwill make thewhole process of refinement acceleration
useless.

In bothmlsvm-AMG andmlsvm-IIS, we leverage the graphs of both classes G+
f and G

−
f

with the inverses of Euclidean distance between nodes playing the role of edge weights. After
both graphs are partitioned, two sets of approximately equal size partitions, Π+

f and Π−
f are

created. For each part πi ∈ Π+
f ∪ Π−

f we compute its centroid ci in order to estimate the
nearest parts of opposite classes and train multiple models by pairs of parts.

The training by pairs of parts works as follows. For each ci we find the nearest c j such that
i and j are in different classes and evaluate at most |Π+

f |+|Π−
f |models for different choices
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of (πi , π j ) pairs (without repetitions which often appear in practice making the process fast).
The set of all generated models is denoted byM f . We note that the training of such pairs is
independent and can be easily parallelized.

There are multiple ways one can test (or validate) a point using all models “voting”. The
simplest strategy which performs well on many data sets is a majority voting. However, the
most successful way to generate a prediction was a voting by the relative distance from the
test point t to the weighted center of the segment connecting ci and c j , namely,

xi j =
ci

∑
q∈πi

vq + c j
∑

q∈π j
vq

∑
q∈πi∪π j

vq
, (14)

where vq is the volume of point q . For all pairs of nearest parts i and j , the label of t is
computed as

sign

(∑
i j∈M f

li j (t)d−1(t, xi j )
∑

i j∈M f
d−1(t, xi j )

)
, (15)

where li j (t) is a label of i j model for point t , and d(·, ·) is a distance function between
two points. We experimented with several distance functions to express the proximity of
parts (i.e., the way we choose pairs (πi , π j )) and d(·, ·), namely, Euclidean, exponential, and
Manhattan. The quality of final models obtained using Euclidean distance was the highest.

If the partitioning refinement is applied at the finest level then Algorithm 1 outputs all
generated finest level models, and the prediction works according to Eq. (15). Otherwise, if
the partitioning refinement occurs in the middle levels then the next finer level will receive a
union of all support vectors from the models (line 16 in Algorithm 1) and model parameters
inherited from last level in which a single model was trained. We note that it often might be
the case that a partitioning refinement generates models with relatively small total number
of support vectors such that at the next finer level, their union can be considered as an input
to train a single model.

3.4.7 Model selection

The MAF allows a flexible design for model selection techniques such as various types of
parameter grid search (Chapelle et al. 2002), NUD (Huang et al. 2007) that we use in our
computational experiments, and other search approaches (Lin et al. 2008; Bao et al. 2013;
Zhang et al. 2010). A mechanism that typically works behind most of such search techniques
evaluates different combinations of parameters (such asC+,C−, and γ ) and chooses the one
that exhibits the best performance measure. Besides the general applicability of model selec-
tion because the number of inherited and disaggregated support vectors (in the uncoarsening
of mlsvm-IIS and mlsvm-AMG) is typically smaller than that of the corresponding training
set, the MAF has the following advantages.

Fast parameter search In many cases, there is no need to test all combinations of the
parameters. The inherited c-level parameters can serve as a center point for their refinement
only. For example, NUD suggests two-stage search strategy. In the first stage a wide range
of parameters is considered. In the second stage, the best combination from the first stage is
locally refined using a smaller search range. In MAF, we do not need to apply the first stage
as we only refine the inherited c-level parameters. Other grid search methods can be adjusted
in a similar way.
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Selecting suitable performance measures for the best model In MAF, a criterion for
choosing the best model throughout the hierarchy is more influential than that at the finest
level in non-MAF frameworks. Moreover, these criteria can be different at different levels.
For example, when one focuses on highly imbalanced sets, a criteria such as the best G-mean
could be more beneficial than the accuracy. We found that introducing 2-level criteria for
imbalanced sets such as (a) choose the best G-mean, and (b) among the combinations with the
best G-mean choose the best sensitivity, performs particularly good if applied at the coarse
levels when the tie breaker may be often required.

3.4.8 Models at different levels of coarseness

Over- and under-fitting are among the key problems of model selection and classifiers, in
general. The MAF successfully helps to tackle them. Throughout the hierarchy, we solve
(W)SVMmodels at different levels of coarseness. Intuitively, the coarsening procedure grad-
ually creates generalized (or summarized) representations of the finest level datawhich results
in generalized coarse hyperplanes which can also be used as final solutions. Indeed, at the
finest level, rich data can easily lead to over-fittedmodels, a phenomenon frequently observed
in practice (Dietterich 1995). In the same time, over-compressed data representationmay lead
to an under-fitted model because no fine details are considered. In a multilevel framework,
one can use models from multiple levels of coarseness because the most correct validation
is done against the fine level data in any case. Our experiments confirm that more than half
of the best models are obtained from the coarse (but not coarsest) and middle levels which
typically prevents over- and under-fitting.

If the best validation was obtained at the middle level and at this level the framework
generated multiple models using partitioning refinement (see Sect. 3.4.6) then these multiple
models will be the output of Algorithm 1 and the prediction will work according to Eq. (15).
In general, if the best models were produced by the finest and middle levels, we recommend
to use the middle level model to avoid potential over-fitting. This recommendation is based
on the observation that same quality models can be generated by different hyperplanes but
finest models may contain a large number of support vectors that can lead to over-fitting.
However, it is a general thought that requires further exploration. In our experiments, no
additional parameters or conditions are introduced to choose the final model. We simply
choose the best model among those generated at different levels.

4 Computational results

We compare our algorithms in terms of classification quality and computational performance
to the state-of-the-art sequential SVM algorithms LibSVM, DC-SVM, and fast Ensemble
SVM. The DC-SVM is a most recent, fast, hierarchical approach that outperforms other
hierarchical methods which was the reason to choose it for comparison. The classification
quality is evaluated using the following performance measures: sensitivity (SN), specificity
(SP), geometric mean (G-mean), and accuracy (ACC), Precision (PPV), and F1, namely,

SN = T P

T P + FN
, SP = T N

T N + FP
, G-mean = √

SP · SN,

ACC = T P + T N

FP + T N + T P + FN
, Precision (PPV) = T P

T P + FP
,
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Table 1 Benchmark data sets Dataset ε n f |J | |C+| |C−|
Advertisement 0.86 1558 3279 459 2820

Buzz 0.80 77 140707 27775 112932

Clean (Musk) 0.85 166 6598 1017 5581

Cod-rna 0.67 8 59535 19845 39690

EEG eye state 0.55 14 14980 6723 8257

Forest (Class 5) 0.98 54 581012 9493 571519

Hypothyroid 0.94 21 3919 240 3679

ISOLET 0.96 617 6238 240 5998

Letter 0.96 16 20000 734 19266

Nursery 0.67 8 12960 4320 8640

Protein homology 0.99 74 145751 1296 144455

Ringnorm 0.50 20 7400 3664 3736

Twonorm 0.50 20 7400 3703 3697

where T N , T P , FP , and FN correspond to the numbers of true negative, true positive,
false positive, and false negative points. Our main metric for comparison is G-mean which
measures the balance between classification quality on both themajority andminority classes.
This metric is illuminating for imbalanced classification as a low G-mean is an indication of
low-quality classification of the positive data points even if the negative points classification
is of high quality. This measure indicates over-fitting of the negative class and under-fitting
of the positive class, a critical problem in imbalanced datasets.

In all experiments the data is normalized using z-score. Each experimental result in the
following tables represents an average over 100 executions of the same type with different
random seeds. The computational time reported in all experiments contains generating the
k-NN graph. The computational time is reported in seconds unless it is explicitly mentioned
otherwise.

In each class, a part of the data is assigned to be the test data using k-fold cross validation.
We experimentedwith k = 5 and 10 (no significant differencewas observed). The experiments
are repeated k times to cover all the data as test data. The data randomly shuffled for each
k-fold cross validation. The presented results are the averages of performance measures for
all k folds. Data points which are not in the test data are used as the training data in J+(−).
The test data is never used for any training or validation purposes. TheMetis library (Karypis
and Kumar 1998) is used for graph partitioning during the refinement phase. We present the
details about data sets in Table 1. The imbalance of datasets is denoted by ε.

The Forest data set (Frank and Asuncion 2010) has 7 classes and different classes are
reported in the literature (typically, not the difficult ones). Class 5 is used in our experiments
as the most difficult and highly imbalanced. We report our results on other classes which are
listed in Table 2 for convenient comparison with other methods.

4.1 mlsvm-IIS results

The performancemeasures of single- (LibSVM) andmulti-level (W)SVMs are computed and
compared in Table 3. In our earlier work (Razzaghi and Safro 2015), it has been shown in that
the multilevel (W)SVM produces similar results compared to the single-level (W)SVM, but
it is much faster (see Table 4). All experiments on all data sets have been executed on a single
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Table 2 The Forest data set
classes with n f = 54 and
|J | = 581012

Class no. ε |C+| |C−|
Class 1 0.64 211840 369172

Class 2 0.51 283301 297711

Class 3 0.94 35754 545258

Class 4 1.00 2747 578265

Class 5 0.98 9493 571519

Class 6 0.97 17367 563645

Class 7 0.96 20510 560502

Table 3 Quality comparison using performance measures for multi- and single-level of (W)SVM

Dataset Multilevel Single-level

ACC SN SP G-mean Depth ACC SN SP G-mean

SVM

Advertisement 0.94 0.97 0.79 0.87 7 0.92 0.99 0.45 0.67

Buzz 0.94 0.96 0.85 0.90 14 0.97 0.99 0.81 0.89

Clean (Musk) 1.00 1.00 0.99 0.99 5 1.00 1.00 0.98 0.99

Cod-rna 0.95 0.93 0.97 0.95 9 0.96 0.96 0.95 0.96

EEG eye state 0.83 0.82 0.88 0.85 6 0.88 0.90 0.86 0.88

Forest (Class 5) 0.93 0.93 0.90 0.91 33 1.00 1.00 0.86 0.92

Hypothyroid 0.98 0.98 0.74 0.85 4 0.99 1.00 0.71 0.83

ISOLET 0.99 1.00 0.83 0.92 11 0.99 1.00 0.85 0.92

Letter 0.98 0.99 0.95 0.97 8 1.00 1.00 0.97 0.98

Nursery 1.00 0.99 0.98 0.99 10 1.00 1.00 1.00 1.00

Protein homology 1.00 1.00 0.72 0.85 18 1.00 1.00 0.80 0.89

Ringnorm 0.98 0.98 0.99 0.98 6 0.98 0.99 0.98 0.98

Twonorm 0.97 0.98 0.97 0.97 6 0.98 0.98 0.99 0.98

WSVM

Advertisement 0.94 0.96 0.80 0.88 7 0.92 0.99 0.45 0.67

Buzz 0.94 0.96 0.87 0.91 14 0.96 0.99 0.81 0.89

Clean (Musk) 1.00 1.00 0.99 0.99 5 1.00 1.00 0.98 0.99

Cod-rna 0.94 0.97 0.95 0.96 9 0.96 0.96 0.96 0.96

EEG eye state 0.87 0.89 0.86 0.88 6 0.88 0.90 0.86 0.88

Forest (Class 5) 0.92 0.92 0.90 0.91 33 1.00 1.00 0.86 0.93

Hypothyroid 0.98 0.98 0.75 0.86 4 0.99 1.00 0.75 0.86

ISOLET 0.99 1.00 0.85 0.92 11 0.99 1.00 0.85 0.92

Letter 0.99 0.99 0.96 0.99 8 1.00 1.00 0.97 0.99

Nursery 1.00 0.99 0.98 0.99 10 1.00 1.00 1.00 1.00

Protein homology 1.00 1.00 0.87 0.92 18 1.00 1.00 0.80 0.89

Ringnorm 0.98 0.97 0.99 0.98 6 0.98 0.99 0.98 0.98

Twonorm 0.97 0.98 0.97 0.97 6 0.98 0.98 0.99 0.98

Each cell contains an average over 100 executions includingmodel selection for each of them. Column “Depth”
shows the number of levels. The best results are highlighted in bold font
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Table 4 Comparison of computational time for single- (LibSVM) and multilevel (mlsvm-IIS and sparse
mlsvm-AMG) solvers in seconds

Dataset mlsvm-IIS Sparse mlsvm-AMG Single-level

Advertisement 196 91 412

Buzz 2329 957 70452

Clean (Musk) 30 6 167

Cod-rna 172 92 1611

EEG eye state 51 45 447

Forest (Class 5) 13785 13328 352500

Hypothyroid 3 3 5

ISOLET 69 64 1367

Letter 45 18 333

Nursery 63 33 519

Protein homology 1564 1597 73311

Ringnorm 4 5 42

Twonorm 4 4 45

Presented values include running time in seconds for both WSVM and SVM with model selection

machine Intel Core i7-4790, 3.60GHz, and 16 GB RAM. The framework ran in sequential
mode with no parallelization using Ubuntu 14.04.5 LTS, Matlab 2012a, Metis 5.0.2, and
FLANN 1.8.4.

4.2 mlsvm-AMG sparsity preserving coarsening

We have experimented with the light version of mlsvm-AMG in which instead of computing
a linear combination of f -level points to get c-level points (see Eq. 7), we prolongate the seed
to be a corresponding coarse point in attempt to preserve the sparsity of data points. In terms of
quality of classifiers, the performance measures of this method are similar to that of mlsvm-
IIS and in most cases (see Tables 4, 5) are faster. However, for Buzz and Cod-rna datasets,
although mlsvm-AMG performs faster, it results in a lower sensitivity and specificity (see
Table 5) for SVM, and higher sensitivity and specificity for WSVM (see Table 5) compared
to mlsvm-IIS. For Protein dataset, the sensitivity and specificity are improved compared to
mlsvm-IIS (see Table 5).

Weperform the sensitivity analysis of the order of interpolationdenotedby r (seeEq. 4), the
maximum number of fractions a point in F can be divided into, and compare the performance
measures and computational time in Table 6. As r increases, the performance measures such
as G-mean are improving until they do not stop changing for larger r . For example, for Buzz
dataset, the G-mean is not changing for larger r = 6. The presented results are computed
without advancements FF and FS (see Sect. 3.3). Using these techniques, we obtain G-mean
0.95 with r = 1 for Buzz data set. Higher interpolation orders increase the time but produce
the same quality on that data set.

4.3 Fullmlsvm-AMG coarsening

The best version of fullmlsvm-AMG coarsening whose results are reported, chooses the best
model from different scales (see Sect. 3.4.8). For this type of mlsvm-AMG, all experiments
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Table 5 Performance measures of regular and weighted mlsvm-AMG

Dataset Regular mlsvm-AMG Weighted mlsvm-AMG Depth

ACC SN SP G-mean ACC SN SP G-mean

Advertisement 0.95 0.99 0.64 0.86 0.95 0.99 0.64 0.86 2

Buzz 0.87 0.89 0.79 0.83 0.93 0.95 0.85 0.90 8

Clean 0.99 1.00 0.98 0.99 0.99 1.00 0.98 0.99 4

Cod-rna 0.86 0.85 0.88 0.87 0.89 0.89 0.90 0.90 6

EEG eye state 0.87 0.88 0.85 0.86 0.87 0.88 0.85 0.86 4

Forest (Class 5) 0.97 0.98 0.79 0.88 0.96 0.97 0.82 0.89 9

ISOLET 0.99 1.00 0.83 0.91 0.99 1.00 0.83 0.91 3

Letter 0.99 0.99 0.95 0.97 0.99 0.99 0.93 0.96 5

Nursery 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 4

Protein homology 0.97 0.97 0.86 0.91 0.97 0.97 0.85 0.91 5

Ringnorm 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.98 3

Twonorm 0.98 0.97 0.98 0.98 0.98 0.97 0.98 0.98 3

Column ‘Depth’ shows the number of levels in the multilevel hierarchy which is independent of SVM type
The best results are highlighted in bold font

Table 6 Sensitivity analysis of interpolation order r in mlsvm-AMG for Buzz data set

Metric r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 10

mlsvm-AMG SVM

G-mean 0.26 0.33 0.56 0.83 0.90 0.91 0.89

SN 0.14 0.33 0.68 0.89 0.98 0.97 0.95

SP 0.47 0.34 0.47 0.79 0.82 0.86 0.82

ACC 0.21 0.33 0.64 0.87 0.95 0.95 0.94

mlsvm-AMG WSVM

G-mean 0.26 0.40 0.60 0.90 0.93 0.93 0.94

SN 0.14 0.32 0.74 0.95 0.98 0.98 0.98

SP 0.47 0.5 0.48 0.85 0.88 0.89 0.89

ACC 0.21 0.35 0.69 0.93 0.96 0.97 0.97

Time(s) 389 541 659 957 1047 1116 1375

The best results are highlighted in bold font

on all data sets have been executed on a single machine with CPU Intel Xeon E5-2665 2.4
GHz and 64 GB RAM. The framework runs in sequential mode. The FLANN library is
used to generate the approximated k-NN graph for k = 10. Once it is generated for the
whole data set, its result is saved and reused. In all experiments all data points are randomly
reordered as well as for each k-fold, the indices from the original test data are removed and
reordered, so no order in which points are entered into QP solver affects the solution. Each
experiment includes a full k-fold cross validation. The average performance measures over
5 experiments each of which includes 10-fold cross validation are demonstrated in Tables 8
and 9. The best model among all the levels for each fold of cross validation is selected using
validation data (see Sect. 3.4.7). Using the best model, the performance measures over the
test data are calculated and reported as the final performance for this specific fold of cross
validation.
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Table 7 Performancemeasures and running time (in s for weighted single level SVM (LibSVM), andweighted
mlsvm-AMG on benchmark data sets in Lichman (2013) without partitioning

Single level WSVM mlsvm-AMG

Dataset ACC SN SP G-mean Time ACC SN SP G-mean Time

Advertisement 0.92 0.99 0.45 0.67 231 0.83 0.92 0.81 0.86 213

Buzz 0.96 0.99 0.81 0.89 26026 0.88 0.97 0.86 0.91 233

Clean (Musk) 1.00 1.00 0.98 0.99 82 0.97 0.97 0.97 0.97 7

Cod-RNA 0.96 0.96 0.96 0.96 1857 0.94 0.97 0.92 0.95 102

Forest 1.00 1.00 0.86 0.92 353210 0.88 0.92 0.88 0.90 479

Hypothyroid 0.99 1.00 0.75 0.86 3 0.98 0.83 0.99 0.91 3

ISOLET 0.99 1.00 0.85 0.92 1367 0.99 0.89 1.00 0.94 66

Letter 1.00 1.00 0.97 0.99 139 0.98 1.00 0.97 0.99 12

Nursery 1.00 1.00 1.00 1.00 192 1.00 1.00 1.00 1.00 2

Ringnorm 0.98 0.99 0.98 0.98 26 0.98 0.98 0.98 0.98 2

Twonorm 0.98 0.98 0.99 0.98 28 0.98 0.98 0.97 0.98 1

The best results are highlighted in bold font

For the purpose of comparison, the results of previous work using validation techniques
CS, CCkF without partitioning the training data during the refinement (Sadrfaridpour et al.
2017) are presented in Table 7.

The results using validation techniques FF, FS with partitioning the training data during
the refinement phase are presented in Tables 8, 9. We compare our performance and quality
with those obtained by LibSVM, DC-SVM, and Ensemble SVM. All results are related to
WSVM. The “Single level WSVM” column in Table 8 represents the weighted SVM results
produced by LibSVM. The LibSVM solver is slow but it produces almost the best G-mean
results over our experimental datasets except Advertisement, Buzz, and Forest. The DC-
SVM (Hsieh et al. 2014) produces better G-mean on 4 datasets compare to LibSVM (see
Table 8) but has lower G-mean on 4 other datasets. We choose DC-SVM not only because it
has a hierarchical framework (with different principles of (un)coarsening) but also because
it significantly outperforms other hierarchical techniques which are typically fast but not of
high quality.

The mlsvm-AMG demonstrates significantly better computation time than DC-SVM on
almost all datasets (see Table 8). Furthermore, mlsvm-AMG classification quality is signifi-
cantly better on both Advertisement and Buzz datasets compared to LibSVM. In addition, the
comparison between DC-SVM andmlsvm-AMG shows that the latter has higher G-mean for
Advertisement, Buzz, Clean, Cod, Ringnorm, and Twonorm datasets. A better performance
of DC-SVM is observed on Forest dataset if mlsvm-AMG is applying partitioning, i.e., when
the number of support vectors is big. However, in another version of multilevel framework
with validation techniques CS, CCkF without partitioning the training data during the refine-
ment, the G-mean raises to 0.90 (see Table 7). It is interesting to note that the dimensionality
of Advertisement dataset is the main source of complexity for the parameter fitting in both
LibSVM and mlsvm-AMG. All versions of multilevel SVMs produce G-mean 0.90 for this
dataset which is significantly higher than that of LibSVM which is 0.67. The results for this
dataset are not significantly different for DC-SVM which is, however, 3 times slower than
full mlsvm-AMG and 6 times slower than sparse mlsvm-AMG.

The computational time in seconds is demonstrated in Table 9. Our experiments exhibit
significant performance improvement.
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Table 9 Computational time in seconds for single level WSVM (LibSVM), DC-SVM and mlsvm-AMG

Dataset Single level WSVM DC-SVM mlsvm-AMG

Advertisement 231 610 213

Buzz 26026 2524 31

Clean (Musk) 82 95 94

Cod-RNA 1857 420 13

Forest 353210 19970 948

Letter 139 38 30

Nursery 192 49 2

Ringnorm 26 38 2

Twonorm 28 30 1

The best results are highlighted in bold font

Table 10 Larger benchmark data sets

Dataset ε n f |J | |C+| |C−|
SUSY 0.54 18 5000000 2287827 2712173

MNIST8M (Class 0) 0.90 784 4050003 399803 3650200

MNIST8M (Class 1) 0.89 784 4050003 455085 3594918

MNIST8M (Class 2) 0.90 784 4050003 402165 3647838

MNIST8M (Class 3) 0.90 784 4050003 413843 3636160

MNIST8M (Class 4) 0.90 784 4050003 394335 3655668

MNIST8M (Class 5) 0.91 784 4050003 365918 3684085

MNIST8M (Class 7) 0.90 784 4050003 399465 3650538

MNIST8M (Class 6) 0.90 784 4050003 422888 3627115

MNIST8M (Class 8) 0.90 784 4050003 394943 3655060

MNIST8M (Class 9) 0.90 784 4050003 401558 3648445

HIGGS 0.53 28 11000000 5170877 5829123

4.3.1 Large datasets

Large datasets SUSY and Higgs are available at UCI repository (Lichman 2013). The
MNIST8M was downloaded from LibSVM data repository. Half of each class was ran-
domly sampled to make classification more difficult. All the methods (our and competitors’)
are benchmarked using Intel Xeon (E5-2680v3) with 128Gb memory.

The experiments with DC-SVM have not been finished after 3 full days of running and
its performance is not presented because of unrealistic slowness of the method. Therefore, it
is not comparable with mlsvm-AMG on large datasets. The LibSVM performs slower than
DC-SVM on these datasets and is also not presented. Although, fast linear SVM solvers are
beyond the scope of this work, we compare the mlsvm-AMG with the LibLinear (Fan et al.
2008) that is significantly faster than both DC-SVM and LibSVM. We note that linear SVM
solvers can also be used as the refinement in multilevel frameworks. However, in practice,
we do not observe a need for this because nonlinear SVM refinement is already fast enough
in our multilevel framework. Large datasets are presented in Table 10.

The results for performance measures and computational time are presented in Tables 11
and 12. The mlsvm-AMG produces higher G-means on SUSY, HIGGS, and 8 (out of 10)
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Table 12 Computational time in s for single level WSVM (LibLinear), DC-SVM/LibSVM and mlsvm-AMG
on larger benchmark data sets

Dataset LibLinear DC-SVM and
LibSVM

mlsvm-AMG

SUSY 1300 Stopped or failed after
3 days without any
result

1116

MNIST8M (Class 0) 1876 11411

MNIST8M (Class 1) 859 15441

MNIST8M (Class 2) 1840 17398

MNIST8M (Class 3) 2362 10547

MNIST8M (Class 4) 1448 13014

MNIST8M (Class 5) 2360 13353

MNIST8M (Class 6) 1628 10092

MNIST8M (Class 7) 1747 16789

MNIST8M (Class 8) 2626 17581

MNIST8M (Class 9) 1650 21611

HIGGS 4406 3283

The best results are highlighted in bold font

Table 13 Performance measures
and running time (in s) for all
classes of Forest dataset using
full mlsvm-AMG

Dataset ACC SN SP G-mean PPV Time

Class 1 0.73 0.79 0.69 0.74 0.60 926

Class 2 0.70 0.78 0.62 0.70 0.67 215

Class 3 0.90 0.99 0.90 0.94 0.39 1496

Class 4 0.92 1.00 0.92 0.96 0.99 3231

Class 5 0.80 0.96 0.80 0.88 0.07 948

Class 6 0.86 0.95 0.95 0.90 0.17 2972

Class 7 0.91 0.87 0.91 0.89 0.28 2269

of classes in the MINST8M datasets. On classes 8, 5, and 9 of MNIST8M we have an
improvement of 24%, 6% and 5%, respectively. On the average, the G-mean for all larger
datasets are 5% higher for mlsvm-AMG in comparison to LibLinear. The mlsvm-AMG
is faster than LibLinear on SUSY and HIGGS datasets and slower on MNIST8M dataset.
However, this slowness is eliminated if linear SVM solver is used in the refinement. The
results for seven classes of Forest dataset are presented in Table 13. The statistics of G-mean
variability is presented in Fig. 2 which confirms the robustness of the proposed method.

In many cases, we observe a faster than linear behavior of our framework. An example
is shown in Fig. 3. When we use only a part of the dataset SUSY for training the model
(horizontal axis), the computational time (vertical axis) is increasing slower than linearly.
Such behavior can be observed when the number of support vectors is relatively small which
is one of the main assumptions of this method. Another example with a larger number of
features for MNIST8M is presented in Fig. 4.

The robustness of parameter Q (see Algorithm 4, line 8), which determines the size of the
coarse level is also an important question. In AMG and AMG-inspired algorithms, a typical
setting is to make Q ∈ [0.4, . . . , 0.6] unless a special reason for a faster aggregation allows
more aggressive compression of the problem without significant loss in the solution quality.

123



1908 Machine Learning (2019) 108:1879–1917

Fig. 2 Eachboxplot (horizontal axis) showsvariability of theG-mean (vertical axis).A small standarddeviation
is observed in all cases

Table 14 Complexity analysis Dataset |J | n f |J | · n f
μs

point
μs

value

Nursery 13K 19 246.2K 232 12

Twonorm 7.4K 20 148K 405 20

Ringnorm 7.4K 20 148K 541 27

Letter 20K 16 320K 100 6

Cod-rna 59.5K 8 476.3K 100 13

Clean (Musk) 6.6K 166 1.1M 909 6

Advertisement 3.3K 1558 5.1M 31107 20

Buzz 140.7K 77 10.8M 1628 21

Forest 581K 54 31.4M 207 4

Susy 5M 18 90M 223 12

Higgs 11M 28 308M 298 11

mnist 4M 4.1M 784 3.2G 6673 9

Here we observe that a similar range for Q is generally robust (see Fig. 5). In general, in
multilevel learning, over-compression with too small Q is not recommended unless we know
that a data is easily separable (or well clustered).

Finally, we present the computational time in terms of the amount of work per unit for all
datasets in Table 14. In “ μs

point ” and “ μs
value ” columns, we present the computational time in

microseconds per data point and one feature value in data point, respectively.
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Fig. 3 Scalability of mlsvm-AMG on growing training set of SUSY dataset. Each point represents the training
time (vertical axis) when a certain part of the full training set (horizontal axis) is used. The numbers above
points represent the G-mean performance measure. For example, if we use 60% of the training set to train the
model, the running time is about 400 seconds, and the G-mean is 0.72

Fig. 4 Scalability of mlsvm-AMG on growing training set of MNIST8M dataset using class 1. The 5M data
points from the MNIST8M dataset are sampled to create a similar size comparison with SUSY dataset for a
larger number of features
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Fig. 5 The mlsvm-AMG using parameter Q ∈ [0.35, . . . , 0.7] generates the best results on the benchmark
data sets

4.3.2 Disaggregation with neighbors

When the computational resources allow and the k-NN graph is not extremely dense, one
may add neighboring nodes to the corresponding disaggregated support vector nodes. While
this adds flexibility to train the models (with more added data points), in most cases, it is
an unnecessary step that increases the running time. The Forest, Clean, and Letter are the
three data sets which demonstrate an improvement on classification quality by adding the
distance-1 neighbors. The results for including the distant neighbors for the Letter data set
experimenting with multiple coarse neighbor size reveal the largest improvement for r = 1
(see Fig. 6).

4.3.3 Using partitioning in the refinement

When the training set becomes too big during the refinement (at any level), a partitioning
is used to accelerate the performance. In Table 15, we compare the classification quality
(G-mean), the size of training data, and the computational time. In columns “Partitioned”
(“Full”), we show these three factors when (no) partitioning is applied. When no partitioning
is used, we train the model with the whole training data at each level. The partitioning starts
when the size of training data is 5000 points. Typically, at the very coarse levels the size of
training data is small, so in the experiment demonstrated in Table 15, we show the numbers
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Table 15 The G-mean, training set size, and computational time are reported for levels 1–5 of Forest data set
for Class 5

G-mean Size of training set Computational time

Level Full Partitioned Full Partitioned Full Partitioned

5 0.69 0.69 4387 4387 373 373

4 0.68 0.72 18307 18673 1624 1262

3 0.79 0.77 47588 43977 6607 1528

2 0.79 0.72 95511 33763 17609 917

1 0.72 0.74 138018 24782 27033 576

The partitioning is started with 5000 points

Fig. 6 Effect of considering
distance-1 disaggregation during
the refinement phase on the
G-mean for the Letter data set

beginning level 5, the last level at which the partitioning was not applied. The results in this
and many other similar experiments show significant improvement in computational time
when the training data is partitioned with very minor loss in G-mean. The best level in the
hierarchy is considered as the final level which is selected based on G-mean. Therefore,
with no partitioning we obtain G-mean 0.79 and with partitioning it is 0.77 which are not
significantly different results.

4.3.4 Comparison with fast ensemble SVM

A typical way to estimate the correctness of a multilevel solver is to compare its performance
to those that use the local refinement techniques only. The EnsembleSVM (Claesen et al.
2014) is a free software package containing efficient routines to perform ensemble learning
with SVM models. The implementation exhibits very fast performance avoiding duplicate
storage and evaluation of support vectors which are shared between constituent models. In
fact, it is similar to our refinement and can potentially replace it in the multilevel framework.
The comparison of our method with EnsembleSVM is presented in Table 16. While the run-
ning time is incomparable because of the obvious reasons (the complexity of EnsembleSVM
is comparable to that of our last refinement only), the quality of our solver is significantly
higher.
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Table 16 Ensemble SVM on benchmark data sets

Dataset Ensemble SVM mlsvm-AMG

ACC SN SP G-mean ACC SN SP G-mean

Advertisement 0.52 0.41 0.95 0.57 0.95 0.85 0.96 0.91

Buzz 0.65 0.36 0.99 0.59 0.94 0.95 0.94 0.95

Clean (Musk) 0.85 0.00 0.85 0.00 0.99 0.99 0.99 0.99

Cod-RNA 0.90 0.82 0.94 0.88 0.93 0.97 0.91 0.94

Forest 0.98 0.32 0.99 0.57 0.77 0.96 0.80 0.88

Letter 0.97 0.75 0.98 0.86 0.98 0.99 0.98 0.99

Nursery 0.68 1.00 0.68 0.82 1.00 1.00 1.00 1.00

Ringnorm 0.68 0.61 1.00 0.78 0.98 0.98 0.98 0.98

Twonorm 0.75 0.89 0.76 0.81 0.98 0.98 0.97 0.98

The best results are highlighted in bold font

5 Conclusions

In this paper we introduced novel multilevel frameworks for nonlinear support vector
machines. and discussed the details of several techniques for engineering multilevel frame-
works that lead to a good trade-off between quality and running time. We ran a variety of
experiments to compare several state-of-the-art SVM libraries and our frameworks on the
classification quality and computation performance. The computation time of the proposed
multilevel frameworks exhibits a significant improvement compared to the state-of-the-art
SVM libraries with comparable or improved classification quality. For large data sets with
more than 100,000 and up to millions of data points, we observed an improvement of compu-
tational time within an order of magnitude in comparison to DC-SVM and more two orders
of magnitude in comparison to LibSVM. The improvement for larger datasets is even more
significant. The code for mlsvm-AMG is available at https://github.com/esadr/mlsvm.

There exist several attractive directions for the future research. One of them is to study
in-depth why generating models at the coarse scales eliminates the effects of over- and
under-fitting, a phenomena that we observed in many data sets. Another research avenue is
to develop an uncoarsening scheme which chooses an appropriate kernel type at the coarse
levels (where the training set size is relatively small) and continues with the best choice to
fine levels. Indeed, if we successfully fit the parameters of kernel at the coarse levels, why
not to try to choose the kernel type as well?

Acknowledgements We would like to thank three anonymous reviewers whose valuable comments helped
to improve this paper significantly. This material is based upon work supported by the National Science
Foundation under Grants Nos. 1638321 and 1522751.

Appendix A: Summary of parameters

In Table 17, we mention recommended ranges of parameters for multilevel (W)SVM frame-
works that we tested in our experiments.
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Table 17 Recommended parameter values

Parameter Reference Description

r Sect. 3.2 Recommended range [1, .., 4]. Almost all results were produced
with r = 1 except Cod-RNA (r = 2) and SUSY (r = 4).

θ Sect. 3.4.2 Recommended range [0.001, .., 0.05]. Almost all results were
produced with θ = 0.05 except Letter (θ = 0.005) and Musk
(θ = 0.001) that produced slightly better results with less
aggressive filtering.

d Eq. (15) Euclidean distance was used in all experiments.

Qt Algorithm 3 Our simple single processor hardware allowed to start partitioning
at 5000 data points. However, Qt in a range [3000, .., 5000]
produced similar results.

η Algorithm 4 In all experiments η = 2.

K Algorithm 3 To preserve fast partitioning and training by parts, we used
K = �|J(i)|/1000� for all levels i . No difference when changing
this value was observed.

M+ and M− Algorithm 1 In all experiments M+ = M− = 300.

|J(ρ)| Algorithm 1 The size of the coarsest level was always |J(ρ)| = 500 to maintain
fast performance of model selection at the coarsest level.

Q coarsen-IIS and
coarsen-AMG
(Algorithm 4)

In all experiments Q = 0.5. No significant difference was observed
for Q ∈ [0.4, ..., 0.6], see Fig. 5.

C and γ NUD in Algorithm 3 The NUD model selection algorithm starts parameter search in
range of 2−10 < C < 210 and 2−10 < γ < 210 for the RBF
kernel using the standard 9-13 scheme described in Huang et al.
(2007).

Appendix B: Standard deviation for mlsvm-AMG

See Table 18.

Table 18 Standard deviations of
the performance measures for
mlsvm-AMG

Dataset ACC SN SP G-mean

Advertisement 0.01 0.04 0.01 0.02

Buzz 0.00 0.01 0.01 0.00

Clean (Musk) 0.00 0.00 0.00 0.00

Cod-RNA 0.00 0.00 0.00 0.00

Forest 0.01 0.01 0.01 0.00

Letter 0.00 0.01 0.00 0.00

Nursery 0.00 0.00 0.00 0.00

Ringnorm 0.00 0.00 0.00 0.00

Twonorm 0.00 0.00 0.01 0.00

SUSY 0.01 0.04 0.04 0.01

MNIST8M (Class 0) 0.01 0.00 0.01 0.01
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Table 18 continued Dataset ACC SN SP G-mean

MNIST8M (Class 1) 0.00 0.00 0.00 0.00

MNIST8M (Class 2) 0.02 0.02 0.02 0.02

MNIST8M (Class 3) 0.02 0.02 0.02 0.00

MNIST8M (Class 4) 0.02 0.01 0.02 0.01

MNIST8M (Class 5) 0.03 0.03 0.03 0.02

MNIST8M (Class 7) 0.02 0.02 0.02 0.02

MNIST8M (Class 6) 0.02 0.02 0.02 0.02

MNIST8M (Class 8) 0.03 0.03 0.04 0.01

MNIST8M (Class 9) 0.01 0.02 0.02 0.00

HIGGS 0.00 0.02 0.02 0.00
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