
Machine Learning (2019) 108:1395–1420
https://doi.org/10.1007/s10994-019-05801-6

Deep collective matrix factorization for augmented
multi-view learning

Ragunathan Mariappan1 · Vaibhav Rajan1

Received: 26 November 2018 / Accepted: 20 April 2019 / Published online: 17 May 2019
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019

Abstract
Learning by integrating multiple heterogeneous data sources is a common requirement in
many tasks. Collective Matrix Factorization (CMF) is a technique to learn shared latent
representations from arbitrary collections of matrices. It can be used to simultaneously com-
plete one or more matrices, for predicting the unknown entries. Classical CMF methods
assume linearity in the interaction of latent factors which can be restrictive and fails to cap-
ture complex non-linear interactions. In this paper, we develop the first deep-learning based
method, called dCMF, for unsupervised learning of multiple shared representations, that can
model such non-linear interactions, from an arbitrary collection of matrices.We address opti-
mization challenges that arise due to dependencies between shared representations through
multi-task Bayesian optimization and design an acquisition function adapted for collective
learning of hyperparameters. Our experiments show that dCMF significantly outperforms
previous CMF algorithms in integrating heterogeneous data for predictive modeling. Fur-
ther, on two tasks—recommendation and prediction of gene-disease association—dCMF
outperforms state-of-the-art matrix completion algorithms that can utilize auxiliary sources
of information.

Keywords Collective Matrix Factorization · Deep learning · Augmented multi-view
learning · Bayesian optimization · Recommendation · Gene-disease prioritization

1 Introduction

Pairwise relational data, found in many domains, can be represented as matrices. Matrix
completion, that predicts unknown entries in a matrix, is widely used in many applications,
e.g. in recommender systems (Koren et al. 2009), computer vision (Hu et al. 2013) and
bioinformatics (Natarajan and Dhillon 2014), to name a few. Often, the matrices are high-
dimensional, sparse, and with inherent redundancies. Sufficient information may be present

Editors: Karsten Borgwardt, Po-Ling Loh, Evimaria Terzi, and Antti Ukkonen.

B Vaibhav Rajan
vaibhav.rajan@nus.edu.sg

1 School of Computing, National University of Singapore, Singapore, Singapore

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05801-6&domain=pdf
http://orcid.org/0000-0002-6748-6864

1396 Machine Learning (2019) 108:1395–1420

e1

e4 e3 e2

X(3) X(2) X(1)

(a)

e4

e3

e2

X(2) X(1)

X(3)

e1

(b)

e1

e6
e4 e3

e2

e5

X(3) X(2) X(1)

X(5)

X(4)

(c)

Fig. 1 Examples of a multi-view setting, b recommendation setting: 4 entities e1, e2, e3, e4 and 3 relations
between the entities,matrices X (1), X (2), X (3); c augmentedmulti-view setting: 6 entities e1, e2, e3, e4, e5, e6
and 5 relations between the entities, matrices X (1), X (2), X (3), X (4), X (5)

in latent substructures, that can be approximated through low-rank factorizations, and used
in predictive models.

When information from multiple heterogeneous sources is available, predictive models
benefit from latent representations that model correlated shared structure. In multi-view
learning, views refer to measurements for the same subjects, that differ in source, datatype or
modality. Eachmatrix, representing a view, has a relationship between two entity types, along
each matrix dimension, and entity types may be involved in multiple views. For example,
in Fig. 1a, entity e1 could be patients and clinical data from three different sources (notes
X (1), images X (2), and diagnoses X (3)) may be used to obtain patient representations for
modeling risk of diseases.When auxiliary information aboutmultiple entity types are present,
they could be effectively utilized to obtain latent representations. For example, in hybrid
recommender systems, where side information matrices about users and movies are used
in addition to the historical user-rating matrix to obtain user and movie representations (in
Fig. 1b, X (1) is the user-rating matrix, X (2) has user-features and X (3) has movie-features).
These latent representations are then used to recommend movies to users.

Collective Matrix Factorization (CMF) is a general technique to learn shared represen-
tations from arbitrary collections of heterogeneous data sources (Singh and Gordon 2008).
CMF collectively factorizes the input set of matrices to learn a low-rank latent representation
for each entity type from all the views in which the entity type is present. It can be used
to simultaneously complete one or more matrices in the collection of matrices. Since CMF
models arbitrary collections of matrices, this setting is also referred to as augmented multi-
view learning (Klami et al. 2014). Figure 1c shows an example. Note that the augmented
multi-view setting can generalize to any collection of matrices and subsumes the multi-view
and recommendation settings.

Classical matrix factorization based approaches assume linearity in the interaction of
latent factors which can be restrictive and fails to capture complex non-linear interactions.
Modeling such non-linearities through neural models have significantly improvedmulti-view
learning approaches with two views (Andrew et al. 2013; Wang et al. 2015) and multiple
(but not augmented) views (Ngiam et al. 2011; Wang et al. 2017). A common approach
is the use of deep autoencoders to obtain shared representations that form latent factors.
However these methods cannot generalize to arbitrary collections of matrices. To use shared
representations from autoencoders within CMF, learning would involve optimizing entity-
specific autoencoder reconstruction losses as well as view-specific matrix reconstruction
losses. The latter induces dependencies between the autoencoder networks that may result
in simultaneous under-fitting in some networks and over-fitting in other networks (described

123

Machine Learning (2019) 108:1395–1420 1397

in Sect. 5.2). This makes collective learning of all latent representations challenging and, to
scale to arbitrary collections of matrices, necessitates automatic hyperparameter selection.

In this paper, we develop dCMF, a deep learning architecture for collective factorization
of arbitrary collection of matrices, that is, to our knowledge, the first deep augmented multi-
view learning method. dCMF overcomes the limitation of previous CMF models that cannot
capture complex non-linear interactions of latent factors. We address optimization chal-
lenges that arise due to dependencies between autoencoder representations within dCMF,
through multi-task Bayesian optimization and an acquisition function that is adapted for
collective learning of hyperparameters. Our experiments show that dCMF is better than
previous CMF algorithms at integrating heterogeneous data for predictive modeling and sig-
nificantly outperforms them on synthetic and real data. We demonstrate two applications of
dCMF in matrix completion tasks: movie recommendations and prediction of gene-disease
associations. In both tasks, dCMF significantly outperforms state-of-the-art algorithms on
benchmark datasets.

2 Related work

2.1 Multi-view learning

Canonical Correlation Analysis (CCA) (Hotelling 1936) that learns maximally correlated
features from two views has been the basis for many multi-view learning methods. Several
variants have been studied that illustrate the benefits of multi-view learning over models that
learn from concatenation of features in the views (Hardoon et al. 2004). Augmented multi-
view learning generalizes the setting to arbitrary collections of matrices where latent factors
are learnt through Collective Matrix Factorization (CMF) (Singh and Gordon 2008), thus
enabling learning fromauxiliary data sources. Tomodel view-specific noise and allowa subset
of matrices with shared structure independent of others, a group-wise sparse formulation was
designed in gCMF (Klami et al. 2014).

2.2 Deepmodels for multi-view learning

Deep learning based extensions of some of these models have been developed. Multi-modal
autoencoders were designed to learn shared representations frommultiple views, called Spli-
tAE (Ngiam et al. 2011). DCCA is a deep extension of CCA that maximizes correlation
between non-linearly extracted features from each view (Andrew et al. 2013). DCCAE com-
binesDCCAandSplitAE to get shared representations bymaximizing aCCA-based objective
(Wang et al. 2015). Thus DCCAE is designed for a multi-view setup with 2 views and 3 enti-
ties (e.g., only views X (1), X (2) in Fig. 1a) and obtains shared representations by maximizing
the canonical correlation between the unshared entities (e2, e3), regularized by the autoen-
coder reconstruction error. All these deep models benefit from the non-linearities captured
through the deep representations but are restricted to two input views.

There are supervised learningmethods thatmodelmulti-view data. For example, in CDMF
(Wang et al. 2017), a deep learning based solution is developed for the multi-view case (not
augmented multi-view) where each view differs in its modality. They factorize each view
into a modality-invariant factor and a modality-specific factor, where the latter is learnt using
a neural network. Being supervised, entity representation learning in these methods is guided

123

1398 Machine Learning (2019) 108:1395–1420

by application-specific labels. None of these deep learning approaches can be used to model
an arbitrary collection of matrices for unsupervised augmented multi-view learning.

2.3 Heterogeneous information networks

Another approach to representation of (augmented)multi-viewdata is throughHeterogeneous
Information Networks (HIN). A HIN contains multiple types of nodes (entities) and multiple
types of edges (relations between entities). HIN embeddings obtain vectorial representations
of nodes that preserve global structural properties of the network. Such embeddings can then
be used for link prediction, node classification or clustering. They have also been used for
recommendation (e.g., by Han et al. 2018; Shi et al. 2019). There are several approaches to
learn HIN embeddings, including some that use deep neural networks (Chang et al. 2015).
HIN models multiple relations between the same entities elegantly through multiple edge
types while CMF-based methods would require specifying a matrix-specific link functions to
model such relations. However, integrating side information such as node and edge attributes
in HIN embeddings is challenging (Cui et al. 2019). In contrast, matrix-based approaches
naturallymodel edge attributes (asmatrix entries) of any type—binary, ordinal or real-valued.
More details can be found in recent surveys (Shi and Philip 2017; Cui et al. 2019).

3 Background

3.1 Matrix factorization

For a matrix X ∈ R
m×n , a low-rank factorization aims to obtain latent factors U (1) ∈

R
m×K , U (2) ∈ R

n×K , such that X ≈ U (1) · U (2)T
, where the K < min(m, n) (see Fig. 2a).

The factors are learnt by solving the optimization problem: argminU ,V L(X , U (1) · U (2)T),

where L denotes a loss function (e.g., ||X − U (1) · U (2)T ||2F , where ||.||2F is the Frobenius
norm). Collaborative Filtering, for recommendations, uses such an approach where X is
the rating matrix. A common approach to solving this is through a convex relaxation that
minimizes the nuclear norm (the sum of singular values) of U (1) · U (2)T

, which is equivalent
to solving: min

X=U (1)·U (2)T ||U (1)||2F + ||U (2)||2F (Srebro and Shraibman 2005).

3.2 Collective Matrix Factorization (CMF)

CMF aims to jointly obtain low-rank factorizations of M matrices (indexed by m), X (m) =
[x (m)

i j], that describe relationships between E entities (e1, . . . eE), each with dimension de.

The entities corresponding to the rows and columns of the mth matrix are denoted by rm and
cm respectively. Figure 1 shows three examples. Each matrix is approximated by product of
low rank-K factors that form the representations of the associated row and column entities:
X (m) ≈ U (rm)U (cm)T

where U (e) = [u(e)
ik] ∈ R

de×K is the low-rank matrix for entity type
e. Any two matrices sharing the same entity type use the same low-rank representations as
part of the approximation, which enables sharing information. For example, in Fig. 1b, the
same latent factor U (e1) is used to reconstruct the three matrices X (1) ≈ U (e1)U (e2)T

, X (2) ≈
U (e1)U (e3)T

, X (3) ≈ U (e1)U (e4)T
. The latent factors are learnt by solving the optimization

problem:

123

Machine Learning (2019) 108:1395–1420 1399

argmin{U (e)∈Rde×K }e∈E

M∑

m=1

L
(

X (m), U (rm)U (cm)T
)

+
E∑

e=1

R
(

U (e)
)

(1)

where M is the total number of input matrices, E is the total number of entities and R is
a regularizer. For R(U (e)) = λ||U (e)||2F , Bouchard et al. (2013) show that this formulation
generalizes the nuclear norm for a single matrix to a collective nuclear norm defined on an
arbitrary set ofmatrices (with the reasonable assumption that a pair of entity types do not share
more than one view). Although this is a non-convex problem, in practice, solutions obtained
through Stochastic Gradient Descent yield good performance (Bouchard et al. 2013).

4 Problem statement

Given M matrices (indexed by m), X (m) = [x (m)
i j], that describe relationships between E

entities (e1, . . . eE), each with dimension de, we aim to jointly obtain latent representations of
each entityU (ei) and low-rank factorizations of each matrix X (m) ≈ U (rm) ·U (cm)T

, such that
U (ei) = f ei

θ ([X]ei) where f (.) is an entity-specific non-linear transformation parameterized
by θ and [X]ei denotes all matrices in the collection that contains a relationship of entity ei .
The entities corresponding to the rows and columns of the mth matrix are denoted by rm and
cm respectively.

We assume that the relationship between these matrices and the constituent E entities
is provided as a bipartite entity-matrix relationship graph G(VE , VM , D), where vertices
VE , VM represent entities and matrices respectively. Edges (ei , X (m)), (e j , X (m)) ∈ D are
present if there exists an input matrix X (m) ∈ VM capturing the relationship between the
entities ei , e j ∈ VE (see Fig. 2a, b).

5 Deep collective matrix factorization (dCMF)

Similar to the formulation in (1), we aim to learn entity-specific latent representations by
solving the following optimization problem:

argminθ,{U (e)∈Rde×K }e∈E

M∑

m=1

L
(

X (m), f rm
θ

([X]rm

) · (
f cm
θ ([X]cm)

)T
)

+
E∑

e=1

R
(

U (e)
)

(2)

We nowdescribe howwemodel f to induce non-linearity andR for regularization, to develop
the dCMF model.

There are several ways to model non-linearity (f). Common choices in unsupervised
learning include kernels, Restricted Boltzmann machine (RBM) (Hinton and Salakhutdinov
2006) and Autoencoders (Ngiam et al. 2011). Kernel machines are not recommended for
representation learning due to its over-reliance on the smoothness assumption, i.e., the value
of the learned function at a data point dependsmostly on the training examples that are closest
to it (Bengio et al. 2013). Instead Bengio et al. (2013) advocate nonparametric models such
as neural networks whose model complexity can be controlled through hyperparameters.
RBM is a stochastic generative model with intractable maximum likelihood function and
complex training procedures. In contrast, autoencoders can be trained efficiently and have
been used effectively for multi-view representation learning (Wang et al. 2015). The use of
autoencoders to model f also allows us to use the autoencoder reconstruction loss as the

123

1400 Machine Learning (2019) 108:1395–1420

≈U(1) U(2)
e1

e2

e1

e2

X
(1)
1,2

X
(1)
1,2

(a)

e1

e2

e3

e4

e6

e5

e1

e6

e4 e3

e2

e5

X
(5)
6,3

X
(3)
1,4 X

(2)
1,3X

(1)
1,2

X
(4)
5,2 X

(2)
1,3

X
(1)
1,2

X
(3)
1,4

X
(4)
5,2

X
(5)
6,3

G

(b)

lE(C(1), C(1)) lE(C(2), C(2))

N
et

w
o
rk

C
o
n
st

ru
ct

io
n

U(1)

C(1)

U(3)

C(3)

U(4)

C(4)

U(5)

C(5)

U(2)

C(2)

U(6)

C(6)

lR(X(1), U(1) · U(2)T)

Ge6

In
pu

t
T
ra

n
sf
o
rm

at
io
n

C(1)

X
(1)
1,2

X
(3)
1,4

X
(2)
1,3

⊕
e1

Ge1 Ge2 Ge3 Ge4 Ge5

⊕ ⊕ ⊕

C(3)

e3

X
(5)
6,3

T

X
(2)
1,3

T

C(4)

e4 X
(3)
1,4

T

C(5)C(2) C(6)

e6 X
(4)
6,3

e2

X
(1)
1,2

T

X
(4)
5,2

T

e5 X
(5)
5,2

(c)

Fig. 2 a Entity-matrix relationship graph for a single view. b A collection of views and its entity-matrix
relationship graph [square nodes: matrices, circular nodes: entities]. c dCMF model construction for the
example in (b)

regularizerR. Such autoencoder-based regularization has been used in DCCAE (Wang et al.
2015) for multi-view learning from two views. There are several autoencoder architectures
(Goodfellow et al. 2016) that can be used; we leave that investigation for future work. Here
we choose the simplest architecture with multiple fully-connected hidden layers.

Since entities can be shared across matrices, we have to obtain autoencoder-based shared
representations from multiple matrices simultaneously to enable sharing of information
across matrices. Further, this must be done in a way that can be generalized to an arbitrary
collection of input matrices. To accomplish this we design a neural architecture as described
in the following section. Generalizing to augmented multi-view learning, compared to rel-
atively simpler settings like multi-view learning (Fig. 1a), leads to non-trivial optimization
challenges that we discuss and address in later sections.

5.1 Model construction and training

There are two steps in dCMF model construction:

1. Input Transformation: For each entity ei , we create a new matrix C (i), that we call
concatenated matrix, by concatenating all the matrices containing entity ei , i.e., all the
matrices that are neighbors of ei in G(VE , VM , D). Note that we transform M input
matrices to E concatenated matrices, and a single input matrix (X (m)) may be used in

123

Machine Learning (2019) 108:1395–1420 1401

multiple concatenated matrices (C (i)). The concatenation ensures that for each entity, we
use the information from all available input matrices to learn its representation.

2. Network Construction: We then use E (dependent) autoencoders to obtain the latent
factors U (i) from the concatenated matrices C (i). For each entity ei our network has an
autoencoder whose input isC (i), and the decoding is represented byC (i)′ . The bottleneck
or encoding of each autoencoder, after training, forms the latent factor U (i). The latent
factors are learnt by training all the autoencoders together by solving:

argmin{U (e)∈Rde×K }E

M∑

m=1

lR

(
X (m), X (m)′) +

E∑

e=1

lE (C (e), C (e)′) (3)

where lE is the reconstruction loss between the autoencoder’s inputC (i) and the decoding
C (i)′; lR is the matrix reconstruction loss, where the reconstructed matrix X (m)′ = U (rm) ·
U (cm)T

of the view X (m) is obtained by multiplying the associated row and column
entity representations U (rm) and U (cm). We call the summations in Eq. (3) the matrix
reconstruction loss (LR) and autoencoder reconstruction loss (LE) respectively.

Thus, while CMF factorizes each matrix as X (m) ≈ U (rm) · U (cm)T
, dCMF performs

non-linear factorization using autoencoders as X (m) ≈ g(rm)
θ (C (rm)) · g(cm)

θ (C (cm)T
), where

gθ is the encoder corresponding to the entity, with parameter set θ , obtained by collectively
minimizing the sum of all the matrix reconstruction and autoencoder reconstruction losses
as described above.

Illustration In Fig. 2a we show a single matrix X (1)
1,2 and its two entities e1 and e2. The

corresponding entity-matrix graph below has 2 circular nodes for two entities and 1 square
node for the matrix. In Fig. 2b, we show the graph for the collection of 5 matrices and 6
entities (e1 to e6) (from Fig. 1c). Consider, for instance, the entity e1. There exists 3 matrices
with relationships of entity e1 with three other entities e2, e3 & e4. Hence there are 3 edges
from the node representing e1 ∈ VE to the nodes X (1), X (2), X (3) ∈ VM .

We illustrate dCMF model construction in Fig. 2c for the example from Fig. 2b. We
construct E = 6 autoencoders, one per entity. The autoencoder construction for entity e1 is
illustrated in the first column of Fig. 2c. We show the subgraph Ge1 consisting of 3 edges
corresponding to the 3 views X (1)

1,2, X (2)
1,3, X (3)

1,4. Hence C (1) = X (1)
1,2 ⊕ X (2)

1,3 ⊕ X (3)
1,4, where⊕ denotes row or columnwise concatenation of the matrices. To pictorially illustrate this

we show a miniature of the setup in Fig. 2b on top of each column in Fig. 2c, greying
out the boxes corresponding to the matrices involved in C (i) construction. We also show
C (i) as a block containing concatenated boxes (equal to the number of matrices C (i) is
composed of) with a label C (i) below each of the subgraphs which is also the input to the
corresponding autoencoder. Similarly we construct the autoencoder for e2 and the input C (2)

by concatenating matrices corresponding to the edges of Ge2 as illustrated in the second
column of Fig. 2c. Thus we have 6 columns in Fig. 2c for each of the 6 entities in setup
of Fig. 2b. To avoid clutter in Fig. 2c, we show only two examples of the autoencoder
reconstruction loss lE for entities e1 and e2 and one example matrix reconstruction loss lR

for the matrix X (1). In total there are E = 6 autoencoder reconstruction loss terms and
M = 5 matrix reconstruction loss terms. Note that this construction can be generalized to
any number of entities and matrices.

Notice that the input dimension, which depends on C (e), is different for each autoencoder
and the bottleneck layer dimension (the chosen low rank K) is common across all autoen-
coders. So, the number of layers for each autoencoder is a hyperparameter that is chosen
adaptively for each autoencoder as follows: We start with the autoencoder’s input dimension

123

1402 Machine Learning (2019) 108:1395–1420

obtained from C (i) and multiply it with a fraction fk (a hyperparameter) to get the size of
the first encoding layer. We then multiply the first encoding layer’s size again with fk to get
the second encoding layer’s size. We repeat this and continue to add layers until we cross K
which is the common encoding/bottleneck size for all the autoencoders. We add a decoding
layer corresponding to each of the encoding layer. This approach helps to adaptively decide
the number of layers and their size for each autoencoder based on their input size i.e. more
layers are added for inputs of higher dimension and vice-versa.

5.2 Optimization

dCMF learns the representation of all the input entities collectively by training all E autoen-
coders simultaneously. The objective function LR + LE is non-convex. Note that although
the autoencoder reconstruction losses in LE are independent to each of the autoencoders, the
matrix reconstruction losses inLR are dependent onmultiple autoencoders, through the latent
factors used in matrix reconstruction. Below we describe the problems that arise specifically
due to the augmented multi-view setup and how we address them.

Entity size, shape and interactions The entity-size dei = |ei | is the number of instances of
an entity ei i.e. count of rows/columns depending on whether it is the row/column entity of
the matrix. Recall that the concatenated matrix C (i) is constructed by concatenation of all the
matrices X (m) associated with an entity ei . The entity-shape of an entity ei is (p, q), where p
and q are the row and column dimensions of the correspondingmatrixC (i) respectively. Thus
by virtue of dCMF’s model construction p and q becomes the size and feature dimension
of the input to the autoencoder for learning the entity representation. Let entity-interactions
Nei be the number of matrices sharing entity ei . E.g., consider the entity e1 in Fig. 3a. The

matrix C (1) is constructed by row-wise concatenation of X (1)
1,2, X (3)

1,3. Here q = |e2| + |e3|,
p = |e1| and Ne1 = 2.

If q � p for an entity e then there may be under-fitting in the learning of U (e), since
the dimensionality of the autoencoder input C (i) is high and the number of samples are few.
The situation worsens if Ne is large i.e. the entity is related to many other entities, leading
to increasing dimensions in C (i). Pre-training or increasing the number of hidden layers of
the corresponding autoencoder may help in such conditions. On the other hand, if p � q
then it may lead to over-fitting, since the dimensionality of C (i) is low and the number of
samples are high. This may happen when the entity-size of each of the associated Ne entities
are all small. This can be addressed by adding suitable regularizers or through early stopping
during the training of the corresponding autoencoder. A schematic is shown in Fig. 3a. Thus,
|e|, p, q and Ne can all influence dCMF performance and require careful hyperparameter
selection, separately for each autoencoder, noting that in dCMF, the autoencoder losses are
not independent since LR depends on multiple autoencoders collectively. Since manually
tuning these hyperparameters is infeasible for arbitrary collection of matrices, we address
this problem through Bayesian optimization.

Mixed sparsity levels An augmented multi-view setup may contain both sparse and dense
matrices. E.g., in recommendation, the rating matrix is sparse but side information matrices
may be dense. If an autoencoder’s input is a concatenation of both sparse and dense matrices,
then the learnt representationwill be densewith potentiallymany small values in order to bring
down the autoencoder reconstruction loss lE . This results in a higher matrix reconstruction
error LR for the sparse matrices as the corresponding reconstructed matrices using dense
row and column entity representations are not sparse. To handle this one can attempt to learn

123

Machine Learning (2019) 108:1395–1420 1403

e1

e2

e3

e4

X(3)

X(2)

X(1)

C(1)

p

q

Overfitting: p q Underfitting: q p

p
q

q

p

(a)

Dense Entity
Representation

Dense
Sparse

e1

e6

e4 e3

e2

e5

X(2)X(3)

X(4)

X(5)

X(1)

X(1)

X(2)

X(4)

U(1)

U(2)

U(3)

U(5)

Sparse Entity
Representation

X(1)

X(2)

X(4)

U(1)

U(2)

U(3)

U(5)

(b)

Fig. 3 a Entity size, shape and interactions in dCMF. b Effect of mixed sparsity levels in dCMF

sparse representations using sparse autoencoders. But any dense matrix associated with the
entity with sparse representation will suffer from higher LR . We illustrate this in Fig. 3b for
the example in Fig. 2b with sparse X (1), X (3), X (5) and dense X (2), X (4). We can see that if
the learnt representations for U (.) are dense then it favours reconstruction of X (2) and X (4)

but not X (1). On the other-hand if the representations learnt are sparse then it favours the
reconstruction of X (1) but not X (2) and X (4).

Other autoencoder-based unsupervised deep learning algorithms do not face these chal-
lenges. For instance, the Improved Deep Embedded Clustering (IDEC) algorithm (Guo et al.
2017) aims to learn entity representations that favour clustering, using autoencoders, by
optimizing a clustering oriented loss regularized by the autoencoder reconstruction loss.
Although the objective function is similar, since they have a single autoencoder, problems
due to multiple dependencies (through matrix reconstruction loss in dCMF) do not arise.

Hyperparameter tuning

Manual tuning is infeasible for complex models with large number of hyperparameters and
complex models; and random search or grid search based approaches (Bergstra and Ben-
gio 2012) are either too time-consuming or not effective. In the case of dCMF, there are
many hyperparameters related to (a) Model construction and (b) Optimization. Hence dCMF
training devoid of hyperparameter tuning usually results in poor performance due to the
dependencies that may result in simultaneous over/under-fitting in different autoencoders as
described earlier. See “Appendix A” for a list of hyperparameters.

Hyperparameter tuning can be formulated as an optimization problem:

p∗ = argmin
p∈P

L(p) (4)

where p∗, from the B-dimensional hyperparameter space P denotes the optimal values for
all B hyperparameters and the objective function is the collective dCMF loss L = LE +LR .
Note that model training optimizes L with respect to the model parameters, and not the
hyperparameters. The functional form of L(p) is not known but its value, for any given input

123

1404 Machine Learning (2019) 108:1395–1420

p, can be computed. Thus, this is a black-box function optimization problem that has been
successfully addressed through Bayesian optimization (Snoek et al. 2012).

Multi-task Bayesian optimization (MTBO) We briefly explain multi-task Bayesian opti-
mization (MTBO) (for more details see Bergstra et al. 2011; Snoek et al. 2012; Swersky et al.
2013) before describing how dCMF adopts MTBO.

Bayesian optimization (BO) is a sequential model-based approach for solving the black-
box function optimization problem.The key idea is to learn a surrogate modelM that captures
our beliefs about the unknown objective function (L(p)). This model is learnt from data,Dn

= (p1,L1), . . . , (pn,Ln), that consists of sequential evaluations of L(p) for different values
of p. Generating this data sequence requires making the decision of which p to evaluate
next, at each step. This decision is made through an acquisition function α. These functions
are designed to have optima at points with high uncertainty in the surrogate model (thus
facilitating exploration) and/or at points with high predictive values in the surrogate model
(thus facilitating exploitation). Acquisition functions have known functional forms and are
usually easier to optimize than the original objective function. The surrogatemodel is updated
sequentially with each observed data point. Over multiple steps, the landscape of the black-
box function (L(p)) is learnt by the surrogate model and can be exploited by the acquisition
function to yield values of p that are, on average, closer to the optimal p∗.

Many different choices of surrogate models and acquisition functions have been explored.
Gaussian processes (GP) can be used to model priors over functions and are closed under
sampling which makes them an elegant choice for a surrogate model in BO—after each
data point is generated (using the acquisition function), the updated model is also a GP
with updated mean and covariance functions. They have been successfully used in BO for
hyperparameter optimization (Bergstra et al. 2011; Snoek et al. 2012).

BO (N ,L)
inputs : dCMF Network,N and Loss function, L
outputs: Best hyperparameter set p# and trained network (N) parameters Θ#

Generate Data Dm = (pi ,Li , Vi , Θi), i = 1, . . . , m from m random samples of p
with corresponding validation set performance: V1, . . . Vm
and network parameters: Θ1, . . . Θm .

Train MTGP surrogate model on Dm :M(μ, σ ;Dm (p,L))

for n = m+1,m+2,… do
||L∗||1 = mini≤n{||L(pi)||1}, p∗ = argminpi≤n

||L(pi)||1
Select new hyperparameters pn+1 = argmax E In(pn+1) using

μ = μsum (pn+1), σ = σ sum (pn+1),L(p∗
n) = ||L∗||1 in Eq. 5

Train network N with hyperparameters pn+1 (using SGD) to obtain its parameters Θn+1,
loss Ln+1 and validation set performance Vn+1
Augment data Dn+1 = Dn ∪ (pn+1,Ln+1, Vn+1, Θn+1)
Update surrogate model M(μ, σ) using Dn+1(p,L)

end
Choose best p# and Θ# corresponding to best Vi or minimum Li
return p#, Θ#

Algorithm 1: Bayesian optimization for dCMF

A common choice for the acquisition function is Expected Improvement (EI) (Jones
2001), that has a closed form for GP, does not require its own tuning parameter and has
been shown to perform well in minimization settings (Snoek et al. 2012). EI is the expec-
tation that pn+1 will improve L (negatively, as we would like to minimize a loss) over
p∗

n which is the best observation from n steps of BO so far, i.e. p∗
n = argminpi≤n

L(pi),

123

Machine Learning (2019) 108:1395–1420 1405

and E In(pn+1) = En[max {(L(p∗
n) − L(pn+1)), 0}], where the expectation En is under the

posterior distribution given evaluations of L at p1, . . . ,pn . The next value is chosen by
pn+1 = argmax E In(pn+1). For a GP as M, with predictive variance σ(pn+1;Dn,M) and
predictive mean μ(pn+1;Dn,M):

E In(pn+1) = σ [γ (pn+1)Φ(γ (pn+1)) + φ(γ (pn+1))] (5)

where γ (pn+1) = (L(p∗
n) − μ)/σ , and Φ and φ denote the CDF and PDF of the standard

normal distribution respectively.
The extension of GP to vector-valued functions is throughMulti-Task Gaussian Processes

(MTGP), that can model outputs of multiple correlated tasks (Bonilla et al. 2007). Swersky
et al. (2013) demonstrate the advantages of MTGP as a surrogate model in several tasks with
multiple dependent loss functions.

MTBO for dCMF A straightforward approach to solve the hyperparameter tuning problem
for dCMF (problem (4)) is to use BO with GP as a surrogate model. However, we find
that using MTGP within dCMF shows better performance. In dCMF, autoencoder training
and matrix reconstruction tasks entail minimizing the sum of losses: L = LE + LR =∑E

e=1 le
E +∑M

m=1 lm
R . Considering each of these as separate tasks, we have E + M correlated

tasks. We use MTGP as a surrogate model for BO, with the kernel specified through the
intrinsic corregionalizationmodel (Coburn 2000):K((p, t), (p′, t ′)) = Kt (t, t ′)⊗Kp(p, p′)
where ⊗ denotes the Kronecker product, Kp is a kernel measuring the similarity between
the hyperparameters p and Kt is the kernel measuring the similarities between the tasks. To
ensure positive semidefiniteness ofKt , it is parameterized through a Cholesky decomposition
(Bonilla et al. 2007): Kt = GGT , where G is lower triangular. To model the dependencies
between all the tasks, we initialize Kt as a unit matrix. Note that for each step in BO, MTGP
yields an (E + M)-dimensional output.

TheEI acquisition function does not directly generalize to themulti-task case. So, Swersky
et al. (2013) use a heuristic approach, where a GP prior is used for the average output of the
tasks, and the average predictive mean and predictive variance of multiple tasks are used to
select the next candidate. Instead,we use the sumof the predictivemean and variance (denoted
byμsum and σ sum respectively) of each task since our final objective is to optimize the sum of
losses. The output of theMTGP surrogate modelM(μ, σ) is scalarized (a common approach
for multi-objective functions, e.g., in Knowles 2006), by using the 1-norm. Denote the best
value of the scalarized output by ||L∗||1. Then our EI-based criterion can be computed using
μ = μsum, σ = σ sum,L(p∗

n) = ||L∗||1 in Eq. 5. Essentially, this heuristic chooses the next
hyperparameter from regionswhere the tasks showhigh total predictive variance (exploration)
or high total predictive mean (exploitation). We empirically evaluate this heuristic as the
acquisition function with MTGP as the surrogate model and found it to be more effective
than GP–based BO and random search for dCMF (see “Appendix A”). Algorithm 1 shows
the complete Bayesian optimization strategy using MTGP as the surrogate model and our
acquisition function heuristic. The final hyperparameter set may be chosen based on the loss
function or validation set performance.

Complete dCMF algorithm

Algorithm 2 shows the complete dCMF algorithm. Unless mentioned otherwise, we use
MTGP as the surrogate model with the acquisition function described above for hyperpa-
rameter tuning. We use stochastic gradient descent (SGD) for training.

123

1406 Machine Learning (2019) 108:1395–1420

dCMF (G,X)
inputs : Entity-matrix relationship graph G(VE , VM , D),

Input matrices X = X (1), . . . , X (M)

outputs: Entity representations U = U (1), . . . , U (E),

Matrix reconstructions X ′ = X (1)′ , . . . , X (M)′

// Input Transformation
foreach entity ei ∈ VE do

Xlist = [X (m) if (ei , X (m)) ∈ D]
Construct concatenated-matrix C(i) = concat(Xlist)

end
// Network Construction
foreach entity ei ∈ VE do

Construct Autoencoder A(i)

end
Construct network N with A(i) and collective loss L = LE + LR .
// Training and Hyperparameter Tuning
// Run Algorithm 1 using network N and loss L

// Obtain best performing parameters Θ# and hyperparameters p#

p#,Θ# = BO(N ,L)
// Entity representation generation
foreach entity ei in VE do

U (i) = g(i)
p#,θ#

(C(i))

end
// Matrix reconstruction

foreach matrix X (m) in VM do

X (m)′ = U (rm) · U (cm)T

end
return U ,X ′

Algorithm 2: Deep Collective Matrix Factorization

Loss functions The loss functions LR and LE measure the model’s average performance in
reconstructing all the entries of the input X and concatenated C matrices respectively. The
error metric for L(m)

R depends on the data type of X (m), e.g., root mean squared error for
real values and cross entropy for binary or categorical values. The choice of error metric for
LE is not straightforward if the concatenated matrix contains multiple data types. One way
to address this is to transform the matrices [X]e associated with entity e, such that C (e) is
of single data type (e.g. by scaling or PCA). We could also use multi-modal autoencoder
architectures (Ngiam et al. 2011) designed to learn shared representations from multiple
views of potentially different data types. In our experiments, we use root mean squared loss
(for both LR and LE). The root mean squared loss is more sensitive to larger errors and
outliers as desired in the applications we present.

Matrix completion Reconstruction of the matrices is obtained by multiplying the latent
representations learnt for the corresponding row and column entities. Note that such a recon-
struction yields real numbers that canbeordered and canbe interpreted as scores for prediction
or ranking tasks.

Time complexity The training time complexity of dCMF is dominated by the autoencoder
with largest input C of dimension, say, m × d and is O(mdr) where r is the number of
neurons in the first layer. For BO, the time complexity is dominated by the matrix inversion
step at each step for updating the MTGP model. For t = E + M tasks and n steps in BO,
the time complexity is O(n(t3n3 + mdr)). For matrix completion, for a given matrix X =

123

Machine Learning (2019) 108:1395–1420 1407

U (r) · U (c)T
, where U (r) and U (c) are inferred latent factors of dimensions l × K and j × K ,

the time complexity is O(l K j), where K is the assumed low rank.

6 Experiments

We first evaluate the performance of dCMF on various settings of sparsity level, size and
shape of matrices, using synthetic data, to validate that dCMF addresses the optimization-
related challenges discussed earlier.We then evaluate the performance of dCMFon real-world
benchmark datasets for two matrix completion tasks: movie recommendation and prediction
of gene-disease association. The source code for dCMF and data for all our experiments are
available on our public repository.1

6.1 Effects of sparsity, size and shape

We simulated datasets with 4 entities and 3 views based on the recommendation setup
(Fig. 1b). We generated U (e1), U (e2), U (e3), U (e4) with K = 100 and the desired dimen-
sions (mentioned below), with values sampled from a uniform distribution ranging between
0 and 1. We constructed the views X (1)

m×n , X (2)
m×u and X (3)

v×n using the corresponding factors,
where subscripts indicate dimensions. To impart sparsity in a matrix X (m), random entries of
the corresponding row/column entity factors U (rm) or U (cm) were set to zero until the desired
level of sparsitywas obtained.We use theRootMean-SquaredError (RMSE) in predicting the

central matrix R = X (1) as the performance measure, RM SE =
√

1
|T |

∑
Ri j ∈T (Ri j − R′

i j),

where Ri j is the ground truth and R′
i j the corresponding prediction. T denotes the test set.

In all experiments we perform 5-fold cross validation over the non-zero entries of the central
matrix R.

Sparsity Consider sparsity level as the proportion of zero entries in the central matrix X (1).
To illustrate how sparsity impacts the performance of dCMF,we simulated 3 artificial datasets
with same dimensions (m = 1000, n = 2000, u = 200, v = 400) and increasing sparsity
levels 0.3, 0.5 and 0.7. 25,000 non-zero entries randomly chosen from the test fold was used
as the test set. This is to ensure that we measure RMSE over the same test set (since varying
sparsity levels varies the number of non-zero entries and thereby the test fold size). CMF,
gCMF and dCMF were used (with K set to 100) to predict the entries in the test set. No input
transformation was performed for these experiments. It can be seen from Fig. 4a that increase
in sparsity results in increased RMSE in CMF, gCMF and dCMF, with dCMF consistently
outperforming CMF and gCMF.

Size and shape We simulated the first dataset with dimensions m = 400, n = 800, u =
80, v = 160. Then we created two other datasets that are 3 and 5 times the size of the first
one. Fig. 4b shows the performance of CMF, gCMF and dCMF. We define imbalance-ratio

of a view with shape m × n as
(
1 − min(m,n)

max(m,n)

)
. Thus the imbalance-ratio is 0 if m = n and

increases otherwise. We created 3 datasets with n = 2000, u = 200, v = 400 and increasing
imbalance-ratios by varying m: 0.5 (m = 1000), 0.75(m = 500) and 0.875 (m = 250).
Fig. 4c shows the performance of all three methods (with K set to 100) on these datasets. We
find that BO is able to effectively select hyperparameters for different sizes and imbalance
ratios and dCMF consistently outperforms CMF and gCMF in all the settings.

1 https://bitbucket.org/cdal/dcmf.

123

https://bitbucket.org/cdal/dcmf

1408 Machine Learning (2019) 108:1395–1420

(a) (b) (c)

Fig. 4 Impact of a sparsity, b entity size and c view shape on performance of dCMF and CMF using synthetic
datasets

6.2 Case study: hybrid recommender systems

Among the large number of recommendation algorithms developed, arguably, the most well
known are Collaborative Filtering (CF) methods that factorize the historical user-item rating
matrix to obtain latent user representations. Content-based methods use item descriptions
or user profiles to recommend items that are similar to items found in a user’s history (e.g.
Pazzani and Billsus 1997). CF has been more successful than content-based methods but
suffers from two problems: (1) real world rating matrices are large and sparse which impacts
the latent factors learnt and deteriorates recommendation performance, (2) they cannot be
used to recommend items to a user with no previous ratings, known as the cold-start problem.
Hybrid methods combine the strengths of both these methods by incorporating user and item
information as side information within CF.

Deep learning models have been successful in obtaining good representations in recom-
mender systems. Among the earliest models, is Collaborative Deep Learning (CDL) (Wang
et al. 2015), that jointly performs deep representation learning for the content side informa-
tion and collaborative filtering for the rating matrix. To obtain these representations stacked
denoising autoencoders (Vincent et al. 2010) are used in a Bayesian formulation. A more
scalable and efficient architecture that combined CF with marginalized denoising autoen-
coders (Chen et al. 2012) was used in Deep Collaborative Filtering (DCF) (Li et al. 2015).
CDL has also been recently extended to model multimedia side information in a more robust
manner in Collaborative Variational AutoEncoder (CVAE) (Li and She 2017). Note that CDL
and CVAEmodel only the rating and content matrices and not user side information. The use
of additional side information was leveraged in the additional stacked denoising autoencoder
(aSDAE), that was designed to integrate side information into the latent factors efficiently.
Using a combination of aSDAE and matrix factorization, was shown to outperform CDL and
DCF (Dong et al. 2017). Another variant of the stacked denoising autoencoder was used with
Convolutional Neural Networks to generate user and item latent features respectively and
combined in probabilistic model called Probabilistic HybriD model (PHD) (Liu et al. 2017)
that was shown to outperform aSDAE.

Recommendation with dCMF A typical recommendation setting with side information
contains 4 entities: users, items, user-features and item-features (of dimensions m, n, u, v

respectively) and 3 matrices as shown in Fig. 1b and described in Table 1. Matrix X (1) is
usually very sparse due to unknown ratings and the recommendation task is to complete this
matrix to obtain future movie recommendations for users.

123

Machine Learning (2019) 108:1395–1420 1409

Table 1 Recommendation dataset statistics (Col: column, Dim: dimension)

Datasets MovieLens-100K MovieLens-1M

Matrix Row entity Col entity Row Dim Col Dim Row Dim Col Dim

X (2) User User features 943 823 6040 3467

X (1) User Movies 943 1682 6040 3706

X (3) Movie Features Movies 2374 1682 4296 3706

Prediction Prediction is directly obtained through matrix completion by multiplying the
latent representations learnt for row and column entities of the rating matrix as X (1)′ =
U (e1) · U (e2)T

. Similar to other CMF-based methods, dCMF can be used to address the cold-
start problem. Note that U (e1) will not contain an entry for a first time user and so, X (1)′

will also not contain recommendations for this user. To overcome this cold-start problem, we

use X (2)
m×u = U (e1)

m×K · U (e3)T

u×K �⇒ U (e1) = X (2)
m×u · (U (e3)T

u×K)−1, which can be used to
estimate an unknown user’s latent factor. For a single user’s feature vector h1×u , this yields

the recommendation: X (1)′
1×n = (h1×u · (U (e3)T

u×K)−1)U (e2)T

n×K .

Data We use two large benchmark datasets: (1) MovieLens-100K and (2) MovieLens-1M.
The ratings are between 1 and 5 (star ratings). Both the datasets contain user demographic
information (age, gender, occupation, zip) and movie metadata (title, genre). We constructed
the rating matrix X (1) by binarizing the ratings (to predict user-movie associations) and bag-
of-words feature matrices X (2) and X (3), as described in Dong et al. (2017). Matrix statistics
after feature processing are shown in Table 1.

Baselines We compare our performance with state-of-the-art hybrid recommendation algo-
rithms that use both the row (user) and column (movie) features of the central matrix (rating).
Ourmain baseline is aSDAE (Dong et al. 2017), a hybrid recommendermodel that was shown
to outperformDCF, CDL, CMF and PMF. Note that aSDAE can be used for recommendation
with side-information but cannot be used for augmented multi-view learning. In addition we
also compare with PHD (Liu et al. 2017), DCF (Li et al. 2015), and IMC (Natarajan and
Dhillon 2014), that can use side information for recommendations. We also compare our
performance with that of CMF and gCMF that use collective matrix factorization.

Evaluation metric Since these ratings are implicit and we do not evaluate ranking, we
use Recall@N (averaged over all users) as our evaluation metric. Dong et al. (2017) use
Recall@N for the same reason. Let ri be the row corresponding to the predictions for user i
in the predicted rating matrix X (1)′ , SN

i be the set of top N predictions from the sorted ri and

ST
i be the test set for the user i . Recall@N =

|SN
i ∩ST

i |
|ST

i | . Following Dong et al. (2017), for each

dataset, we measure the average performance over 5 runs. In each run, 95% of the ratings are
randomly selected for training and the remaining 5% for the test set. p values are computed
using the Friedman test (Demšar 2006).

Results Figure 5a, b shows the performance of all the methods on the MovieLens-100K
dataset. Figure 5c, d shows the performance results on MovieLens-1M dataset (recommen-
dation and CMF baselines shown separately). In both the datasets, we observe that dCMF
significantly outperforms all the baseline hybrid recommendation methods aSDAE, DCF,
IMCand PHD (p = 0.003), aswell as previousCMFmethods, CMF and gCMF (p = 0.018).

123

1410 Machine Learning (2019) 108:1395–1420

dCMF
aSDAE
DCF
IMC
PHD

0.1

0.2

0.3

0.4

R
ec

a
ll
@
N

50 75 100 125 150 175 200
N

0.5

0.6

(a) MovieLens-100K

dCMF
CMF
gCMF

50 75 100 125 150 175 200
N

0.1

0.2

0.3

0.4

R
ec

a
ll
@
N

0.5

0.6

(b) MovieLens-100K

dCMF
aSDAE
DCF
IMC
PHD

50 75 100 125 150 175 200

0.1

0.2

0.3

0.4

N

R
ec

a
ll
@
N

(c) MovieLens-1M

dCMF
CMF
gCMF

50 75 100 125 150 175 200
N

0.1

0.2

0.3

0.4

0.0

R
ec

a
ll
@
N

(d) MovieLens-1M

Fig. 5 Performance of dCMF and baseline methods [(left) recommendation algorithms, (right) CMF-based
algorithms] on two benchmark datasets

6.3 Case study: gene-disease association prediction

Identifying the genes associatedwith diseases is an important problem in biomedical sciences.
Knowledge of such associations not only improve our understanding genomic interactions
but also facilitate the design of treatment strategies. As a result, there has been active research
in this area with many experimental methods to determine such associations such as genome-
wide association studies (GWAS) (Frayling 2007) and RNA interference screens (Boutros
and Ahringer 2008). However experimental methods are expensive, time-consuming and
may be specific to certain classes of diseases (Piro and Di Cunto 2012). As a result various
computational approaches have been developed to aid the discovery of such associations,
such as knowledge-based methods (e.g., Zhou and Skolnick 2016) and methods based on
textmining (e.g.,Kolker et al. 2015), crowdsourcing (e.g., Loguercio et al. 2013) andnetworks
(e.g., Singh-Blom et al. 2013; Zeng et al. 2017). Comprehensive surveys of these methods
can be found in Piro and Di Cunto (2012); Opap and Mulder (2017); Seyyedrazzagi and
Navimipour (2017).

Tremendous heterogeneity can be found in biological data—comprising measurements
from diverse aspects of our complex biological systems—that are used to infer gene-disease
associations. When the evidence for an association can be found through multiple indepen-
dent sources, it is more likely to be true; indeed, methods that can leverage the heterogeneity
have been reported to have superior performance (Pers et al. 2011). Hence, many heteroge-
neous network based methods have been developed for predicting gene-disease association.
For example, HSSVM (Zeng et al. 2017) and CATAPULT (Singh-Blom et al. 2013), both

123

Machine Learning (2019) 108:1395–1420 1411

can integrate different biological networks (like protein-protein interactions, disease-disease
similarities) and also relevant data from other species. The main limitation of such methods
is that they cannot be used for genes or diseases with no known associations (similar to the
cold-start problem in recommendation).

A matrix completion based approach, Inductive Matrix Completion (IMC), was proposed
by Natarajan and Dhillon (2014) where the problem is modeled as a recommendation prob-
lem. Genes and diseases are analogous to users and movies respectively, the rating matrix is
analogous to the gene-disease association matrix which is also partially observed and sparse.
Similar to hybrid recommender systems, side information as features for genes and diseases
can be used from various data sources, to improve the predictive accuracy of the model. Their
method is found to significantly outperform previous best methods that cannot integrate mul-
tiple data sources. Further, their method can also predict associations for genes or diseases
with no previously known associations.

However IMC is limited to using features of genes or diseases, i.e., only data that can
be transformed into the matrices described in Fig. 1b: gene features (X (2)), disease features
(X (3)) and gene-disease associations (X (1)). Any other auxiliary source of information that
may be pertinent to discovering gene-disease association cannot be incorporated. SinceCMF-
based methods can obtain latent representations from arbitrary collection of matrices, such
auxiliary information canbemodeled.Weshow that for gene-disease prediction, such sources,
indeed improve the performance of predicting gene-disease association, in an augmented
multi-view setting (Fig. 2b).

Data We use four publicly available biomedical data sources:

1. DisGeNET (Piñero et al. 2016) is a database of known gene-disease associations, col-
lected from expert curated repositories, GWAS catalogues, animal models and scientific
literature.

2. The Cancer Genome Atlas (TCGA) (Weinstein et al. 2013) contains genomic and clinical
data of 33 different cancers and over 10,000 patients.

3. Humannet (Lee et al. 2011) is a functional gene network of human genes obtained by
integration of 21 types of ‘omics’ data sources. Each edge in HumanNet is associated
with the probability of a true functional linkage between two genes.

4. UMLS Metathesaurus (Schuyler et al. 1993) is a large database of biomedical concepts
and their relationships.

We only consider the expert curated gene-disease associations from DisGeNET for our
dataset construction, since these are the most reliable. We also restrict our data to a single
cancer (Breast Cancer) in TCGA. With these restrictions, there were 11939 genes that were
present in all three databases: DisGeNET, TCGA and HumanNet, with 1093 and 11809
associated patients and diseases respectively. We chose a random subset of 2000 genes
and associated diseases (968) and all the patients (1093). For these genes and diseases,
the gene-disease association matrix X (1) was constructed by using all known associations
from DisGeNET: there were 69850 associations, resulting in sparsity level of 96.5%. To
construct X (2) we used RNA-Seq Expresssion data from TCGA, where a single sample per
patient was chosen. TCGA also contains 115 demographic and clinical features for these
patients. We chose a subset of 8 numeric and 21 categorical features as listed in Table 4 in the
“Appendix B”, with the less than 50% missing values. We then transformed the categorical
features to their one-hot encodings, normalized the numeric features and obtained a total of
86 patient features. Gene-gene and disease-disease graphs for the selected genes and diseases
were obtained from HumanNet and UMLS respectively. Similar to preprocessing done by
Natarajan andDhillon (2014),we use principal components of the adjacencymatrices of these

123

1412 Machine Learning (2019) 108:1395–1420

Table 2 Gene-disease association: dataset statistics (Col: column, Dim: dimension)

Matrix Row entity Col entity Row Dim Col Dim

X (1) Gene Disease 2000 968

X (2) Gene Patient 2000 1093

X (3) Gene Gene features 2000 1000

X (4) Disease features Disease 500 968

X (5) Patient features Patient 86 1093

Fig. 6 Gene-disease association
prediction: performance of
dCMF and baselines

graphs as features to obtain matrices X (3), X (4). Note that this dataset forms the augmented
multi-view setup shown in Fig. 2b. Table 2 shows the entity type for each matrix and the
matrix dimensions.

Baselines IMC has been found to outperform heterogeneous network based methods like
CATAPULT (Singh-Blomet al. 2013). In a recentwork, another heterogeneous network based
method HSSVM (Zeng et al. 2017) was proposed but it could not outperform CATAPULT.
So, we use IMC as the main baseline for predicting gene-disease associations. Note that IMC
cannot utilize information from X (5) (patient-patient_features). The other baselines are CMF
and gCMF that can model all the views.

Evaluation metric As discussed in Natarajan and Dhillon (2014), an appropriate metric
for this task is probability@N. For each disease in the test set, the genes are ranked by the
score predicted by each method. The cumulative distribution of the ranks, probability@N,
is the probability that the rank at which a hidden gene-disease pair is retrieved is less than
a threshold N. We created 5 folds of the gene-disease association matrix entries (using only
known associations) for cross validation. We report the probability@N averaged over the 5
folds for N ranging from 1 to 100. p values are computed using the Friedman test (Demšar
2006).

Results Figure 6 shows the performance of dCMF, gCMF, CMF and IMC on our dataset for
different values of N. The performance of IMC, CMF and gCMF are comparable with IMC
doing marginally better than CMF and gCMF. While dCMF is comparable to IMC below
N = 10, dCMF significantly outperforms all three baselines at all values of N above 10
(p < 0.0001).

Although all three CMF-based methods can utilize the information in the matrix X (5),
which IMC cannot, only dCMF can outperform IMC. This suggests that by modeling non-

123

Machine Learning (2019) 108:1395–1420 1413

linear interactions, dCMF is better than CMF and gCMF, at integrating heterogeneous data
for predictive modeling.

7 Conclusion

We present dCMF, a neural architecture for CMF, that, to our knowledge, is the first deep
augmented multi-view learning technique. dCMF effectively learns latent entity representa-
tions, shared across multiple matrices and models their non-linear interactions, that previous
CMF methods cannot. Our empirical results show that by modeling non-linear interactions,
dCMF effectively integrates heterogeneous data sources and obtains shared representations
for predictive modeling that are better than those of several state-of-the-art methods.

Learning dCMF model parameters involves optimizing both entity-specific autoencoder
losses as well as matrix-specific reconstruction losses. The latter induces a dependency
between the latent representations, which necessitates principled hyperparameter tuning
to scale our neural architecture to an arbitrary collection of matrices. Through multi-task
Bayesian optimization and an acquisition function that is adapted for dCMF, we effectively
address these challenges. Our experiments demonstrate that dCMF significantly outperforms
previous CMFmethods in both simulated and real datasets. We demonstrate two applications
of dCMF:movie recommendations and prediction of gene-disease associations. In both tasks,
dCMF significantly outperforms state-of-the-art algorithms on three benchmark datasets.

This work can be extended in several ways. To address the problem of mixed sparsity
levels in the input matrices, we could explore other architectural variants. E.g., architectures
similar to that in Ngiam et al. (2011) could be used, that can also model view-specific
noise and naturally handle different data types. The effect of other types of autoencoders,
such as variational autoencoders (Kingma and Welling 2014), could also be studied further.
Techniques to improve the scalability of training and hyperparameter tuning can be explored.
Finally negative transfer, that is known to affect CMF (Lan et al. 2016), requires further
investigation within the dCMF architecture.

Appendix A: Hyperparameters

We briefly describe the hyperparameters that can be tuned in dCMF. The model hyperpa-
rameters include the entity representation dimension K and the fraction fk , that decide the
number of neurons/units in each layer and the number of layers adaptively based on the input
dimension. The optimization related hyperparameters to be searched include learning rate,
weight-decay, batch size, maximum epochs and convergence threshold. Table 3 lists all the
hyperparameters.

A.1 Hyperparameter optimization

A.1.1 Evaluation of acquisition function heuristic

We illustrate the effect of our acquisition function heuristic through an example. We consider
a setup with two outputs and a single input. The two tasks are defined by the functions f1(x)

and f2(x) below, where x is the single one dimensional input.

123

1414 Machine Learning (2019) 108:1395–1420

Table 3 List of dCMF hyperparameters

Learning algorithm parameters Model parameters

Learning rate Fraction fk (Number of layers; Number of
neurons per layer)

Convergence threshold Encoding and decoding activation function
choice

Weight decay Entity representation size K

Batch size

Maximum epochs

Pre-training requirement (convergence threshold)

(a) (b) (c)

Fig. 7 Illustration of expected improvement based heuristic

f1(x) = sin(x) + sin((10/3) ∗ x)

f2(x) = 2cos(x) + cos(2x)

The two functions are shown in Fig. 7a for the domain of x ∈ [2.5, 7.5]. As an initial
design for BO we used 5 randomly sampled x values and the corresponding f1(x) and f2(x)

to train the surrogate model (MTGP). We then performed 5 BO steps and the corresponding
samples selected based on our acquisition function are shown in Fig. 7b. We illustrate the
acquisition function values against the MTGP predictive mean and variance’s 1-norm in
Fig. 7c. It can be seen that the acquisition function peaks correspond to high variance or high
(negative) mean.

A.1.2 Evaluation of surrogate model

To evaluate our approach to hyperparameter selection, we constructed a synthetic dataset
in the augmented multi-view setting shown in Fig. 2b. The dataset consists of 6 entities
e1, . . . , e6 of dimensions 1000, 2000, 20, 150, 300 and 250 respectively. dCMF (Algo-
rithm 2) was run with three different choices of algorithm 1: (1) BO with GP (Snoek et al.
2012) (denoted by dCMF-GP), (2) Random search (Bergstra and Bengio 2012) (denoted

123

Machine Learning (2019) 108:1395–1420 1415

Fig. 8 Surrogate model selection
for hyperparameter tuning

by dCMF-random) (3) BO with MTGP, as described above using our acquisition function
heuristic (denoted by dCMF-MTGP). We set n = 200 steps in Algorithm 1. At every step
we reconstruct the matrix X (1) and compute lR(X (1), X (1)′) on a held-out test set using
RMSE. We use average cumulative RMSE computed in intervals of 25 steps as our eval-
uation criterion. Figure 8 shows that dCMF-MTGP has the lowest RMSE after 100 steps,
while dCMF-GP initially has the lowest RMSE but is consistently higher after 50 steps.
dCMF-random does not have a consistent performance.

A.2 dCMF hyperparameter settings for case studies

In this section we list the hyperparameter settings, found using MTBO (Algorithm 1), that
was used in our experiments.

A.2.1 Hybrid recommender system

We set tanh as the activation function in all the encoding and decoding layers. Setting the
activation function as tanh allows the range of the learnt factorsU to be between− 1 and+ 1.
This provides flexibility in reconstructing inputmatrices X thereby lowering thematrix recon-
struction loss LR . For the recommendation datasets we empirically found tanh to do better
than ReLu. During training, data was used in 2 batches. We did pretraining for MovieLens-
100K and not for MovieLens-1M dataset as the pretraining did not improve the performance.
In the side matrices, we performMaximumAbsolute Scaling in which we do not shift/center
the data but translate each feature such that their maximal absolute value is 1.0.With theman-
ual settings described so far following are the best hyperparameters p∗ as found by BO in 200
steps: fk = 0.01, k = 200, learning rate 10−4 and convergence threshold 10−5(MovieLens-
100K) & 10−4(MovieLens-1M).

A.2.2 Gene disease association prediction

We set tanh as the activation function in all the encoding and decoding layers. We did not do
pretraining and data was used as a single batch during training. With these manual settings
following are the best hyperparameters p∗ as found by BO in 200 steps: fk = 0.6, k = 100,
learning rate 0.0002, and convergence threshold 0.0006.

123

1416 Machine Learning (2019) 108:1395–1420

Appendix B: Dataset details for gene disease association prediction

The list of patient features selected from the TCGAdataset for our case study on gene-disease
prediction is shown in Table 4.

Table 4 List of patient features

Categorical Numeric

American Joint Committee on Cancer Tumor
Stage Code

Diagnosis Age

Neoplasm Disease Lymph Node Stage
American Joint Committee on Cancer
Code

Death from Initial Pathologic Diagnosis Date

American Joint Committee on Cancer
Metastasis Stage Code

Positive Finding Lymph Node Hematoxylin and Eosin
Staining Microscopy Count

Neoplasm Disease Stage American Joint
Committee on Cancer Code

Disease Free (Months)

New Neoplasm Event Post Initial Therapy
Indicator

Lymph Node(s) Examined Number

Metastatic tumor indicator Last Alive Less Initial Pathologic Diagnosis Date
Calculated Day Value

Overall Survival Status HER2 ihc score

Disease Free Status Overall Survival (Months)

Patient’s Vital Status

ER Status By IHC

Prior Cancer Diagnosis Occurence

Micromet detection by ihc

PR status by ihc

Person Neoplasm Status

Ethnicity Category

Tissue Retrospective Collection Indicator

Disease Surgical Margin Status

Sex

Primary Lymph Node Presentation
Assessment Ind-3

Neoadjuvant Therapy Type Administered
Prior To Resection Text

Tissue Prospective Collection Indicator

Appendix C: Model complexity

In this section we empirically investigate the following: Is the performance improvement due
to dCMF solely because of larger number of model parameters? In other words, if CMF or
gCMF were to use larger number of free parameters, would their performance improve and
be similar to that of dCMF?

123

Machine Learning (2019) 108:1395–1420 1417

(a) (b)

Fig. 9 a Performance of dCMF, gCMF and CMF at different values of K. b Zoomed-in version of (a) where
y-axis is y + 0.8267, to show performance of CMF and gCMF

We first analyze the number of free parameters in CMF, gCMF and dCMF:

CMF The number of parameters in CMF pcmf = pu, where pu = ∑
e∈E (|e| ∗ K). CMF

extends the alternating projection method and uses a Newton-Raphson step in a gradient-
descent based algorithm to estimate all the latent factors (Singh and Gordon 2008).

gCMF In gCMF a variational Bayesian solution is developed wherein additional parameters
are present for the distributions assumed. So, the number of parameters, pgcmf = pu + pg,

pg = |{τ (m)}m∈M | + |{αe,k}e∈E,k∈(1...K)| + |{μ(e,m), σ
2
(e,m)}e∈E,m∈M | + |{p0, q0, a0, b0}|

where, αe,k : Gaussian likelihood precision for latent factors, τ (m): precision for error terms,
{p0, q0, a0, b0}: gamma prior parameters and μ(e,m): mean and σ 2

(e,m): variance of the bias
terms. |.| denotes set cardinality.
dCMFThenumber of parameters in dCMF,pdcmf = pu+pd,where pd = ∑

e∈E |{par(A(e))}|
and par(A(e)) are the parameters associated with the autoencoder corresponding to entity e.
Note that pcmf = pu, pgcmf ≈ O(pu) and pdcmf ≈ O(pu + pd) and by varying K we can
control the model complexity.

We now experimentally study the impact of K (ranging between 20 and 200) on CMF,
gCMF and dCMF’s performance. We generate a synthetic dataset with 4 entities and 3 views
based on the recommendation setup (Fig. 1b). We generated U (e1), U (e2), U (e3), U (e4) with
K = 100 and the desired dimensions |e1| = 400, |e2| = 800, |e3| = 80 and |e4| = 160, with
values sampled from a uniform distribution ranging between 0 and 1. We constructed the
views X (1)

|e1|×|e2|, X (2)
|e1|×|e3| and X (3)

|e4|×|e2| using the corresponding factors, where subscripts
indicate dimensions. For this synthetic dataset, for K = 20, pdcmf ≈ 134.4K and both
pcmf , pgcmf ≈ 28.8K. For K = 94, both pcmf , pgcmf ≈ 135K. Thus, the model complexity
of CMF and gCMF with K ≈ 94 can be considered as roughly equivalent to dCMF with
K = 20. Similarly model complexity of CMF and gCMF with K ≈ 187 can be considered
as roughly equivalent to that of dCMF with K = 40.

For each K varying between 20 and 200 in steps of 20, we obtained the matrix X (1)′ using
the factors U (1) and U (2) obtained using dCMF, CMF and gCMF. The RMSE between the
predicted X (1)′ and original X (1) is shown in Fig. 9a. The RMSE values of CMF and gCMF
are nearly the same and hence indistinguishable in the figure; so, a zoomed-in version is
shown in Fig. 9b.

It can be seen that dCMF consistently outperforms both CMF and gCMF at all values of K .
In particular, we can compare the performance of dCMF at K = 20 (40) and CMF/gCMF at

123

1418 Machine Learning (2019) 108:1395–1420

K = 100 (200) that are of roughly equal model complexity and observe that dCMF performs
better. In fact, the performance of CMF or gCMF does not improve with increase in K .

References

Andrew, G., Arora, R., Bilmes, J., & Livescu, K. (2013). Deep canonical correlation analysis. In Proceedings
of the 30th international conference on machine learning, pp. 1247–1255.

Bengio, Y., Courville, A., &Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.

Bergstra, J. S., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. In
Proceedings of the 24th international conference on neural information processing systems, pp. 2546–
2554.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13, 281–305.

Bonilla, E. V., Chai, K. M., &Williams, C. (2007). Multi-task Gaussian process prediction. In Proceedings of
the 20th international conference on neural information processing systems, pp. 153–160.

Bouchard,G., Yin,D.,&Guo, S. (2013). Convex collectivematrix factorization. InProceedings of the sixteenth
international conference on artificial intelligence and statistics, pp. 144–152.

Boutros, M., & Ahringer, J. (2008). The art and design of genetic screens: RNA interference. Nature Reviews
Genetics, 9(7), 554.

Chang, S., Han, W., Tang, J., Qi, G.-J., Aggarwal, C. C., & Huang, T. S. (2015). Heterogeneous network
embedding via deep architectures. In Proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 119–128. ACM.

Chen, M., Xu, Z., Weinberger, K., & Sha, F. (2012). Marginalized denoising autoencoders for domain adap-
tation. In Proceedings of the 29th international conference on machine learning, pp. 1627–1634.

Coburn, T. C. (2000). Geostatistics for natural resources evaluation. Technometrics, 42(4), 437–438.
Cui, P.,Wang,X., Pei, J.,&Zhu,W. (2019).A survey on network embedding. IEEE Transactions on Knowledge

and Data Engineering, 31(5), 833–852.
Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning

Research, 7, 1–30.
Dong, X., Yu, L., Wu, Z., Sun, Y., Yuan, L., & Zhang, F. (2017). A hybrid collaborative filtering model with

deep structure for recommender systems. In Proceedings of the thirty-first AAAI conference on artificial
intelligence, pp. 1309–1315.

Frayling, T. M. (2007). Genome-wide association studies provide new insights into type 2 diabetes aetiology.
Nature Reviews Genetics, 8(9), 657.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). Cambridge: MIT Press.
Guo, X., Gao, L., Liu, X., & Yin, J. (2017). Improved deep embedded clustering with local structure preser-

vation. In Proceedings of the twenty-sixth international joint conference on artificial intelligence, pp.
1753–1759.

Han, X., Shi, C., Wang, S., Philip, S. Y., & Song, L. (2018). Aspect-level deep collaborative filtering via
heterogeneous information networks. InProceedings of the twenty-seventh international joint conference
on artificial intelligence, pp. 3393–3399.

Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with
application to learning methods. Neural Computation, 16(12), 2639–2664.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks.
Science, 313(5786), 504–507.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3/4), 321–377.
Hu, Y., Zhang, D., Ye, J., Li, X., & He, X. (2013). Fast and accurate matrix completion via truncated nuclear

norm regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence,35(9), 2117–2130.
Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of

Global Optimization, 21(4), 345–383.
Kingma,D.P.,&Welling,M. (2014).Auto-encodingvariationalBayes. In International conference on learning

representations.
Klami, A., Bouchard, G., & Tripathi, A. (2014). Group-sparse embeddings in collective matrix factorization.

In International conference on learning representations.
Knowles, J. (2006). ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multi-

objective optimization problems. IEEE Transactions on Evolutionary Computation, 10(1), 50–66.

123

Machine Learning (2019) 108:1395–1420 1419

Kolker, E., et al. (2015). Finding text-supported gene-to-disease co-appearances withMOPED-Digger. Omics:
A Journal of Integrative Biology, 19(12), 754–756.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Com-
puter, 42(8), 30–37.

Lan, C., Wang, J., & Huan, J. (2016). Towards a theoretical understanding of negative transfer in collective
matrix factorization. In Proceedings of the thirty-second conference on uncertainty in artificial intelli-
gence, pp. 367–376.

Lee, I., Blom, U. M., Wang, P. I., Shim, J. E., & Marcotte, E. M. (2011). Prioritizing candidate disease genes
by network-based boosting of genome-wide association data. Genome Research, 21(7), 1109–1121.

Li, X., & She, J. (2017). Collaborative variational autoencoder for recommender systems. In Proceedings of
the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 305–314.

Li, S., Kawale, J., & Fu, Y. (2015). Deep collaborative filtering via marginalized denoising auto-encoder. In
Proceedings of the 24th ACM international conference on information and knowledge management, pp.
811–820.

Liu, J., Wang, D., & Ding, Y. (2017). PHD: A probabilistic model of hybrid deep collaborative filtering for
recommender systems. In Proceedings of the ninth Asian conference on machine learning, pp. 224–239.

Loguercio, S., Good, B. M., & Su, A. I. (2013). Dizeez: An online game for human gene-disease annotation.
PLoS ONE, 8(8), 71171.

Natarajan, N., & Dhillon, I. S. (2014). Inductive matrix completion for predicting gene-disease associations.
Bioinformatics, 30(12), 60–68.

Ngiam, J.,Khosla,A.,Kim,M.,Nam, J., Lee,H.,&Ng,A.Y. (2011).Multimodal deep learning. InProceedings
of the 28th international conference on machine learning, pp. 689–696.

Opap, K., & Mulder, N. (2017). Recent advances in predicting gene-disease associations. F1000Research 6.
Pazzani, M., & Billsus, D. (1997). Learning and revising user profiles: The identification of interesting web

sites. Machine Learning, 27(3), 313–331.
Pers, T. H., et al. (2011). Meta-analysis of heterogeneous data sources for genome-scale identification of risk

genes in complex phenotypes. Genetic Epidemiology, 35(5), 318–332.
Piñero, J., et al. (2016). DisGeNET: A comprehensive platform integrating information on human disease-

associated genes and variants. Nucleic Acids Research, 45(D1), 833–839.
Piro, R. M., & Di Cunto, F. (2012). Computational approaches to disease-gene prediction: Rationale, classi-

fication and successes. The FEBS Journal, 279(5), 678–696.
Schuyler, P. L., Hole, W. T., Tuttle, M. S., & Sherertz, D. D. (1993). The UMLS metathesaurus: Representing

different views of biomedical concepts. Bulletin of the Medical Library Association, 81(2), 217.
Seyyedrazzagi, E., & Navimipour, N. J. (2017). Disease genes prioritizing mechanisms: A comprehensive and

systematic literature review. Network Modeling Analysis in Health Informatics and Bioinformatics, 6(1),
13.

Shi, C., Hu, B., Zhao, W. X., & Philip, S. Y. (2019). Heterogeneous information network embedding for
recommendation. IEEE Transactions on Knowledge and Data Engineering, 31(2), 357–370.

Shi, C., & Philip, S. Y. (2017).Heterogeneous information network analysis and applications. Berlin: Springer.
Singh, A. P., & Gordon, G. J. (2008). Relational learning via collective matrix factorization. In Proceedings of

the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp. 650–658.
Singh-Blom,U.M., et al. (2013). Prediction and validation of gene-disease associations usingmethods inspired

by social network analyses. PLoS ONE, 8(5), 58977.
Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algo-

rithms. In Proceedings of the 25th international conference on neural information processing systems,
pp. 2951–2959.

Srebro, N., & Shraibman, A. (2005). Rank, trace-norm and max-norm. In International conference on com-
putational learning theory, pp. 545–560.

Swersky, K., Snoek, J., & Adams, R. P. (2013). Multi-task Bayesian optimization. In Proceedings of the 26th
international conference on neural information processing systems, pp. 2004–2012.

Vincent, P., et al. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of Machine Learning Research, 11, 3371–3408.

Wang, W., Arora, R., Livescu, K., & Bilmes, J. (2015). On Deep Multi-view Representation Learning. In
Proceedings of the 32nd international conference on machine learning, pp. 1083–1092.

Wang, Q., Sun, M., Zhan, L., Thompson, P., Ji, S., & Zhou, J. (2017). Multi-modality disease modeling via
collective deep matrix factorization. In Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1155–1164.

Wang, H., Wang, N., & Yeung, D.-Y. (2015). Collaborative deep learning for recommender systems. In
Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data
mining, pp. 1235–1244.

123

1420 Machine Learning (2019) 108:1395–1420

Weinstein, J. N., et al. (2013). TheCancerGenomeAtlas Pan-Cancer analysis project.Nature Genetics, 45(10),
1113–1120.

Zeng, X., Liao, Y., Liu, Y., & Zou, Q. (2017). Prediction and validation of disease genes using HeteSim scores.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14(3), 687–695.

Zhou, H., & Skolnick, J. (2016). A knowledge-based approach for predicting gene-disease associations. Bioin-
formatics, 32(18), 2831–2838.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Deep collective matrix factorization for augmented multi-view learning
	Abstract
	1 Introduction
	2 Related work
	2.1 Multi-view learning
	2.2 Deep models for multi-view learning
	2.3 Heterogeneous information networks

	3 Background
	3.1 Matrix factorization
	3.2 Collective Matrix Factorization (CMF)

	4 Problem statement
	5 Deep collective matrix factorization (dCMF)
	5.1 Model construction and training
	5.2 Optimization
	Hyperparameter tuning
	Complete dCMF algorithm

	6 Experiments
	6.1 Effects of sparsity, size and shape
	6.2 Case study: hybrid recommender systems
	6.3 Case study: gene-disease association prediction

	7 Conclusion
	Appendix A: Hyperparameters
	A.1 Hyperparameter optimization
	A.1.1 Evaluation of acquisition function heuristic
	A.1.2 Evaluation of surrogate model

	A.2 dCMF hyperparameter settings for case studies
	A.2.1 Hybrid recommender system
	A.2.2 Gene disease association prediction

	Appendix B: Dataset details for gene disease association prediction
	Appendix C: Model complexity
	References

