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Abstract
Support matrix machine (SMM) is an efficient matrix classification method that can lever-
age the structure information within the matrix to improve the classification performance.
However, its computational and storage costs are still expensive for high-dimensional data.
To address these problems, in this paper, we consider a 2D compressed learning paradigm
to learn the SMM classifier in some compressed data domain. Specifically, we use the Kro-
necker compressed sensing (KCS) to obtain the compressive measurements and learn the
SMM classifier. We show that the Kronecker product measurement matrices used by KCS
satisfies the restricted isometry property (RIP),which is a property to ensure the learnability of
the compressed data.We further give a lower bound on the number of measurements required
for KCS. Though this lower bound shows that KCS requires more measurements than the
regular CS to satisfy the same RIP condition, KCS itself still enjoys lower computational
and storage complexities. Then, using the RIP condition, we verify that the learned SMM
classifier in the compressed domain can perform almost as well as the best linear classifier
in the original uncompressed domain. Finally, our experimental results also demonstrate the
feasibility of 2D compressed learning.

Keywords 2D compressed learning · Bilinear random projection · Dimension reduction ·
Support matrix machine · Kronecker compressed learning

1 Introduction

Classification is a fundamental problem in machine learning and statistics. Conventional
methods such as support vector machines (SVMs) (Cortes and Vapnik 1995) and logistic
regression (Friedman et al. 2001) are originally designed for vector data while the real-world

Editor: Maria-Florina Balcan.

B Songcan Chen
s.chen@nuaa.edu.cn

Di Ma
madi_nuaa@163.com

1 Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05804-3&domain=pdf


2036 Machine Learning (2019) 108:2035–2060

data tends to have data of other forms, such asmatrix(image) or tensor(video). In conventional
classification methods that deal with the latter form, we often reshape such data into vectors,
which breaks down the structure relationship of the data, e.g., the correlation betweendifferent
channels for EEG data (Zhou and Li 2014) or the spatial relationship between the nearby
pixels of an image (Wolf et al. 2007). Support matrix machine (SMM) (Luo et al. 2015) is
proposed for exploiting the relationship among the rows and columns of the matrix data. To
this end, it imposes a spectral elastic net constraint to capture the structure among the matrix
data for obtaining the desired solution. Experiment results verify that the SMM outperforms
the conventional SVM on matrix data.

Though SMM realizes effective and efficient processing for matrix data compared to the
vector-based counterpart, its storage and computation costs are still expensive for large-scale
and high-dimensional data, such as high-resolution images. To address these challenges, one
of the commonly usedmethods is to first compress the data (e.g. project the high-dimensional
data into a low-dimensional subspace) and then learn directly in the compressed domain.

Compressed sensing (CS) (Candes and Tao 2006; Donoho 2006) is an efficient method to
simultaneously realize data acquisition and compression, and is able to recover the data from
far fewer measurements than required by the Shannon–Nyquist sampling theorem (Rish and
Grabarnik 2014). It has widely applied in both reconstruction problems, e.g., MRI (Lustig
et al. 2008), Single Pixel Camera (Duarte et al. 2008), and compressive learning problems,
e.g., compressive classification problems (Reboredo et al. 2013), compressive regression
problems (Maillard and Munos 2009). However, the regular CS essentially performs on the
vectorized data. That is, when handling matrix data, we have to firstly convert it to a vector.
Such vectorization unavoidably destroys the inherent structure of the matrix, making the
regular CS not quite suitable for matrix classification problem. To preserve the structure,
Duarte and Baraniuk (2012) proposes the Kronecker compressed sensing (KCS) using the
measurement matrices formed by the Kronecker product. KCS can be implemented by per-
forming independent linear projection on each dimension to reflect the structure presented
in that dimension.

Motivated by the above works, in this paper, we consider to learn the SMM classifier
using the KCS measurements realized by a bilinear projection. The latter involves two mea-
surement matrices respectively for row and column of the matrix. The choice for them will
influence the classification accuracy in the compressed domain. One commonly chosen class
of measurement matrices in CS is that satisfying the restricted isometry property (RIP) (Bara-
niuk et al. 2008; Recht et al. 2010). It is a property that ensures this class of matrices can
approximately preserve the structure of the original instance space and in turn approximately
preserve the classification accuracy in the compressed domain (Calderbank et al. 2009). For
this reason, we expect that the Kronecker product measurement matrix can also satisfy the
RIP. Fortunately, our theoretical analysis shows that as long as the twomeasurement matrices
both satisfy the RIP, their Kronecker product likewise satisfies the RIP. Moreover, we further
give a lower bound on the number of measurements required for KCS, which is larger than
that for regular CS under the same RIP condition. Nonetheless, we show that KCS enjoys
lower computational and space complexities. Afterwards, using the RIP condition, we verify
that the learned SMM classifier in the Kronecker compressed domain performs almost as
well as the best linear classifier in the original data domain. Furthermore, our experimental
results also show that with the increasing number of the measurements (but still smaller than
the original dimensionalites), the classification accuracy in the compressed domain gets as
close as to that in the original data domain.

Our work can be regarded as a generalization of Calderbank et al. (2009) from both the
CS and machine learning points of view. From the CS perspective, the KCS generalizes the
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regular CS for the matrix data. From the machine learning viewpoint, the SMM classifier
generalizes the SVM classifier. We conduct experiments to confirm the effectiveness of these
generalizations and the results exactly show (1) KCS is more suitable for matrix data than
the regular CS; (2) the SMM classifier is more suitable for the KCS measurements than the
SVM classifier.

The remainder of the paper is as follows: The notations and a review of SMM are pre-
sented in Sect. 2. In Sect. 3 we introduce the Kronecker compressed sensing (KCS) and
the generalized restricted isometry property (RIP) for the Kronecker product measurement
matrices. Section 4 provides the theoretical results and corresponding proofs to verify the
feasibility for learning SMM classifier in the compressed domain. Section 5 presents a series
of experiments to support our theorems. We give a conclusion in Sect. 6.

2 Preliminaries

2.1 Notation

We assume all data are matrices with rank at most r , the Frobenius norm of X is bounded by
R, the data domain is:

X =
{
(X , y) : X ∈ R

d1×d2 , rank(X) ≤ r , ‖X‖F ≤ R, y ∈ {−1, 1}
}

The sample set of N i.i.d. labeled samples is:

S = {(X1, y1), . . . , (X N , yN )}
The matrix Id is the d × d identity matrix. For a vector x ∈ R

d , the Euclidean norm is

denoted as ‖x‖ =
√∑d

i=1 x2i . For a matrix X ∈ R
d1×d2 of rank r where r ≤ min (d1, d2),

the truncated singular value decomposition (truncated SVD) of X is X = U�V T where
U ∈ R

d1×r and V ∈ R
d2×r satisfy U T U = Ir and V T V = Ir , � = diag (σ1, . . . , σr )

with σ1 ≥ . . . ≥ σr > 0. Let ‖X‖F =
√∑

i, j X2
i j =

√∑r
i=1 σ 2

i be the Frobenius norm,

‖X‖∗ =∑r
i=1 σi be the nuclear norm, and ‖X‖spec = σ1 be the spectral norm.

For any τ > 0, the singular value thresholding (SVT) of matrix X is defined as
Dτ (X) = UDτ (�) V T , where Dτ (�) = diag

(
(σ1 − τ)+ , . . . , (σr − τ)+

)
, (σi − τ)+ =

max (σi − τ, 0).
Since the nuclear norm ‖X‖∗ is not differentiable, one considers the subdifferential of

‖X‖∗, which is the set of subgradients denoted by ∂‖X‖∗ as

∂‖X‖∗ =
{

U V T + Z : Z ∈ Rd1×d2 , U T Z = 0, Z V = 0, ‖Z‖spec ≤ 1
}

(1)

2.2 Support matrix machine

The support matrix machine (SMM) is a classification method proposed for matrix data
classification problems. Concretely, given a set of training samples S = {Xi , yi }N

i=1, where
Xi ∈ R

d1×d2 is the i th sample, yi ∈ {−1, 1} is the corresponding label. SMM considers
to exploit the structure information among the rows or columns in the matrix samples for
improving the classification performance. To this end, SMMimposes a low-rank constraint on
its weight matrix W . Furthermore, to avoid the NP-hard problem brought by the matrix rank
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minimization, (Luo et al. 2015) uses the nuclear norm ‖W‖∗ as a best convex approximation
of rank(W ). As a result, the approximated optimization problem can be cast as follows:

min
W

1

2
‖W‖2F + τ‖W‖∗ + C

N

N∑
i=1

{1 − yi [tr(W T Xi )]}+ (2)

where W ∈ R
d1×d2 is the matrix of the weight coefficients, the nuclear norm enforces

low-rank property on W and the Frobenius norm induces a stable solution, parameter τ

controls the trade-off between the nuclear norm and the Frobenius norm. Since ‖W‖2F =∑min(d1,d2)
i=1 σ 2

i (W ), ‖W‖∗ = ∑min(d1,d2)
i=1 σi (W ), the combination of the above two norms

1
2‖W‖2F +τ‖W‖∗ is also called the spectral elastic net,which can be interpreted as a elastic net
penalty (Zou and Hastie 2005) on the eigenvalues for incorporating the sparsity property and
the grouping property into the eigenvalues to capture the latent structure among matrix sam-
ples. Recall that tr(W T W ) = vec(W )T vec(W ) = wT w, tr(W T X) = vec(W )T vec(X) =
wT x , hence SMM would degenerate to the classical soft margin SVM when τ = 0.

The following theorem is a consequence of SMM optimization problem, which is vital in
the proof of our main theorem.

Theorem 1 Suppose that the optimal solution of problem (2) is W̃ , then

W̃ = Dτ

(
N∑

i=1

α̃i yi Xi

)

‖W̃‖2F + τ‖W̃‖∗ ≤ C

(3)

where 0 ≤ α̃i ≤ C

N
.

Proof See “Appendix 1”. ��
Although SMM has achieved great success in the classification problem on matrix data,

it suffers from the storage and computation burden when dealing with large-scale and high-
dimensional data. In the next section, we introduce a universal data compression method and
then directly perform SMM in the compressed domain.

3 2D compressed learning

3.1 Kronecker compressed sensing

Compressed sensing (CS) is an efficient method to obtain the compressed data. The regular
CS model is originally proposed for acquiring sparse signal x ∈ R

d through

xA = Ax

where xA ∈ R
p is the CS measurements, A ∈ R

p×d represents the measurement matrix.
Recht et al. (2010) then generalizes the regular CS model to low-rank matrix

xM = M(X)

where xM ∈ R
k is the CS measurements, X ∈ R

d1×d2 is the original matrix data, M :
R

d1×d2 → R
k is a linear map and always written in terms of a linear projection as

M(X) = Φvec(X) (4)
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where Φ ∈ R
k×d1d2 is the measurement matrix, vec(X) denotes the vectorized X with its

columns stacked in order on top of one another.
However, the regular CS acquisition procedure (4) is not quite suitable for classification

problem on matrix data since the structure among rows and columns in the matrix would
be destroyed by the vectorization. To preserve the structure, Duarte and Baraniuk (2012)
proposes the Kronecker compressed sensing (KCS) using the measurement matrices formed
by the Kronecker product, i.e.,

vec(XΦ) = (Φ2 ⊗ Φ1)vec(X)

where XΦ ∈ R
k1×k2 is the KCS measurements, Φ2 ⊗ Φ1 is the Kronecker product of Φ1

and Φ2, Φ1 ∈ R
k1×d1 and Φ2 ∈ R

k2×d2 are the measurement matrices for row and column
separately. According to the property of Kronecker product, the KCS can be realized by a
bilinear projection as follows:

XΦ = Φ1XΦT
2

where independent linear projection on each dimension reflects the structure presented in
that dimension (Duarte and Baraniuk 2012).

The problem now is to choose appropriate measurement matrices. One commonly chosen
class of measurement matrices in CS is that satisfying the restricted isometry property (RIP).
The definitions of the RIP conditions for sparse signal and low-rank matrix are given by
Candes and Tao (2006) and Recht et al. (2010) respectively and we restate them together as
follows:

Definition 1 Let A ∈ R
p×d be a matrix andM : Rd1×d2 → R

k be a linear map. For integers
1 ≤ s ≤ p and 1 ≤ r ≤ min (d1, d2), define the restricted isometry constants (RIC) δs(A)

and δr (M) to be the smallest numbers such that for all s-sparse vectors x and all matrices X
of rank at most r

(1 − δs(A))‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs(A))‖x‖22
(1 − δr (M))‖X‖2F ≤ ‖M(X)‖22 ≤ (1 + δr (M))‖X‖2F

then the matrix A and the linear map M are said to satisfy RIP with RIC δs(A) and δr (M).

The RIP condition ensures this class of matrices can approximately preserve the structure
of the original instance space and in turn approximately preserve the classification accuracy
in the compressed domain (Calderbank et al. 2009). For the above reason, we expect the
Kronecker product measurement matrices can also satisfy the RIP condition. In the following
subsection, we give an analysis on the RIP condition of the Kronecker product measurement
matrix Φ2 ⊗ Φ1 for all matrices of rank at most r .

3.2 Generalized restricted isometry property for Kronecker product measurement
matrices

In this subsection, we firstly study the RIC of the Kronecker product Φ2 ⊗ Φ1, denoted
by δr (Φ2 ⊗ Φ1), for all matrices of rank at most r . We have the following theorem as a
generalization of Lemma 3.2 in Duarte and Baraniuk (2012).
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Theorem 2 Let Φ1 ∈ R
k1×d1 , Φ2 ∈ R

k2×d2 be matrices with RIC δr (Φ1), δr (Φ2) respec-
tively, then,

δr (Φ2 ⊗ Φ1) ≤
2∏

i=1

(1 + δr (Φi )) − 1

Proof According to the definition of RIC for the low-rankmatrix, δr (Φ2⊗Φ1) is the smallest
number such that for all matrices of rank at most r , the following inequality holds

(1 − δr (Φ2 ⊗ Φ1))‖X‖2F ≤ ‖(Φ2 ⊗ Φ1)vec(X)‖22 ≤ (1 + δr (Φ2 ⊗ Φ1))‖X‖2F
Thus the eigenvalues of (Φ2 ⊗ Φ1)(Φ2 ⊗ Φ1)

T obey

1 − δr (Φ2 ⊗ Φ1) ≤ σmin((Φ2 ⊗ Φ1)(Φ2 ⊗ Φ1)
T )

≤ σmax((Φ2 ⊗ Φ1)(Φ2 ⊗ Φ1)
T ) ≤ 1 + δr (Φ2 ⊗ Φ1)

where σmin((Φ2⊗Φ1)(Φ2⊗Φ1)
T ) and σmax((Φ2⊗Φ1)(Φ2⊗Φ1)

T ) denote theminimal and
maximal eigenvalues of (Φ2 ⊗ Φ1)(Φ2 ⊗ Φ1)

T , respectively. Furthermore, it is well known
that σmin((Φ2⊗Φ1)(Φ2⊗Φ1)

T ) = σmin((Φ2Φ
T
2 )⊗(Φ1Φ

T
1 )) = σmin(Φ2Φ

T
2 )σmin(Φ1Φ

T
1 ),

σmax((Φ2 ⊗ Φ1)(Φ2 ⊗ Φ1)
T ) = σmax((Φ2Φ

T
2 ) ⊗ (Φ1Φ

T
1 )) = σmax(Φ2Φ

T
2 )σmax(Φ1Φ

T
1 ).

By using the RIC of Φ1 and Φ2, we have

(1 − δr (Φ1))(1 − δr (Φ2)) ≤ σmin((Φ2 ⊗ Φ1)(Φ2 ⊗ Φ1)
T )

≤ σmax((Φ2 ⊗ Φ1)(Φ2 ⊗ Φ1)
T ) ≤ (1 + δr (Φ1))(1 + δr (Φ2))

Hence we must have

δr (Φ2 ⊗ Φ1) ≤
2∏

i=1

(1 + δr (Φi )) − 1

��
The following theorem gives a lower bound on theRIC δr (Φ2⊗Φ1), which is a generalization
of Theorem 3.7 in Jokar and Mehrmann (2012) from vectors to low-rank matrices.

Theorem 3 Let Φ1 ∈ R
k1×d1 , Φ2 ∈ R

k2×d2 have normalized rows with RIC δr (Φ1), δr (Φ2).
Then

δr (Φ2 ⊗ Φ1) ≥ max (δr (Φ1), δr (Φ2)) (5)

Proof We prove that δr (Φ2 ⊗ Φ1) ≥ δr (Φ1), the proof that δr (Φ2 ⊗ Φ1) ≥ δr (Φ2) follows
analogously, thus is omitted. We know that δr (Φ1) is the smallest constant such that for all
matrices X ∈ R

p×q (pq = d1) with rank(X) ≤ r , we have

(1 − δr (Φ1))‖X‖2F ≤ ‖Φ1vec(X)‖22 ≤ (1 + δr (Φ1))‖X‖2F
For any rank(X) ≤ r , we construct the matrix X L = (vec(X) 0 . . . 0

) ∈ R
d1×d2 with

rank(X L) = 1 ≤ r and ‖X L‖2F = ‖X‖2F . Since Φ2 has normalized rows, we have

‖(Φ2 ⊗ Φ1)vec(X L)‖22 =
k1∑

i=1

φ2
1,k1‖Φ1vec(X)‖22 = ‖Φ1vec(X)‖22 (6)

On the other hand, δr (Φ2 ⊗ Φ1) is the smallest constant such that

(1 − δr (Φ2 ⊗ Φ1))‖X‖2F ≤ ‖(Φ2 ⊗ Φ1)vec(X L )‖22 ≤ (1 + δr (Φ1))‖X‖2F
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for the special case of X L from (6) we have

(1 − δr (Φ1))‖X‖2F ≤ ‖(Φ2 ⊗ Φ1)vec(X L)‖22 ≤ (1 + δr (Φ1))‖X‖2F
where δr (Φ1) is the smallest constant for this special class of matrices. Therefore, for general
matrices of rank at most r , we have

δr (Φ2 ⊗ Φ1) ≥ δr (Φ1)

��
From Theorems 2 and 3, we see that the pair of bounds on δr (Φ2 ⊗ Φ1) becomes tight if
there is a measurement matrix with dominant RIC. Obviously, when one of the measurement
matrices is identity matrix, the pair of bounds is tightest since δr (I) = 0. Now without loss
of generality, let Φ2 = Id2×d2 , then we have

δr (Id2×d2 ⊗ Φ1) = δr (Φ1) (7)

Recht et al. (2010) gives the following theorem to demonstrate that when the linear map
M : Rd1×d2 → R

k is nearly isometric random variable, it will obey the RIP with a small
RIC under appropriate k, d1, d2.

Theorem 4 Fix 0 < δ < 1. If M : Rd1×d2 → R
k is a nearly isometric random variable, then

for every 1 ≤ r ≤ min(d1, d2), there exist constants c0, c1 depending only on δ such that,
with probability at least 1− exp (−c1k), δr (M) ≤ δ whenever k ≥ c0r(d1 + d2) log(d1d2).

Let Φ1 ∈ R
k1×d1 be a nearly isometric random variable corresponding to the linear map

M : Rp×q → R
k1 with d1 = pq . According to Theorem 4, if we wish δr (Φ1) ≤ δ with

probability at least 1 − exp(−c1k1), the number of measurements needs to satisfy

k1 ≥ c0r(p + q) log(pq) (8)

The lower bound reaches the maximum value when p = q = √
d1 and we have

k1 ≥ 2c0r
√

d1 log(d1). To sum up, if we wish δr (Id2×d2 ⊗ Φ1) ≤ δ, the overall number
of measurements required for the KCS for the special case (7) is

kkron = k1d2 ≥ 2c0r
√

d1d2 log(d1) (9)

On the other hand, immediately using Theorem 4, the number of measurements required for
the regular CS (4) with δr (Φ) ≤ δ is

kstan ≥ c0r(d1 + d2) log(d1d2) (10)

Considering the row and column dimensionalities d1 and d2 are of the same order O(d),
we see that the lower bound in (9) is larger than the lower bound in (10). This implies
that to guarantee the same RIC, the KCS requires more measurements than the regular CS.
Nevertheless, the computational and space complexities for KCS are O(c0rd5/2 log(d)) and
O(c0rd3/2 log(d)) respectively, which are lower than those of the regular CS with both
O
(
c0rd3 log(d)

)
.

In the following, we will make a further generalization of the RIP condition. Since we
plan to bound the regularization loss of SMM classifier in the compressed domain, we need
to show that the near isometry property holds for the terms in the SMM’s objective function.
Different from traditional SVM, the objective function of SMM has an additional nuclear
norm constraint on the weight matrix W . Besides, the weight vector of SVM is a linear
combination of support vectors, while theweightmatrix W is a SVT of the linear combination
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of support matrices, which makes it more complicated. Due to the differences between SVM
and SMM, we plan to show that the near isometry property holds for the Frobenius norm
and the nuclear norm jointly, which is equivalent to show that the spectral elastic net of
the weight matrix W̃ can be approximately preserved after the bilinear projection. Then we
show that the inner product between the W̃ and arbitrary sample X can also be approximately
preserved. At the first step, we show that the inner product between any two low-rankmatrices
is approximately preserved.

Lemma 1 Let Φ1 ∈ R
k1×d1 , Φ2 ∈ R

k2×d2 be the measurement matrices satisfying 2r-RIP
with RIC δ2r (Φ1) and δ2r (Φ2), and X , X ′ be any two matrices in sample set S. Then,

tr
(

X T X ′)− 3R2δ2r (Φ2 ⊗ Φ1) ≤ tr

[(
Φ1XΦT

2

)T (
Φ1X ′ΦT

2

)]

≤ tr
(

X T X ′)+ 3R2δ2r (Φ2 ⊗ Φ1) ,

(11)

where δ2r (Φ2 ⊗ Φ1) ≤∏2
p=1

(
1 + δ2r

(
Φp
))− 1.

Proof Since X , X ′ are matrices with rank at most r , according to the subadditivity of the
rank (Recht et al. 2010), X − X ′ is a matrix with rank at most 2r ,

rank
(
X − X ′) ≤ rank (X) + rank

(
X ′) ≤ 2r .

According to Eq. (1) and Theorem 2,

‖Φ1
(
X − X ′)ΦT

2 ‖2F ≤ (1 + δ2r (Φ2 ⊗ Φ1)) ‖X − X ′‖2F
= (1 + δ2r (Φ2 ⊗ Φ1))

(
‖X‖2F + ‖X ′‖2F − 2tr

(
X T X ′)) . (12)

where δ2r (Φ2 ⊗ Φ1) ≤∏2
p=1

(
1 + δ2r

(
Φp
))− 1. Also,

(1 − δ2r (Φ2 ⊗ Φ1))
(‖X‖2F + ‖X ′‖2F

)− 2tr

((
Φ1XΦT

2

)T (
Φ1X ′ΦT

2

))

≤ ‖Φ1XΦT
2 ‖2F + ‖Φ1X ′Φ2

T ‖2F − 2tr

((
Φ1XΦT

2

)T (
Φ1X ′Φ2

T
))

= ‖ΦT
1

(
X − X ′)Φ2‖2F

(13)

Putting (12) and (13) together, and noting ‖X‖F ≤ R, ‖X ′‖F ≤ R, then

tr
(

X T X ′)− 3R2δ2r (Φ2 ⊗ Φ1) ≤ tr

[(
Φ1XΦT

2

)T (
Φ1X ′Φ2

T
)]

It’s similar to prove the right side of (11). ��
Lemma 2 Let Φ1 ∈ R

k1×d1 , Φ2 ∈ R
k2×d2 be the measurement matrices satisfying 2r-RIP

with RIC δ2r (Φ1) and δ2r (Φ2), and W̃ be the SMM’s classifier trained on sample set S.
Then,

1

2
‖W̃‖2F + τ‖W̃‖∗ − O

((
R2C2 + τ 2r̃

)
δ2r (Φ2 ⊗ Φ1)

)

≤ 1

2
‖Φ1W̃ΦT

2 ‖2F + τ‖Φ1W̃ΦT
2 ‖∗

≤ 1

2
‖W̃‖2F + τ‖W̃‖∗ + O

((
R2C2 + τ 2r̃

)
δ2r (Φ2 ⊗ Φ1)

)
.

(14)

where r̃=min (d1, d2), δ2r (Φ2 ⊗ Φ1) ≤∏2
p=1

(
1 + δ2r

(
Φp
))− 1.
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Proof According to Eq. (3), we have,

‖W̃‖2F = ‖
N∑

i=1

α̃i yi Xi‖2F + ‖Λ̃‖2F + 2tr

(
Λ̃T

N∑
i=1

α̃i yi Xi

)
(15)

Hence we need to prove that the near isometry property holds for each term in (15). We
firstly prove that ‖∑N

i=1 α̃i yi Xi‖2F can be approximately preserved after bilinear projection.

∥∥∥∥∥Φ1

N∑
i=1

α̃i yi XiΦ
T
2

∥∥∥∥∥
2

F

=
∥∥∥∥∥

N∑
i=1

α̃i yiΦ1XiΦ
T
2

∥∥∥∥∥
2

F

= tr

⎛
⎝

N∑
i=1

N∑
j=1

α̃i α̃ j yi y j

(
Φ1XiΦ

T
2

)T
Φ1XiΦ

T
2

⎞
⎠

=
∑

yi =y j

α̃i α̃ j tr

((
Φ1XiΦ

T
2

)T
Φ1XiΦ

T
2

)

−
∑

yi =y j

α̃i α̃ j tr

((
Φ1XiΦ

T
2

)T
Φ1XiΦ

T
2

)

According to Lemma 1, we have,

∑
yi =y j

α̃i α̃ j tr

((
Φ1XiΦ

T
2

)T
Φ1XiΦ

T
2

)

−
∑

yi =y j

α̃i α̃ j tr

((
Φ1XiΦ

T
2

)T
Φ1XiΦ

T
2

)

≤
∑

yi =y j

α̃i α̃ j

(
tr
(

X T
i X j

)
+ 3R2δ2r (Φ2 ⊗ Φ1)

)

−
∑

yi =y j

α̃i α̃ j

(
tr
(

X T
i X j

)
− 3R2δ2r (Φ2 ⊗ Φ1)

)

≤
N∑

i=1

N∑
j=1

α̃i α̃ j yi y j tr
(

X T
i X j

)
+ 3R2δ2r (Φ2 ⊗ Φ1)

N∑
i=1

α̃i

N∑
j=1

α̃ j

≤
∥∥∥∥∥

N∑
i=1

α̃i yi Xi

∥∥∥∥∥
2

F

+ 3R2C2δ2r (Φ2 ⊗ Φ1) .

Hence,
∥∥∥∥∥Φ1

N∑
i=1

α̃i yi XiΦ
T
2

∥∥∥∥∥
2

F

≤
∥∥∥∥∥

N∑
i=1

α̃i yi Xi

∥∥∥∥∥
2

F

+ 3R2C2δ2r (Φ2 ⊗ Φ1) . (16)

Then, we prove that ‖Λ̃‖2F can be approximately preserved after bilinear projection. Consid-

ering Λ̃ = −τ
(

Ũ0Ṽ T
0 + 1

τ
Ũ1�̃1Ṽ T

1

)
rewritten as

Λ̃ = −τ

r̃∑
i=1

σ̃i ũi ṽ
T
i ,
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where r̃=min (d1, d2) is the worst case rank of matrix Λ̃, 0 < σ̃i ≤ 1, ũi and ṽi corresponds

to the colums in
[
Ũ0, Ũ1

]
and
[
Ṽ0, Ũ1

]
. Then,

‖Φ1Λ̃ΦT
2 ‖2F = τ 2tr

⎛
⎜⎝
⎛
⎝

r̃∑
i=1

σ̃iΦ1ũi ṽ
T
i ΦT

2
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⎠

T
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σ̃ jΦ1ũ j ṽ
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2

)T
Φ1ũ j ṽ

T
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)
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(
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((
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(17)

For the third term in (15), we have
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)T
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)
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((
ũi ṽ

T
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)

≤ −τ tr

⎛
⎝
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σ̃i ũi ṽ
T
i

N∑
j=1

α̃ j y j X j

⎞
⎠+ τ

r̃∑
i=1

σ̃i

N∑
j=1

α̃ j O (Rδ2r (Φ2 ⊗ Φ1))

≤ tr

⎛
⎝Λ̃T

N∑
j=1

α̃ j y j X j

⎞
⎠+ O (τ r̃ RCδ2r (Φ2 ⊗ Φ1))

(18)

Putting Eqs. (15)–(18) together, we have,

‖Φ1W̃ΦT
2 ‖2F ≤ ‖W̃‖2F + O

(
(R2C2 + τ 2r̃)δ2r (Φ2 ⊗ Φ1)

)
(19)
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Then, using (19) and the following inequalities which hold for any matrix W of rank at most
r

‖W‖F ≤ ‖W‖∗ ≤ √
r‖W‖F (20)

we have

‖Φ1WΦT
2 ‖∗ ≤ √

r̃‖Φ1WΦT
2 ‖F

≤ √
r̃
√

‖W‖2F + O((R2C2 + τ 2r̃)δ2r (Φ2 × Φ1))

≤ √
r̃‖W‖F + O

(
(
√

r̃ RC + τ r̃)
√

δ2r (Φ2 × Φ1)
)

≤ √
r̃‖W‖∗ + O

(
(
√

r̃ RC + τ r̃)
√

δ2r (Φ2 × Φ1)
)

(21)

Noting that ‖W‖∗ ≤ C
τ
, then

‖Φ1WΦT
2 ‖∗ ≤ ‖W‖∗ + O

(
(
√

r̃ RC + τ r̃)
√

δ2r (Φ2 × Φ1)
)

(22)

Combining (19) and (22) we finally obtain

1

2
‖Φ1W̃ΦT

2 ‖2F + τ‖Φ1W̃ΦT
2 ‖∗

≤ 1

2
‖W̃‖2F + τ‖W̃‖∗ + O

((
R2C2 + τ 2r̃

)
δ2r (Φ2 ⊗ Φ1)

)
(23)

It is similar to prove the left side of (14). ��

So far, we have shown that the restricted isometry property approximately preserves the
spectral elastic net of SMM’s classifier W̃ . Next, we will show that the inner product between
SMM’s classifier W̃ and arbitrary low-rank sample matrix is also approximately preserved
after the bilinear projection.

Lemma 3 Let Φ1 ∈ R
k1×d1 , Φ2 ∈ R

k2×d2 be the measurement matrices satisfying 2r-RIP
with RIC δ2r (Φ1) and δ2r (Φ2), and W̃ be the SMM’s classifier trained on sample set S, X
be arbitrary low-rank sample matrix from data domain. Then,

tr
(

W̃ T X
)

− O
((

R2C + τ r̃ R
)
δ2r (Φ2 ⊗ Φ1)

)

≤ tr

((
Φ1W̃ΦT

2

)T
Φ1XΦT

2

)

≤ tr
(

W̃ T X
)

+ O
((

R2C + τ r̃ R
)
δ2r (Φ2 ⊗ Φ1)

)
,

where r̃=min (d1, d2), δ2r (Φ2 ⊗ Φ1) ≤∏2
p=1

(
1 + δ2r

(
Φp
))− 1.

Proof According to Eq. (36),

tr
(

W̃ T X
)

= tr
(
Λ̃T X

)
+ tr

⎛
⎝
(

N∑
i=1

α̃yi Xi

)T

X

⎞
⎠ (24)
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From Lemmas 1 and 2, we can easily prove,

tr

⎛
⎝
(

N∑
i=1

α̃yi Xi

)T

X

⎞
⎠− 3R2Cδ2r (Φ2 ⊗ Φ1) ≤ tr

⎛
⎝
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N∑
i=1

α̃yiΦ1XiΦ
T
2

)T

Φ1XΦ2

⎞
⎠
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⎛
⎝
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X

⎞
⎠+ 3R2Cδ2r (Φ2 ⊗ Φ1) (25)

Besides,

tr
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2

)T
Φ1XΦT

2

)
= −τ tr

⎛
⎜⎝
⎛
⎝
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σ̃iΦ1ũi ṽ
T
i ΦT

2
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⎠

T

Φ1XΦT
2

⎞
⎟⎠

= −τ

r̃∑
i=1

σ̃i tr

((
Φ1ũi ṽ

T
i ΦT

2

)T
Φ1XΦT

2

)

≤ −τ

r̃∑
i=1

σ̃i

(
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((
ũi ṽ

T
i

)T
X

)
− O (Rδ2r (Φ2 ⊗ Φ1))

)

≤ tr
(
Λ̃T X

)
+ O (τ r̃ Rδ2r (Φ2 ⊗ Φ1)) (26)

where r̃ ≤ min (d1, d2) is the rank of matrix Λ̃. Similarly, we can prove that,

tr

((
Φ1Λ̃ΦT

2

)T
Φ1XΦT

2

)
≥ tr
(
Λ̃T X

)
− O (τ r̃ Rδ2r (Φ2 ⊗ Φ1)) (27)

Putting Eqs. (24)–(27) together, we obtain

tr
(

W̃ T X
)

− O
((

R2C + τ r̃ R
)
δ2r (Φ2 ⊗ Φ1)

)

≤ tr

((
Φ1W̃ΦT

2

)T
Φ1XΦT

2

)

≤ tr
(

W̃ T X
)

+ O
((

R2C + τ r̃ R
)
δ2r (Φ2 ⊗ Φ1)

)

��

4 Theoretical results

In this section, we present the theoretical analysis of 2D compressed learning.We still employ
the two-step strategy used byCalderbank et al. (2009). Consider the SMMclassifier trained on
S as W̃ and trained on SΦ as W̃Φ . The first step is to investigate the relationship between the
generalization performance of W̃ and the generalization performance of the intermediate,
projected classifier Φ1W̃ΦT

2 according to the generalized RIP we introduced in previous
section. The second step is to study the relationship between the generalization performance
of W̃Φ and the generalization performance of the projected classifier Φ1W̃ΦT

2 . Then we can
build a bridge between the generalization performance of W̃ and W̃Φ via Φ1W̃ΦT

2 .
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For simplicity of subsequent expression, we rewrite the optimization problem (2) as min-
imizing the empirical regularization loss:

L̂(W ) = 1

N

N∑
i=1

�(W ; Xi , yi ) (28)

where �(W ; X , y) = h(〈W , X〉, y) + r(W ) and h(〈W , X〉, y) = {1 − ytr(W T X)}+ is the
hinge loss, r(W ) = 1

C ( 12‖W‖2F +τ‖W‖∗) is the spectral elastic net penalty. The correspond-
ing true regularization loss is

L(W ) = E(X ,y)∼X [�(W ; X , y)] (29)

The empirical and true hinge loss are defined respectively as

Ĥ(W ) = 1

N

N∑
i=1

h(〈W , Xi 〉, yi )

and

H(W ) = E(X ,y)∼X [h(〈W , X〉, y)]
The true minimizer is

W � = argmin
W

L(W ) (30)

The following theorem states the relationship between the regularization loss of SMM
classifier in data domain and projected classifier in compressed domain.

Theorem 5 Let Φ1 ∈ R
k1×d1 , Φ2 ∈ R

k2×d2 be the measurement matrices satisfying 2r-RIP
with RIC δ2r (Φ1) and δ2r (Φ2), W̃ be the SMM classifier trained on training set S, then

LΦ

(
Φ1W̃ΦT

2

)
≤ L
(

W̃
)

+ O

((
R2C + τ 2r̃

C

)
δ2r (Φ2 ⊗ Φ1)

)

where r̃=min (d1, d2), δ2r (Φ2 ⊗ Φ1) ≤∏2
p=1

(
1 + δ2r

(
Φp
))− 1.

Proof See “Appendix 2”. ��
We have already demonstrated that the regularization loss of the projected SMM classifier

is close to the regularization loss of SMM classifier in original data domain. In below, we are
going to investigate the relationship between the regularization loss of the projected SMM
classifier and SMM classifier in the measurement domain.

Theorem 6 Let W �, L(W ), L̂(W ) be as defined in (28)–(30), where ‖X‖F ≤ R. Then for
any δ > 0, with probability at least 1 − δ over a sample set of size N, for all W ∈ W :=
{W : ‖W‖2F + τ‖W‖∗ ≤ C} we have

L(W ) − L(W �) ≤ L̂(W ) − L̂(W �) + O

⎛
⎝
(√

2C + τ 2 − τ
)√ R2 log (1/δ)

N

⎞
⎠

Proof See “Appendix 3”. ��
Up to now, we have accomplished the preparations for our main theorem. We synthesize

Theorems 5 and 6 and obtain the main result of our paper as follows:
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Theorem 7 Let Φ1 ∈ R
k1×d1 , Φ2 ∈ R

k2×d2 be the measurement matrices satisfying 2r-RIP
with RIC δ2r (Φ1) and δ2r (Φ2). Let W̃ and W̃Φ be the SMM classifier trained on S and SΦ

respectively, W0 be a good SMM classifier in the data domain with small spectral elastic net
penalty which attains low generalization error. Then with probability 1 − 2δ:

HΦ(W̃Φ) ≤ H(W0)

+ O

⎛
⎜⎝

√√√√
(
1

2
‖W0‖2F +τ‖W0‖∗ + τ 2δ2r (Φ2 ⊗ Φ1)

)(
δ2r (Φ2 ⊗ Φ1)+

√
log (1/δ)

(τ + a)2N

)⎞
⎟⎠

where a is some small constant that ensures non-zero dominant, r̃=min (d1, d2), δ2r

(Φ2 ⊗ Φ1) ≤∏2
p=1

(
1 + δ2r

(
Φp
))− 1.

Proof See “Appendix 4”. ��
Note that this result is a weak upper bound due to the relaxation of the upper bound on

the regularization loss of SMM. According to Theorem 7, the deviation of HΦ

(
W̃Φ

)
from

H (W0)will converges to O (δ2r (Φ2 ⊗ Φ1)) as the number of samples increases.WhenSMM
reduces to SVM (removing the nuclear norm term in the objective function with τ = 0), the

deviation of HΦ

(
W̃Φ

)
from H (W0) will converges to O

(√
δ2r (Φ2 ⊗ Φ1)

)
as the number

of samples increases, which is consistent to the result given by Calderbank et al. (2009).

5 Experiments

In this section,we investigate the learningperformanceof 2Dcompressed learning for classifi-
cation problem on the real-world data sets including those originally inmatrix representation:
(1) the EEG alcoholism database (Luo et al. 2015); (2) the FEI face database (Thomaz
and Giraldi 2010) and those originally in vector representation from UCI data sets: (1) the
DBWorld e-mails data set (Filannino 2011); (2) the p53 Mutants data set (Danziger et al.
2006) (Although our framework is proposed to adapt to matrix data, we still perform exper-
iments on data originally in vector representation to explore the validity of 2D compressed
learning on general data).

We compare 2D compressed learning with conventional compressed learning using SMM
with bilinear projection and SVM with single linear projection, referred as SMM-BP and
SVM-SP. Besides, to see the influence of bilinear projection on the performance compared
with single linear projection, we also perform SMM with single linear projection and SVM
with bilinear projection, referred as SMM-SP and SVM-BP. The measurement matrices are
generated with i.i.d. Gaussian entries Φi j ∼ N (0, 1

k

)
, where k is the dimension of the

compressed data.
We use the 10-fold cross-validation to evaluate the learning performance. The hyperpa-

rameters are also selected via cross-validation. More specifically, we select C and τ from
[10−3, 10−2, . . . , 102, 103] and [10−5, 10−4, . . . , 104, 105].

5.1 Experiments onmatrix representation data sets

The EEG alcoholism data set arises to examine EEG correlates of genetic predisposition to
alcoholism. It contains two groups of subjects: alcoholic and control. For each subject, 64
channels of electrodes are placed and the voltage values are recorded at 256 time points.
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Table 1 Summary of matrix representation data sets

Data sets Positive Negative Matrix dimension Vector dimension

EEG alcoholism 77 45 256 × 64 16,384

FEI face 100 100 216 × 192 41,472

16*4 24*6 32*8 40*10 48*12 56*14 64*16 72*18
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

number of measurements

cl
as

si
fic

at
io

n 
ac

cu
ra

cy

SMM−BP
SMM−SP
SMM−ORI
SVM−BP
SVM−SP
SVM−ORI

(a) EEG alcoholism

9*8 14*12 18*16 22*20 27*24 32*28 36*32 40*36
0.84

0.86

0.88

0.9

0.92

0.94

0.96

number of measurements

cl
as

si
fic

at
io

n 
ac

cu
ra

cy

SMM−BP
SMM−SP
SMM−ORI
SVM−BP
SVM−SP
SVM−ORI

(b) FEI face

Fig. 1 Classification accuracy for SMM and SVM with a single linear projection and a bilinear projection on
EEG alcoholism and FEI face with respect to the different number of measurements

The FEI face database contains the face images of 100 females and 100 males, 14 images
for each at various angles. The image size is 640×480.We cropped the images into 216×192
gray images to retain the frontal images of each person.

Table 1 summarizes the characteristics of matrix representation data sets.
Figure 1 presents the classification accuracy for SMM and SVM with bilinear projection

and single linear projection on matrix data sets (EEG alcoholism and FEI face) according to
different number of measurements. We can see that SMM-BP achieves good performances
on the compressed measurements and the performance gets closer to that of the original data
as the number of the compressed measurements increases, which verifies the feasibility of
2D compressed learning. In addition, the performances of SMM-BP on both original data
and compressed data outperforms other three compressed algorithms, shows the superiority
of 2D compressed learning than conventional compressed learning. In more details, the
performance of SMM-BP is better than SMM-SP while SVM-BP gets a similar performance
with SVM-SP. The performance improvement of SMM-BP may attribute to two aspects, (1)
the bilinear projection could preserve the structure information while single linear projection
can not; (2) SMM can leverage the structure information while SVM can not take advantages
from it.

Figures 2 and 3 present the comparison between SMMwith bilinear projection and single
linear projection in terms of the computational time and storage cost. In case of bilinear
projection, the computational time and storage cost for generating compressedmeasurements
are significantly reduced compared to a single linear projection.

As shown in Fig. 3, the storage space required by single linear projection is much more
than bilinear projection under the same number of measurements. Thus, we consider to
increase the number of measurements for bilinear projection, whose storage requirement is
still smaller than single linear projection. Fig. 4 shows the classification accuracy for SMM-
BP, SMM-SP, SVM-BP and SVM-SP, where the top abscissa axis describes the number of
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Fig. 2 The comparison of the computation time between the single linear projection and the bilinear projection
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Fig. 3 The comparison of the storage cost between the single linear projection and the bilinear projection

measurements for single linear projection and the bottom abscissa axis describes the number
of measurements for bilinear projection. We can see that SMM and SVM can achieve higher
accuracy on the bilinear projected measurements while still retain a smaller storage cost
compared with the single projected measurements. Thus from the view of storage cost, it’s a
good choice to use bilinear projection. Besides, SMM-BP can reach an even higher accuracy
than SVM-BP, also reflects that SMM can leverage the structure information while SVM can
not.

5.2 Experiments on vector representation data sets

The DBWorld e-mails data set consists of 64 e-mails from DBWorld newsletter, announces
conferences, jobs, books, software and grants. Every e-mail is represented as a vector contain-
ing 5704 binary values, and separated into two classes, for 1 if the sample is an announcement
of conference, 0 otherwise. For the convenience of the data matrixing, we drop the last four
features, and then reshape the data to a 94 × 50 matrix data without overlapping.

The p53Mutants data set is utilized as the benchmark data set to predict the transcriptional
activity (active vs inactive) based on data extracted from biophysical simulations. There are
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Fig. 4 Classification accuracy for SMM-BP, SVM-BP and SMM-SP, SVM-BP, SVM-SP on EEG alcoholism
and FEI face with increased number of measurements for BP

Table 2 Summary of vector representation data sets

Data sets Positive Negative Matrix dimension Vector dimension

DBWorld e-mails 29 35 94 × 50 4700

p53 Mutants 151 349 90 × 60 5400

a total of 31,420 instances, each instance contains 5408 attributes. We randomly selected
500 instances for our experiment. For the convenience of the data matrixing, we drop the last
nine features, and then reshape the data to a 90 × 60 matrix data without overlapping.

Table 2 summarizes the characteristics of vector representation data sets.
Figure 5 presents the classification accuracy for SMM and SVM with bilinear projection

and single linear projection on vector data sets (DBworld e-mails and p53mutants) according
to different number of measurements. The Experiment results of Wang and Chen (2007) and
Wang et al. (2013) have shown that differentmatrix sizes would lead to different classification
results. In this paper, we don’t concern about matrixing of the vector data, thus we fix the
matrix size in our experiments.AlthoughSMM-BPcannot outperformother three algorithms,
it can achieve comparable results with others while obtain a less storage burden. Thus, we
can also perform 2D compressed learning on vector data from the perspective of storage
saving.

Figures 6 and 7 present the comparison between SMMwith bilinear projection and single
linear projection in terms of the computational time and storage cost. In case of bilinear
projection, the computational time and storage cost for generating compressedmeasurements
are significantly reduced compared to the single linear projection.

We also consider to increase the number of measurements for bilinear projection on
vector representation data sets, whose storage requirement is still smaller than single linear
projection. Fig. 8 shows the classification accuracy for SMM-BP, SMM-SP, SVM-BP and
SVM-SP, where the top abscissa axis describes the number of measurements for single linear
projection and the bottom abscissa axis describes the number of measurements for bilinear
projection. The results also demonstrate the storage saving of bilinear projection. Although
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Fig. 5 Classification accuracy for SMM and SVM with a single linear projection and a bilinear projection on
DBworld e-mails and p53 mutants with respect to the different number of measurements
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Fig. 6 The comparison of the computation time between the single linear projection and the bilinear projection
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Fig. 7 The comparison of the storage cost between the single linear projection and the bilinear projection
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Fig. 8 Classification accuracy for SMM-BP, SVM-BP and SMM-SP, SVM-BP, SVM-SP on DBworld e-mails
and p53 mutants with increased number of measurements for BP

SMM-BPcan’t reach a higher accuracy thanSVM-BPonvector data, it can obtain comparable
results.

6 Conclusion

In this paper, we have considered a 2D compressive classification problem that learns the
SMM classifier using the KCS measurements realized by a bilinear projection. KCS can
preserve the structure presented in each dimension and SMM can leverage the structure of
the KCS measurements for improving classification accuracy. We have provided theoretical
analysis to show the feasibility of our method and demonstrated that: (1) The RIP condition
holds for the bilinear projection; (2) The computational and space complexities of KCS are
lower than the regular CS; (3) The performance of the SMM in the Kronecker compressed
domain is close to that in the original domain. Experiments on real-world datasets also showed
the feasibility of our method. Future directions include incorporating the nonlinear technique
to handle the linearly non-separable problems and the sketching technique to handle the large
scale problem.
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Appendices

Appendix 1: The Proof of Theorem 1

Proof The optimization problem (2) can be rewritten as
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min
W ,ξ

1

2
‖W‖2F + τ‖W‖∗ + C

N

N∑
i=1

ξi

s.t. yi tr
(

W T Xi

)
≥ 1 − ξi i = 1, . . . , N

ξi ≥ 0 i = 1, . . . , N

The Lagrangian function is as follows:

L (W , ξ, α, γ ) = 1

2
‖W‖2F + τ‖W‖∗ + C

N

N∑
i=1

ξi

−
N∑

i=1

αi

[
yi tr
(

W T Xi

)
− 1 + ξi

]
−

N∑
i=1

γiξi

(31)

Setting the derivative of L with respect to ξ to be 0, we have

γi = C

N
− αi ≥ 0, i = 1, . . . , N . (32)

Substituting (32) into (31) to eliminate ξi and γi , we obtain the dual problem as

L (W , α) = 1

2
‖W‖2F + τ‖W‖∗ −

N∑
i=1

αi

[
yi tr
(

W T Xi

)
− 1
]

(33)

where 0 ≤ α̃i ≤ C
N . The optimal solution of problem (33) is given by Cai et al. (2010) as,

W̃ = Dτ

(
N∑

i=1

α̃i yi Xi

)
,

where α̃ is the corresponding value of Lagrangian multiplier when W̃ is the optimal solution.
According to the dual theorem,

1

2
‖W̃‖2F + τ‖W̃‖∗ ≤ 1

2
‖W̃‖2F + τ‖W̃‖∗ + C

N

N∑
i=1

ξi

= 1

2
‖W̃‖2F + τ‖W̃‖∗ −

N∑
i=1

α̃i

[
yi tr
(

W̃ T Xi

)
− 1
]

Hence,

tr

(
W̃ T

N∑
i=1

α̃i yi Xi

)
≤

N∑
i=1

α̃i ≤ C (34)

Let the linear combination
∑N

i=1 α̃i yi Xi have the condensed SVD of the following form,

N∑
i=1

α̃i yi Xi = Ũ0�̃0Ṽ T
0 + Ũ1�̃1Ṽ T

1 , (35)

where �̃0 is the diagonal matrix whose diagonal entries are greater than τ , Ũ0 and Ũ0

are matrices of the corresponding left and right singular vectors; �̃1, Ũ1 and Ũ1 cor-
respond the rest parts of the SVD whose singular values 0 < σ ≤ τ . Define Λ̃ =
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−τ
(

Ũ0Ṽ T
0 + 1

τ
Ũ1�̃1Ṽ T

1

)
and substituting Λ̃ into (35)

W̃ = Ũ0

(
�̃0 − τ

)
Ṽ T
0 = Λ̃ +

N∑
i=1

α̃i yi Xi . (36)

Substituting (36) into (34), we have

‖W̃‖2F − tr
(
Λ̃T W̃

)
= tr

(
W̃ T

N∑
i=1

α̃i yi Xi

)
≤ C . (37)

Furthermore, using Eq. (1) we have,

− 1

τ
Λ̃ ∈ ∂ ‖W‖∗

∣∣
W=W̃ ,

and,

∥∥∥W̃
∥∥∥∗ = − 1

τ
tr
(
Λ̃T W̃

)
. (38)

Substituting (38) into (37), we have

‖W̃‖2F + τ‖W̃‖∗ ≤ C .

��

Appendix 2: The Proof of Theorem 5

Proof According to Lemma 3, we have

1 − ytr

((
Φ1W̃ΦT

2

)T (
Φ1XΦT

2

))

≤ 1 − ytr
(

W̃ T X
)

+ O
((

R2C + τ r̃ R
)
δ2r (Φ2 ⊗ Φ1)

)
.

Since the measurement matrix forms a one-to-one mapping from the data domain to mea-
surement domain, we can take the expectation of the hinge loss as:

HΦ

(
Φ1W̃ΦT

2

)
≤ H

(
W̃
)

+ O
((

R2C + τ r̃ R
)
δ2r (Φ2 ⊗ Φ1)

)
.

Thus the hinge loss H
(

W̃
)
can be preserved after bilinear random projection. According to

Lemma 2, the near isometry property holds for the spectral elastic net, thus
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1

2C
‖Φ1W̃ΦT

2 ‖2F + τ

C
‖Φ1W̃ΦT

2 ‖∗

≤ 1

2C
‖W̃‖2F + τ

C
‖W̃‖∗ + O

((
R2C + τ 2r̃

C

)
δ2r (Φ2 ⊗ Φ1)

)

Then we can complete the proof,

LΦ

(
Φ1W̃ΦT

2

)
= HΦ

(
Φ1W̃ΦT

2

)
+ 1

2C
‖Φ1W̃ΦT

2 ‖2F + τ

C
‖Φ1W̃ΦT

2 ‖∗

≤ H
(

W̃
)

+ 1

2C
‖W̃‖2F + τ

C
‖W̃‖∗

+ O

((
R2C + τ 2r̃

C

)
δ2r (Φ2 ⊗ Φ1)

)

= L
(

W̃
)

+ O

((
R2C + τ 2r̃

C

)
δ2r (Φ2 ⊗ Φ1)

)

��

Appendix 3: The Proof of Theorem 6

Proof For each W , we define gW (X , y) = �(W ; X , y) − �(W �; X , y), our goal is to bound
the expectation of gW in terms of its empirical average. We denote G = {gW |W ∈ W}.
Instead of bounding the variation between the expected and the empirical values of gW ∈ G
in terms of the complexity of G, we use the complexity of an alternative class of functions,
which ignores the spectral elastic net penalty r(W ). Define

H = {hW = gW − (r(W ) − r(W �)) : gW ∈ G}

With this definition, we have

E[gW ] − Ê[gW ] = E[hW ] − Ê[hW ] (39)

hence it is enough to bound the right hand side of (39), which can be done by the Rademacher
complexity of the class R(H) (Bartlett and Mendelson 2002), i.e., for any δ > 0, with
probability 1 − δ,

sup
hW ∈H

E[hW ] − Ê[hW ] ≤ 2R(H) +
(

sup
hW ∈H,X ,y

|hW (X , y)|
)√

log (1/δ)

2N

From the definition of hW , the Lipschitz continuity of the hinge loss, and the bound ‖X‖F ≤
R, we have

|hW (X , y)| = |h(〈W , X〉, y) − h(〈W �, X〉, y)| ≤ R‖W − W �‖F (40)

Recall that we have restricted our analysis in the hypothesis spaceW , then using the following
inequalities which hold for any matrix X ,

‖X‖F ≤ ‖X‖∗
we have

‖W‖F ≤
√

C + τ 2

4
− τ

2
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For the true minimizer W �, we have

E[�(〈W �, X〉, y)] = E[h(〈W �, X〉, y)] + 1

2C
‖W �‖2F + τ

C
‖W �‖∗ ≤ L(0) ≤ 1

hence we can conclude

‖W �‖F ≤
√
2C + τ 2 − τ, ‖W‖F ≤

√
C + τ 2

4
− τ

2
≤
√
2C + τ 2 − τ (41)

Substituting (41) into (40) yields

|hW (X , y)| ≤ √
2R
(√

2C + τ 2 − τ
)

(42)

The Rademacher complexity can be upper bounded by

R(H) = 1

N
E

[
sup

W∈W

N∑
i=1

σi hW (Xi , yi )

]

≤ 1

N
E

[
sup

W∈W

N∑
i=1

σi tr
(
(W − W �)T Xi

)]

≤ 1

N
E

[
sup

W∈W
‖W − W �‖F‖

N∑
i=1

σi Xi‖F

]

≤
√
2R
(√

2C + τ 2 − τ
)

√
N

From the above, for any δ > 0 with probability at least 1 − δ we have

E[gW ] − Ê[gW ] = E[hW ] − Ê[hW ] ≤ O

⎛
⎝
(√

2C + τ 2 − τ
)√ R2 log (1/δ)

N

⎞
⎠ (43)

��

Appendix 4: The Proof of Theorem 7

Proof By definition of the true regularization loss we have,

HΦ

(
W̃Φ

)
≤ HΦ

(
W̃Φ

)
+ 1

2C

∥∥∥W̃Φ

∥∥∥
2

F
+ τ

C

∥∥∥W̃Φ

∥∥∥∗ = LΦ

(
W̃Φ

)

According to Theorem 6,

L(W̃ ) − L(W �) ≤ L̂(W̃ ) − L̂(W �) + O

⎛
⎝
(√

2C + τ 2 − τ
)√ R2 log (1/δ)

N

⎞
⎠

LΦ(W̃Φ) − LΦ(W �
Φ) ≤ L̂Φ(W̃Φ) − L̂Φ(W �

Φ) + O

⎛
⎝(√2C + τ 2 − τ

)√ R2 log (1/δ)

N

⎞
⎠
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Besides, since the SMM classifier W̃ minimizes the empirical regularization loss,

L̂(W̃ ) ≤ L̂(W �)

L̂Φ(W̃Φ) ≤ L̂Φ(W �
Φ)

we have,

L(W̃ ) ≤ L(W �) + O

⎛
⎝(√2C + τ 2 − τ

)√ R2 log (1/δ)

N

⎞
⎠

LΦ(W̃Φ) ≤ LΦ(W �
Φ) + O

⎛
⎝
(√

2C + τ 2 − τ
)√ R2 log (1/δ)

N

⎞
⎠

As W ∗
Φ is the best SMM classifier in measurement domain, then

LΦ

(
W ∗

Φ

) ≤ LΦ

(
Φ1W̃ΦT

2

)

Theorem 5 connects the regularization loss of the SMM classifier W̃ in data domain and the
regularization loss of the projected classifier Φ1W̃ΦT

2

LΦ

(
Φ1W̃ΦT

2

)
≤ L
(

W̃
)

+ O

((
R2C + τ 2r̃

C

)
δ2r (Φ2 ⊗ Φ1)

)

In particular, let W0 be a good SMM classifier with small true spectral elastic net penalty. By
the definition of W ∗

L(W ∗) ≤ L (W0)

Putting above inequalities together, we get

HΦ

(
W̃Φ

)
≤ H (W0) + 1

2C
‖W0‖2F + τ

C
‖W0‖∗

+ O

⎛
⎝
(

R2C + τ 2r̃

C

)
δ2r (Φ2 ⊗ Φ1) +

(√
2C + τ 2 − τ

)√ R2 log (1/δ)

N

⎞
⎠

(44)

To balance the terms, we need to choose an appropriate C . It is difficult to find the optimal
C for Eq. (44) directly, we in turn relax the right hand side of it and find the optimal C for
the relaxed upper bound. Noting that

√
2C + τ 2 − τ ≤ C

τ+a for some small constant a, thus
we obtain the relaxed upper bound as

HΦ

(
W̃Φ

)
≤ H (W0) + 1

2C
‖W0‖2F + τ

C
‖W0‖∗

+ O

⎛
⎝
(

R2C + τ 2r̃

C

)
δ2r (Φ2 ⊗ Φ1) +

√
R2C2 log (1/δ)

(τ + a)2N

⎞
⎠

(45)
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Considering R and r̃ as fixed constants and choose a C which minimizes the relaxed upper
bound (45) we get

HΦ(W̃Φ) ≤ H(W0)

+ O

⎛
⎜⎝

√√√√
(
1

2
‖W0‖2F + τ‖W0‖∗+τ 2δ2r (Φ2 ⊗ Φ1)

)(
δ2r (Φ2 ⊗ Φ1)+

√
log (1/δ)

(τ + a)2N

)⎞
⎟⎠

��

References

Baraniuk, R., Davenport, M., DeVore, R., & Wakin, M. (2008). A simple proof of the restricted isometry
property for random matrices. Constructive Approximation, 28(3), 253–263.

Bartlett, P. L., & Mendelson, S. (2002). Rademacher and gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3, 463–482.

Cai, J. F., Candès, E. J., & Shen, Z. (2010). A singular value thresholding algorithm for matrix completion.
SIAM Journal on Optimization, 20(4), 1956–1982.

Calderbank, R., Jafarpour, S., & Schapire, R. (2009). Compressed learning: Universal sparse dimensionality
reduction and learning in the measurement domain. Technical report, Rice University

Candes, E. J., & Tao, T. (2006). Near-optimal signal recovery from random projections: Universal encoding
strategies? IEEE Transactions on Information Theory, 52(12), 5406–5425.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
Danziger, S. A., Swamidass, S. J., Zeng, J., Dearth, L. R., Lu, Q., Chen, J. H., et al. (2006). Functional census

of mutation sequence spaces: The example of p53 cancer rescue mutants. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB), 3(2), 114–125.

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.
Duarte, M. F., & Baraniuk, R. G. (2012). Kronecker compressive sensing. IEEE Transactions on Image

Processing, 21(2), 494–504.
Duarte, M. F., Davenport, M. A., Takhar, D., Laska, J. N., Sun, T., Kelly, K. E., et al. (2008). Single-pixel

imaging via compressive sampling. IEEE Signal Processing Magazine, 25(2), 83.
Filannino, M. (2011). Dbworld e-mail classification using a very small corpus. The University of Manchester.
Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning. Springer series in

statistics (Vol. 1). New York: Springer.
Jokar, S., & Mehrmann, V. (2012). Sparse representation of solutions of kronecker product systems. Mathe-

matics
Luo, L., Xie, Y., Zhang, Z., & Li, W. J. (2015). Support matrix machines. In Proceedings of the 32nd interna-

tional conference on machine learning (ICML-15) (pp. 938–947).
Lustig, M., Donoho, D. L., Santos, J. M., & Pauly, J. M. (2008). Compressed sensing MRI. IEEE Signal

Processing Magazine, 25(2), 72–82.
Maillard, O., & Munos, R. (2009). Compressed least-squares regression. In Advances in neural information

processing systems (pp. 1213–1221).
Reboredo, H., Renna, F., Calderbank, R., & Rodrigues, M. R. (2013). Compressive classification. In 2013

IEEE international symposium on information theory proceedings (ISIT) (pp. 674–678). IEEE
Recht, B., Fazel, M., & Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of linear matrix equations

via nuclear norm minimization. SIAM Review, 52(3), 471–501.
Rish, I., & Grabarnik, G. (2014). Sparse modeling: Theory, algorithms, and applications. Boca Raton: CRC

Press.
Thomaz, C. E., & Giraldi, G. A. (2010). A new ranking method for principal components analysis and its

application to face image analysis. Image and Vision Computing, 28(6), 902–913.
Wang, Z., & Chen, S. (2007). New least squares support vector machines based on matrix patterns. Neural

Processing Letters, 26(1), 41–56.
Wang, Z., Zhu, C., Gao, D., & Chen, S. (2013). Three-fold structured classifier design based on matrix pattern.

Pattern Recognition, 46(6), 1532–1555.
Wolf, L., Jhuang, H., & Hazan, T. (2007). Modeling appearances with low-rank SVM. In IEEE conference on

computer vision and pattern recognition, 2007. CVPR’07 (pp. 1–6). IEEE

123



2060 Machine Learning (2019) 108:2035–2060

Zhou, H., & Li, L. (2014). Regularized matrix regression. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 76(2), 463–483.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	2D compressed learning: support matrix machine with bilinear random projections
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Support matrix machine

	3 2D compressed learning
	3.1 Kronecker compressed sensing
	3.2 Generalized restricted isometry property for Kronecker product measurement matrices

	4 Theoretical results
	5 Experiments
	5.1 Experiments on matrix representation data sets
	5.2 Experiments on vector representation data sets

	6 Conclusion
	Acknowledgements
	Appendices
	Appendix 1: The Proof of Theorem 1
	Appendix 2: The Proof of Theorem 5
	Appendix 3: The Proof of Theorem 6
	Appendix 4: The Proof of Theorem 7
	References




