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Abstract
We introduce the speculate-correct method to derive error bounds for local classifiers. Using
it, we show that k-nearest neighbor classifiers, in spite of their famously fractured decision
boundaries, have exponential error bounds with O

(√
(k + ln n)/n

)
range around an estimate

of generalization error for n in-sample examples.

Keywords Nearest neighbors · Error bounds · Generalization

1 Introduction

Local classifiers use only a small subset of their examples to classify each input. The best-
known local classifier is the nearest neighbor classifier. To classify an example, a k-nearest
neighbor (k-nn) classifier uses a majority vote over the k in-sample examples closest to the
example. Deriving error bounds for k-nn classifiers is a challenge, because they can have
extremely fractured decision boundaries, making approaches based on hypothesis class size
ineffective. For general information on k-nn classifiers, see the books by Devroye et al.
(1996), Duda et al. (2001) and Hastie et al. (2009).

The error bounds in this paper are probably approximately correct (PAC) bounds, con-
sisting of a range of error rates and an upper bound on the probability that the out-of-sample
error rate is outside the range. An effective PAC bound has a small range and a small bound
failure probability. PAC error bounds include bounds based on Vapnik–Chervonenkis (VC)
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dimension (Vapnik and Chervonenkis 1971), bounds for concept learning by Valiant (1984),
compression-based bounds by Littlestone and Warmuth (1986), Floyd and Warmuth (1995),
Blum and Langford (2003), and Bax (2008), and bounds based on worst likely assignments
(Bax and Callejas 2008). Langford (2005) gives an overview and comparison of some types
of PAC bounds.

Exponential error bounds have range proportional to
√
ln(1/δ) as bound failure probability

δ → 0. Devroye et al. (1996) (page 414) give k-nn classifier error bounds that are non-

exponential (range proportional to
√

1
δ
as δ → 0) and have range O

(
(
√
k/n)1/2

)
. They

state: “Exponential upper bounds ... are typically much harder to obtain.” Then they present
an exponential bound by Devroye and Wagner (1979) with range O

(
(k/n)1/3

)
(Devroye

et al. (1996) p. 415, Theorem 24.5). A more recent exponential bound has expected (but not
guaranteed) error bound range O

(
(k/n)2/5

)
(Bax 2012).

The great conundrumof classifier validation is thatwewant to use data that are independent
of the classifier to estimate its error rate, but we also want to use all available data for the
classifier. At each step, speculate-correct assumes that this problem does not exist, at least
for some of the in-sample data. In subsequent steps, it corrects for its sometimes-false earlier
assumptions. As it does this, the number of corrections grows, but the size of each correction
shrinks.

To illustrate, for some value m ≤ 1
2 (n − k), let V1 be the first m and V2 be the second

m in-sample examples. (Call V1 and V2 validation subsets.) Let g be the full classifier; our
goal is to bound its error rate: Pr {g}. (Use Pr {} to indicate probability over out-of-sample
examples, and use a bar on top to indicate classifier error.) Let g−S be the classifier formed by
withholding the data sets indexed by S. For example, g−{1} is all in-sample examples except
those in V1. Then the speculate-correct process is:

1. Speculate that withholding V1 does not affect classification: ∀x : g = g−{1}. Compute
PrV1

{
g−{1}

}
as our initial estimate of Pr {g}. (Use PrVi {} to indicate empirical rate

over examples in Vi—also called an empirical mean.) Split the probabilities by whether
the speculation holds:

Pr {g} = Pr
{
g = g−{1} ∧ g

} + Pr
{
g �= g−{1} ∧ g

}
, (1)

and
Pr

{
g−{1}

} = Pr
{
g = g−{1} ∧ g−{1}

} + Pr
{
g �= g−{1} ∧ g−{1}

}
. (2)

The RHS first terms are equal:

Pr
{
g = g−{1} ∧ g

} = Pr
{
g = g−{1} ∧ g−{1}

}
, (3)

since
(g = g−{1}) �⇒ (g = g−{1}). (4)

So the bias in estimating Pr {g} by PrV1
{
g−{1}

}
is the other two RHS terms:

Pr {g} − Pr
{
g−{1}

} = Pr
{
g �= g−{1} ∧ g

} − Pr
{
g �= g−{1} ∧ g−{1}

}
. (5)

Note that g �= g−{1} (failure of our speculation) is a condition in both bias terms. Also,
the bias is in a range bounded by the probability that speculation fails:

[−Pr
{
g �= g−{1}

}
, Pr

{
g �= g−{1}

}]
. (6)

2. To correct for bias due to failure of speculation in Step 1, now speculate that ∀x : g =
g−{2} and g−{1} = g−{1,2}, in other words, that removing V2 does not alter classifications.
Then use empirical means over V2 to correct bias from Step 1:
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(a) Estimate Pr
{
g �= g−{1} ∧ g

}
by PrV2

{
g−{2} �= g−{1,2} ∧ g−{2}

}
.

(b) Estimate −Pr
{
g �= g−{1} ∧ g−{1}

}
by −PrV2

{
g−{2} �= g−{1,2} ∧ g−{1,2}

}
.

Consider Estimate 2a. Split the probabilities by whether the new speculation holds:

Pr
{
g �= g−{1} ∧ g

}
(7)

= Pr
{
g �= g−{1} ∧ (g = g−{2} ∧ g−{1} = g−{1,2}) ∧ g

}
(8)

+Pr
{
g �= g−{1} ∧ ¬(g = g−{2} ∧ g−{1} = g−{1,2}) ∧ g

}
, (9)

and

Pr
{
g−{2} �= g−{1,2} ∧ g−{2}

}
(10)

= Pr
{
g−{2} �= g−{1,2} ∧ (g = g−{2} ∧ g−{1} = g−{1,2}) ∧ g−{2}

}
(11)

+ Pr
{
g−{2} �= g−{1,2} ∧ ¬(g = g−{2} ∧ g−{1} = g−{1,2}) ∧ g−{2}

}
. (12)

The RHS first terms are equal, because g = g−{2} ∧ g−{1} = g−{1,2} implies (g �=
g−{1}) = (g−{2} �= g−{1,2}) and g = g−{2}. The RHS second terms contribute bias:

Pr
{
g �= g−{1} ∧ g

} − Pr
{
g−{2} �= g−{1,2} ∧ g−{2}

}
(13)

= Pr
{
g �= g−{1} ∧ ¬(g = g−{2} ∧ g−{1} = g−{1,2}) ∧ g

}
(14)

− Pr
{
g−{2} �= g−{1,2} ∧ ¬(g = g−{2} ∧ g−{1} = g−{1,2}) ∧ g−{2}

}
. (15)

A similar analysis of Estimate 2b yields two more bias terms. All four bias terms have
failure of both the first and second speculations in their conditions. So if we estimate
Pr {g} by

PrV1
{
g−{1}

}
(16)

+ PrV2
{
g−{2} �= g−{1,2} ∧ g−{2}

} − PrV2
{
g−{2} �= g−{1,2} ∧ g−{1,2}

}
, (17)

the estimate has four bias terms, and lies in a range determined by the probability that
both speculations fail:

[−2Pr
{
g �= g−{1} ∧ ¬(g = g−{2} ∧ g−{1} = g−{1,2})

}
, (18)

2Pr
{
g �= g−{1} ∧ ¬(g = g−{2} ∧ g−{1} = g−{1,2})

}]. (19)

Continuing this for r steps, with r validation subsets V1, . . . , Vr , produces a sum of 2r −1
estimates. All remaining bias depends on simultaneous failure of r speculations, but there
are 2r bias terms. For k-nn, speculation can only fail for Step i if Vi has a nearer neighbor to
x than its kth nearest neighbor among the in-sample examples not in any validation subset.
So the bias is at most 2r times the probability that x has a nearer neighbor in every validation
subset than the kth nearest neighbor among the other in-sample examples.

To produce effective error bounds, we must use validation subsets small enough to make
the probability of r simultaneous speculation failures small, and yet large enough that the sum
of 2r − 1 estimates is likely to have a small deviation from the sum that it estimates. (Using
Hoeffding bounds (Hoeffding 1963), the range for the difference between each estimate

PrVi {} and its corresponding out-of-sample probability Pr {} is O
(

1√|Vi |
)
.) We show that

an appropriate choice of validation subset size gives error bound range:

O
(
n− r

2r+1
√
k + r

)
, (20)

123



2090 Machine Learning (2019) 108:2087–2111

and, for a choice of r based on n, the range is

O
(√

(k + ln n)/n
)

. (21)

The next section formally introduces the speculate-correctmethod to produce error bounds
for local classifiers. Section 3 applies the method to k-nn classifiers. Section 4 shows how to
compute the bounds. Section 5 shows how effective the bounds are for some actual classifiers.
Section 6 concludes with potential directions for future work.

2 Speculate-Correct

Let F be the full set of n in-sample examples (x, y), drawn i.i.d. from a joint input-output
distribution D. Inputs x are drawn from an arbitrary domain, and outputs y are drawn from
{0, 1} (binary classification). Assume there is some ordering of the examples in F , so that
we may refer to examples 1 to n in F , treating F as a sequence.

Select r > 0 and m > 0 such that rm ≤ n − k. For each i ∈ 1, . . . , r , let validation
subset Vi be the i th subset of m examples in F . For example, if r = 2 and m = 1000,
then V1 is the first thousand examples in F and V2 is the second thousand. Let validation set
V = V1 ∪ . . . ∪ Vr . For convenience, define R ≡ {1, . . . , r}. For S ⊆ R, let VS be the union
of validation subsets indexed by S.

Our PAC error bounds have probability of bound failure over draws of F . Let the subscript
F ∼ Dn denote a probability or expectation over draws of F . We use no subscript for
probabilities or expectations over out-of-sample examples (x, y) ∼ D. For example,

p∗ ≡ Pr {g} (22)

denotes the out-of-sample error rate of g, and it is the quantity we wish to bound. (It is
sometimes called the conditional error rate, because it is the error rate conditioned on a set
of in-sample examples F rather than the expected error rate over draws of F .)

Let Ai = {1, . . . , i}. Let a1, . . . , ar be any series of conditions such that

ai (x) �⇒ ∀S ⊆ Ai−1 : g−(S∪{i})(x) = g−S(x), (23)

i.e., ai (x) implies that for any classifier formed by withholding any subset of {V1, . . . , Vi−1},
withholding Vi too does not alter the classification of x .

Let bi = ¬a1 ∧ . . . ∧ ¬ai . Define b0 to be true. The following theorem generalizes the
speculate-correct formula for r = 2 that we developed in the previous section.

Theorem 1

∀r ≥ 0 : p∗ =
r∑

i=1

∑

S⊆Ai−1

(−1)|S|Pr
{
bi−1 ∧ g−(S∪{i})

}+
∑

S⊆R

(−1)|S|Pr {br ∧ g−S} . (24)

Proof Use induction. The base case is r = 0:
∑

S⊆∅
(−1)|S|Pr {b0 ∧ g−S} = Pr {b0 ∧ g−∅} = Pr {g} = p∗. (25)

Next, to show that the result for r :

p∗ =
r∑

i=1

∑

S⊆Ai−1

(−1)|S|Pr
{
bi−1 ∧ g−(S∪{i})

} +
∑

S⊆R

(−1)|S|Pr {br ∧ g−S} , (26)
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implies the result for r + 1:

p∗ =
r+1∑

i=1

∑

S⊆Ai−1

(−1)|S|Pr
{
bi−1 ∧ g−(S∪{i})

} +
∑

S⊆Ar+1

(−1)|S|Pr {br+1 ∧ g−S} , (27)

subtract the result for r from the result for r + 1. The difference is
∑

S⊆Ar

(−1)|S|Pr
{
br ∧ g−(S∪{r+1})

} +
∑

S⊆Ar+1

(−1)|S|Pr {br+1 ∧ g−S} (28)

−
∑

S⊆R

(−1)|S|Pr {br ∧ g−S} . (29)

We will show that this difference is zero.
Since Ar = R, the first and third sums are over the same indices, so combine them:

=
∑

S⊆Ar

(−1)|S| (Pr
{
br ∧ g−(S∪{r+1})

} − Pr {br ∧ g−S}
)

(30)

+
∑

S⊆Ar+1

(−1)|S|Pr {br+1 ∧ g−S} . (31)

Expand the first sum’s probabilities around ar+1 values:

Pr
{
br ∧ g−(S∪{r+1})

} − Pr {br ∧ g−S} (32)

= Pr
{
br ∧ ar+1 ∧ g−(S∪{r+1})

} + Pr
{
br ∧ ¬ar+1 ∧ g−(S∪{r+1})

}
(33)

−Pr {br ∧ ar+1 ∧ g−S} − Pr {br ∧ ¬ar+1 ∧ g−S} . (34)

The first and third terms cancel, because ar+1 �⇒ g−(S∪{r+1}) = g−S . The other terms
have br+1, since br ∧ ¬ar+1 = br+1. So the difference is:

=
∑

S⊆Ar

(−1)|S| (Pr
{
br+1 ∧ g−(S∪{r+1})

} − Pr {br+1 ∧ g−S}
)

(35)

+
∑

S⊆Ar+1

(−1)|S|Pr {br+1 ∧ g−S} . (36)

The first sum cancels the second: for each S in the first sum, the first term cancels the term
for S ∪ {r + 1} in the second sum, and the second term cancels the term for S in the second
sum. ��

The formulation of the error rate in Theorem 1 is useful because the examples in each
validation subset Vi are independent of the conditions in term i in the first sum. So the rates of
the conditions over the validation subsets are unbiased estimates of the probabilities of those
conditions over out-of-sample examples. There are no such validation data for the second
sum. Instead of estimating the second sum, our error bounds bound each of its terms by
Pr {br }. We select validation subset sizes to mediate a tradeoff: large validation subsets give
tight bounds on terms in the first sum, but small validation subsets make Pr {br } small.

3 Error bounds for k-NN classifiers

Before introducing k-nn error bounds, we need a brief aside about tie-breaking. Assume k is
odd and assume binary classification, so there are no ties in voting. To break ties over which

123



2092 Machine Learning (2019) 108:2087–2111

in-sample examples are nearest neighbors and hence vote, use the method from Devroye and
Wagner (1979): assign each example i in F a real value Zi drawn uniformly at random from
[0, 1] and do the same for each other draw x from the input space to give it a value Z . If the
distance from example i in F to an x is the same as the distance from example j in F to x ,
then declare i to be the closer example if |Zi − Z | < |Z j − Z | or if |Zi − Z | = |Z j − Z |
and i < j . Otherwise declare example j to be the closer example. This method returns the
same ranking of distances to examples in F for the same input x every time the distances are
measured, and it uses position within F to break a tie with probability zero.

Now apply the speculate-correct concept to k-nn:

Corollary 2 Let ai (x) be the condition that Vi does not have an example closer to x than the
kth nearest neighbor to x in F − V . Let

∀1 ≤ i ≤ r : fi (x, y) = I (bi−1)
∑

S⊆Ai−1

(−1)|S| I
(
g−(S∪{i})

)
(37)

and
fr+1(x, y) = I (br )

∑

S⊆Ar

(−1)|S| I (g−S) , (38)

where I () is the indicator function: one if its argument is true and zero otherwise. Then

p∗ =
r+1∑

i=1

E { fi } . (39)

Proof Our ai for k-nn meet the conditions of Theorem 1. ��
Next, we show that p∗ is the average of the RHS of Eq. 39 from Corollary 2 over all

permutations of the in-sample examples. Permuting the examples places different examples
into the validation subsets because the i th validation subset is the i th m examples. We will
use permutations to ensure that b1, . . . , br are rare enough to provide small error bound
ranges.

Without permutations, even br may not be rare. For example, in-sample examples
m, 2m, . . . , rm may all be close to much of the input distribution, and the other in-sample
examples may be far. Without permutations, we can develop a bound, but we can only show
that it has a small error bound range in expectation. Permutations guarantee that the expec-
tation is realized. In the next section, we show how to compute permutation-based bounds
efficiently.

Lemma 3 Let P be the set of permutations of 1, . . . , n. For each σ ∈ P, let σ F be F
permuted according to σ : example j of σ F is the example of F indexed by element j of
σ . Let fi,σ be fi , but with F replaced by σ F, so that for i ∈ R, Vi consists of the i th m
examples in σ F. Then

p∗ = Eσ∈P

{
r+1∑

i=1

E
{
fi,σ

}
}

. (40)

Proof Corollary 2 holds for each partition of F into r size-m subsets V1, . . . , Vr and F − V .
Each permutation of F uses one of these partitions to define fi,σ . So the outer expectation is
over quantities that are each p∗. ��
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We will use two more lemmas to form a bound based on permutations:

Lemma 4 For any set of permutations P ′,

∀x, i > 1 : ∣∣Eσ∈P ′
{
fi,σ

}∣∣ ≤ 2i−2Prσ∈P ′ {bi−1|σ } . (41)

For i = 1,
∀x : Eσ∈P ′

{
fi,σ

} ∈ [0, 1]. (42)

Proof For i > 1, ∣
∣Eσ∈P ′

{
fi,σ

}∣∣ ≤ Eσ∈P ′
{∣∣ fi,σ

∣
∣} (43)

Since fi,σ is a sum of 2i−1 terms, with half 0 or 1 and half 0 or −1,
∣
∣ fi,σ

∣
∣ ≤ 2i−2 I (bi−1|σ). (44)

So
Eσ∈P ′

{∣∣ fi,σ
∣
∣} ≤ 2i−2Eσ∈P ′ {I (bi−1|σ)} = 2i−2Prσ∈P ′ {bi−1|σ } . (45)

For i = 1, note that fi,σ has a single term, with value zero or one. ��
Lemma 5 Let P ′ be a set of permutations such that for each σ ∈ P ′, positions
1, . . . , im, rm + 1, . . . , n of the permutations in P ′ contain all permutations of entries in
those positions in σ , equally many times. Then

Prσ∈P ′ {bi−1|σ } =
i−1∑

h=0

(−1)h
(
i − 1

h

) k−1∏

j=0

n − rm − j

n − rm + hm − j
. (46)

Proof The LHS is the probability that a random permutation in P ′ places at least one example
in each of V1, . . . , Vi−1 that is closer to (x, y) than the kth closest example to (x, y) in F−V .
Since determining positions in a random draw from P ′ is equivalent to drawing positions
at random without replacement, the LHS is the probability of drawing at least one element
from each set {1, . . . ,m}, . . . , {(i − 1)m + 1, . . . , im} before drawing k elements from
{rm + 1, . . . , n}.

The probability of drawing k elements from {rm + 1, . . . , n} before drawing any from
one specific set in {1, . . . ,m}, . . . , {(i − 2)m + 1, . . . , (i − 1)m} is

(
n − rm

n − rm + m

)(
n − rm − 1

n − rm + m − 1

)
· · ·

(
n − rm − (k − 1)

n − rm + m − (k − 1)

)
. (47)

Similarly, the probability of drawing k elements from {rm + 1, . . . , n} before drawing any
elements from any specific h of the i−1 sets in {1, . . . ,m}, . . . , {(i−2)m+1, . . . , (i−1)m}
is (

n − rm

n − rm + hm

)(
n − rm − 1

n − rm + hm − 1

)
· · ·

(
n − rm − (k − 1)

n − rm + hm − (k − 1)

)
. (48)
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So, by inclusion and exclusion, the probability of drawing at least one element from every
set in {1, . . . ,m}, . . . {(i − 2)m + 1, . . . , (i − 1)m} before drawing k examples from {rm +
1, . . . , n} is:

i−1∑

h=0

(−1)h
(
i − 1

h

) k−1∏

j=0

n − rm − j

n − rm + hm − j
. (49)

��

Note that i = r + 1 and P ′ = P gives a result for Prσ∈P {br |σ }.
We need another lemma for the bound. This one is about averaging bounds on differences

between empirical means and actual means.

Lemma 6 Suppose there is a finite set of distributions, each with range size (difference
between maximum and minimum values in support) at most s. For each distribution i in
the set, let μi be the mean, and let μ̂i be an empirical mean based on m i.i.d. samples from
distribution i . Let Ei {} denote expectation over the distributions. Then

∀c > 0, δ > 0 : Pr {∣∣Ei {μi } − Ei
{
μ̂i
}∣∣ ≥ ε

} ≤ δ, (50)

where

ε = s√
2m

[√

ln
2

δ

(
ec

ec − 1

)
+ √

c + 1

(
ec

ec − 1

)2

+ 1

]

. (51)

Specifically, for c = 3,

ε ≤ s√
2m

(

1.06

√

ln
2

δ
+ 3.22

)

. (52)

Proof For the proof, refer to Bax and Kooti (2016), page 3, Inequalities 8 and 9. We use 2
δ

in place of the 1
δ
found there, because we have two-sided bounds. ��

This lemma offers bounds on differences between averages of means and averages of
estimates that are similar to the Hoeffding bound (Hoeffding 1963) on the difference between
a single mean and estimate:

∀δ > 0 : Pr
{
∣∣μ − μ̂

∣∣ ≥ s√
2m

√

ln
2

δ

}

≤ δ. (53)

Now separate the RHS of Eq. 40 into terms with i ∈ R and a term with i = r + 1:

p∗ =
(

r∑

i=1

Eσ∈P
{
E
{
fi,σ

}}
)

+ Eσ∈P
{
E
{
fr+1,σ

}}
(54)

= pI + pI I . (55)

To develop an error bound, wewill estimate pI with empirical means over samples and bound
pI I . For each σ ∈ P and i ∈ R, the examples in Vi |σ are independent of the function fi,σ ,
so we can use empirical means over (x, y) ∈ Vi |σ to estimate means over (x, y) ∼ D. First,
we rewrite pI in a form that allows estimation by empirical means over permutations, in the
following lemma.
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Lemma 7 ∀i ∈ R, let |Vi | = m. Let M be the set of size-m subsets of F: M = {Q|Q ⊆
F∧|Q| = m}. Let P(Q, i) be the set of permutations of 1, . . . , n that have set Q as validation
subset Vi in σ F: P(Q, i) = {σ |(Vi |σ) = Q}. Then

pI = EQ∈M

{
r∑

i=1

Eσ∈P(Q,i)
{
E
{
fi,σ

}}
}

(56)

Proof Compare the definition of pI (the first term on the RHS of Eq. 54) to Eq. 56. The
definition averages over permutations in P and i ∈ R. In Eq. 56, the expectation over Q ∈ M ,
i ∈ R, and P(Q, i) covers all permutations P and i ∈ R, each with equal frequency. ��

Now we develop an error bound.

Theorem 8 Let

p̂Q = E(x,y)∈Q

{
r∑

i=1

Eσ∈P(Q,i)
{
fi,σ (x, y)

}
}

(57)

and
p̂I = EQ∈M

{
p̂Q

}
. (58)

Then
∀δ > 0 : PrF∼Dn

{|p∗ − p̂I | ≥ εI + εI I
} ≤ δ, (59)

where

εI =
r∑

i=1

2i−1Prσ∈P {bi−1|σ } 1√
2m

(

1.06

√

ln
2

δ
+ 3.22

)

, (60)

εI I = 2r−1Prσ∈P {br |σ } , (61)

and

Prσ∈P {bi |σ } =
i∑

h=0

(−1)h
(
i

h

) k−1∏

j=0

n − rm − j

n − rm + hm − j
. (62)

Proof Note that

|p∗ − p̂I | = |(pI + pI I ) − p̂I | ≤ |pI − p̂I | + |pI I |. (63)

We will show that
∀δ > 0 : PrF∼Dn

{|pI − p̂I | ≥ εI
} ≤ δ, (64)

and that |pI I | ≤ εI I . (The formula for Prσ∈P {bi |σ }, to specify values for Prσ∈P {bi−1|σ }
in εI and Prσ∈P {br |σ } in εI I , follows directly from Lemma 5.)

To prove Inequality 64, let

pQ = E(x,y)∼D

{
r∑

i=1

Eσ∈P(Q,i)
{
fi,σ (x, y)

}
}

. (65)

Then
pI = EQ∈M

{
pQ

}
, (66)

since this is Inequality 56 from Lemma 7, with a different order of expectations.
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For each Q ∈ M , we will use each p̂Q to bound each pQ , using the fact the examples in
Q are independent of pQ . First, we need to bound the range of terms in the expectations pQ
and p̂Q :

r∑

i=1

Eσ∈P(Q,i)
{
fi,σ

}
. (67)

By Lemma 4,
∣
∣
∣
∣
∣

r∑

i=1

Eσ∈P(Q,i)
{
fi,σ

}
∣
∣
∣
∣
∣

(68)

∈
[

−
r∑

i=2

2i−2Prσ∈P(Q,i) {bi−1|σ } , 1 +
r∑

i=2

2i−2Prσ∈P(Q,i) {bi−1|σ }
]

. (69)

Also, by Lemma 5
Prσ∈P(Q,i) {bi−1|σ } = Prσ∈P {bi−1|σ } , (70)

since both P(Q, i) and P meet the conditions for P ′ in Lemma 5. So

r∑

i=1

Eσ∈P(Q,i)
{
fi,σ

}
(71)

∈
[

−
r∑

i=2

2i−2Prσ∈P {bi−1|σ } , 1 +
r∑

i=2

2i−2Prσ∈P {bi−1|σ }
]

. (72)

For i = 1, 2i−1Prσ∈P {bi−1|σ } = 1. So the range is at most

r∑

i=1

2i−1Prσ∈P {bi−1|σ } . (73)

Note that p̂Q is an average of this term (Expression 71) over |Q| = m i.i.d. (x, y) samples
that are independent of the term (since Q = Vi |σ for σ ∈ P(Q, i) and the definition of fi,σ
depends only on V1, . . . , Vi−1, F −V |σ .) Since pI is the expectation of a finite set of means
pQ and p̂I is the expectation of corresponding empirical means p̂Q , we can apply Lemma 6
to prove Inequality 64, showing that p̂I is an εI -range estimate of pI .

For pI I and εI I , apply Lemma 4:

|pI I | ≤ 2r−1Prσ∈P {br |σ } = εI I . (74)

��
We will use the following lemma to prove results about the size of the error bound range

εI + εI I .

Lemma 9

Prσ∈P {bi |σ } ≤
(
e(k + i − 1)m

n

)i

. (75)

Proof Define di (x)|σ to be the condition that the k+ i−1 nearest neighbors to x in F include
at least i examples from V1 ∪ . . .∪Vi |σ . Condition di |σ is a necessary condition for bi |σ , so

∀x : Prσ∈P {di |σ } ≥ Prσ∈P {bi |σ } . (76)
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The probability of di |σ over σ ∈ P is the same as the probability of drawing k + i − 1
samples from 1, . . . , im, rm + 1, . . . , n uniformly without replacement and having at least i
of those samples have values im or less. (The samples are the indices in σ F of the k + i − 1
nearest neighbors to x from positions 1, . . . , im, rm + 1, . . . , n in σ F .) So the probability
of di is the tail of a hypergeometric distribution:

∀x : Prσ∈P {di |σ } =
k+i−1∑

j=i

(k+i−1
j

)(n−(k+i−1)
im− j

)

( n
rm

) . (77)

Using a hypergeometric tail bound from Chvátal (1979) (see also Skala (2013)), this is

≤
(

(k + i − 1)m

n

)i [(
1 + 1

m − 1

)(
1 − k + i − 1

n

)](m−1)i

(78)

≤
(

(k + i − 1)m

n

)i
[(

1 + 1

m − 1

)m−1
]i

(79)

≤
(

(k + i − 1)m

n

)i

ei . (80)

��
Corollary 10 (of Theorem 8)

εI + εI I (81)

≤
(

1

1 − 2e(k+r−2)m
n

)
1√
2m

(

1.06

√

ln
2

δ
+ 3.22

)

+
(
2e(k + r − 1)m

n

)r

(82)

Proof Recall that

εI =
r∑

i

2i−1Prσ∈P {bi−1|σ } 1√
2m

(

1.06

√

ln
2

δ
+ 3.22

)

. (83)

By Lemma 9,

r∑

i

2i−1Prσ∈P {bi−1|σ } ≤
r∑

i=1

(
2e(k + i − 2)m

n

)i−1

. (84)

Apply the well-known identity for a sum of powers: 1 + z + z2 + · · · + zr−1 = 1−zr
1−z , with

z = 2e(k+r−2)m
n :

≤ 1

1 − 2e(k+r−2)m
n

. (85)

So

εI ≤
(

1

1 − 2e(k+r−2)m
n

)
1√
2m

(

1.06

√

ln
2

δ
+ 3.22

)

. (86)

For εI I , apply Lemma 9:

εI I = 2r−1Prσ∈P {br |σ } ≤
(
2e(k + r − 1)m

n

)r

. (87)

��
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The following theorem and corollary are the main results for k-nn classifiers. The theorem
allows r , k, and δ to depend on the number of in-sample examples, n. The corollary uses the
bound from the theorem with an appropriate growth rate for r as n increases.

Theorem 11
∀δ > 0 : PrF∼Dn

{|p∗ − p̂I | ≤ εr
} ≤ δ, (88)

with
εr ∈ O

(
n− r

2r+1
√

(k + r)
)

. (89)

Proof Let εr = εI +εI I in Theorem 8. Use Corollary refgreen for εI +εI I . Select validation
subset sizes m to balance εI and εI I :

m =
⎡

⎢
⎢
⎢

n
r

r+ 1
2

2e(k + r − 1)

⎤

⎥
⎥
⎥

. (90)

Then

εI I ≤
(
2e(k + r − 1)m

n

)r

∈ O
(
n− r

2r+1

)
, (91)

and

εI ≤ n− r
2r+1

(
1

1 − n− 1
2r+1

)
√
2e(k + r − 1)

1√
2

(

1.06

√

ln
2

δ
+ 3.22

)

. (92)

If we allow for the possibility of k and r growing with n, then

εr = εI + εI I ∈ O
(
n− r

2r+1
√
k + r

)
. (93)

��
Corollary 12 For a choice of r based on n,

∀δ > 0 : PrF∼Dn
{|p∗ − p̂I | ≤ ε∗

} ≤ δ, (94)

with
ε∗ ∈ O

(√
(k + ln n)/n

)
. (95)

Proof If we set r = � 1
4 (ln n − 2)�, then

n− r
2r+1 = n

1
4r+2 n− 1

2 ≤ n
1

ln n n− 1
2 = en− 1

2 . (96)

So
ε∗ = εI + εI I ∈ O

(
n− 1

2
√

(k + ln n)
)

. (97)

��
An alternative proof of Corollary 12 uses a different value for m:

Proof (Alternative Proof of Corollary 12) Let

m =
⌊

n

2e2(k + r − 1)

⌋
. (98)

Then

εI I ≤
(
2e(k + r − 1)m

n

)r

≤ 1

er
. (99)
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For εI , note that

m ≥ n

2e2(k + r − 1)
− 1 = n − 2e2(k + r − 1)

2e2(k + r − 1)
. (100)

Substitute the RHS for m in Inequality 86:

εI ≤
(

1

1 − 1
e

) √
2e2(k + r − 1)

√
n − 2e2(k + r − 1)

1√
2

(

1.06

√

ln
2

δ
+ 3.22

)

. (101)

Let r = �ln√
n�. Then

εI I ≤ 1

eln
√
n

= 1√
n

, (102)

and
εI ∈ O

(√
(k + ln n)/n

)
. (103)

��

4 Computation

It would be infeasible to compute the error bounds developed in this paper directly from their
definitions. Instead, we can sample the bound terms to produce a bound. In this section, we
outline a sampling procedure that requiresO(n(ln n)2) computation (in addition to identifying
up to k + r − 1 nearest neighbors in F for each example in F) and produces a bound with
range O

(√
(k + ln n)/n

)
.

Note that
p̂I = Eσ∈P

{
r Ei∈R

{
E(x,y)∈Vi |σ

{
fi,σ

}}}
. (104)

(For reference, p̂I is defined in Eqs. 57 and 58 of Lemma 8.) Let P((x, y), i) = {σ |(x, y) ∈
(Vi |σ))}. Reordering expectations,

p̂I = E(x,y)∈F
{
r Ei∈R

{
Eσ∈P((x,y),i)

{
fi,σ

}}}
. (105)

Rewrite fi,σ as the expectation of its terms:

fi,σ = I (bi−1)2
i−1ES⊆Ai−1

{
(−1)|S| I (g−(S∪{i})|σ)

}
. (106)

Estimate p̂I as defined in the previous two equations by taking an empirical mean over s
random samples:

((x, y), i, σ, S) , (107)

with (x, y) drawn uniformly at random from F , i uniformly at random from R, σ uniformly
at random from P((x, y), i), and S uniformly at random from the power set of Ai−1. Each
sample value is

r I (bi−1)2
i−1(−1)|S| I (g−(S∪{i})|σ). (108)

Let p′
I be the empirical mean of these samples.

Computing values for samples in p′
I need not involve drawing complete permutations σ .

Instead, randomly determine set membership in F −V |σ , Vi |σ , …, or Vr |σ for neighbors of
the sample (x, y) and tabulate votes to determine I (g−(S∪{i})|σ), proceeding one neighbor
at a time until the kth neighbor from F − V |σ is identified, as follows.

Let N0(x) = (x, y). Let N j (x) be (x, y) and the j nearest neighbors to (x, y) in F . At
each step, let f = |(F − V |σ) ∩ N j (x)|. For each i ∈ R, let vi = |Vi ∩ N j (x)|. Let b be
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the number of voting neighbors (b for “ballots”) among the j nearest neighbors to (x, y):
b = |((F−Vi )−∪h∈SVh |σ)∩N j (x)|. Let d be the number of those voters that have different
labels than y.

Initially, j = 0, f = 0, vi = 1, ∀h �= i : vh = 0, b = 0, and d = 0. Then, for each
j starting with j = 1, select a set for the j th nearest neighbor at random and increment its
counter:

F − V |σ with probability n− f −∑
h∈R(m−vh )

n− j : f := f + 1
V1|σ with probability m−v1

n− j : v1 := v1 + 1
...

...

Vr |σ with probability m−vr
n− j : vr := vr + 1

(109)

If b < k (fewer than k votes cast) and the set is F − V |σ or Vh |σ for h �= i and h /∈ S,
then b := b + 1 (another ballot is cast) and if the label of the j th nearest neighbor is not
equal to y, then d := d + 1 (another disagreeing vote). Stop when f = k, and return the
sample value:

r I (∀h < i : vh > 0)2i−1(−1)|S| I
(
d >

k

2

)
. (110)

This method may require up to O(rm + k) computation per sample, because it is possible
(though extremely unlikely) for an example to have all validation examples in V |σ as nearer
neighbors than the kth nearest neighbor from F − V |σ . To reduce worst-case computation,
select a value w > k, stop computation for a sample if w neighbors are assigned to subsets
V1, . . . , Vr , F − V |σ before the kth neighbor is assigned to F − V |σ (that is, if f < k and
j = w), and return zero as the value for the sample. Then only the w nearest neighbors to
each example need to be found, and the remaining computation is O (w) per sample. Call
this the modified sampling procedure. We can use it as the basis for a bound that is feasible
to compute:

Theorem 13 Let p̂s be the empirical mean of s i.i.d. samples of the modified sampling pro-
cedure. Let ŝ represent the modified sampling procedure. Then

∀δ > 0 : PrF∼Dn ,ŝ
{|p ∗ − p̂s | ≥ εv + εr + εc + εs

} ≤ δ, (111)

where

εv =
r∑

i=1

2i−1Prσ∈P {bi−1|σ } 1√
2m

(

1.06

√

ln
20

9δ
+ 3.22

)

, (112)

εr = 2r−1Prσ∈P {br |σ } , (113)

εc = r2r−1
k−1∑

i=0

(
w

i

)∏i−1
j=0(n − rm − j)

∏w−i−1
j=0 (rm − 1 − j)

∏w−1
j=0 (n − 1 − j)

, (114)

and

εs =
√
2v ln 20

δ

s
+ r2r ln 20

δ

3s
, (115)

where

v = 1

r

r∑

i=1

Prσ∈P {bi−1|σ } r222(i−1). (116)
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Proof Let pc be pI , but with terms set to zero if σ places fewer than k of the w nearest
neighbors to x from F into F − V |σ . That is, pc is pI , but with terms set to zero if they are
set to zero in modified sampling. Then

p∗ = pc + (pI − pc) + pI I . (117)

Let p̂c be p̂I , but with terms set to zero if they are set to zero in modified sampling. Then p̂c
is an unbiased empirical-mean estimate of pc, and

p̂s = p̂c + ( p̂s − p̂c). (118)

So

|p ∗ − p̂s | = |[pc + (pI − pc) + pI I ] − [ p̂c + ( p̂s − p̂c)]| (119)

≤ |pc − p̂c| + |pI I | + |pI − pc| + | p̂s − p̂c|. (120)

To prove the theorem, we will show results for εv , εr , εc, and εs :

PrF∼Dn
{|pc − p̂c| ≥ εv

} ≤ 9

10
δ, (121)

|pI I | ≤ εr , (122)

|pI − pc| ≤ εc, (123)

and

Prŝ
{| p̂s − p̂c| ≥ εs

} ≤ 1

10
δ. (124)

For εv , pc and p̂c are pI and p̂I , with some fi,σ set to zero, which can only reduce the
ranges of the terms in pQ and p̂Q . So the result from Theorem 8 (Inequality 64):

∀δ > 0 : PrF∼Dn
{|pI − p̂I | ≤ εI

} ≤ δ (125)

also applies with pc and p̂c in place of pI and p̂I . We use a probability of bound failure 9
10 δ

in place of δ, so εv is εI , with 9
10 δ in place of δ. (We preserve the other 1

10 δ probability of
bound failure for using p̂s to estimate p̂c.) So

PrF∼Dn
{|pc − p̂c| ≥ εv

} ≤ 9

10
δ. (126)

For εr , εr = εI I , so apply Inequality 74 directly:

|pI I | ≤ εr . (127)

For εc, we need the probability that fewer than k of the nearest w neighbors to an (x, y) ∈
V |σ from F − (x, y) are in F − V |σ . The probability that the i nearest neighbors are in
F − V |σ is (

n − rm

n − 1

)(
n − rm − 1

n − 2

)
· · ·

(
n − rm − (i − 1)

n − i

)
. (128)

Given this, the probability that the next w − i nearest neighbors are in V − (x, y)|σ is
(

rm − 1

n − i − 1

)(
rm − 2

n − i − 2

)
· · ·

(
rm − (w − i)

n − w

)
. (129)

So take the product of these two products. There are
(
w
i

)
different ways to choose positions

for the i neighbors in F − V |σ among the first w neighbors. Each set of positions has equal
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probability. So multiply by
(
w
i

)
. Sum over i < k and multiply by the maximum term value

to get εc. So
|pI − pc| ≤ εc. (130)

For εs , apply a result from Maurer and Pontil (2009) (page 2, Theorem 3) derived from
Bennett’s Inequality (Bennett 1962), on the difference between the mean μ of a distribution
and an empirical mean μ̂ over s samples drawn i.i.d. according to the distribution:

∀δ > 0 : Pr {|μ − μ̂| ≥ ε
} ≤ δ, (131)

where

ε =
√
2v ln 2

δ

s
+ q ln 2

δ

3s
, (132)

q is the range of the distribution, and v is any upper bound on the variance of the distribution.
The result is stronger than Hoeffding bounds when sample variance is small relative to the
range. To get ε = εs , apply this inequality with μ = p̂c, μ̂ = p̂s , δ set to 1

10 δ, q = r2r , and
v set to an upper bound on the expectation of the square of sample values. To get such an
upper bound, start with the sample values:

r I (bi−1)2
i−1(−1)|S| I (g−(S∪{i})|σ), (133)

drop I (g−(S∪{i})|σ), and take the expectation of the square. ��

Similar to the result from Theorem 8:

Theorem 14 For some choices of m, r , w, and s,

εv + εr + εc + εs ∈ O
(√

(k + ln n)/n
)

. (134)

Proof Apply the alternative proof of Corollary 12, with εv and εr in place of εI and εI I ,
keeping r = �ln√

n�, but with 3 in place of 2 in the value for m from Equality 98. Then

m =
⌊

n

3e2(k + r − 1)

⌋
, (135)

and the bound on εI I in the alternative proof becomes:

εv ≤
(
2e(k + r − 1)m

n

)r

≤ 1

1.5r er
∈ O

(
1√
n

)
, (136)

Changing from 2 to 3 in m only affects constants in the alternative proof’s result for εI , so:

εv ∈ O
(√

(k + ln n)/n
)

. (137)

For εc, recall that it is the maximum (absolute) value of a term times the probability that
a random σ ∈ P places more than w − k of the w closest neighbors to an (x, y) ∈ V |σ from
F − (x, y) into V − (x, y)|σ . In Lemma 9, di (x |σ) is the condition that the closest k + i − 1
neighbors in F include at least i in V |σ . So apply the result from Lemma 9:

Prσ∈P {di |σ } ≤
(

(k + i − 1)m

n

)i

ei , (138)
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with k + i − 1 = w and i = w − k + 1. (Using F − (x, y) in place of F and V − (x, y)|σ in
place of V |σ can only decrease the probability, so just use m and n as in the lemma for this
bound.) Let w = k + r − 1. Then the RHS is

≤
(

(k + r − 1)m

n

)r

er . (139)

Since each term is less than r2r ,

εc ≤ r

(
2e(k + r − 1)m

n

)r

. (140)

Using Inequality 136,

εc ≤ r

1.5r er
. (141)

Note that r < 1.5r . (To prove it, show that r1/r < 1.5 by setting the derivative of ln(r1/r ) =
(1/r) ln r to zero. Solve: r = e. So max r1/r = e1/e < 1.5.) Then

εc ≤ 1

er
. (142)

With r = �ln√
n�,

εc <
1√
n

∈ O

(
1√
n

)
. (143)

We can make εs arbitrarily small by increasing s. How many samples we need to achieve
a given εs depends on v. To bound v, note that bi−1 has probability at most

(
e(k + i − 2)m

n

)i−1

, (144)

according to Lemma 9. So

v = 1

r

r∑

i=1

Prσ∈P {bi−1|σ } r222(i−1) (145)

≤ 1

r

r∑

i=1

(
e(k + i − 2)m

n

)i−1

r222(i−1) (146)

= r
r∑

i=1

(
4e(k + i − 2)m

n

)i−1

. (147)

So set
m <

n

4e(k + r − 2)
(148)

to ensure v ≤ r2. (The value for m in Equality 135 meets this condition.) Let s = rn. Then

εs ≤
√
2r ln 20

δ

n
+ 2r ln 20

δ

3n
. (149)

With r = �ln√
n�,

εs ≤
√

(ln n)
(
ln 20

δ

)

n
+ ln 20

δ

3
√
n

. (150)
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So
εs ∈ O

(√
(ln n)/n

)
. (151)

��

Appendix A presents methods to compute rather than estimate p̂I or p̂c. The method to
compute p̂c requires O(n ln n) computation, like sampling, but it requires O((ln n)4) space,
and it is more complicated than sampling.

5 Tests

To apply the error bound method from the previous section to some actual classifiers, we
use three randomly generated in-sample data sets of different sizes. Each example input
is drawn uniformly at random from [−1, 1]3, the label is set to one if an even number of
coordinates are negative and zero otherwise, giving each quadrant in the cube a different
label than the quadrants bordering its sides. Then, to add some noise, with probability 1

10 the
label is changed: from one to zero or zero to one.

In this section, we compute bounds for specific values of n, k, and δ rather than prove
asymptotic results. So we use a tighter version of εv , instead of the more easily analyzed, but
looser, form in Theorem 13. We use the dynamic programming procedure from an appendix
of Bax and Kooti (2016), with their parameter t = 3. The resulting bounds are about 1.5
times the corresponding Hoeffding bounds and about half the bounds using the value for εv

from the previous section. Call the optimized version ε′
v .

For each bound we use εr , εc, and εs and the estimation procedure from Theorem 13. We
set w = 29, s = 10 million, and δ = 0.05. With w = 29, εc < 0.000005 for all bounds
we computed, so we do not show it in the tables. (It would be displayed as 0.00000 for all
entries.)

Tables 1, 2, and 3 show error bounds for the three data sets, with n = 20,000, n = 50,000,
and n = 100,000, respectively. For each data set and k ∈ {3, 5, 7, 9, 11, 13}, we minimize
ε′
v + εr + εc + εs over (r ,m) ∈ {1, 2, . . . , 10} × {0.001n, 0.002n, . . . , 0.099n}. With the
minimizing (r ,m), we then use the data to perform the sampling procedure to compute p̂s .

For each k, each table shows the minimizing values of r and m, the values of ε′
v , εr , εc,

and εs , the sample-based estimate p̂s , and the sum ε = ε′
v +εr +εc+εs . The bound is p̂s ±ε.

For comparison, we also include an estimate of the out-of-sample error rate p∗, which is the

Table 1 For n = 20,000 and k ∈ {3, 5, . . . , 13}, error bound ranges ε for ε-minimizing r and m

k r m ε′
v εr εs p̂s ε est. p∗

3 4 660 0.09164 0.00365 0.00296 0.1431 0.0982 0.1467

5 5 480 0.11295 0.00192 0.00362 0.1313 0.1185 0.1331

7 5 380 0.12943 0.00199 0.00370 0.1249 0.1351 0.1283

9 5 320 0.14378 0.00220 0.00379 0.1223 0.1498 0.1265

11 5 260 0.15750 0.00175 0.00373 0.1239 0.1630 0.1253

13 5 240 0.16891 0.00232 0.00388 0.1204 0.1751 0.1248

Bound range increases with k. Bound is p̂s ± ε. Error estimate p̂s is close to (estimated) actual error rate p∗
(Estimated p∗ is based on 10 million out-of-sample examples)

123



Machine Learning (2019) 108:2087–2111 2105

Table 2 Error bound ranges ε and error bounds p̂s ± ε for n = 50,000

k r m ε′
v εr εs p̂s ε est. p∗

3 5 1550 0.06042 0.00135 0.00338 0.1435 0.0651 0.1421

5 5 1150 0.07275 0.00155 0.00354 0.1287 0.0778 0.1270

7 5 900 0.08330 0.00152 0.00360 0.1227 0.0884 0.1219

9 5 750 0.09245 0.00161 0.00366 0.1211 0.0977 0.1199

11 5 650 0.10064 0.00175 0.00373 0.1208 0.1061 0.1190

13 5 550 0.10860 0.00153 0.00370 0.1209 0.1138 0.1185

Increased n (vs. 20,000 in previous table) decreases error bound ranges

Table 3 Results for n = 100,000

k r m ε′
v εr εs p̂s ε est. p∗

3 5 3000 0.04368 0.00114 0.00333 0.1386 0.0481 0.1384

5 5 2200 0.05251 0.00124 0.00346 0.1228 0.0572 0.1226

7 5 1700 0.06010 0.00115 0.00350 0.1187 0.0648 0.1175

9 5 1400 0.06669 0.00115 0.00354 0.1166 0.0714 0.1157

11 5 1200 0.07257 0.00119 0.00358 0.1158 0.0773 0.1149

13 5 1100 0.07761 0.00153 0.00370 0.1153 0.0828 0.1145

For each k, error bound ranges ε are about half those for n = 20,000

average over 10 million out-of-sample examples drawn i.i.d. from the same distribution as
the in-sample examples.

Overall, the error estimates p̂s are close to the estimated out-of-sample error rates p∗,
with mean absolute differences 0.29% for n = 20,000, 0.12% for n = 50,000, and 0.07%
for n = 100,000. The error bound ranges ε range from about 5% to about 17.5%, growing
with k and shrinking as the number of in-sample examples increases. The optimal r value is
4 for k = 3 and n = 20,000 and 5 for the other bounds. This shows that moving beyond the
previous r = 2-style bounds (Bax 2012) can strengthen bounds, even for moderate numbers
of in-sample examples.

In general, ε′
v is the main contributor to error bound range ε, with εr and εs contributing

less than 0.4% in every case. The small contributions from εr may seem surprising, since
the choice of m mediates a tradeoff between ε′

v and εr . However, increasing m decreases
ε′
v slowly (approximately O

(
1/

√
m
)
) but increases εr quickly (as O (mr )). Optimizing m

means balancing the derivatives with respect to m of ε′
v and εr , not their values, and this

occurs at a large value of ε′
v relative to εr .

The optimal values of m are small relative to n. They range from about 1% of the data to
about 3%. With r = 5, that is about 5% to 15% of the in-sample examples in V . The fraction
shrinks as k increases, because m must be smaller to avoid having a large probability of all
validation data sets having examples closer to a random input than the k closest examples
in F − V—to avoid a large εr . The small values of m still produce moderately small ε′

v ,
because we are using a bound for a single estimate rather than a uniform bound over error
estimates for a large class of classifiers as is the case for traditional VC-style bounds (Vapnik
and Chervonenkis 1971).
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6 Conclusion

We have shown that k-nearest neighbor classifiers have exponential PAC error bounds with

O
(√

(k + ln n)/n
)

(152)

error bound ranges. The bounds are quite general. They apply to any type of inputs, because
they are based on probability rather than geometry. As a result, they have no terms that
increase with the number of dimensions or other properties of the input space. The bounds
do not require the k-nn classifier’s method to compute distances among examples to be
symmetric or to obey the triangle inequality—it need not be a metric in the mathematical
sense. It can be any function on two example inputs that returns a number.

We average bounds over all choices of validation subsets so that we can prove the resulting
bound has a small range. If, instead, we use a single random choice of validation subsets,
then we can also produce an exponential PAC error bound. To do this, use each validation
subset Vi to validate fi (), and use a random subset of the remaining in-sample examples to
validate the rate of all validation subsets having a neighbor closer to an input than the kth
nearest neighbors among the other in-sample examples. (In a transductive setting (Vapnik
1998), or if unlabeled inputs are otherwise available, use them for this validation.) This bound
has O

(√
(k + ln n)/n

)
range in expectation. We average over choices of validation subsets

to guarantee that we realize the expectation.
We use bounds on Prσ∈P {bi−1|σ } to bound the range of the random variables in εv and to

bound the variance in εs . If the classifier is accurate (and the votes are mostly not near-ties),
then I (g−(S∪{i})|σ) tends to be zero for a large portion of (S, i, σ ). So the variance among
terms in p̂I and among terms in p̂s tends to be very small. In those cases, using empirical
Bernstein bounds (Audibert 2004), such as those by Maurer and Pontil (2009) (Theorem 3,
page 2), can significantly shrink εv and εs , because those bounds scale with

√
v̂/m, where

v̂ is the sample variance. To shrink the variance in those cases, tighten ai to be the RHS of
Expression 23. We can use the resulting definition of bi−1 to validate terms in pI , but still
need to use br as defined in this paper to bound pI I , keeping εI I and εr the same.

We showed how to use sampling to “estimate the estimates” of the error bounds. We also
showed (in the appendix) an efficient, but more complex and space-consuming, method to
compute an estimate. It may be possible to improve or simplify that procedure by gathering
terms in a different way. In the future, it would be interesting to explore how close the estimate
developed in this paper tends to be to actual error rate for practical problems, and whether it
tends to outperform the leave-one-out estimate.

It would be interesting to extend the k-nearest neighbor error bounds from this paper
to cover selection of a distance metric from a parameterized set of “hypothesis” metrics
(Kedem et al. 2012). One approach might be to use uniform bounds of the type derived in
this paper over the class of potential metrics. The bounds might depend on some notion of
the complexity of the class of potential metrics.

Finally, it would be interesting to apply the speculate-correct technique from this paper
to derive error bounds for classifiers other than nearest neighbors. Other local classifiers
include some collective classifiers (Sen et al. 2008; Macskassy and Provost 2007), such as
network classifiers based only on neighbors or neighbors of neighbors in a graph. (For some
background on error bounds for network classifiers, refer to London et al. (2012), Li et al.
(2012) and Bax et al. (2013)). It may also be possible to apply the speculate-correct method to
other types of classifiers that are typically based on small subsets of the in-sample examples,
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such as support vector machines (Vapnik 1998; Cristianini and Shawe-Taylor 2000; Joachims
2002) and set-covering machines (Marchand and Shawe-Taylor 2001).

Acknowledgements We thank the anonymous referees for their detailed and extremely helpful corrections
on the main results and advice on testing and presentation.

AMethod to compute p̂I and p̂c

By gathering terms rather than sampling, we can compute p̂I and p̂c exactly. In this appendix,
we show how to compute p̂I exactly and how to compute p̂c in O(n ln n) time and O((ln n)4)
space, assumingw = k+r−1 and k+r ∈ O(ln n), and ignoring any time and space required
to find the k + r nearest neighbors to each in-sample example. The methods in this section
are inspired by a similar approach for a single validation subset by Mullin and Sukthankar
(2000).

Recall from Eqs. 105 and 106 that

p̂I = E(x,y)∈F
{
r Ei∈R

{
Eσ∈P((x,y),i)

{
fi,σ

}}}
, (153)

and
fi,σ = I (bi−1|σ)2i−1ES⊆Ai−1

{
(−1)|S| I (g−(S∪{i})|σ)

}
. (154)

Use the symmetry of permutations over same-size subsets S to compute only for S =
{1, . . . , |S|}, and use s to index values of |S|. Note that

PrS⊆Ai−1 {|S| = s} =
(
i − 1

s

)
2−(i−1). (155)

Let As = {1, . . . , s}. Let
p(x,y),i = Prσ∈P((x,y),i)

{
bi−1 ∧ g−As∪{i}|σ

}
. (156)

Then

p̂I = E(x,y)∈F

{
r∑

i=1

i−1∑

s=0

(
i − 1

s

)
(−1)s p(x,y),i

}

. (157)

Refer to the j th nearest neighbor to (x, y) in F − {(x, y)} as neighbor j . Let ct,u,v(σ )

be the condition that a permutation σ assigns the neighbors to (x, y) to sets F, V1, . . . , Vr |σ
such that there are exactly k voters (in F − (V1 ∪ . . . ∪ Vs ∪ Vi )|σ ) among neighbors 1 to t ,
neighbor t is a voter, there are k neighbors from F − V |σ among neighbors 1 to u, neighbor
u is from F − V |σ , and there are v voters among neighbors 1 to u. Let

pt,u,v = Prσ∈P((x,y),i)
{
ct,u,v(σ )

}
, (158)

and
P̂ = {σ ∈ P((x, y), i) : ct,u,v(σ )}. (159)

Then

p(x,y),i =
k+(s+1)m−1∑

t=k

k+rm−1∑

u=t

u∑

v=k

pt,u,v ps pi−1−s pg, (160)

where

ps = Pr
σ∈P̂ {bs |σ } , (161)
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pi−1−s = Pr
σ∈P̂ {¬as+1 ∧ . . . ∧ ¬ai−1|σ } , and (162)

pg = Pr
σ∈P̂

{
g−As∪{i}|σ

}
. (163)

To see why, compare this to Eq. 156. For each (t, u, v), we multiply the probability of ct,u,v ,
which is pt,u,v , by ps , pi−1−s , and pg , each conditioned on ct,u,v . (Taking probabilities over
P̂ conditions on ct,u,v .) Together, the conditions in ps , pi−1−s , and pg are equivalent to the
condition in Eq. 156, because bs ∧ ¬as+1 ∧ . . . ∧ ¬ai−1|σ equals bi−1|σ . The limits of
summation for t and u follow from the fact that, with (x, y) ∈ Vi |σ , there are (s + 1)m − 1
remaining non-voter assignments and rm − 1 remaining validation subset assignments for
each σ in P((x, y), i).

Probabilities ps , pi−1−s , and pg , each conditioned on ct,u,v , are independent of each
other: ct,u,v specifies that there are u − v non-voters before the kth neighbor in F − V , so it
completely determines ps . Also, ct,u,v specifies that neighbor t is the kth voter, so each size
k − 1 subset of the first t − 1 is equally likely to be the other voters that determine g−As∪{i}
in pg , no matter how the v voters are allocated among Vs+1|σ, . . . , Vi−1|σ in pi−1−s .

To compute pt,u,v , note that with (x, y) ∈ Vi |σ , for σ ∈ P((x, y), i), there are n − 1
remaining assignments, including m − 1 to Vi |σ , m for each other validation subset, and
n − rm for F − V |σ . This includes n − (s + 1)m voters and (s + 1)m − 1 non-voters. So

pt,u,v = (164)
(n−(s+1)m

k

)(
(s+1)m−1

t−k

)

(n−1
t

)
(
k

t

) (n−(s+1)m−k
v−k

)(
(s+1)m−1−(t−k)

u−t−(v−k)

)

(n−1−t
u−t

)

(n−rm
k

)(
(r−(s+1))m

v−k

)

(n−(s+1)m
v

) (165)

min(k,v−k)∑

z=0

((
v−k
z

)( k
k−z

)

(
v
k

)
z

u − t

)

. (166)

The terms are the probabilities of the following conditions, respectively, each conditioned
on the previous terms’ conditions:

1. There are exactly k voters among the first t neighbors.
2. Neighbor t is one of those k voters.
3. The first u neighbors include exactly v voters.
4. Exactly k of the v voters are in F − V |σ .
5. Neighbor u is from F − V |σ . (The sum is over the number z of neighbors t + 1 to u in

F − V |σ .) If z
u−t = 0

0 , then treat it as one.

Now consider the three probabilities ps , pi−1−s , and pg . The first is the probability that
the validation subsets V1|σ, . . . , Vs |σ are all represented among the nearer neighbors to
(x, y) than the kth nearest neighbor from F − V |σ . Since we condition on ct,u,v (by taking
the probability only over σ ∈ P̂ , for which ct,u,v holds), the condition is that among the
neighbors assigned u − v of the (s + 1)m − 1 non-voter positions, each of s sets of m
positions is represented. Use inclusion and exclusion, counting all ways to select the u − v

neighbors, subtracting ways to select the u − v neighbors without drawing from each set
V1|σ, . . . , Vs |σ , adding those that avoid drawing from each pair of sets, and so on:

ps =
s∑

j=0

(−1) j
(
s

j

)(
(s + 1 − j)m − 1

u − v

)(
(s + 1)m − 1

u − v

)−1

. (167)

Similarly, the condition for pi−1−s , given ct,u,v , is that all of Vs+1|σ, . . . , Vi−1|σ are
represented among the v − k voters with positions in Vs+1 ∪ . . . ∪ Vi−1 ∪ Vi+1 ∪ . . . ∪ Vr |σ .
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(The other k voters are in F − V |σ .) Once again, use inclusion and exclusion:

pi−1−s =
i−1−s∑

j=0

(−1) j
(
i − 1 − s

j

)(
(r − s − 1 − j)m

v − k

)(
(r − s − 1)m

v − k

)−1

. (168)

The condition for pg , given ct,u,v , is that at least k+1
2 of the nearest k voters, of which

the last is neighbor t , have labels that disagree with y. Let y j be the label of neighbor j . Let
d j count the labels among neighbors 1 to j that disagree with y. Use b to count how many
neighbors with labels that disagree with y are among the k − 1 voters nearer to (x, y) than
neighbor t . Then

pg =
k−1∑

b= k+1
2 −I (yt �=y)

(
dt−1

b

)(
t − 1 − dt−1

k − 1 − b

)(
t − 1

k − 1

)−1

. (169)

Substitute Eq. 160 into Eq. 157 to get an equation for p̂I :

p̂I = E(x,y)∈F

⎧
⎨

⎩

r∑

i=1

i−1∑

s=0

(
i − 1

s

)
(−1)s

k+(s+1)m−1∑

t=k

k+rm−1∑

u=t

u∑

v=k

pt,u,v ps pi−1−s pg

⎫
⎬

⎭
.

(170)
For p̂c with w = k + r − 1, reduce the upper limits of summation for t and u to k + r − 1:

p̂c = E(x,y)∈F

{
r∑

i=1

i−1∑

s=0

(
i − 1

s

)
(−1)s

k+r−1∑

t=k

k+r−1∑

u=t

u∑

v=k

pt,u,v ps pi−1−s pg

}

. (171)

To compute this value, notice that only pg depends on values that are specific to each example
(x, y)—the values dt−1 and I (yt �= y). Since pg only depends on those values and t , we can
rearrange the sum:

p̂c = E(x,y)∈F

{
k+r−1∑

t=k

pgq(t)

}

, (172)

where

q(t) =
r∑

i=1

i−1∑

s=0

(
i − 1

s

)
(−1)s

k+r−1∑

u=t

u∑

v=k

pt,u,v ps pi−1−s . (173)

To compute q(t), first compute and store pi−1−s for all feasible (i, s, v) and ps for all
feasible (s, u, v). Next, compute and store the last term of pt,u,v for all feasible (v, u−t), then
use those values to compute and store pt,u,v for all feasible (s, t, u, v). This requires O(r4)
computation and storage. Then compute q(t) for each t ∈ {k, . . . , k + r − 1} by iterating
through the sums and using the pre-computed values for pt,u,v , ps , and pi−1−s . This requires
O(r4) computation.

To compute p̂c, first compute pg for all feasible (t, dt−1, I (yt �= y)). This requires
O(rk(k + r)) computation and O(r(k + r)) storage. Then, for each (x, y) ∈ F , find its
k + r − 1 nearest neighbors in F − V , use the neighbors’ labels to compute dt−1 and
I (yt �= y) for t ∈ {k, . . . , k + r −1}. This requires O(k + r ) computation. Then compute the
sum over t in Eq. 172, using dt−1 and I (yt �= y) values to select precomputed pg values and
using the precomputed q(t) values. This produces a sample value for (x, y). Average those
sample values over (x, y) ∈ F to compute p̂c.

Using this method, aside from the time to find the k + r − 1 nearest neighbors to each
in-sample example, the time complexity is O(max(r4, rk(k + r), n(k + r))) and the storage
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complexity is O(max(r4, r(k + r))). If k ∈ O(ln n) and r ∈ O(ln n) and n > (ln n)3, then
this is O(n ln n) time and O((ln n)4) storage.
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