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Abstract

Strongly closed itemsets, defined by a parameterized closure operator, are a generalization
of ordinary closed itemsets. Depending on the strength of closedness, the family of strongly
closed itemsets typically forms a tiny subfamily of ordinary closed itemsets that is stable
against changes in the input. In this paper we consider the problem of mining strongly closed
itemsets from transactional data streams. Utilizing their algebraic and algorithmic proper-
ties, we propose an algorithm based on reservoir sampling for approximating this type of
itemsets in the landmark streaming setting, prove its correctness, and show empirically that
it yields a considerable speed-up over a straightforward naive algorithm without any signifi-
cant loss in precision and recall. We motivate the problem setting considered by two practical
applications. In particular, we first experimentally demonstrate that the above properties, i.e.,
compactness and stability, make strongly closed itemsets an excellent indicator of certain
types of concept drifts in transactional data streams. As a second application we consider
computer-aided product configuration, a real-world problem raised by an industrial project.
For this problem, which is essentially exact concept identification, we propose a learning
algorithm based on a certain type of subset queries formed by strongly closed itemsets and
show on real-world datasets that it requires significantly less query evaluations than a naive
algorithm based on membership queries.
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1 Introduction

It is a well-known fact that closed frequent itemsets provide a compact representation of
frequent itemsets (Boros et al. 2003; Pasquier et al. 1999). The concept of closedness has
been generalized in Boley et al. (2009): An itemset is strongly or more precisely, A-closed
for some integer A > 0, if all of its extensions result in a drop of at least A transactions in
its support set. Clearly, A-closed itemsets are ordinary closed (i.e., 1-closed) for any A > 1.
With increasing A, the number of A-closed itemsets becomes usually much smaller than that
of ordinary closed itemsets (Boley et al. 2009) (i.e., the number of patterns can be controlled
by A). The most common way to control the size of the output pattern set is to eliminate
patterns by some frequency threshold. This strategy shifts, however, the language bias towards
short patterns. Assuming a fixed capacity of maintaining at most K patterns, the length of a
longest frequent itemset is bounded by log, K. In contrast, A-closed itemsets may include
long patterns as well. We also note that the set of strongly (and hence, ordinary) closed
itemsets can further be reduced by pruning with frequency. We omit this straightforward
generalization for simplicity.

Despite the fact that strongly closed itemsets provide only lossy representations of frequent
itemsets, this typically tiny subset of ordinary closed itemsets is still able to capture some
essential information about the data at hand that is stable against changes (Boley et al.
2009). Compactness and stability make strongly closed itemsets attractive, among others,
for streaming applications, motivating us to consider the problem of mining strongly closed
itemsets in transactional data streams. In addition to these advantageous properties, strongly
closed itemsets can be generated efficiently (i.e., with polynomial delay, Ganter and Reuter
1991; Gély 2005), in contrast to e.g. maximal frequent itemsets (which, unless P = NP, cannot
be listed in output polynomial time, Boros et al. 2003).

The properties mentioned above constitute a further strength of strongly closed itemsets
for such data stream scenarios where there is some fixed upper bound K on the number of
output patterns. Such a bound can be derived e.g. from time or space constraints and allows
an automatic adjustment of the parameter A as a function of K during the enumeration.
For example, our algorithm can be modified in such a way that once the number of patterns
exceeds K, it immediately increases the value of A by the smallest amount such that the
number of “surviving” patterns will be at most K.

As a first practical application of our approach, we consider the transactional data stream
scenario in which the objects arriving continuously are subsets of some ground set (set of all
items) and generated by some unknown distribution that may change over time. Such changes
are referred to as concept drifts. Concept drift detection is essential for most algorithms
building some model from data streams with changing distributions. With an extensive series
of experiments we demonstrate that changes in the family of strongly closed itemsets are
excellent indicators for detecting concept drifts in transactional data streams. As an example,
we could reliably detect concept drifts by monitoring the changes in around 250 strongly
closed itemsets out of more than 45,000 ordinary closed ones.

As a second application, we consider the problem of computer-aided product configura-
tion. For this problem we assume that there is some dynamic transactional database (i.e., a
transactional data stream) over a finite set of items, where the transactions correspond to indi-
vidually customized products purchased by customers. The goal is then to support the next
customer in selecting the subset of items constituting her desired product to be purchased,
without showing her all possible items one by one, i.e., without asking membership queries
in a brute-force manner. We propose an algorithm for this problem that, in contrast to the
brute-force strategy, asks a certain type of subset queries. These subset queries are based on
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strongly closed itemsets extracted from the data stream of transactions already seen. Using a
database of product configuration transactions from a real-world industrial project, we show
that even 50% of the membership queries asked by the brute-force algorithm can be saved
for the average user by a simple algorithm! based on strongly closed itemsets.

Motivated by these and other practical applications, we present an efficient algorithm for
mining strongly closed itemsets from transactional data streams in the landmark model. To
make the algorithm practically feasible for massive transactional data streams, we consider a
random subset of the data stream generated by reservoir sampling (Vitter 1985) and approx-
imate the family of strongly closed itemsets in the data stream by that in the sample. The
size of the sample is chosen in a way that with high probability, it preserves the relative fre-
quencies of itemsets within some small error. Our algorithm calculates the family of strongly
closed itemsets from this sample upon request or after a certain number of new transactions
have arrived since the last update.

Reservoir sampling allows us to record the changes from the last update not in the sample,
but in two separate databases. As the replacement of a transaction in the sample is equivalent
to removing the old transaction and inserting the new one, the two databases correspond to
the sets of transactions to be deleted from and those to be added to the sample. The motivation
behind splitting replacement into deletion and insertion is that in contrast to the method in
Boley et al. (2009), strong closedness of an itemset can be decided much faster when the
support set of the itemset is empty in at least one of the two databases. With increasing stream
length this situation becomes more and more typical as the number of changes in the sample
and accordingly, the size of the two databases decreases.

Our algorithm is based on the fact that strongly closed itemsets of the sample form a
closure system (Boley et al. 2009). We make use of this property and calculate the update by
traversing the old strongly closed itemsets with a divide and conquer algorithm. It is based
on a folklore algorithm (see, e.g., Gély 2005) that lists all closed sets of a set system. This
algorithm has a number of advantageous algorithmic properties (Boley et al. 2010; Gély
2005) utilized by our algorithm as well.

We empirically evaluated the speed-up and quality (in terms of precision and recall) of
our algorithm on artificial and real-world benchmark datasets. To measure the speed-up, we
compared the batch algorithm generating strongly closed itemsets from the new sample from
scratch with our incremental algorithm for different number of changes in the sample. For
small changes, which is the case for long data streams, we obtained a speed-up of up to two
orders of magnitude. Regarding the quality, in most cases we achieved very high precision and
recall values (close to 1). Thus, as the empirical results demonstrate, our algorithm is much
faster than the algorithm computing from scratch and still calculates a close approximation
of the family of strongly closed itemsets.

An early version of this paper appeared in Trabold and Horvath (2017). The main differ-
ences between the two versions are in the empirical evaluation of the algorithm. In particular,
for concept drift detection in this extended version we additionally analyze the effects of
different concept drift types, drift lengths, varying similarity for intersected drifts, various
delays between instances of our algorithm, and the buffer size of our algorithm. In addition
to concept drift detection, in this version we also consider the application of strongly closed

1 Our main focus in this work was on mining strongly closed itemsets from transactional data streams and
on demonstrating the potential of this kind of itemsets on real-world data streaming problems. Accordingly,
a more sophisticated optimized version of our algorithms utilizing some domain specific properties goes far
beyond the scope of this paper.
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itemsets to transaction identification with subset queries. For this problem we present an
algorithm and evaluate it empirically on various real-world product configuration datasets.

Outline The rest of the paper is organized as follows. We briefly discuss related work in
Sect. 2, define the necessary concepts and the problem setting in Sect. 3, and describe our
algorithm in Sect. 4. In Sect. 5 we empirically evaluate the speed-up and approximation
quality of our algorithm on various benchmark and real-world datasets. In Sect. 6 we present
extensive experimental results demonstrating the suitability of strongly closed itemsets for
concept drift detection and for computer-aided product configuration. We finally mention
some interesting directions for future research in Sect. 7.

2 Related work

Mining ordinary closed itemsets is the special case of mining A-closed itemsets for A = 1.
Out of the different streaming models (e.g., sliding window, time-fading, landmark) studied
for mining closed frequent itemsets in data streams, we discuss only algorithms for the
landmark model, corresponding to our problem setting. For a survey on closed frequent
itemset mining in data streams, the reader is referred to Bai and Kumar (2016).

The vast majority of literature on this subject considers the sliding window model, in
which a window of fixed size is moved forward as new transactions arrive in a data stream.
The window always contains the most recent k transactions, where k is the window size
defined by the user. The most prominent algorithms for this setting are Moment (Chi
et al. 2004) and CFI-Stream (Jiang and Gruenwald 2006). In the time-fading model all
transactions have an associated weight, which is high for recent transactions and decays
over time such that transactions seen long ago will be eventually removed from consid-
eration. Algorithms for this model include WSW (Tsai 2009) and CLICI (Gupta et al.
2010).

The landmark model considers all transactions from a landmark starting time in the past to
the current time point. The particular challenge for closed itemset mining in this setting is that
more and more sets will become closed as the data stream gets larger. For very long streams
every set will become closed eventually with high probability, resulting in a huge output. The
algorithms FP-CDS (Liu et al. 2009) and LC-CloStream (Iwanuma et al. 2016) mine ordinary
closed frequent itemsets under the landmark model. To the best of our knowledge these are
the only algorithms concerning this problem setting. As strongly closed itemsets generalize
ordinary ones, we consider a more general problem that has not been studied before.

FP-CDS (Liu et al. 2009) processes the transactions in batches. It first constructs a local
tree structure for the current batch of transactions and then merges this tree with a global
one built for the entire data stream from the landmark starting time up to the previous
batch. Closed patterns are generated from this global tree from scratch. Using the idea in
Manku and Motwani (2002), the algorithm considers all patterns of frequency at least €
for some appropriately chosen € < 6, where 6 is the frequency threshold. Our approach is
fundamentally different, as we process the transactions with reservoir sampling. Furthermore,
while our algorithm incrementally updates the family of closed itemsets, FP-CDS computes
it from scratch.

LC-CloStream (Iwanuma et al. 2016) combines the main features of two data stream algo-
rithms, LossyCounting (Manku and Motwani 2002) mining frequent itemsets in the landmark
model and CloStream (Yen et al. 2011) mining closed frequent itemsets in the sliding win-
dow model. Similarly to LossyCounting, LC-CloStream computes an e-approximation of
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ordinary closed frequent itemsets and similarly to CloStream, it calculates ordinary closed
itemsets from intersections of transactions. LC-CloStream returns all closed itemsets which
are estimated to be frequent. Its output is incomplete, in contrast to ours, which is complete
with respect to the transactions in the reservoir.

Finally we note that there is a vast amount of literature on concept drift detection in
data streams (see, e.g., Gama et al. 2014 for a survey). Several authors (see, e.g., Kifer
et al. 2004; van Leeuwen and Siebes 2008) specifically consider the problem of concept
drift detection in transactional data streams. Since concept drift detection is only one of the
potential applications of our general-purpose algorithm, we omit the discussion of the related
literature and mention only the KARMA algorithm (Loglisci et al. 2018) designed for concept
drift detection in network data streams. Similarly to our approach, it is based on pattern
mining from transactional data streams.”> However, while KARMA defines interestingness
by frequency, we consider an entirely different set of patterns specified by A-closedness.
Whereas the size of the output pattern set is difficult to control by frequency during the
mining process, we can govern it effectively by the appropriate choice of A. We also note
that KARMA can be extended to patterns defined by A-closed itemsets.

3 The problem setting

In this section we define the problem setting for this work. We first provide the necessary
notions and fix the notation. For all m € N, [m] denotes the set {1, ..., m}. Given some
finite ground set E (items), the concepts of itemsets and transactions (i.e., subsets of E), and
transaction databases over E (i.e., multisets of transactions) are used in the standard way.
A transactional data stream over E (in what follows, simply a data stream) is a sequence
S = (T1, T, ..., T;), where the T;’s are non-empty transactions, i.e., ¥ # T; € E for all
i € [t]. To calculate the family of strongly closed itemsets for S;, the order of the transactions
in S; does not matter. Therefore, S; can be regarded for this operation as a transaction database
(i.e., multi-set) D, over E. We make use of this property and formulate most definitions below
for transaction databases.

Let D be a transaction database over E. The support set of an itemset X C E in D,
denoted D[X], is defined by the multi-set {T" € D : X C T}; the support count of X by
the cardinality |D[X]| of D[X]. For a threshold A €0, 1], an itemset X C E is relatively
A-closed in D if

DI DI
holds for all ¥ with X C Y C E. That is, any proper extension of X decreases its relative
frequency by at least A. Thus, A indicates the strength of the closure. If it is clear from the
context, we omit the adverb “relatively”. Motivated by different real-world applications (e.g.,
concept drift detection, computer aided product configuration), we consider the following
mining problem:

DIX)_[PIY] 4 0

A-Closed Set Listing Problem Given a single pass over a transactional data stream
S = (T, T,,...,T;) over a set E of items (i.e., T; € E for all i € [t]), a threshold
= [0, 1], and an integer ¢ € [z], list all itemsets X C E that are A-closed in Sy =
(T, Tr, ..., Ty).

2 One of the main ideas of KARMA is the reduction of network data streams to transactional data streams
by defining items with certain triples extracted from the network.
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Note that the definition of relative A-closedness for S, above can equivalently be reformu-
lated by that of absolute A-closedness (Boley et al. 2009) as follows: X is relatively A-closed
in S; if and only if it is absolutely A-closedin S; for A = ftj] ,thatis, |S;[X]|—|S:[Y]] = A
forall Y with X C Y C E. The adverb “absolutely” will be omitted when it is clear from the
context. Clearly, ordinary closed itemsets are 1-closed itemsets. For this reason, A-closed
itemsets will also be referred to as strongly closed itemsets (Boley et al. 2009) when there is
no emphasis on A. In general, the family of A-closed itemsets in a transaction database D
is denoted by Ca p. In particular, the family of A-closed itemsets in S; above is denoted by
Ca, s, The relevance of absolute A-closed itemsets to our work is that we approximate the
family of relative A-closed itemsets in S, by that in a random sample of S, for some fixed size
s. In this way, we can make use of some advantageous algebraic and algorithmic properties
of absolute A-closed itemsets (Boley et al. 2009) and work with them for A = [s Al.

We recall some basic algebraic and algorithmic properties of A-closed itemsets from
Boley et al. (2009). We start with the definition of closure operators. Let E be some finite set
and o : 2 — 2F be a function, where 2F denotes the power set of E. Then o is extensive if
X C o(X), monotone if X C Y implies o (X) C o(Y), and idempotent if 0 (X) = o (0 (X))
forall X,Y C E. If o is extensive and monotone then it is a preclosure; if, in addition, it is
idempotent then it is a closure operator on E. A set X C E is closed if it is a fixed point of
o (e., X =0(X)).

For a transaction database D over E and integer A > 0, let 6. p : 2 — 2F be defined
by

oap(X)=XU{ee E\ X :|D[X]| — |D[X U{e}]| < A}

for all X C E. It holds that 64 p is a preclosure on E that is not idempotent (Boley et al.
2009). For an itemset X C E, consider the sequence 63 ,(X), 6 1,(X), 63 p(X), ... with
69 p(X) = X, 6} p(X) = 64.p(X), and 6" [,(X) = 64.p(6", p(X)) forall I > 1. This
sequence has a smallest fixed point, giving rise to the following definition: For all X C E,
let oa,p : 25 — 2F be defined by 6.4 p(X) = 64 1 (X) with

k=min{l e N: 6} ,(X) =65, X)) .
The proof of the claims in the theorem below can be found in Boley et al. (2009).

Theorem 1 Let D be a transaction database over some finite ground set E and A > 0 an
integer. Then

(1) forall X C E, X is A-closed in D if and only if X = o p(X),
(ii) oa,p is a closure operator over E,
(iii) for all X C E, the closure oa p(X) of X can be computed by Algorithm 1 in time
O (IDIX1llo), where | DIX1lo = ¥ reppy) 1E \ T13

Using the fact that o4 p is a closure operator, the family of all A-closed itemsets of a
dataset D can be enumerated by the following divide and conquer folklore algorithm (see,
e.g., Gély 2005): Generate first recursively all A-closed supersets of a set that contain a
certain item e € E, and then all that do not. This algorithm lists all A-closed itemsets non-
redundantly, with polynomial delay and in polynomial space (for further properties of this
algorithm see Boley et al. 2010).

3 In Boley et al. (2009), two different algorithms are discussed for the computation of o5 1. They both have
a time complexity of O (||D[X]|lp), assuming that empty transactions are not allowed. In practice, the two
algorithms behave differently from the point of view of the running time, depending on the sparsity of D (cf.
Boley et al. (2009) for a detailed discussion).
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Algorithm 1 CLOSURE BOLEY ET AL. (2009)

input: X C E and integer A > 0
require: dataset D over E
output: o p(X)

I: C < X; D « D[X]

2: repeat

3: foralle e E\ Cdo

4: if |D'| — |D'[e]] < Athen C < C U {e}; D’ < D'[e]

5: until D’ has not been changed in Loop 3—4

6: return C

Fig. 1 Transactional data stream tid|items

example 11 bd
2| bd
3| bd
4| ad
5| ad
6| cd
7| cd
8| ¢
9 ¢

4 The mining algorithm

In this section we present our algorithm for the A-Closed Set Listing problem defined in
Sect. 3. To tackle massive data streams in feasible time, we approximate the A-closed sets
for a data stream S; = (T}, ..., T;) at time ¢ from a random sample D; generated from S;
without replacement. Since the order of the elements in the sample does not matter, D; is
regarded as a transaction database. The size s of D; is chosen in a way that for all X C E,
the discrepancy between the relative frequency of X in S; and that in D; is at most € with
probability at least 1 — §, i.e., s satisfies

Pr<’|StEX]| ~ |DI£X1|’ §6> s o

for any X C E. The parameters € (error) and § (confidence) are specified by the user. Our
extensive experiments in Sect. 5.2 show that a very close approximation of the true family
of A-closed itemsets can be obtained in this way.

Our algorithm recalculates the family of A-closed itemsets not after each new transac-
tion, but either upon request or after b new transactions have been received since the last
update, where b, the buffer size, is specified by the user. Given S; = (71, ..., T;) and
Sy ={(T1,...,T;, Tyx1, ..., Ty) with t’ — ¢ < b, the new sample D, of Sy is computed
from the old sample D; by Dy = D; © Dgel D Dins, Where Dye (resp. Dips) is the multiset of
transactions to be removed from (resp. added to) D;, and © and @ denote the set difference
and the union operations on multisets.

The algorithm will be illustrated on the example transactional data stream given in Fig. 1
with b = 8 and A = 2. For the sake of simplicity, we assume that transaction 1 will be
replaced with transaction 9 by the sampling algorithm. The strongly closed itemsets for the
first respectively last eight transactions are shown in Figures 2 and 3.
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Fig.2 2-closed itemsets for itemset|support
transactions 1-8 d 7
ad 2
bd 3
cd 2

Fig.3 2-closed itemsets for itemset |support
transactions 2-9 c 4
d 6
ad 2
bd 2
cd 2

The rest of this section is organized as follows. We sketch the sampling algorithm in
Sect. 4.1 and describe the algorithm updating the family of A-closed itemsets from D; to Dy
in Sect. 4.2.

4.1 Sampling

We use reservoir sampling (Knuth 1997; Vitter 1985) for generating a random sample D;
of size s for a data stream S; = (71, ..., T;), as this method does not require the stream
length to be known in advance. The general scheme of reservoir algorithms is that they first
add Ty, ..., T, to a “reservoir” and then throw a biased coin with probability s/k of head
forall k = s + 1, ..., t. If the outcome is head they replace one of the elements selected
from the reservoir uniformly at random with 7. This naive version of reservoir sampling,
attributed to A.G. Waterman by D. Knuth in Knuth (1997), generates a random sample D;
of S; without replacement uniformly at random. That is, all elements of S; have probability
s/t of being part of the sample after S; has been processed. We have implemented Vitter’s
more sophisticated version, called Algorithm Z in Vitter (1985).

Given a sample D; of a data stream S; = (T1,..., 1), the sample Dy for Sy =
(T1,..., Ty, Tt+1, ..., Ty) is computed from D; by repeatedly applying Algorithm Z to
D; and the elements in (T} 1, ..., Ty). Recall that ' — r < b, where b is the buffer size. If a
transaction in the sample is replaced by a new transaction T’ € {T;41, ..., Ty}, we appropri-
ately update a database Dgye] containing the transactions to be removed from D, and a database
Dins containing the transactions to be added to D;. Clearly, |Dgel| = |Dins|. Furthermore,

bs
E[|Ddeil] = E[|Dins|] < e 3)

This follows directly from the linearity of the expectation and from E[X;] = s/t/, where
X is the indicator random variable for the event that T} is selected for S;-. Note that in (3)
we have inequality only in the case that 1’ — ¢t < b, i.e., when an update is calculated upon
request for an incomplete buffer; o/w we always have equality. The RHS of (3) approaches
0 as ¢’ approaches infinity. For example, it is only 15 for b = 10k, ¢ = 100M, € = 0.005,
8 = 0.001, and s = 150k, where the sample size s = s(¢, ) satisfying (2) is calculated by
Hoeffding’s inequality,” i.e.,

4 We note that Hoeffding’s inequality applies to samples without replacement as well (Hoeffding 1963). A
tighter bound can be derived from Serfling’s inequality (Serfling 1974). The improvement becomes however
marginal with increasing data stream length.
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1 2
S = lrﬁ In g—‘ . (4)

4.2 Incremental update

Note that the sample size s in (4) depends on the error and confidence parameters € and &
only. Thatis, s does not change with increasing data stream length. Hence, both denominators
in the LHS of (1) will be fixed (i.e., s) for the entire mining process from the s-th transaction
onward. More precisely, for any transaction database D of size s and A € [0, 1], the family of
relatively A-closed itemsets of D is equal to the family C 4 p of absolutely A-closed itemsets
for A = [sA]. This allows us to consider the following problem equivalent to the A-Closed
Set Listing problem:

A-Closed Set Listing Problem Given D;, Dgel, Dins for S; and Sy as defined in Sect. 4.1,
aninteger A > 0, and the family C4 p, of A-closed itemsets of D;, generate all elements
of Ca,p, for Dy = Dy © Dyel D Dins-

Instead of generating Ca p, from scratch, our goal is to design a much faster practical
algorithm by reducing the number of evaluations of the closure operator for D,/. This is
motivated by the fact that the execution of the closure operator is the most expensive part of
the algorithm. We make use of the fact that the expected number of changes in D, w.r.t. D;
becomes smaller and smaller as ¢’ increases (cf. (3)). Accordingly, our focus in the design of
the updating algorithm is on quickly deciding whether an element C’ € Cx p, remains A-
closed in Dy, where C’ is obtained by C' = o4, p, (C U {e}) forsome C € Cx p, ande € E.
Below we show that in all of the cases when at least one of the support sets Dgel[C U {e}] or
Dins[C U {e}] is empty, the problem above can be decided much faster than with the naive
way of using Algorithm 1. As we empirically demonstrate in Sect. 5, a considerable speed-up
over the naive algorithm can be achieved in this way.

We first briefly sketch the algorithm computing Ca p,, from Cx p, (see Algorithm 2). It
requires four auxiliary pieces of information for all strongly closed itemsets in C, p,, except
for the empty set (cf. Line 1 of MAIN). Hence, to simplify the notation, the set variables C4, p,
and Cx, p, in all algorithms of this section store quintuples, where the first component is the
strongly closed itemset itself; the other four components are specified below.

Algorithm 2 is a divide and conquer algorithm that recursively calls LISTCLOSED with
some A-closed set C € Cap,, forbidden set N € E, and minimum candidate generator
element i. It first determines the next smallest generator element e (Line 3) and calculates the
closure C' = 04,p,(C U {e}) in Lines 4-10; these steps are discussed in detail below. We
store C’, together with some auxiliary information (Lines 12 and 15). The algorithm then calls
LISTCLOSED recursively for generating further A-closed supersets of C’. In particular, if C’
does not contain any forbidden item from N then the last element of the quintuple stored for
C’is 1 (Line 12); o/w it is | (Line 15). After all elements of C A,D, have been generated that
are supersets of C, contain e, but do not contain any element in N, the algorithm generates
all closed sets in C AD, that are supersets of C and do not contain any element from N U {e}
(Lines 16-19).

Example 1 Using the transactions in Fig. 1, we show how Algorithm 2 updates the family of
2-closed itemsets for the first eight transactions (cf. Fig. 2) to that for the last eight (cf. Fig. 3).
For E = {a,b,c,d} witha < b < c < d and Ca,p, = {d,ad, bd, cd}, the input to the
algorithm for this update consists of Dge] = {#1}, Dins = {9}, and A = 2. The algorithm first
initializes Ca p, < {#} (line 2) and then calls LISTCLOSED(#, ¥, a) (line 3). The recursive
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Algorithm 2 UPDATE Cy, p,

input: datasets Dge|, Djps over E and A € N
require: totally ordered set (E, <), dataset D; over E, and C AD;
output: C AD, for D;s = Dy © Dgel @ Dins

MAIN:

1: CA,D,, <~ {0}

2: LISTCLOSED(#, ¥, min E)
LISTCLOSED(C, N, i):

X < {ke E\NC:k>i)
2: if X # () then

3 e < minX; C, < C U {e}

4: if Dget[Ce] = ¥ A Dins[Ce] = ¥ then

5: C" < CLOSURE_a(C, ¢,Cx p,) > Case (o)
6:  elseif Dj,s[Cc] = ¢ then

7: C' « CLOSURE_B(C, ¢, Dgei[Cel, Ca.1,) > Case (8)
8 else if Dyei[Ce] = ¥ then

9 C" < CLOSURE_y (C, e, Dins[Ce], Ca D,) > Case (y)
10:  else C' « oa,D, (Ce) > Case (8)
11: if C' NN = ¢ then

12: add (C,e, N,C’, 1) tOCA,Dt/

13: LISTCLOSED(C’, N, e + 1)

14:  else

15: add (C,e,N,C’, ) tOCA,D,/

16: Y < {ke E\C :k > e}

17: if Y # () then

18: ¢ < minY

19:  LISTCLOSED(C, N U {e}, ¢’)

calls of list closed are visualized in Fig. 4. The edges corresponding to lines 1-15 are labeled
with the value of the variable C, (cf. line 3) and the case used for update in lines 4-10;
unlabeled edges correspond to lines 17-19.

Theorem 2 Algorithm 2 generates all elements of Cap, correctly, irredundantly, in total
time O (|E| - 1Ca,p, | - | Dyllo), with delay O (|E|*| Dy llo), and in space O (|E| + | Dy o).

Proof Regarding the correctness, we only need to show that C’ computed in Lines 4-10
satisfies C' = oa,p, (C U {e}). The correctness of CLOSURE_a (Algorithm 3), CLOSURE_
(Algorithm 4), and CLOSURE_y (Algorithm 5) is shown below in Lemmas 1, 2, and 3,
respectively. The proofs of the irredundancy and the time and space complexity are immediate
from Boley et al. (2010) and Gély (2005) by noting that Algorithm 2 must call the closure
operator for all elements in C4 p,, in the worst case. ]

In the rest of this section we give the algorithms for the cases distinguished in Lines 4-10
(case (8) is trivial) and prove their correctness.
Case (o) We first consider the case that the set C U {e} with C € Cap, and e € E to be
extended for further A-closed sets satisfies

Dyel[C U {e}] = ¥ and Dips[C U {e}] = 0 5
(Lines 4-5 of Algorithm 2). The closure 04, p, (C U {e}) for this case can be computed by

Algorithm 3; the correctness of Algorithm 3 is stated in Lemma 1 below.
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Algorithm 3 CLOSURE_«
input: C e CA,DI/ with Dy = Dy © Dgel © Dinss ¢ € E, and Cp p,

require: Dy
output: %AD, (C U{e})

1:if 3(C,e, N, C,q) € Ca,p, for some N, C’, and q then return C’
2: else return o4 p, (C U {e}) >0 p,(CUfe}) = OAD, (C U {e}) for this case

Lemma 1 Algorithm 3 is correct, i.e., for all C € Ca p, and for all e € E, the output of the
algorithm is op p, (C U {e}).

Proof Condition (5) implies that D;[C U {e}] = Dy [C U{e}], where D;y = D; © Dgel D Dins-
Hence, o4 p,(C U {e}) = oa.p,(C U{e}) and o4 p,(C U {e}) € Ca p,, from which the
proof is immediate for both cases considered in Lines 1-2. O

Example 2 In our running Example 1, the first call LC(4,4,a) in Fig. 4 corresponds to case
(), as Dipsla] = Dgellal = @. Algorithm 3 returns ad as the closure of ¢ in line 1, i.e., we
do not need to (re)evaluate the closure operator on a.

Case () We now turn to the case that C € Cop, and e € E fulfill
DyellC U {e}] # @ and Ding[C U {e}] = ¥ (6)

(Lines 67 of Algorithm 2). In Proposition 1 below we first prove some monotonicity results
that will be used also for case (y).

Proposition 1 Let Dy and D, be transaction databases over E. If D1 C Dj then for all
AeN,

Cap, SCap, - (N
Furthermore, for all A € N and forall X C E,
0A,D,(X) 2 04D,(X) . ®)
LC(0,0,a)
LC(ad,d,b) LC(0,a,b)
abd:‘o/ \ bV \
LC(ad,b,c) LC(bd,a,c) LC(0,ab,c)
acd:‘V bc‘cy cy \
LC(c,ab,d) LC(0,abc,d)

cd:‘V ‘CV

Fig. 4 Call stack for the update in Example 1. Labeled edges correspond to lines 1-15 of Algorithm 2;
unlabeled to lines 17-19. The first component of an edge label denotes C, (cf. line 3 of Algorithm 2), the
second the case applied (cf. lines 4—10)
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Algorithm 4 CLOSURE_J

input: C € CA,DI/ with Dy = D; © Dgel © Dins ¢ € E, DaellC U {e}], and Cx p,
require: D;
output: o4 p,(CU{e})

1: if there exists (C, e, N, C’, q) in Ca,p, for some N, C’, and g then

2: C'.count < |D[C']] — [Dgel[C'

3: forallic E\C'do

4: C'.A; < |Di[C" Ui}

5: if C’.count — C".A; + |Dgei[C' U {i}]| < A then
6: return OAD, (CU{e})

7:  return C’

8: else

9:

return %AD, (C U{e})

Proof Let C € Cx p, for some A € Nandlet D' = D, © Dj. Then, forany e € E \ C, we
have

ID2[C U e}l = ID1[C U {e}]| + |D'[C U {e}]]
< IDilCll = A+ |D'[C]]
= D[C] -4,

where the inequality follows from C € Ca p, and from the anti-monotonicity of support
sets. Hence C € Ca,p, completing the proof of (7).

To show (8), suppose that during the calculation of o4 p, (X), the items in o4 p, (X) \ X
have been added to X in the order ey, ..., e;. Let Xo = X and X; = X U {ey,...,ei—1,¢€;}
for all i € [k]. Then |Dy[X;—1]| — |D2[X;]| < A foralli e [k] (see Algorithm 1). Since
Dy Xi—1] 2 Dy2[X;] and D; C Dy, we have |D[X;—1]| — |D1[X;]| < A for all i. Thus, as
Algorithm 1 is Church-Rosser, all ¢; will be added to o4 p, (X) as well, implying (8). ]

Using Proposition 1, we have the following result for Algorithm 4 concerning case (8):

Lemma 2 Algorithm 4 is correct, i.e., for all C € Ca p, and for all e € E, the output of the
algorithm is oo p, (C U {e}).

Proof By Condition (6), Dy [CU{e}] € D;[CU{e}] and hence Proposition 1 implies that there
isnoY € Cap, withCU{e} C Y C o4 p,(CU{e}). Furthermore, if o p, (CU{e}) ¢ Ca D,
thenoa p, (CU{e}) C oa p, (CU{e}). Thus, to check whether C' = o, p,(CU{e}) remains
closed in Dy, it suffices to test whether

IDy[C1] = 1Dy [CTU (i}l = A (C))

further holds for all items i € E \ C’ (Lines 2-6 of Algorithm 4). If so, the algorithm returns
C’in Line 7, implying the correctness of Algorithm 4 for the case that C" € Ca p,,; the claim
is trivial for the other two cases (Lines 6 and 9). ]

We note that in our implementation of Algorithm 4 we do not calculate C’.count and
C’.A; in Lines 2 and 4, but store and maintain them consistently. In this way, the condition
in Line 5 can be decided from Dyc], without any access to D;. It is important to mention that
with increasing stream length, the number of elements to be deleted from C4 p, becomes
smaller (cf. (3)) and typically, most of the elements of C4 p, are calculated by terminating
in Line 7.
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Algorithm 5 CLOSURE_y

input: C e CA,DI/ with Dt’ = D; © Dgel ® Dins» € € E, Dips[C U {e}], and CA.'D;
require: D;
output: UA’DH(C U e

1: if there exists (C, e, N, C/, q) in Ca,p, for some N, C’, and ¢ then

2: C" <« CU{e); D « (D; ® Dips)[C"]

3 repeat

4 foralli € C'\ C” do

5: if |D'| — |D'[i]| < A then

6: C" <~ C"Uli}; D < D'[i]

7 until D’ has not been changed in Loop 4-6
8:  return C”

9: else

10:  return %AD, (CU{e})

Example 3 In our running Example 1, the call of LC(#,a,b) in Fig. 4 corresponds to case
(B) because Dins[b] = ¥ and Dge1[b] # 9. Since (D, a, b, bd, 1) € Ca,p,, Algorithm 4 only
needs to compute support queries on Dy in lines 2, 4 and 5. For all i considered in line 3, the
condition in line 5 is not fulfilled. Hence, the algorithm returns db in line 7, without calling
the closure operator.

Case (y) Finally we discuss the case that C € C AD, and e € E satisfy the condition
Dye1[C U {e}] = ¥ and Diys[C U {e}] # 0 (10)

(see Lines 8-9 of Algorithm 2). The proof for this case is shown also by using Proposition 1.

Lemma 3 Algorithm S is correct, i.e., for all C € Ca p, and for all e € E, the output of the
algorithm is oo p, (C U {e}).

Proof The proof is automatic for the case that the condition in Line 1 of Algorithm 5 is false.
Consider the case that it is true. Proposition 1 with Condition (10) implies thatCx p, € C AD,
(i.e., all A-closeditemsets in Cx p, are preserved) and thatoa p, (CU{e}) € oa p, (CU{e}).
Thus, when calculating OAD, (CU{e}) in Loop 37, it suffices to consider only the elements
inoa p,(CU{e})\ (CU {e}), from which the claim is immediate for this case. m}

Compared to case (), we need to calculate support counts in the entire sample D, for
this case. However, the inner loop (Lines 4-6) iterates over a typically much smaller set than
the general closure algorithm (cf. Lines 2-5 of Algorithm 1). Analogously to case (8), the
number of new A-closed itemsets to be added to Ca p, becomes smaller with increasing
stream length, and hence, most of the elements of Ca p,, are calculated in the “then” part
(Line 2-8) of the “if” statement.

Example 4 In our running Example 1, the call of LC(#,ab,c) in Fig. 4 corresponds to case
(y) since item ¢ occurs only in Djps (i.€., Dins[c] # ¥ and Dgei[c] = 9). Since (@, ab, c, cd,
1) € Ca,p,, the algorithm goes into the loop 4-6, iterating over all elements of c¢d \ c. The
condition in line 5 is not satisfied for d and thus c is returned as a new closed itemset in
line 8, without calling the closure operator.
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4.2.1 Controlling the time and space complexity of the update

Although by Theorem 2 Algorithm 2 does not improve the worst-case time and space com-
plexity of the batch algorithm (Boley et al. 2009) calculating the family of strongly closed sets
from scratch, our experimental results presented in Sect. 5 clearly demonstrate a considerable
speed-up on artificial and real-word datasets. The total time depends on the cardinality of
Ca.p,,» which can be exponential in |E|. The time and space of the update can be controlled
by selecting the parameter A in a way that |Ca p, | < K for some reasonable small K. Once
K has been fixed, the value of A can automatically be adjusted when the number of elements
inCa, p, thathave already been enumerated exceeds K . More precisely, suppose Algorithm 2
has generated a subset C' € Ca p, with |C'| = K + 1. Forall C € C', let Ac be the strength
of C and denote A" = minceer Ac. Clearly, A’ > A. Let C” = {C € C' : A¢ > A’}. For
the set obtained we have C” € Cay1,p, and [C"] < K.

This change of A to A’ + 1 requires, however, the maintenance of auxiliary pieces of
information for all already generated strongly closed sets, as well as the reconstruction of
the five tuples for the closed sets remaining. More precisely, suppose Ac . = |D[C]| —
|D;[C U {e}]| has been calculated correctly for all C € Ca p, and foralle € E \ C. Notice
that the strength of C in D, is given by min.cg\c Ac,., Where the Ac s are obtained as a
byproduct of the algorithm computing the closure operator (cf. Algorithm 1). One can see
thatif C € Ca p, and C has not been recalculated by calling the closure operator, then Ac
can be updated by

Ac,e = Ac,e + |Dins[C]| — |Dins[C U {e}]] — [Dge1[C| + |Dge1[C U {e}]]

forall e € E \ C. Thus, the complexity of the update for this case depends on the cardinality
of Dins and Dy only, which become smaller and smaller with increasing ¢’ by (3). Finally,
utilizing the algebraic properties of closure systems, the five tuples can be reconstructed by
a top-down traversal of the enumeration tree corresponding to Algorithm 2.

5 Empirical evaluation

In this section we empirically evaluate our algorithm on artificial and real-world datasets. In
particular, we experimentally demonstrate that it results in a considerable speed-up (Sect. 5.1)
and has high approximation quality (Sect. 5.2). The data streams, all consisting of SM trans-
actions, were generated from benchmark datasets from the UCI Machine Learning (Dua
and Graff 2019) and from the Frequent Itemset Mining Dataset® repositories (see Table 1).
For each dataset D, Table 1 contains the cardinality of the ground set (| E|), the number of
transactions (|D]), and the density defined by \EI-IW TZD |T|.
€

5.1 Speed-up

In this section we empirically study the speed-up obtained by our algorithm. For this purpose,
we first sample 100k random transactions, replace then 10k, 1k, 100, 10, and 1 transaction in
the sample, and (i) run our algorithm as well as (ii) update the sample and run the algorithm
that corresponds to Algorithm 2 with Ca p, = #. Notice that (ii) corresponds to a classical
batch computation. Henceforth we refer to the algorithm for (ii) as the batch algorithm. We

5 http://fimi.ua.ac.be/data/.
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Table 1 Benchmark datasets used in the experiments

Name Kosarak Mushroom Poker-hand Retail T1014D100K T40110D100K
|E| 41,270 119 95 16,470 870 942
|D| 990,002 8124 1,025,010 88,162 100,000 100,000
Density 0.000196 0.193277 0.115789 0.000626 0.011612 0.042044
Fig.5 Fraction of the runtime of 1.2
our streaming and the batch 10
algorithm as a function of the 2 T i
number of changes (log scale): b=
black: mean, gray: SD G
s
9]
©
frs
00 ! ! !
10* 10° 102 10t 10°
Changed transactions
Fig.6 Runtime in seconds of our #Changes Stream time Batch time
streaming and _the batch 10,000 6.0 6.0
algorithm obtained for 1.000 AT 6.0
T1014D100k for different number ? ’ ’
of changes and for A = 0.006 100 4.2 6.0
10 1.1 6.0
1 0.3 6.0

define the speed-up, denoted S, by the runtime of the batch algorithm over that of the streaming
algorithm. Figure 5 shows the average runtime fraction of our algorithm in comparison to
the batch algorithm as a function of the number of changed transactions for all datasets from
Table 1. The runtime results are reported in detail for one dataset in Fig. 6 by noting that
we observed a similar speed-up for all other datasets. As the number of changes decreases,
our streaming algorithm needs to evaluate considerably less database queries, implying that
the smaller the change in the sample, the more the runtime of the two settings differs. In
Table 2 we present the number of strongly closed itemsets (|Ca,p, |) and the speed-up (S) of
our algorithm for various values of A for such experiments when only a single transaction
has been changed in the sample. In most of the cases our algorithm is faster by at least one
order of magnitude. One can also observe that the more A-closed itemsets are calculated
(or equivalently, the smaller A is) , the higher the speed-up. This is not surprising, as the
batch algorithm needs to call the closure operator for all strongly closed sets, whereas our
algorithm only for a subset of them. Recall that a transaction is added to the sample with
probability s/k, where s is the size of the sample and & the current length of the data stream.
The expected value to replace only one transaction is reached if the probability to replace

each of the s transactions in the sample is at most 1/s. This condition holds, whenever k > 52,

5.2 Approximation quality

In this section we present empirical results demonstrating the high approximation quality
of our algorithm measured in terms of precision and recall. For these experiments, we use
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data streams of length SM obtained by random enlargement of the benchmark datasets listed
in Table 1, as well as 10 artificial data streams (T10I4D5M, T40110D5M, and 8 variations
of T10I14D5M), each of length 5M, generated with the IBM Quest data generator. This
software generates synthetic market basket datasets based on user defined parameters. The
parameters are average transaction size (T), average length of maximal patterns (I), number
of transactions (D), number of patterns (L), correlation strength between patterns (C), and the
number of different items in thousands (N). For the two artificial data streams (T10I14D5M
and T40I10D5M) we used the same parameters (except for the size) as for T1014D100K and
T40I10D100K. For the variations of T10I4D5M we systematically modified the parameters
L, C and N. In particular, we used L € {1k,10k,100k,1M}, C € {0, 0.5} and N € {1, 10, 100}
in the data generation process. The patterns are independent for C = 0, while there is some
correlation between them for C =0.5.

We run the experiments for the values A = 0.001 4 0.005i for i = 0,1,...,9 and
b = 25k.° For all datasets, we use A = [At] for the batch and A = [As] for our streaming
algorithm, where s is the sample size. In particular, for ¢ = 0.005 and 6 = 0.001 we have
s = 150k (see Sect. 4.1), corresponding to around 3% of the 5M stream length. The output
of our algorithm will be compared to the results obtained by the batch algorithm in terms
of precision and recall. That is, denoting by 7 P the number of strongly closed itemsets
found by both algorithms and by F' P (resp. F N) that returned only by our algorithm (resp.
only by the batch algorithm). Then precision (P) and recall (R) are defined in the standard
way, i.e., P = TP/(TP + FP)and R = TP/(TP + FN). The results are reported in
Tables 3-5 in terms of precision (P) and recall (R) for the datasets from Table 1 and for the
variations of T10I4D5M, together with the number of A-closed sets (ICa,p, ). We note that
for TA0I110D5M, the batch algorithm was unable to compute the result for A = 0.001 in 24
hours. One can see that the precision and recall values are never below 0.80; in most of the
cases they are actually close or equal to 1. The results on the data streams obtained from the
benchmark datasets might be favorable for our algorithm due to the repetition of transactions.
The two artificial data streams T10I14D5M and T40I10D5M do not have such a bias. Still, we
obtained very good results for these data streams as well. Thus the repetition of transactions
does not improve the results in favor of our algorithm.

We have carried out experiments on several other artificial data streams generated by the
IBM Quest data generator using other parameters selected systematically (except for the size
5M). All results in Tables 4 and 5 are for N = 1 (i.e., 1000 items). For larger N the results
look similar, but with increasing N the number of strongly closed patterns decreases. The
precision and recall values for the synthetic data sets are close to 1, in all considered settings
they do not fall below 0.92. Thus our algorithm provides a good approximation of the set of
strongly closed itemsets in a transactional data stream.

6 Practical applications

In this section we demonstrate the suitability of strongly closed itemsets and that of our
algorithm mining this kind of itemsets in data streams for two practical applications, namely
for concept drift detection in transactional data streams (Sect. 6.1) and for computer-aided
product configuration raised by an industrial project (Sect. 6.2).

6 This value of b is chosen arbitrary. The results in Fig. 12 show that the choice of b is not critical.
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Table4 Number of A-closed sets (ICA,p, ), precision (P) and recall (R) after processing SM transactions of
synthetic quest data generated with IBMs Quest data generator

A L=1k L =10k

C0 C0.5 C0 C0.5

ICa,p;l P R ICa,p;l P R ICa,p;l P R ICap,l P R
0.041 11 1 1 12 1 1 11 1 0.91 11 1 1
0.036 17 1 1 19 1 0.95 20 1 1 24 096 1
0.031 33 1 1 34 1 097 32 1 1 37 1 0.97
0.026 46 098 098 54 098 1 63 095 1 61 0.94 0.98
0.021 75 099 1 81 0.98 098 101 098 099 99 0.99 0.99
0.016 132 1 098 136 097 099 164 098 0.99 163 0.99 0.98
0011 226 099 098 224 098 097 288 099 1 282 0.98 0.99

0.006 392 099 099 359 098 099 497 099 099 471 0.99 0.99
0.001 2618 096 095 2673 095 094 2455 093 094 2590 094 093

The parameters used in data generation are 7 = 10, I =4, D = 5M, and N = 1, the remaining parameters
are specified in the first two header rows

Table 5 Number of A-closed sets (C A,D, 1), precision (P) and recall (R) after processing SM transactions of
synthetic quest data generated with IBMs Quest data generator

A L = 100k L=1Ml
Co C0.5 Co C0.5
ICaD,l P R ICa,D,| P R ICap,l P R ICaD,l P R

0.041 9 09 1 8 1 0.88 7 0.88 1 7 1 1

0.036 21 1 0.95 20 1 1 20 1 0.9 20 1 0.95
0.031 34 097 097 33 097 097 33 097 1 36 1 0.97
0.026 60 098 1 59 098 1 57 1 0.98 57 098 1

0.021 100 1 097 104 096 097 100 097 1 100 095 0.99
0.016 171 098 1 173 099 098 175 098 098 175 1 0.99
0.011 311 098 097 317 099 098 310 1 1 314 098 0.99
0.006 530 099 1 535 099 099 534 099 099 534 0.99 0.99

0.001 3176 093 092 3153 093 093 3260 093 092 3279 0.92 0.92

The parameters used in data generation are 7 = 10, I =4, D = 5M, and N = 1, the remaining parameters
are specified in the first two header rows

6.1 Concept drift detection

In general, concept drifts in data streams are changes in the underlying distribution generating
the data observed. Their early detection is an essential step for most practical applications
of pattern mining in data streams. As an example, consider the problem of recommending
goods to a customer that she is interested in and hence, will purchase with high probability.
Computer-aided recommendations often rely on “typical” purchasing patterns extracted from
the shopping baskets of other customers. Since these patterns are usually dynamic (i.e., change
over time), recommendation systems resorting to typical patterns must work with an up-to-
date set of patterns corresponding to the (unknown) current distribution. Motivated by this
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and other scenarios, in this section we present an application of strongly closed itemsets to
concept drift detection in transactional data streams.

Before going into the details, we would like to stress that the primary goal of this section
is only to demonstrate the potential of strongly closed itemsets to concept drift detection,
and not to present a new algorithm specific for concept drift detection. The development of
such an algorithm goes far beyond the scope of this work and would require, among others,
a mathematically precise specification of a number of components, potentially depending
on the data and drift type, such as, for example the sensitivity of the algorithm, the suitable
window size, the number of strongly closed sets etc.

Two major classes of concept drifts are distinguished in Li and Jea (2014) for frequent
patterns in transactional data streams: Isolated and successive concept drifts. While isolated
concept drifts are single drifts that do not necessarily have any preceding or successive drifts,
successive concept drifts are drifts within a drift sequence. The goal of this section is to
demonstrate the suitability and effectiveness of strongly closed sets for the first drift type,
i.e., for detecting isolated concept drifts.’

To characterize isolated concepts drifts, the following two dimensions are regarded in Li
and Jea (2014):

(1) pace,i.e., the time required to completely replace the old distribution by the new one and
(ii) commonality, i.e., the overlap of the two distributions.

For (i) we consider both swift and gradual replacements of distributions. In case of swift
drifts, the distribution changes abruptly, i.e., from one transaction to the next. In contrast,
gradual drifts have an elongated transition from one distribution to the other. Using these
properties, we generate artificial datasets of these two types of replacements as follows: We
first create two data streams S; and S, generated with different distributions. For swift drifts
we then simply concatenate S and S,. For gradual replacements we generate a data stream
S1 - S -8 by concatenating Sy, S, and Sz, where S consists of £ transactions from S; and S5,
corresponding to the “graduality” of the drift. In particular, transaction i in S is taken from S
at random with probability 1 —i /¢ and from S, with probability i /€. In this way we simulate
a noisy “linear” transition of length ¢ from S; to S>. Clearly, the longer the transition phase
the less evident is the exact location of the drift.

For (ii) above we consider separated and intersected distributions. In case of separated
distributions there is no overlap in the distributions. A straightforward way to obtain such
distributions is to pick them at random from a pool over pairwise disjoint ground sets. In
contrast, intersected distributions are defined over the same ground set and in a way that
the individual and the joint probabilities over the ground set are identical for some of the
elements and different for the others. We generate both distributions from existing datasets.
To generate separated distributions, we simply replaced each item by a new symbol. For
intersected distributions, some of the items were removed from the transactions independently
and uniformly at random.

Combining (i) and (ii), we thus have four cases for isolated drifts (i.e., swift—separated,
swift—intersected, gradual-separated, gradual—intersected). The data streams with concept
drifts for our experiments were generated from the datasets in Table 1 by repeatedly drawing
transactions from the datasets modifying them as described above. For each data stream, we
generated three concept drifts with 2M transactions between any two consecutive drifts; 2M
is a sufficiently large length enabling a careful investigation of different features (see below)
of our algorithm.

7 Since our algorithm does not save the concept drifts detected in the past, it is not suited (in its present form)
for successive concept drift detection.

@ Springer



Machine Learning (2020) 109:1147-1177 1167

To detect the concept drifts in these data streams, we started a new instance of our mining
algorithm every 100k transactions, with parameter values € = 0.01 and § = 0.02. These
values give a sample size of around 23k (cf. Sect. 4.1), corresponding to roughly 1% of
the 2M transactions between the consecutive drifts. Recall from Sec. 5.2 that we obtained
very accurate results for the sample size of 150k. The results in this section obtained for
the much smaller sample size of 23k also demonstrate that reliable concept drift detection
is possible by means of approximate results. A practical implication of this property is that
working with smaller sample sizes allows for faster update times. As indicator for concept
drifts, we used the Jaccard distance between the families of strongly closed sets returned
by the two consecutive instances of our algorithm (having a delay of 100k); the impact of
non-consecutive instances are discussed at the end of this section.

We investigate the effect of different drift characteristics as well as that of different param-
eter settings of our algorithm. While our aim at considering different drift characteristics is
to demonstrate that strongly closed sets can indeed detect a wide range of concept drifts, the
analysis of different parameters of our algorithm serves to show that it can detect drifts for
various choices of the parameters. That is, the stability of strongly closed itemsets ensures
that it is not sensitive to the particular choice of the parameters. In particular, we empirically
analyze the effects of drift characteristics for

Drift type the four drift types defined above,
Drift length the length of gradual drifts, and
Drift intersection the probability of overlap for intersected drifts

and those of the algorithm’s parameter choices for

Degree of closedness the strength of closedness (i.e., A~),
Delay the delay after which a new instance of our algorithm is started, and
Buffer the buffer size b of our algorithm.

In order to make our experimental results clearly comparable, we present them in detail
only for the Poker-hand dataset. It was selected for this purpose at random out of the six
datasets considered in Table 1; for all other five datasets we obtained very similar results for
all six characteristics above. Unless otherwise specified, the length of gradual drifts is 250k
transactions, the probability for intersected distributions is 0.5, and b = 25k. We justify the
particular choice of these values by noting that the length of gradual drifts is longer than the
sample size, a probability of 0.5 results in a clear contrast between the distributions, and the
buffer size was chosen at random close to the sample size.

Drift type Figure 7 presents the results obtained by our algorithm for the four types of
isolated drifts. The three drifts are clearly identifiable in all four cases. Notice that for
the two swift drifts, the peaks are more spiky than for the two gradual ones. This is due
to the reason that in case of swift drifts, the transition from one distribution to the next is
more abrupt compared to gradual drifts that spread over more transactions. Comparing
the two separated drifts (LHS) with the two intersected ones (RHS), one can observe
that the peaks stand more apart for separated drifts. This meets our expectations, as for
separated drifts there is (much) less overlap in the data distributions than for intersected
ones.

Drift length Figure 8 is concerned with the influence of the drift’s length for gradual—
separated concept drifts. Thatis, we are interested in the ability to detect drifts for different
times needed to completely replace a new concept with the previous one. We present our
results for drift lengths of 1000, 5000, 25,000, and 100,000 transactions. The results
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Fig.7 Concept drift detection results for Poker-hand drift type for swift-separated, swift-intersected, gradual-
separated, gradual-intersected at A = 0.001
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a

clearly demonstrate that no matter how long the drift’s length, as all three drifts are
clearly identifiable for all four lengths. In particular, drifts of 1000 and 5000 transactions
are clearly shorter, drifts of 25,000 transactions are a bit longer, and drifts of 100,000
transactions are clearly longer than the sample size. The results obtained for intersected
drifts are similar. (Swift concept drifts are not presented, as their drift length is always
0.)

Drift intersection In all other experiments, intersected drifts are generated by taking the
transactions one-by-one and removing each item from the transaction at hand indepen-
dently and with probability p = 0.5. It is natural to ask how sensitive is our algorithm
for other values of p. To answer this question, we generated intersected drifts for
p = 0.1,0.2,0.3, and 0.4. The results are presented in Fig. 9. One can see that the
drifts are clearly recognizable for all cases, i.e., even for p = 0.1, although there is
no peak for this value (in contrast to the three other values). The figure shows a clear
correlation between p and the height of the peaks. The results for gradual drifts look
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Fig. 9 Concept drift detection results for Poker-hand with swift-intersected concept drifts for probability of
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Fig. 10 Concept drift detection results for Poker-hand with swift-separated concept drifts for A &
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very similar with slightly wider peaks (cf. Fig. 7 for the difference between swift and
gradual).’

Degree of closedness In Fig. 10 we investigate the influence of A ranging from 0.001 to
0.031, corresponding to A = 23 and A = 714, respectively. The upper limit 0.031 is
chosen based on the values in Table 2. In case of Poker-hand for instance, this choice of A
results in around 250 (i.e., about 0.5%) strongly closed itemsets out of 46,000 ordinary
ones. For all values of A € {0.001, 0.011, 0.021, 0.031} the drifts are clearly visible.
While they are smoother and more indicative for lower values of A(.e., for larger subsets
of ordinary closed itemsets), already as few as 250 strongly closed itemsets (A = 0.031)
suffice to detect the drifts, demonstrating the appropriateness of strongly closed itemsets
to concept drift detection.

Delay In Fig. 11 we investigate the effect of the delay, i.e., the number of transactions after
which we start a new instance of our mining algorithm. Recall that the Jaccard distance is
computed for the output of two consecutively started instances of the algorithm. Clearly,
there is some trade-off in choosing the number of transactions between two miners.
On the one hand, the more transactions are processed before the next instance of the

8 Note that a similar experiment is meaningless for separated drifts because they do not share any common
items before and after the drift.
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for the Poker-hand dataset with swift-separated drift and stongly closed itemsets for A = 0.011
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sets. Results for poker-hand with swift-intersected drifts and A = 0.011

algorithm is started, the lower the overall runtime. On the other hand, a concept drift
can only be located within the interval of transactions between two consecutively started
miners. We investigate delays for 25k, 50k, 100k, 250k transactions. Four observations
can be made as the delay increases from 25k to 250k. First, for small delays the drifts
are detected on the spot, i.e., right when they happen. Second, the peaks, which are very
spiky for a delay of 25k transactions become wider for larger delays. Third, the height
of the peaks decreases with increasing delay. Forth, as there is more delay between the
miners, it takes more transactions after the drift, before it is detected (i.e., the first peak
moved from 2.075M for a delay of 25k to 2.25M for a delay of 250k). Still, the drifts are
clearly visible in all cases, regardless of the choice of this parameter.

Buffer The effect of the buffer size is shown in Fig. 12. In particular we consider buffers
of size 1k, 10k, 100k, 500k. On the one hand, with a larger buffer there are less frequent
updates of the family of strongly closed sets, resulting in a better runtime. On the other
hand, however, less frequent updates of strongly closed sets reduces the ability to detect
drifts close to the time they happen. Our experiments clearly confirm this trade-off. The
larger the buffer size, the smoother the plot of the Jaccard distance. (The reason that there
is no apparent difference between a buffer of size 1k and 10k is that both are smaller
than the sample size.) For buffers of 100k and especially of 500k, the peaks lose there
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Fig. 13 Concept drift detection results for Poker-hand with swift-intersected concept drifts for varying detec-
tion delay at A = 0.001

individual shape, but are still clearly visible. In summary, smaller buffers can capture
more details of the data stream, while larger buffers result in shorter computation time,
as expected.

In all of the experiments so far, we considered Jaccard distances between the outputs of
consecutive miners started at equidistant intervals. Even for swift drifts, the drift takes place
with high probability during the run of one of the miners. In such cases, the output of the
miner might thus not fully reflect the state prior to the drift, but capture already a part of
the drift. This is especially true for long intersected drifts. It can thus be favorable to allow
for some gap between the outputs of the miners. Figure 13 shows the influence of the gap
between two miners. In particular, we compare the current miner with the previously started
one (left), with the one started two intervals before (middle), and with the one started three
intervals before (right). The three drifts are clearly visible in all settings. With increasing gap
between the miners the Jaccard distance reaches higher values in case of drifts, confirming
our expectations.

In summary, drift type (Fig. 7) and intersection (Fig. 9) are two drift characteristics having
the strongest influence on the Jaccard distance and thus the ability to detect concept drifts
by using strongly closed itemsets. In contrast, the particular choice of the parameters of our
algorithm seems to show less effect, indicating that our algorithm is not sensitive to them.
In particular, for appropriately chosen delays (Fig. 11) between miners, drifts are detected
on the spot. The parameters A (Fig. 10) and b (Fig. 12) show the effect that drifts are a
little more prominent for lower values. The length (Fig. 8) of the drift seems to have no
effect upon the ability to detect drifts. An additional gap between the miners can improve
the Jaccard distance (Fig. 13). Having investigated different drift types and the sensitivity of
the parameters of our algorithm on various datasets, we finally conclude that strongly closed
itemsets are excellent indicators for concept drift detection in data streams.

6.2 Product configuration

As another potential practical application of strongly closed itemsets, in this section we
empirically demonstrate their suitability for computer-aided product configuration, a problem
raised by an industrial project. In particular, we propose an algorithm based on strongly closed
itemsets that supports the customer in selecting a set of options (items) from a given pool
that together constitute her desired product to be purchased (e.g., an individual composition
of a pizza’s topping, an individually customized prefabricated house/modular home etc.).
Depending on the number of possible options, finding the most appropriate configuration
can be a time-consuming and tedious task.

The above kind of configuration problems can be regarded as the following computational
problem: Suppose the goal is to identify a product, i.e., an unknown transaction T C E
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for some finite set E of items. To achieve this goal, the learning algorithm is assumed
to have access to a database D of transactions over E (e.g, pizza toppings, prefabricated
houses/modular homes etc. ordered by other customers) and to an oracle (i.e., the customer)
and it may ask queries of the form

“IsY CT?”

forsome Y € E.Incase Y = T (resp. Y C T') the answer is “EQUAL” (resp. “SUBSET”);
otherwise the oracle returns a counterexample x € Y \ 7. The aim of the learning algorithm
is to identify T with as few queries as possible.

Notice that the problem above is in fact concept learning with queries. Indeed, just regard
E as the instance space and transactions as concepts. For the case that the transaction database
D is not part of the problem setting, exact identification of concepts has systematically been
discussed in the pioneering work by Angluin (1987) for various types of queries and concept
classes. The query defined in this section can be considered as a combination of equivalence
and subset queries (cf. Angluin 1987). The rationale behind considering this type of queries
is that most customers have typically some constraint defined in advance for the product
to be purchased (e.g., an upper bound on the number of components of the pizza’s toping,
some fixed budget for the prefab house/modular home etc.) that must be fulfilled by the
product. Once the set of items recommended is appropriate for the customer and any further
extension would violate the constraint, she might be interested in completing the process
(answer “EQUAL”), without considering the remaining options (items) that have not been
shown/recommended by the algorithm yet. This is an important requirement especially for
such situations where the number of all options or items (i.e., | E|) is too large compared to
that of the finally selected ones (i.e., | T|).

Another difference to the problem settings in Angluin (1987) is that the algorithm has
access also to D containing a set of already purchased configurations. The underlying idea
of our approach is that some of the “typical patterns” in D are likely to be selected also
for the unknown target configuration 7'. It is not difficult to see that for the case when D is
not part of the problem or when the transactions in D have been generated with an entirely
different process as the unknown set 7', the number of subset queries required to identify T
exactly is | E| — 1 if all non-empty subsets of E can be a potential transaction (or concept). In
real-world situations both of these assumptions are, however, unnecessarily strong. In fact,
as we show empirically using real-world product configuration datasets, the above number
can be reduced to 0.5 - | E| in average by using strongly closed itemsets.

6.2.1 Algorithm

The algorithm exactly identifying an unknown transaction 7 over a ground set E of items
with queries is given in Algorithm 6. Its input is a database D of transactions over E and the
family Ca,p of A-closed itemsets of D for some positive integer A. Although the algorithm
considers D and Ca,p as static inputs, it can effectively be applied in practice in the data
stream setting as well, where D and C p are continuously updated as described in Sect. 4.
This follows from the properties that Cx p contains typically only a few thousands of A-
closed sets for appropriately chosen A and that the time complexity of the algorithm is linear
in the combined size of E and Cx p.

Algorithm 6 starts by initializing the set variable S with the union of C4 p and the family
of singleton sets formed by the items in E (Line 1). Some of the singleton sets will be needed
for exact identification e.g. in such cases when the unknown transaction 7 to be identified is
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Algorithm 6 EXACT TRANSACTION IDENTIFICATION WITH QUERIES

input: database D over E and C, p for some A € N
require: subset query oracle and an unknown set 7’ C E
output: T

1: §:=CarpU{{x}:x e E}
2: X =0
3: Y :=argmax |Z \ X| - |D[Z]]|

ZeS
4: call the oracle with query X UY
5: if ANSWER = “EQUAL” thenreturn 7 = X UY
6: else if ANSWER = “SUBSET” then
7. X =XUY
8:  remove all sets Z from S with Z C X
9: else
10:  let x be the counterexample returned by the oracle
11: remove all sets Z from S with x € Z
12: goto 3

not A-closed. In the set variable X we store the set of items of 7' to be identified that have
already been detected by the algorithm. It is initialized by the empty set (Line 2). At this
point, the uncertainty as to T is | E| bits. The goal of the learning algorithm is to reduce this
amount of uncertainty to zero. To achieve this, on the one hand we prefer queries that reduce
the amount of uncertainty with as many bits as possible, i.e., we are interested in selecting a
set Y € S maximizing |Y \ X|. On the other hand, however, the larger the cardinality of the
query the smaller the chance is that it is a subset of 7'. Therefore, we need to take into account
the absolute frequency (or support count) of the set inquired as well. Since cardinality is at
odds with frequency, we control the trade-off between them by the product of the potential
information gain with the absolute frequency, and select the set ¥ from S maximizing this
heuristic (cf. Line 3). As we will see shortly, each set in S will be queried at most once. We
then call the oracle with the union of the already learned subset X of 7 with this candidate
set Y (Line 4) and, depending on its answer, proceed as follows: We stop the algorithm by
returning X U Y if it is equal to 7 (Line 5). If Y is a subset of 7" (Line 6), we add it to X
(Line 7) and remove all sets from S that are contained by X (Line 8), as none of them can
further contribute to the reduction of the uncertainty as to 7. Note that by definition, the
set Y used in the query will also be removed. Finally, if X UY ¢ T, the oracle returns a
counterexample x € Y \ T (Line 10). As x ¢ T, we remove all sets in S that contain x. Note
that in this case the amount of uncertainty is reduced by one bit only, in contrast to the case
that X UY C T (Lines 6-8).

We will compare the performance of our algorithm described above to the following less
sophisticated algorithm, called Algorithm BASELINE, obtained from Algorithm 6 by replacing
Line 1 with

':S:={{x}:xe€E}.

That is, this algorithm ignores all A-closed sets and uses only singletons in the queries,
preferring them by their absolute frequency. The brute-force solution to this problem would
be to ask a membership query for all items in some arbitrary order. The difference between
this brute-force strategy, referred to as Algorithm NAIVE and Algorithm BASELINE is that
Algorithm BASELINE asks the membership queries for the items in the order of their frequen-
cies and can stop the algorithm as soon as the target transaction has been identified. One can
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Table 6 Real-world product configuration dataset characteristics

ID 1 2 3 4 5 6 7 8 9 10 11

|E| 246 239 251 262 334 331 232 237 171 168 154
D] 8341 15,844 19,310 28,239 19,550 50,134 27,078 33,933 9149 17,935 5902
k 5228 5529 5125 4398 5995 60.72 4894 67.14 4886 47.14 51.62

The three rows correspond to the cardinality of the ground set (| E|), number of transactions (|D|), and average
transaction size (k)
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Fig. 14 Product configuration results for varying A. Averages over all input datasets

easily see that all three algorithms are correct and require | E| queries in the worst-case.’

Below we show on real-world datasets that Algorithm 6 requires much less queries than
Algorithm BASELINE.

6.2.2 Experimental results

We ran both Algorithms 6 and BASELINE on 11 real-world product configuration datasets
from a single real-world product configuration database provided by our industrial partner.
(Recall that Algorithm NAIVE would ask a membership query in some ad hoc order for every
element of E to identify the unknown target transaction 7'.) Table 6 contains the cardinality
of the ground set (| E|), the number of transactions (|D|), and the average transaction size
(k) for each of the 11 datasets. For both algorithms we measure the fraction of queries they
require compared to Algorithm NAIVE.

Using five-fold cross validation we computed the family of strongly closed itemsets for
each of the datasets, used them in Algorithm 6 to identify the transactions in the test set,
and calculated the fraction of queries required in comparison to Algorithm NAIVE. Figure 14
shows the average fraction of queries over all datasets required by our algorithm for various
values of A and by Algorithm BASELINE. One can see that the number of queries monotoni-
cally increases with A in the observed interval, motivating the choice of small values for A.

9 Assuming that transactions are non-empty subsets of E, this worst-case bound can be reduced to |E| — 1
by querying finally the set containing the two items left.
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This is not surprising, as smaller values of A result in larger families of strongly closed item-
sets, allowing for an ultra fine grade of queries. In particular, for A = 0.005 our approach
requires on average only a fraction of 0.49 of the queries required by Algorithm NAIVE,
compared to the fraction of 0.64 needed by Algorithm BASELINE. This results in a saving of
23.4% on average and 37.61% in the best case for Algorithm 6 over Algorithm BASELINE.
Note, however, that there is a trade-off between the choice of A and the time of updating the
family of strongly closed datasets.

The experimental results of this section clearly demonstrate the potential of strongly closed
itemsets on computer-aided product configuration tasks. In the next section we discuss some
potential ideas for further improving the query complexity of Algorithm 6. The elaboration
of these ideas go beyond the scope of this paper and is left for future work.

7 Concluding remarks

We have presented a general purpose algorithm for mining strongly closed itemsets from
transactional data streams under the landmark model. Our algorithm heavily utilizes some
of the nice algebraic and algorithmic properties of this kind of itemsets. The speed-up and
approximation results presented in Sect. 5 clearly indicate the suitability of our algorithm for
mining strongly closed itemsets even from massive transactional data streams. The empirical
results of the previous section provide also evidence that strongly closed itemsets are of high
practical relevance amongst others to concept drift detection in transactional data streams
and to computer aided product configuration. These advantageous properties follow from the
compactness and stability of strongly closed itemsets.

The speed-up results reported in Sect. 5 can further be improved by utilizing that |C p, |
is typically (much) smaller than the sample size (s) calculated by Hoeffding’s inequality (see
(Boley et al. 2009) for a detailed discussion on the size of Ca, p,). In such cases, the closure
o4,p, (CU{e}) can be computed from Cx p, without any database access to Dy, even when
the closure of C U {e} has not been calculated for D;. For example, instead of computing
o,p,(C U{e}) in Line 2 of Algorithm 3, we can return (|{Y € Ca,p, : C U {e} C Y}, as
Ca,p, is a closure system.

The impressive experimental results of Sect. 6.1 strongly motivate the design of an algo-
rithm specific to concept drift detection that is based on mining and monitoring the changes
in strongly closed itemsets. Besides the landmark model considered in this work, the problem
of mining strongly closed itemsets under the sliding window model would be an interesting
related problem. The solution of this problem requires, however, an entirely different algo-
rithmic approach. Another interesting question is to develop an algorithm optimally adjusting
the strength of closedness (i.e., A) during concept drift detection.

Similarly to the remark above, the algorithm proposed in Sect. 6.2 for the product con-
figuration task can further be improved by designing an algorithm specific to this problem.
Potential improvements towards this research direction include the utilization of partial orders
on the ground set, extensions of the problem by Boolean and cost constraints, and a more
sophisticated treatment of the items used in the queries, once the subset queries have been
exhausted and the algorithm automatically switches into asking subset queries formed by
singletons. (We recall that the only difference to ordinary membership queries lies in the
answer EQUAL). For the queries in this state of the algorithm, it would be essential to utilize
some appropriate linear order on the set of uncertain items remained (i.e., which have so far
been neither included nor excluded). A very natural candidate for such an order could be
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defined by the conditional probabilities of items with respect to strongly closed sets. When
the family of strongly closed sets is of small cardinality, which is typically the case, these
conditional probabilities could completely be calculated/updated and stored in a feasible way.

The question discussed above for product configuration raises a general problem. Instead
of calculating the closure system for some particular value of A, it would be interesting
to maintain a closure system formed by A-closed itemsets for different values of A. Such
a closure system should fulfill the condition that A > A, whenever a A;-closed itemset
precedes a Ap-closed itemset in it. In the context of product configuartion, this would allow
for working gradually with more and more strongly closed itemsets, resulting in a further
reduction in the number of membership queries asked by our algorithm in its second phase.
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