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Abstract
Reinforcement learning (RL) is a machine learning technique aiming to learn how to take
actions in an environment to maximize some kind of reward. Recent research has shown
that although the learning efficiency of RL can be improved with expert demonstration, it
usually takes considerable efforts to obtain enoughdemonstration.The efforts prevent training
decent RL agents with expert demonstration in practice. In this work, we propose Active
Reinforcement Learning with Demonstration, a new framework to streamline RL in terms of
demonstration efforts by allowing the RL agent to query for demonstration actively during
training. Under the framework, we propose Active deep Q-Network, a novel query strategy
based on a classical RL algorithm called deep Q-network (DQN). The proposed algorithm
dynamically estimates the uncertainty of recent states and utilizes the queried demonstration
data by optimizing a supervised loss in addition to the usual DQN loss. We propose two
methods of estimating the uncertainty based on two state-of-the-art DQN models, namely
the divergence of bootstrapped DQN and the variance of noisy DQN. The empirical results
validate that both methods not only learn faster than other passive expert demonstration
methods with the same amount of demonstration and but also reach super-expert level of
performance across four different tasks.
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1 Introduction

Sequential decision making is a common and important problem in the real world. For
instance, to achieve its goal, a robot should produce a sequence of decisions or movements
according to its observations over time. A recommender system should decide when and
which item or advertisement to display to a customer in a sequential manner. For sequential
decision making, reinforcement learning (Sutton and Barto 1998) (RL) has been recognized
as an effective framework which learns from interaction with the environment. Thanks to
advances in deep learning and computational hardware, deep RL has achieved a number of
successes in various fields such as end-to-end policy search for motor control (Watter et al.
2015), deep Q-Networks for playing Atari games (Mnih et al. 2015), and combining RL and
tree search to defeat the top human Go expert (Silver et al. 2016). These successes show the
power of RL to solve various kinds of sequential decision making and control problems.

In contrast with these successes, deep RL algorithms are notorious for their substan-
tial demands on simulation during training. Typically, these algorithms start from scratch
and require millions of data samples to learn a locally optimal policy, which is not a prob-
lem if unlimited simulation is available but is infeasible for many real-world applications
such as robotic systems. To address this problem, several methods have been proposed to
improve learning efficiency by leveraging prior knowledge from human experts. Imitation
learning (Schaal 1996), also known as learning from demonstration (LfD), is an attempt to
learn the policy of an expert by observing the expert’s demonstrations. However, the per-
formance of imitation learning is limited by the expert, since the agent only learns from
the expert without regard to rewards given by the environment. Another way is to improve
RL by leveraging demonstrations given by the expert and rewards simultaneously. Recently,
deep Q-learning from Demonstration (DQfD; Hester et al. 2018) and Policy Optimization
with Demonstrations (POfD; Kang et al. 2018) have shown state-of-the-art results on several
Atari games by training the agent with an objective that combines the rewards and the expert
demonstrations.

Although expert demonstrations improve RL, the efforts made by the expert are not negli-
gible. For instance, it takes a human expert thousands of steps to finish a mere 5 episodes for
most Atari games (Hester et al. 2018). The huge efforts make it hard to collect a large number
of demonstrations for DQfD in practice. In this paper, we introduce the concept of active
learning to make more efficient use of the expert’s efforts. In supervised learning, the goal
of active learning is to achieve better performance with less labeling effort by interactively
querying for new labels from unlabeled data (Settles 2009). In RL, we can also actively ask
the expert for a recommended action given the current observed state. Videos of bootstrapped
DQN (Osband et al. 2016) have shown that the behavior of different well-performing policies
agree at critical points but diverge at other less important states. This suggests that we could
save much expert effort by querying only at critical states in contrast to previous methods in
which the expert’s demonstration is collected for several entire episodes. In other words, we
can achieve further improvement in RL with the same number of demonstrations.

In this work, we consider reinforcement learning problems that allow selecting human
demonstration during the learning process. We first propose a new framework called Active
Reinforcement Learning with Demonstration (ARLD) for such learning problems. Then we
propose Active DQN, which proactively asks for demonstration and leverages the demon-
stration data. The query criterion should decide when to query—i.e., identifying states where
the agent can indeed learn and improve by obtaining the demonstration. We propose two
query methods based on uncertainty of Q-value estimation, named divergence and variance,
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which are derived from two state-of-the-art DQN methods, bootstrapped DQN and noisy
DQN, respectively. The uncertainty terms are then thresholded dynamically to form query-
ing decisions.

The dynamic nature allows the twomethods to adapt to recent states observed by the agent
and can be applied in various kinds of environments without exhaustive parameter tuning.
Experimental results show that our method with both uncertainty measurements is effective
in four different tasks. In this paper we thus offer three main contributions:

1. We propose a new framework, Active Reinforcement Learning with Demonstration,
which is the first work to reduce human effort in RL with demonstration to the best of
our knowledge;

2. We propose a novel uncertainty-based query strategy which can be applied toward dif-
ferent tasks and less sensitive to additional parameters;

3. We verify the effectiveness of two DQN uncertainty estimations with promising experi-
ment results.

2 Related work

Imitation learning (Schaal 1996) is a classic technique for learning from human demonstra-
tion. Typically, imitation learning uses a supervised approach to imitate an expert’s behaviors.
DAGGER (Ross et al. 2011), a popular imitation algorithm, requests an action from the expert
at each step, and takes an action sampled from amixed distribution of the agent and the expert.
It then aggregates the observed states and demonstrated actions to train the agent iteratively.
Deeply AggreVaTeD (Sun et al. 2017) is an extended version of DAGGER which works
with deep neural networks and continuous action spaces. However, both require an expert
to provide demonstration during the whole training phase. To reduce the demand for human
effort, the agent learns actively in active imitation learning (Shon et al. 2007; Judah et al.
2014) by requesting fewer expert demonstrations. The supervised setting of imitation learn-
ing make it easier to apply techniques from traditional supervised active learning. However,
although imitation learning can lead to no-regret performance in online learning settings, its
performance is still limited by the expert given the use of only expert demonstration data for
learning.

On the contrary, it is possible for Reinforcement Learning (RL) to achieve better perfor-
mance than the human expert by learning to interact with the environment and maximize
the cumulative rewards. In RL, there exist a variety of methods that leverage demonstration
to obtain improved performance. For instance, some use expert advice or demonstration to
shape rewards in the RL problem (Brys et al. 2015; Suay et al. 2016). Another approach is to
ask for demonstration from a given state to another state to improve the exploration (Subra-
manian et al. 2016). In contrast, the HAT algorithm summarizes the demonstrated knowledge
via a decision tree and bootstraps the task with the learned policy to transfer it to the target
agent (Taylor et al. 2011). CHAT, an extension of HAT, measures the source policy’s con-
fidence to decide whether to take its advice (Wang and Taylor 2017). The main difference
between CHAT and our work is that CHAT trains an offline model to learn a source policy
from well-collected demonstration by supervised learning and estimate the confidence of
this offline policy during RL. In addition, the demonstration is collected without any reward
information. In contrast, we estimate the uncertainty of the RL agent directly and ask the
expert interactively to collect online demonstration and its rewards.
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Table 1 Comparison between different settings

No expert Offline/passive learning Online/active learning

Imitation learning DAGGER Active imitation learning

Deeply AggreVaTeD

Reinforcement Learning DQN DQfD ARLD (our work)

DDPG DDPGfD

A3C POfD

HAT, CHAT

Reinforcement Learning with Expert Demonstrations (RLED; Piot et al. 2014) concerns
a scenario in which the expert also receives rewards from the environment. In this case,
DQfD (Hester et al. 2018), DDPGfD (Vecerik et al. 2017), and POfD (Kang et al. 2018)
have shown state-of-the-art results on a variety of tasks by combining the original RL loss
with a supervised loss on the expert’s demonstrations. Then, the agent simultaneously learns
its original objective and the behavior of the expert. In comparison to similar work such as
Human Experience Replay (Hosu and Rebedea 2016) and Replay Buffer Spiking (Lipton
et al. 2016), RLED methods yield massive acceleration with a relatively small amount of
demonstration data. Moreover, experiments show that these methods can also outperform
the expert they learn from. In contrast to our work, these works collect demonstration data
before training, and the expert must interact with environment by completing the whole
episode several times, whereas the proposed method requires the expert to demonstrate only
at critical states given the learning progress of the agent.

Most previous works focus on how to improve RL from “passive” demonstration data. To
the best of our knowledge, this is the first work to introduce the concept of active learning
to leverage demonstration data. The most similar work is active imitation learning (Shon
et al. 2007; Judah et al. 2014), which casts imitation learning as a classification problem and
conducts active learning on the classification problem. Table 1 compares different settings
mentioned above.Note that it is non-trivial to simply combineRLwith existing active learning
methods for three reasons. First, most mature active learningmethods are pool-based (Settles
2009), which cannot be easily adapted to RL due to its streaming nature. Secondly, mature
active learningmethods aremostly for classification,while estimating theQ-valueswithinRL
is closer to regression in nature. The regression-like characteristic makes it hard to connect to
the definitions of “decision boundary” that is commonly needed in active learning methods
for classification (Dagan and Engelson 1995). Thirdly, most streaming-based active learning
methods require calculating the uncertainty through some form of the version space (Mitchell
1982), which cannot easily be done with the deep neural networks within state-of-the-art RL
algorithms. The three reasons prevent typical active learning methods to be directly applied
in our setting.

3 Background

3.1 Reinforcement learning and deep Q network

The standard reinforcement learning framework consists of an agent interacting with an
environment which can bemodeled as aMarkov decision process (MDP). AnMDP is defined
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by a tuple M = 〈S, A, R, P, γ 〉, where S is the state space, A the action space, R : S×A → R

the reward function, P(s′|s, a) the transition probability function, and γ ∈ [0, 1) the discount
factor. At each step, the agent observes a state s ∈ S and takes an action a ∈ A according to a
policy π . The policy π can be either deterministic, π : S → A, or stochastic, π : S → P(A).
On taking an action, the agent receives a reward R(s, a) and reaches a new state s′ according
to P(s′|s, a). The goal of the agent is to find the policy π which maximizes the discounted
accumulative reward Eτ

[∑∞
t=0 γ t R(st , at )

]
, where τ denotes the trajectory obtained with

π and P .
For problems with discrete actions, the most popular approach nowadays is the deep Q-

network (DQN; Mnih et al. 2015). The key idea of DQN is to learn an approximation of the
optimal value function Q∗, which conforms to the Bellman optimality equation

Q∗(s, a) = R(s, a) + γ E
s′∼P(s′|s,a)

[
max
a′∈A

Q∗(s′, a′)
]

.

The optimal policy is then defined by Q∗ as π(s) = argmaxa′∈A Q∗(s, a′). The value-
function is approximated by a neural network Q(s, a; θ) with parameter θ where the
parameter is learned by minimizing the temporal difference (TD) loss:

Qtarget = r + γ max
a′∈A

Q(s′, a′; θ−)

LT D(θ) = E
(s,a,r ,s′)∼D

[
(Qtarget − Q(s, a; θ))2

]
,

where D is a distribution of transitions (s, a, r = R(s, a), s′ ∼ P(s′|s, a)) drawn from a
replay buffer of previously observed transitions, and θ− is the parameter of a separate target
network which is copied from θ regularly to stabilize the target Q-values.

3.2 Double deep Q-learning and prioritized experience replay

Double deep Q-learning (van Hasselt et al. 2016) and prioritized experience replay (Schaul
et al. 2016) are two common techniques to improve DQN. The double Q-learning update
calculates the target value by replacing maxa′∈A Q(s′, a′; θ−) with Q(s′, argmaxa′∈A
Q(s′, a′; θ); θ−). The modification reduces the overestimation of target value created with
the original update rule.

Prioritized experience replay modifies the uniform sampling of replay buffer to weighted
sampling, where the probability of sampling each transition is proportional to its priority. The
priority of a transition i is pi = |δi |+ε, where δi represents the last TD error calculated with
this transition and ε is a small positive constant that prevent the transitions not being sampled
once their error is zero. To deal with the changes of distribution, updates to the network are
weighted with importance sampling weights.

These two techniques are widely accepted as the standard for training RL agents. For
example, deep Q-learning from Demonstration (DQfD; Hester et al. 2018), which will be
discussed in the next section, applied these techniques. We will also apply the techniques in
our proposed algorithm, which can be viewed as an “active” extension of DQfD.

3.3 Deep Q-learning from demonstration

Deep Q-learning from Demonstration (DQfD; Hester et al. 2018) is a state-of-the-art method
to leverage demonstration data to accelerate the learning process of DQN. The agent is
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pre-trained on demonstration data to obtain better initial parameters before any interaction
with the environment. It keeps demonstration data in a prioritized replay buffer (Schaul et al.
2016) permanently, thatmeans the removal of transition data once the replay buffer is full only
happens on the transitions collected by the agent itself. Moreover, a positive constant εd > ε

is used as the basic priority of demonstration data to increase the probability that they are
sampled. DQfD applies a combination of four losses: the typical one-step double Q-learning
loss (LT D), N-step double Q-learning loss (L N ), supervised large margin classification loss
(L E ), and L2 regularization loss. The overall loss is thus

L(θ) = LT D(θ) + λ1L N (θ) + λ2L E (θ) + λ3||θ ||22.
The typical one-step temporal difference loss and N-step temporal difference loss are used
to obtain the optimal Q-value conforming to the Bellman equation, where the N-step loss
extends the Qtarget to a more precise form, which combines N-step discounted cumulative
reward and optimal Q-value estimation after N steps. The formula is as following:

L N (θ) = E
(s,a,r ,s′)∼D

[
(QN − Q(s, a; θ))2

]
,

QN = rt + γ rt+1 + γ 2rt+2 + ... + γ N−1rt+N−1 + max
a

γ N Q(st+N , a).

The large margin classification loss (Piot et al. 2014) is defined as

L E (θ) = max
a∈A

[Q(s, a; θ) + M 1 [a 
= aE ]] − Q(s, aE ),

where aE represents the action that the expert took in state s, M is a positive constant
value which means margin and 1[·] is indicator function. L2 regularization loss is applied to
parameters of the network to prevent overfitting on demonstration data. All losses are applied
in both pre-training and reinforcement learningphases. At each step,DQfDsamples a batch of
transition data from the prioritized replay buffer to calculate the total loss. While the sampled
data may contain both the demonstration data from the expert and the historical records from
the agent, the large margin classification loss is only applied on the demonstration data from
the expert.

3.4 Deep exploration via bootstrapped DQN

Exploration is an important issue in RL. E.g., ε-greedy is commonly used but it does not
exploit any information. Bootstrapped DQN (Osband et al. 2016) is a modification of DQN
to improve exploration during training. In practice, the network is built with K ∈ N outputs,
each representing a Q-value function estimation Qk(s, a; θ). Each output head is trained
against its own target network Qk(s, a; θ−) and is updated with its own bootstrapped data
from the replay buffer. The parameters of each head are initialized independently, while the
gradient of each update is normalized with 1/K . During training, a single head is sampled
at the beginning of each epoch, and the agent takes the optimal policy corresponding to
the sampled Q-value approximation function for the duration of the episode. This allows
the agent to conduct a more consistent exploration as compared to other common dithering
strategies such as ε-greedy. To keep track of the bootstrapped data for each head, we attach
to each transition data in the replay buffer a boolean mask m ∈ {0, 1}K indicating which
heads are privy to this data. The masks are drawn from an identical Bernoulli distribution
independently (mi ∼ Ber(p),∀i ∈ 1 . . . K ). However, their experiments show that the
performance of bootstrapped DQN is not influenced by different choices of p, and that all

123



Machine Learning (2020) 109:1699–1725 1705

outperform the original DQN. Hence in practice, to increase computational efficiency, we
simply share all the data between each head (p = 1).

3.5 Noisy networks for exploration

NoisyNet (Fortunato et al. 2017) is an alternative approach to improve the efficiency of
exploration in RL, where the parameters in the output layer of a network are perturbed
by noise. The noisy parameter θ is a vector of parameters in Q(s, a; θ), represented by
θ = μ+Σ �ε, where ζ = (μ,Σ) is a set of vectors of learnable parameters, ε is a vector of
zero-mean noise sampled from the standard normal distribution, and � stands for element-
wise multiplication. A noisy linear layer with p inputs and q outputs is then represented
by

y = (μw + σw � εw)x + μb + σb � εb,

where μw + σw � εw and μb + σb � εb replace the weight matrix and bias vector of typical
linear regression. The parametersμw ∈ R

q×p, μb ∈ R
q , σw in R

q×p, σb ∈ R
q are learnable

parameters of a layer of the noisy network and εw ∈ R
q×p, εb ∈ R

q are noise variables.
The agent samples a new set of random variables ε after each update step to obtain a sample
of θ and follows the optimal policy corresponding to the sampled Q-value function. The
noise variables of the online network, target network, and online network in double DQN are
sampled independently. The loss function for noisy double DQN is defined as:

L̄(ζ )

= E
ε,ε′,ε′′

[
E

(s,a,r ,s′)∼D
[r + γ Q(s′, a∗, ε′; ζ−) − Q(s, a, ε; ζ )]2

]

a∗ = argmax
a∈A

Q(s′, a, ε′′; ζ ),

where ε, ε′, ε′′ are noise variables corresponding to the online network, target network, and
the online network used to evaluate optimal action in double DQN.

4 Active deep Q-learning with demonstration

In this section, we first describe a new problem setting, then propose an uncertainty-based
query strategy to address the problem, after which we introduce two ways to estimate the
uncertainty of a deep Q-Network given an observed state with bootstrapped DQN and noisy
DQN, separately.

4.1 Problem setup

We proposed a new framework named Active Reinforcement Learning with Demonstration
(ARLD) to improve the demonstration efficiency, which is not considered in previous RLED
works. In ARLD, we consider the standard RL framework introduced in 3.1. In addition,
we assume there is an expert π+ which performs well on the task we seek to learn and is
not required to be optimal nor deterministic. In addition to the usual RL process, the agent
also interacts with the expert by querying what action to take upon observing some state,
say, at time step t . After querying, we assume that the expert “takes over” the decision of
the actions for a few consecutive steps between steps t and t + k. The demonstrated actions
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Fig. 1 The process of ARLD: a at step 1 to t − 1, the agent performs usual RL by interacting with the
environment;b at step t , the agent observes a state that triggers a query to the (human) expert for demonstration;
c at steps t to t + k, the expert replaces the agent and makes consecutive demonstration actions for the agent.
Then, after step t + k, the agent continues its usual RL from (a)

that the expert have taken can then be freely used by the agent for imitation, for instance, as
a piece of data in the agent’s replay buffer. After the demonstration period, the agent goes
back to usual RL. The whole process of ARLD is illustrated in Fig. 1. The main challenge of
ARLD is to decide when to query from the expert so that the agent can indeed benefit from
the obtained demonstration. As with active learning, our goal is to improve RL by making
as few queries as possible. More precisely, given a limited query budget, we seek to enable
the agent to learn to solve the task in as few steps as possible. Below, we discuss uncertainty
sampling (?), which one of the simplest andmost commonly used query frameworks in active
supervised learning.

4.2 Query strategy with adaptive uncertainty threshold

Uncertainty sampling is one of the simplest and most commonly used query frameworks in
active learning (Settles 2009). In this framework, an active learner estimates the uncertainty
of a pool of unlabeled instances and submits queries for those it is least certain how to label.
It is challenging to apply active learning with deep neural networks, as good deep models
typically require large amounts of data. Recent work has shown that uncertainty can be
estimated by taking advantage of specialized models such as Bayesian neural networks (Gal
et al. 2017). However, to improve RL by requesting an expert demonstration, we require an
online query strategy that takes advantage of uncertainty.
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In our setting, at each step, before the agent takes an action, it decides whether to query
the expert. A naive way to solve this problem is to make the decision with a fixed threshold:
the agent asks expert for demonstration once the uncertainty of an observed state exceeds the
threshold; otherwise it takes the action which maximizes the estimated Q-value. However,
it is difficult to find a proper threshold when the distribution of uncertainty keeps changing;
the discrepancy between different tasks also makes this difficult. One proposal is to adjust
the threshold with a fixed adjustment factor to work with the online Query by Committee
(QBC;Krawczyk andWozniak 2017), but it is still difficult to choose a good adjustment factor
for all tasks, especially when the uncertainty measurement is unbounded and its magnitude
unknown.

We propose an adaptive method which enables the agent to adjust its query policy during
training time without any prior knowledge of the task. Each time the agent makes a decision,
it compares the uncertainty of the current state with that estimated in recent steps. If the
current state uncertainty is larger than a given proportion of recent steps, the agent queries
the expert for demonstration; otherwise it determines its own action. In this algorithm, we
decide whether to ask the expert given the parameters Nr and tquer y , representing the amount
of recent steps we consider and the proportion of recent steps for which the state uncertainty
must be higher than the current state uncertainty. In practice, we use a double-ended queue
to maintain the uncertainty of recent steps and a balanced binary search tree (BST) to keep
these uncertainties in order so that we can make the decision in O(log2 Nr ) complexity for
each step. The pseudocode of the algorithm is provided in Algorithm 1.

The performance of the algorithm depends on the choice of uncertainty estimation. Below,
we propose two methods to estimate the uncertainty. One is based on bootstrapped DQN and
the other one is based on noisy network.

Algorithm 1 Adaptive Query Strategy with Uncertainty
Input: uncertainty Ut , reference size Nr , proportion threshold tquer y ∈ [0, 1], recent uncertainty double-

ended queue D, recent uncertainty BST B
Output: asking ∈ [TRUE, FALSE], D, B
1: idx ← size of D × tquer y
2: Uthreshold ← B[idx]
3: if Ut > Uthreshold then
4: asking ← TRUE
5: else
6: asking ← FALSE
7: end if
8: if size of D ≥ Rr then
9: Udel ← D.pop_le f t()
10: remove Udel from B
11: end if
12: add Ut into D, B

4.3 Divergence of bootstrapped DQN

Bootstrapping is a commonly used technique in statistics to estimate a sampling distribution.
In bootstrapped DQN (Osband et al. 2016), multiple value function heads Qk(s, a; θ) are
used to approximate a distribution over Q-values. Each head is initialized with randomness
independently. Moreover, each data instance in the replay buffer will be assigned to several
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heads sampled by Bernoulli distribution. There are several ways to estimate uncertainty
with these bootstrapped heads, including calculating the entropy of the voting distribution
or averaging the variance of action values predicted by each head. In this work, we consider
each head as a distribution and estimate the uncertainty using Jensen-Shannon divergence,
which is a well-known method to measure the similarities between multiple distributions.

When considering the divergencemeasurement among bootstrapped agents, onemay con-
cern the entropy of voting distribution by agents. However while the agents in bootstrapped
DQN tend to behave differently at less critical states because the Q-values of each action
might be close to each other. In this situation, the JS divergence of Q-value distributions is a
better measurement than the entropy of the voting distribution. For example, when consider-
ing an environment with two actions and two bootstrapped agents, if the two agents predict
(0.5, 0.4) and (0.4, 0.5) respectively, we would consider the state is not as critical as another
state where the two agents predict (1, 0) and (0, 1). However, with the voting method, both
states are considered equally uncertain because at both states the two agents vote for differ-
ent actions. JS divergence, by contrast, distinguishes the difference between them. Another
advantage of JS divergence is that as it is a bounded function, its value is more meaningful
and easier to use as a threshold in different environments.

To measure the JS divergence between the bootstrapped heads, we first normalize the Q-
values and actions using softmax to obtain a policy distribution. For each head Qk(s, a; θ ),

πk(a|s; θ) = eQk (s,a;θ)/
∑

a′
eQk (s,a′;θ).

Given this policy distribution, we estimate the uncertainty by calculating the Jensen-Shannon
divergence of the policy distribution between each head, yielding

UD = J S(π1, π2, ..., πK ) = H

(
1

K

∑

k

πk

)

− 1

K

∑

k

H(πk),

where H(π) is the Shannon entropy of distribution π and K the number of bootstrapped
heads.

4.4 Predictive variance of noisy DQN

For our second estimate of uncertainty, we evaluate the predictive variance of a noisy net-
work. Previous work has shown the effectiveness of estimating uncertainty by the predictive
variance of a Bayesian convolution network in classification active learning (Gal et al. 2017).
Other works have shown that injecting noise into the parameter space improves the explo-
ration process in deep reinforcement learning (Fortunato et al. 2017; Plappert et al. 2017).
Combining these two ideas, we use the noisy network as an exploration policy and estimate
uncertainty using its predictive variance. We replace the fully connected layer in the output
layer with a noisy fully connected layer. The corresponding noisy output layer can be seen
as Bayesian linear regression:

Q(s, a; θ) = waφ(s) + ba,

wa ∼ N (μ(wa), Σ),Σ = diag((σ (wa))2)

ba ∼ N (μ(ba), (σ (ba))2),
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where φ(s) ∈ R
p is input to the last layer. wa ∈ R

p, ba ∈ R represents the variables
corresponding to action a, and μ(wa), σ (wa), μ(ba), and σ (ba) are the parameters actually
learned by the model, representing the mean and noise level of wa and ba respectively.

Given the posterior distribution of the parameters, we derive the predictive variance as

Var[Q(s, a)] = Var[waφ(s) + ba]
= Var[waφ(s)] + Var[ba]
= φ(s)T Σφ(s) + (σ (ba))2.

The variance of each action measures the lack of confidence with respect to this action.
We take the variance of the action with the largest Q-value as our uncertainty:

UV = Var

(
Q

(
s, argmax

a
Q(s, a)

))
,

which translates to the lack of confidence for the action the agent would take at the step.
By querying the states with low confidence, we avoid bad moves leading to task failure and
explicitly teach the agent which is the proper action of the state.

5 Experiments

In this section, we describe the environments used for the evaluation as well as the experi-
mental setup. To focus on the effectiveness of each query strategy, we show the experimental
results of methods based on the bootstrapped and noisy network separately, after which we
present results evaluating the effect of the query proportion threshold of the proposedmethod.

5.1 Environment details

We use 4 different environments for our evaluation: (1) CartPole-v0, (2) Acrobot-v1 (3)
MountainCar-v0 (4) LunarLander-v2. All of them are included in OpenAI Gym (Brockman
et al. 2016). Among them Cart-Pole is the simplest task and Lunar Lander is the most
complicated one. The target score tomark each task as solved is listed in Table 3. In Sect. 5.10,
we also add an experiment with a more complicated task, Pong, as an additional case study.
In this section we provide the details of each environments.

5.1.1 Cart-pole

Cart-Pole (Barto et al. 1983) is a well-known environment for reinforcement learning. In this
task, a pole is attached to a cart which placed on a one-dimensional frictionless track. The
state consists of the position and velocity of the cart and the angle and angular velocity of the
pole. The agent can take two actions: applying either left or right force to the cart. The goal is
to keep the cart balanced. An episode ends when the pole falls or the cart goes out of bounds.
The agent receives +1 reward for each time step until the episode ends. The maximum step
of this environment is 200. The task is considered solved when the average reward is greater
than or equal to 195 over 100 consecutive trials.
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5.1.2 Acrobot

The acrobot (Sutton 1995; Geramifard et al. 2015) is a two-link robotic system with an
actuator at the joint between the two links. There are 6 variables describing the sine and
cosine of the two rotational joint angles and the joint angular velocities. The action is either
applying +1, 0 or -1 torque on the actuator. Initially, the links point downwards against the
gravity, and the objective is to swing the end of the lower link up to a given height. The reward
of -1 is given at each time step. The episode ends until 500 steps or the goal is reached. There
is no specified reward threshold at which the task is considered solved. In our comparison,
we set -100 as the threshold of solving this task as most of the methods converge to this score.

5.1.3 Mountain car

In this task, a car is placed on a one-dimensional track between two steep hills (Moore 1990).
The goal is to drive up the hill on the right. At each time step, the agent controls the car by one
of the three actions: 1) driving left, 2) driving right, 3) not using engine at all. Two continuous
variables are given to describe the position and velocity of the car. Since the engine of the car
is not strong enough to accelerate up the hill, the agent must learn to leverage the momentum
by driving back and forth. The agent received -1 reward at each time step. The episode ends
until 200 steps or the goal is reached. The task defines solving as getting average reward of
-110 over 100 consecutive trials.

5.1.4 Lunar lander

The goal of this task is to make the lander lands safely on the landing pad. The state space is
described using eight variables: the position and the velocity of the lander described in two-
dimension, the angle and the angular velocity of the lander, and whether the leg at each side is
contacted to the land. The agent can control the lander by either doing nothing, firing the left
orientation engine, firing the main engine, or firing the right orientation engine. Reward for
landing on the landing pad is about 100 to 140 points, according to how close the lander is to
the landing pad and how close it is to zero velocity. Crashing the lander or making it comes to
rest leads to the end of an episode, andwill get -100 or +100 points respectively. Firing engine
also gets − 0.3 points for the main engine and -0.03 points for the engines on both sides. The
task is considering solved as getting average reward of 200 over 100 consecutive trials.

5.1.5 Pong

Pong is an Atari game which also included in OpenAI Gym. In this task the player need to
control a stick vertically to play Pong with another software agent. We follow the prepro-
cessing step in Mnih et al. (2015) to generate 84 × 84 × 4 images as states. The task ends
when one of players get 21 points. Thus the reward of each game is ranging from -21 to 21.
The task is considered solved when an agent achieve average reward over 19 in 20 games.

5.2 Experimental setup

We evaluated the proposed method on the four environments described above. For each
environment, we evaluated six different methods based on bootstrapped (Osband et al. 2016)
or noisy (Fortunato et al. 2017) networks separately. The methods are:
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Table 2 Comparison between methods

Demonstration Pre-training Interaction Query criterion

DQN No No No No

DQfD Yes Yes No No

GDQN Yes No Yes Greedy

BDQN Yes No Yes Bernoulli

ADQN Yes No Yes Uncertainty

ADQNP Yes Yes Yes Uncertainty

1. DQN: Prioritized Double DQN trained without any demonstration
2. DQfD: Deep Q-learning from Demonstration (Hester et al. 2018)
3. GDQN: Greedy query strategy which queries all states until budget is all spent
4. BDQN: Bernoulli query strategy, queries states at fixed probability
5. ADQN:ActiveDQN, queries states according to proposed query strategy and uncertainty

estimation
6. ADQNP: Active DQN with DQfD pretraining. It is pretrained with a pre-collected set of

demonstration, and then asks for new demonstration during RL. The demonstration data
collected in both stage are kept in replay buffer permanently.

The key differences between the methods are summarized in Table 2. To distinguish whether
the method is based on bootstrapped DQN or noisy DQN, in the following we use suffix “-B”
to denote methods based on bootstrapped DQN and suffix “-N” to denote methods based on
noisy DQN.

We don’t compare the proposed solution with existing active learning methods mainly
because most of active learning researches focus on supervised learning and semi-supervised
learning. The difference of problem setting make it challenging to apply the traditional active
learning methods to RL, as we have described in Sect. 2.

We tuned the the learning rate in {10−4, 10−3, 10−2, 10−1} and discount factor in
{0.99, 0.9} for DQN on each environment to ensure reasonable learning progress and then
fixed these parameters for all six methods, as listed in Table 4. The network structure applied
in all environments was identical: two fully connected hidden layers with 64 neurons fol-
lowed by another fully connected layer to the Q-Values for each action. The layers all used
rectified linear units (ReLU) for non-linearity. We trained the networks using Adam and a
ε-greedy policy with ε annealed linearly from 0.9 to 0.01.We set the parameters of prioritized
replay according to Schaul et al. (2016). For bootstrapped DQN, we used 10 bootstrap heads
with normalized gradient and shared all the data as in Osband et al. (2016). For the noisy
networks, we used factorized noise and followed the initialization and hyperparameter values
from Fortunato et al. (2017).

For DQfD, we did not use L2 regularization loss or N-step temporal difference loss, as
they brought no benefit to training in our experiments. We set the expert margin M = 0.8 as
in Hester et al. (2018) and tuned the supervised loss weight λ in {10−5, 10−4, 10−3, . . . , 1}.
The number of demonstration data and pre-training steps were set to allow DQfD learn a
better initial policy than learning from a scratch.

For each query, all ARLD methods receives five consecutive expert demonstrations until
the end of the episode. The query threshold tquer y is tuned in {0.05, 0.1, 0.3, 0.5}. For
ADQNP, the number of demonstration for pretraining is half of DQfD and the query budget
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Table 3 Expert’s scores on each task. The experiments are repeated 100 times

Mean score/std Min. score Avg. steps Target score

Cart-Pole 166.77 ± 39.14 93 166.77 195

Acrobot −128.25 ± 66.86 −489 128.25 − 100

Mountain Car −134.0 ± 27.52 −158 134 −110

Lunar Lander 155.18 ± 55.58 −16.63 784.92 200

is half of ADQN, resulting in the same number of total demonstrations. All task-specific
parameters are all listed in Table 4.

In our experiments, we use artificial experts instead of real human experts to conduct
experiments in larger scale. In particular, to obtain an expert for each environment, we saved
the prioritized double DQN models during training and evaluated each over 100 episodes.
Then we chose as the simulated expert a model that (a) did not perfectly solve the task (b) had
reached low performance variance (c) still solved the task before the end of the episode. The
reason of choosing with these conditions is to obtain an expert that is as similar to a human
one as possible. Condition (a) reflects the fact that a human expert usually does not know
the optimal policy to solve the task. Condition (b) represents the consistency in usual human
experts. Condition (c) makes the experts sufficiently strong. The choice ensures the experts
to be realistic rather than idealistic. These experts were used to collect demonstration data
in DQfD and perform interactive demonstration in ADQN. The evaluation statistics of these
experts are shown in Table 3. More detailed studies when more extreme artificial experts are
considered will be discussed in Sect. 5.6.

All of the experiments were repeated 20 times with different random seeds to obtain
more stable results under the nondeterministic ecosystem of RL and the bootstrap method.
Figures 3, 4, 5, 6, 7, 8 and 9 show the median of the results over 20 trials. The y-axis indicates
the averaged test score, where the test scores in each trial were computed at a fixed frequency
by executing 20 test episodes without exploration.

5.3 Comparison between ARLDmethods

We first compare the methods without pretraining, i.e., DQN, GDQN, BDQN and ADQN.
Table 6 lists the median of number of steps that each method takes to solve the tasks in 20
trials. Among methods based on bootstrapped DQN, the proposed ADQN outperforms other
methods in all environments and yields significant improvements in Acrobot, Mountain
Car, and Lunar Lander. For methods based on noisy network, ADQN also achieves best
performance in three out of four tasks, and improves the learning progress in Acrobot and
Lunar Lander dramatically. The strength of ADQN over DQN again confirms the usefulness
of interacting with demonstration. Most importantly, the advantage of ADQN over GDQN
and BDQN validates that ADQN allows a more effective use of the demonstration efforts by
querying strategically at the important moments.

Fig. 2 shows the learning curves of ARLD methods based on the bootstrapped or noisy
network separately. The results demonstrate that the methods with demonstration not only
outperform the original DQN in general, but also achieve higher score than the simulated
experts which provide demonstration. Among the methods with demonstration, ADQN is
often the most competitive one, especially in the hardest task of Lunar Lander, which was
solved by ADQN with fewer steps and a higher score.
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Fig. 2 Comparison between different ARLD methods. The upper part is comparison of methods based on
bootstrapped DQN. The lower part is comparison of methods based on noisy DQN. Each plot means the
learning curve on that task. The x-axis means the number of training step and the y-axis means the evaluate
score. The dashed lines indicate the score of solving the task
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5.4 Comparison with pretrainingmethods

Next, we compare DQfD with ADQN to understand the effect of collecting expert demon-
stration before or during training. We also design ADQNP as a simple mixture between the
two. The results in Table 6 show that ADQN usually solves the tasks with fewer steps than
DQfD or ADQNP, except for the simplest task of Cart Pole. ADQNP also often improves
over DQfD when the tasks gets harder. The results justify the effectiveness of leveraging
expert demonstration during training.

For simulating real-world scenario where the demonstrating humans may not always be
perfect, our simulated experts are designed to be realistic but imperfect. Then, methods with
pretraining need to take additional steps in the beginning to correct the policy learned from
the imperfect experts. This situation explains the performance dropping in the beginning
of DQfD for Acrobot and Lunar Lander, as shown in Fig 3. ADQN, on the other hand,
demonstrates better ability to leverage the imperfect demonstrations to aid RL.

5.5 Effect of query proportion threshold

Active DQN uses two parameters: the number of recent steps for which we compare the
uncertainty (Nr ) and the proportion threshold that determines whether to make a query given
recent steps (tquer y). Since the uncertainty distribution usually changes smoothly, the value
of Nr effects the performance little compared to parameter tquer y . In Fig. 4 we plot the
performance given different values of tquer y : we observe that in most cases, different choices
of tquer y perform similarly.Moreover, in Table 4we see that the best values of tquer y are either
0.1 or 0.3 in Acrobot, Mountain Car, and Lunar Lander; in Cart-Pole, the only exception, the
result shows the least variance between choices of tquer y . Thus, the performance of Active
DQN is not sensitive to the parameter tquer y , and it is easy to choose a value between 0.1 and
0.3 that optimizes performance for all kinds of tasks.

5.6 Effect of expert’s quality on ADQN and DQfD

In this subsection, we investigate how different kinds of simulated expert would effect the
performance of ADQN and DQfD. We compared three different approaches including the
one we used to simulate real human and two other common approaches. First of all, the
perfect experts are DQN agents trained on each task until convergence. These well-trained
experts can solve their tasks perfectly and efficiently. Second, we obtain weaker experts by
applying random noise to the perfect expert. That is, each time an expert is going to make a
demonstration, there is a probability the expert will do a random action rather than following
the perfect expert’s policy. The random behaviors sometimes lead to the end of an episode
directly, therefore even though the expert is able to make optimal choices at most of the
time, it still might fail to solve the task at the beginning of an episode. Last, as described
in Sect. 5.2 and Table 3, we saved the temporary models in the process of training a DQN
agent and selected one of them to be a weak expert. Compared to the noisily-acting weak
experts, these policy-consistent weak experts act more consistently through an episode, hence
their behavior are more similar to a human expert. The performance of simulated experts
mentioned above are shown in Table 5.

Figure 5 demonstrates the effect of expert’s quality on ADQN and DQfD in Lunar Lander.
We experiment with both noisy and bootstrapped network structures along with the three
experts mentioned above. The figure shows both DQfD and ADQN can learn efficiently
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Fig. 3 Comparison between ADQN, DQfD and ADQNP. The dashed lines indicate the score of solving the
task
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Fig. 4 Comparison between different query thresholds among {0.05, 0.1, 0.3, 0.5}
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Table 4 Task specific parameters

Cart-pole Acrobot Mountain Car Lunar Lander

Discount factor 0.9 0.99 0.99 0.99

Learning rate 0.0001 0.0001 0.001 0.001

Training steps 20000 200000 500000 500000

# of demo/budget 200 100 500 3000

Memory size 10000 100000 100000 100000

Pre-training steps 10000 10000 10000 30000

DQfD λ 0.00001 1 1 1

ADQN-B tquer y 0.05 0.3 0.1 0.3

ADQN-N tquer y 0.5 0.3 0.3 0.1

Table 5 Mean scores of different type of expert

Cart-Pole Acrobot Mountain Car Lunar Lander

Perfect expert 200.0 ± 0 − 76.52 ± 15.12 − 102.08 ± 4.78 231.42 ± 16.92

Perfect expert +40% Noise 131.92 ± 63.96 − 128.08 ± 24.63 −187.56 ± 12.27 − 43.32 ± 59.34

Weak expert 166.77 ± 39.14 −128.25 ± 66.86 −134.0 ± 27.52 155.18 ± 55.58

Target score 195 − 100 −110 200

and solve the task within few steps with an perfect expert. On the contrary, both of their
performances suffer from the noisily-weak expert. They not only learned slower than learning
with perfect experts, but also converge at a worse score. However, while working with the
policy-consistent weak expert, though DQfD still perform poorly, ADQN converge at higher
scores which are close to ones achieved by working with perfect experts. As a result, we
found that ADQN is able to take the advantage of policy-consistent weak experts, which are
similar to human experts.

5.7 Comparison between ADQN and DQfDwith different query budgets

In previous results, we have shown that RL efficiency can be improved by actively asking for
expert demonstration. The results were obtained with a fixed query budget of 3000. In this
section, we investigate how different query budgets affect the performance of the “passive”
DQfD and the “active” ADQN. Figure 6 shows the learning curves of DQfD and ADQN in
Lunar Lander with different query budgets. For DQfD, not surprisingly, a bigger querying
budget allows the algorithm to start with more demonstration data, which in term leads to
better initial performance. Nevertheless, the performance of DQfD seems to be somewhat
grounded to the sub-optimal policy represented by the imperfect demonstration data.

ForADQN, the only casewhere it performsworse thanDQfD iswhen using noisy network
with a really small query budget of 250, which is possibly caused by the sampling bias (Settles
2009) that makes the demonstration data less representative of the expert’s policy. For other
cases of different query budgets, especially those with a sufficiently large query budget, the
valuable demonstration data queried from ADQN soon allows the algorithm to catch up and
outperform DQfD significantly in subsequent updates. The results again justify the benefits
of actively asking for expert demonstration.

123



1718 Machine Learning (2020) 109:1699–1725

Fig. 5 Comparison between perfect expert, prefect expert with 40% random action, and weak expert

5.8 The evolution of uncertainty measurement

In this subsection, we try to analyse how frequently the agent would ask expert problems
and how the uncertainty of the agent evolves during the learning process. Figure 7 shows the
number of demonstration each agent has asked during the learning process. In this experiment,
we set the query budget as 3000 for all approaches. We compare ADQN with GDQN and
BDQN, where GDQN always ask for demonstration until budget running out, and BDQN
ask for demonstration with a probability of the query threshold at each step. The setting of
query budget and query threshold for each environment are according to Table 4. Apparently,
GDQN is always the first one who runs out the budget. In Cart-Pole, Acrobot, and Lunar
Lander, BDQN and ADQN both ask for demonstrations in stable frequency, and ADQN
usually ask more frequently. On the other hand, for Mountain Car, ADQN asks slower than
BDQN, which means there is a period where uncertainty is non-increasing in the beginning
of training. Figure 8 compares the uncertainty curves between ADQN and its original DQN
counterpart. Although one may expect that the neural network may learn to decrease the
uncertainty to obtain the deterministic optimal sollution. Empirical research (Fortunato et al.
2017) has shown the variance of noisy DQN is not really strictly decreasing, and the agent
does not necessarily evolve towards a deterministic solution. An interesting observation in
our experiment is that though the intervention of expert benefits RL, it does not make the
agent converge sooner. Instead, in most of the case the uncertainty of ADQN is higher than
the original DQN.

123



Machine Learning (2020) 109:1699–1725 1719

Fig. 6 Comparison of the learning curves between DQfD and ADQN with different number of demonstration
data or query budgets
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Fig. 7 Number of demonstration asked during learning process
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Fig. 8 The evolution of uncertainty measurement during learning process
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Table 6 The upper table shows the median number of step to solve the task by methods based on bootstrapped
DQN

Cart-Pole Acrobot Mountain Car Lunar Lander

Bootstrapped DQN

DQN-B 8000 57000 210000 260000

GDQN-B 8000 45000 170000 310000

BDQN-B 7500 31000 100000 217500

ADQN-B 7000 25000 85000 205000

DQfD-B 7500 38000 140000 500000

ADQNP-B 6000 49000 135000 267500

Noisy DQN

DQN-N 13000 114000 190000 355000

GDQN-N 10000 73000 295000 500000

BDQN-N 10000 55000 170000 160000

ADQN-N 9500 8000 230000 47500

DQfD-N 8000 95000 300000 402500

ADQNP-N 8000 75000 255000 212500

The lower table shows the median number of step to solve the task by methods based on noisy DQN. We use a
line to separate DQfD and ADQNP from the other methods to indicate that DQfD and ADQNP are pretrained.
The bold numbers indicate the best performance on that task

Fig. 9 The learning curves of DQN, DQfD and ADQN in Atari Pong

5.9 The choice of bootstrapped DQN or Noisy DQN

In the previous sections, we focus on how the proposed ARLD framework improves the
learning process and demonstration efficiency compared to the original DQfD or RL without
demonstration. Table 6 shows that bootstrapped DQN and noisy DQN both have their pros
and cons on different tasks. While the original bootstrapped DQN (DQN-B) works better
then noisy DQN (DQN-N) on more tasks (Cart-Pole, Acrobot, Lunar Lander), their ARLD
counterpart (ADQN-B and ADQN-N) both outperform the other on two tasks. That is to
say, there is no clear winner between bootstrapped DQN and noisy DQN with regard to
performance. However, as for computation efficiency, noisy DQN is clearly better than boot-
strapped DQN because of having fewer parameters. Furthermore, from Table 6 we can see
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that noisyDQNgetmore significant improvements when coupledwithARLD. The efficiency
and improvement aspects suggest that noisy DQN is currently a better choice for ARLD.

5.10 Case study: Atari Pong

To further complement the type of tasks in our experiment. We choose Atari Pong as a case
study of more complex task with visual state space. We follow the same procedure described
in Sect. 5.2 to tune the hyper-parameters and obtain a simulated expert. The values are: dis-
counted factor: 0.99, learning rate: 10−4, training steps: 500000, number of demonstration:
50000, memory size: 150000, pre-training steps: 5000, DQfD λ (learning rate for demonstra-
tion data): 0.01, tquer y (query threshold): 0.5. The simulated expert achieves 11.85 in average
with 4.59 standard deviation.

Compared to the 4 tasks we have experimented above, Pong is a more challenging task
because of its longer task duration andmiss-intolerant rule. For example, it takes the simulated
expert 784.92 steps in average to finish an episode in Lunar Lander. In contrast, it takes
2801.45 steps to finish an episode in Pong. The longer horizon of the task makes it harder to
catch the critical states with limited number of queries in a game. In addition, as a competitive
game, an agent is more likely to receive negative rewards when it makes mistakes. Therefore
even following the demonstrations of expert may lead to negative results. This fact makes
the balance between learning from expert and learning from agent harder. As a result, we
reduce the learning rate of expert demonstration data from 1.0 to 0.01 and find it works best
with both DQfD and ADQN.

Figure 9 illustrated the learning curves ofDQN,DQfD, andADQNwith both bootstrapped
andnoisy network.Wecan see that althoughDQfD is benefited frompretraining thus performs
better at beginning, it is also affected by the imperfect expert so it can not achieve higher
score even after 500000 steps of learning. In contrast, both DQN and ADQN achieve scores
higher than the expert. This again shows that ADQN is more robust to learn from imperfect
demonstration. Furthermore, with the help of demonstration, ADQN is able to learn faster
than DQN at most of the time.

6 Conclusion and future work

In this work, we propose a new framework: Active Reinforcement Learning with Demonstra-
tion, which improves RLwith demonstrationmore efficientlywith regard to human effort.We
also proposed a solution called Active DQN, where we use DQfD to leverage demonstration
data and propose a novel uncertainty-based query strategy which applies to diverse tasks. We
provide two measurements of the uncertainty: the divergence of Bootstrapped DQN, and the
predictive variance of Noisy DQN.

Experimental results show that the proposed methods are indeed benefited from expert
demonstration. They learn faster than RL without demonstration and achieve higher score
than the expert they learn from. Compared to DQfD, the proposed method is more robust to
imperfect experts and more flexible to query demonstration online. Furthermore, we show
that the method works with a range of query threshold so we don’t need to tune it cautiously
and we can also control the query frequency by adjusting the threshold.

As an initial work on Active Reinforcement Learning with Demonstration, the proposed
method has achieved promising performance. A possible extension of this work is to apply it
on RL algorithms such as DDPG which work on a continuous action space. A more difficult
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challenge is to work with on-policy methods which require a different way to learn with
demonstration. Another natural way of designing query strategies is to evaluate whether the
current decisions by the agents might be bad. Somehow the bad decisions are not as easy
to define as the uncertain decisions, and they may not always be the most uncertain ones. It
is an interesting future direction to design query strategies based on whether the decisions
might be bad.

In this work, we focused on large-scale experiments to demonstrate the feasibility of
the proposed framework, and thus relied on only simulated experts. The work serves as
an initiative to improve the learning efficiency of RL agents through active querying. To
achieve even better efficiency, another interesting future direction is to study how RL agents
interact with real human experts, where new challenges and issues will emerge. For example,
interacting with real human experts will need a well-designed system to switch control
between the agent and the human expert seamlessly, and to allow the expert to observe some
recent states easily. The real human experts can also be affected by good/bad memories of
past demonstration efforts, making the quality of the demonstration data varying in time.
Conquering those challenges in the future direction will make it more realistic for human
experts to share their knowledge with RL agents.

Acknowledgements MS was supported by KAKENHI 17H00757. SC and HL were partially supported by
MOST 107-2628-E-002-008-MY3 of Taiwan.
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